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Abstract
Computational fragment-based approaches have been widely
used in drug design and drug discovery. One of the limita-
tions for their application is the lack of performance of the scor-
ing functions. With the emergence of new fragment-based ap-
proaches for single-stranded RNA ligands, we propose an anal-
ysis of the docking power of an MCSS-based approach evalu-
ated on nucleotide binding sites. Combined with a clustering of
MCSS-generated poses and some state-of-the-art scoring func-
tions, the results suggest that it could be used in the design of
oligonucleotides.
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Introduction
Fragment-based approaches have been widely used in lig-
and design with several examples of "success stories" when
applied to drug design and drug discovery (1–4); from the
middle of the 90’s (5) until now, more than 30 fragment-
based drug candidates have entered the clinic (6). De-
spite some hindrance related to synthetic accessibility and/or
ligand-design strategies, fragment-based approaches remain
very attractive while dealing in a more efficient way with
chemical space, molecular complexity, probability of binding
and ligand efficiency (6). After high throughput screening,
fragment-based approaches represent one of the three major
lead generation strategies for clinical candidates (7). Both
experimental and computational approaches have been de-
veloped based on the same principles that weak-binding frag-
ments can be converted into highly efficient ligands by cova-
lent linking. One of the contributions to the gain of binding
affinity with respect to that of the individual fragments comes
from the rigid body entropic barrier which is supposed to be
independent of the molecular size. This gain is optimal when
there is no energy penalty associated with conformation of
the linker and when the binding mode of each fragment is
preserved in the ligand. Weak-binding fragments should still
have enough favorable contacts to counterbalance the loss of
rigid body entropy on binding. In practice, the first step is to
design and build a fragment library, the second is to screen
the fragments and the third to assemble them into ligands as

lead compounds (8, 9).

In the case of the experimental approaches, the fragments
are validated by some screening methods some of which are
high throughput, e.g. by surface plasmon resonance (10).
This is a critical step in the process of fragment-based de-
sign (FBD). In the case of the computational approaches, the
FBD is by default a structure-based approach like in the X-
ray crystallography-based screening of fragments or in any
other structural biology assisted FBD (2). However, the hits
obtained in silico are not generally validated until the end
of the process leading to the assembled ligands. Very few
published studies actually compare in silico to experimen-
tal approaches to validate virtual hits like in the screening of
fragment-like inhibitors against the N5-CAIR mutase (11).
A computational screen of fragment libraries is faster and
more cost-effective than in experimental approaches. How-
ever, the performance of such approaches may vary although
the case of the N5-CAIR mutase shows a good overlap be-
tween the computational and experimental approaches. The
lack of accuracy of the scoring functions is often invoked
for the poor performance, i.e. the difficulty to discriminate
native-like poses from false binding poses (12, 13). In the
absence of validation after the screening step, sub-optimal
fragments may be selected that are poor binders or that would
not bind at all at the targeted site. Thus, there is no guaran-
tee we can identify the optimal fragments or those with the
higher binding specificity by virtual screening.

Traditionally, the FBD approaches have been applied to the
design of ligands assembled using small chemical groups se-
lected from the fragment library which is often built based
on drug-like criteria. Since the fragments library should
also cover some chemical space with the diversity of chem-
ical groups and molecular properties, a good strategy is
needed to assemble the fragments. The fragment merging or
linking strategies consist in connecting covalently two non-
competitive fragments either by fusing some chemical bonds
or by creating some additional chemical bond(s) as a spacer
to link both fragments. The alternative strategy, fragment
growing (or fragment evolution), is less challenging; it can
be viewed as an optimization process where one fragment is
modified by adding some functional group that can make fa-
vorable contacts around the primary binding site of the frag-
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ment.
In the case of biopolymers, the chemical connectivity is well-
defined and thus the assembling strategy involves solving a
distance-constraint problem to join the connecting atoms of
successive residues. In the early days of computational FBD
approaches, different flavors were implemented to design
peptide ligands where the fragments are amino acid residues
or moieties (14–18). Designing biopolymers is an easier
task since the synthetic accessibility of designed ligands by
in silico FBD is still very challenging. More recently, an
FBD approach was applied using multi-residues fragments
corresponding to 8-mers to avoid the high degrees of free-
dom to manage for the conformational sampling of long pep-
tides (19). A similar approach was applied to RNA ligands
using trinucleotides to predict the binding mode of single-
stranded RNAs to proteins (20, 21). In both cases, peptide
or RNA ligands, the sequence of the oligomer is used as in-
put for modeling the ligand-protein complex in order to re-
produce known protein-ligand interactions. Thus, some im-
provements are still required to make progress towards the de
novo fragment-based design of bound oligomers to protein
targets.
The primary binding site of the RNA binding domains from
RBPs generally corresponds to an interface that can accom-
modate k-mers with k between 4 and 10 (22–24). However,
the RNA motifs that actually make contacts with the pro-
tein span a much shorter stretch of contiguous residues cor-
responding to 3-mers up to 5-mers in many structural fam-
ilies of RBPs (25). Such short RNA motifs, revealed by
structural biology approaches, can be successive separated
by short spacers and form longer bi-partite or tri-partite mo-
tifs that can easily extend to 10-mers (26). Very recent data
obtained by high-throughput binding assays and sequencing
on 78 human RBPs confirm this observation where the RNA
motifs are composed of conserved 3-mers separated by spac-
ers of 0 to 10 residues (27).
Two previous studies have been carried out using FBD ap-
proaches to model ssRNA-protein interactions. A method
based on a coarse-grained model (RNA-LIM) was devel-
oped to model the structure of an ssRNA at the protein sur-
face (28). However, its application is restricted to the RNA
binding region surface and the simplified representation of
the nucleotides makes impossible to distinguish between dif-
ferent nucleotide orientations. The more recent and advanced
method was tested on a set of RBPs with RRM or Pumilio do-
mains and could generate near-native models of RNA-protein
complexes with good precision (RMSD ≤ 2Å) in most cases
for chains up to 12-mers (20, 21). However, the scoring func-
tion still lacks the accuracy to be able to discriminate near-
native poses in a robust way.
In this study, we use an updated version of MCSS for the
screening of nucleotides. We examine the ability to identify
and score native poses using the default MCSS scoring func-
tion on an extended benchmark of protein-nucleotide com-
plexes. Four alternative scoring functions are evaluated; the
performances of the five functions are compared. A cluster-
ing of the MCSS-generated poses is also proposed to select a

fewer number of poses from the perspective of its application
to the design of oligonucleotides.

Results & Discussion
Most of the docking methods and their scoring functions
have been tested on different benchmarks. These benchmarks
have been designed for some specific families of ligands in-
cluding RNA ligands (29–31). However, the RNA-protein
benchmarks include large RNAs (tRNA, rRNA, ribozyme,
etc) where single-stranded RNAs are poorly represented and
mostly present in the context of single-stranded regions con-
nected to double-stranded regions. Building the benchmark
from a subset of RBPs binding ssRNAs would select opti-
mal and sub-optimal binding sites corresponding to spacer
regions. In order to avoid such bias, we built a benchmark
based on the protein-nucleotide complexes currently avail-
able in the Protein Data Bank (RCSB PDB (32)). A previous
protein-nucleotide benchmark with 62 complexes was used
to evaluate the docking power of three methods: AutoDock
(4.2.3), GOLD (5.1), and MOLSDOCK (33). However, the
benchmark is largely outdated with only 40% of complexes
with an atomic resolution less than 2.0Å and thus not rep-
resentative anymore of the structural data currently avail-
able. On the other hand, it was tested under biased con-
ditions: the docked region was restricted to the native lig-
and pose (5Å3) and the high-occupancy water molecules
of the binding site were preserved within a rigid receptor.
In this study, we use an updated and representative dataset
of high-resolution protein-nucleotide complexes in which
only nucleotide monophosphate are included (see "Protein-
nucleotide Benchmark" and Methods). The nucleotides are
docked in an extended region (17Å3) around the binding site
where the water molecules were removed and the residues in
contact with the ligand optimized (see "MCSS Calculations"
and Methods).

Protein-nucleotide Benchmark. The protein-nucleotide
benchmark includes a non-redundant set of 120 complexes
which are associated with 14 different molecular functions.
Despite the over-representation of proteins binding AMP in
the 3D structures available in PDB, all the 4 nucleotides are
represented; the three other nucleotides are distributed almost
equally (Sup. Note 1). The selection criteria retained to build
the benchmark are detailed in Methods. The analysis of the
120 nucleotide binding sites based on different molecular and
energy descriptors shows that the benchmark covers a large
diversity of features which reflect that of the binding modes
(Fig. 1).

MCSS Calculations. Several phosphate group models were
used in the MCSS calculations to determine the optimal pa-
rameters for mapping nucleotides at the protein surface. We
used five different phosphate models that differ by the va-
lence and charge of the phosphate group (Fig. 2). All the
partial charges on the phosphate groups are derived from a
CHARMM parameter set which was derived based on the
Manning’s theory of counterion condensation to account for
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DRAFTFig. 1. Molecular and energy descriptors of the nucleotide binding sites from the
benchmark of 120 complexes. A-1.: histogram of the number of contacts; B-1.:
histogram of the number of H-bonds; C. histogram of the buried fraction of ligand
(solvent-accessible surface); A-2.: smoothed histogram of the number of contacts
with a nucleotide moiety decomposition: base, ribose, phosphate; B-2.: smoothed
histogram of the number of H-bonds with a nucleotide moiety decomposition; D.:
smoothed histogram of the energy score. The molecular descriptors associated
with the atomic contacts and H-bonds are calculated by BINANA (34); the energy
terms are calculated by CHARMM according to the MCSS scoring function.

Fig. 2. Phosphate group models corresponding to different patched nucleotides.
The partial charges on the phosphate groups are derived from a modified set of
CHARMM22 and updated CHARMM27 parameters (35). The default charge for a
full valence state of the phosphate group is -0.32 (R210, R310). A doubled net
charge is assigned for the ionization state of a R-PO42− group.

the partial neutralization of the negative charges of polyelec-
trolytes in solution (36). The net charge on the phosphate
group is scaled down according to the implicit solvent model
previously used in MCSS calculations performed on nucleic
acids (35).

Fig. 3. Schematic description of the series of MCSS calculations performed on each
protein target. The chemical structure of each 5’ patched nucleotide is indicated:
R010, R110, R210, R310, R410. The protein target is represented in cartoon mode
with the indication of the cubic box corresponding to the explored region.

The five types of nucleotides were mapped at the protein sur-
face (Fig. 3) and several thousand poses have been generated
for each of them (see Methods). All the patched nucleotides
gave an equivalent number of poses around 3000-3500 ex-
cept for R110 corresponding to a nucleoside with only a bit
more than 2000 poses generated (Fig. 4). As a nucleoside,
R110 has a smaller size and tends to have less contacts with
the protein targets. The fraction of native poses between the
patched nucleotides is equivalent except for R310 which ex-
hibits more native poses (Fig. 5). There is no significant dif-
ference depending on the charge of the phosphate group: the
more charged nucleotide, R410 (-0.64), contains about the
same ratio of native poses with respect to R010 or R210 (-
0.32). R310 generated a higher fraction of native poses.

Scoring Nucleotide Binding. The success rate for the iden-
tification of a native pose is given for a range from top1 to
top100 ranks (Fig. 6). The differences between R110 and the
other patched nucleotides are more significant in particular
for the success rate for top1 which is less than 20% but higher
than 20% and close to 30% for some of the other patched nu-
cleotides (R310, R410).
A clustering was applied to select the more representative
poses (see Methods). The clustering leads to a decrease of
the total number of poses (from more than 3000 in average
to around 500) and of that of native poses as well (data not
shown). However, there is an increase of the success rate for
all the patched nucleotides in the top1 to top100, especially
from top5 (Fig. 7). The higher success rate for the top1 is
obtained with R310. In the following analyses, the results
obtained with R310 are used for further comparisons.
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Fig. 4. Boxplot representation of the number of poses generated for the 120 protein-
nucleotide complexes for each 5’ patched nucleotide. A black line represents the
median value, the box limits represent the first and third quartile. A diamond symbol
indicates the average value.

Fig. 5. Boxplot representation of the fraction of native poses generated for the
120 protein-nucleotide complexes for each 5’ patched nucleotide (see legend from
Fig. 4.

Fig. 6. Stacked histogram representation of the top n ranked native poses gener-
ated for the 120 protein-nucleotide complexes for each 5’ patched nucleotide.

Fig. 7. Stacked histogram representation of the top n ranked native poses gener-
ated after clustering. raw: no clustering; clu: clustering based on a RMSD criterion
of 2.0Å.

Alternative scoring functions. To further improve the
scoring of protein-nucleotide interactions, additional scoring
functions that were developed more recently were also tested:
Autodock Vina score (37), Vinardo (38), ∆vinaRF20 (39),
and ITscorePR (40). All the listed scoring functions are
trained on protein-ligand complexes except ITscorePR which
was specifically developed for protein-RNA interactions.
Autodock Vina is a well-known docking method used for vir-
tual screening; the associated scoring function is pretty ro-
bust having regularly been used in the comparative assess-
ment of scoring functions (CASF) challenges (41). Vinardo
and ∆vinaRF20 were both derived from Vina and also tested
in the CASF-2013 challenge. Vinardo was optimized and
validated on large datasets (38). It was tested in particu-
lar on the DUD library that contains, among other proteins,
kinases with nucleotide ligands or nucleotide analogs (42).
∆vinaRF20 was derived more recently from Vina with a new
parametrization based on random forest. The performance
of ∆vinaRF20 was superior to that of Vina when tested on
the CASF-2007 and CASF-2013 challenges benchmarks. Fi-
nally, ITscorePR was included since it has been specifically
developed for protein-RNA interactions.
The scores calculated with all the scoring functions:
Autodock Vina score (37), Vinardo (38), ∆vinaRF20 (39),
and ITscorePR (40), except MCSS (35) correspond to single-
point calculations on the MCSS-generated poses. The per-
formances of the five scoring functions were compared with
and without clustering. All the scoring functions show pretty
similar performances except ITscorePR that clearly under-
performs (Fig. 8).
When no clustering is applied, Vinardo and ∆vinaRF20 gen-
erate pretty similar scores, Vinardo performing a little better
especially in the top1 and top5. On the other hand, Vina and
MCSS perform in a similar way from the top1 to top100 with
lower scores compared to Vinardo and ∆vinaRF20. When
the clustering is included: Vinardo, MCSS and ∆vinaRF20
perform with similar scores, Vina performing a bit lower es-
pecially from the top10 to top100. As observed previously
for MCSS, the clustering procedure improves significantly
the success rate from top5 to top100.
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Fig. 8. Stacked histogram representation of the native poses in the top1 to top100
as scored by Vinardo, MCSS, ∆vinaRF20, Vina, and ITscorePR. A. no clustering;
B. clustering.

Conclusions
MCSS was evaluated for the docking of nucleotides from
analyses on a benchmark of 120 protein complexes. Differ-
ent phosphate models were tested to optimize the success rate
for the identification of native poses. A clustering procedure
was set up that allows an increase of the success rates. Alter-
native scoring functions tested in the CASF challenges or de-
veloped to score protein-RNA interactions were evaluated to
identify the more high-performance scoring functions. When
combined with the clustering protocol, Vinardo, MCSS, and
∆vinaRF20 were found, in that order, as the best scoring
functions. Assuming that the binding region of the protein
can be defined within a 17Å3 cubic box, one may expect
some success rates of more than 60% for the identification
of native poses in the top10. These results are encouraging
from the perspective of application to a fragment-based de-
sign strategy for oligonucleotides to be validated on protein-
RNA complexes.
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Methods
Protein-nucleotide Benchmark. The PDB was filtered out
to select a set of protein-nucleotide complexes based on dif-
ferent structural criteria associated with the atomic resolution
and the structural similarity. A first query was carried out to
find protein complexes with each of the four nucleotides as
ligands and annotated in the PDB by the following labels:
AMP, C5P, 5GP, U5P. An additional criterion based on a cut-
off value of 2Å resolution was also used to select only high-
resolution X-ray structures. The resulting complexes were
then clustered according to their sequence similarities in or-
der to remove the redundancy. If any chain in the protein of
a complex has at least 30% sequence identity with a chain in
the protein from another complex, the two complexes were
grouped into the same cluster. The crystal structure with the
best resolution in each cluster was selected as the cluster’s
representative. The 188 complexes thus selected by pulling
down the results from the four queries (AMP-bound: 122,
C5P-bound: 18, 5GP-bound: 21, U5P-bound: 27) were then
manually curated to retain those that exhibit a known binding
preference for the crystallized ligand. This feature was estab-
lished based on the literature and/or the annotation of the pro-
tein, e.g. a C nucleotide for CMP-kinase, etc. After curation,
the dataset was reduced to 131 complexes. An additional cu-
ration was performed to eliminate some potential redundancy
associated with the presence of identical binding sites for dif-
ferent types of nucleotides. The followed procedure consists
of superimposing all the protein structures using the program
TM-align (43) and review all the structures that are simi-
lar based on the TM-score (TM-score ≥ 0,8). Two binding

sites was considered non-redundant if they differ by only one
amino acid residue in direct contact with the ligand. Accord-
ing to this criterion, only one complex was removed from the
dataset in the case of the proteins corresponding to the PDB
IDs: 3DXG (U5P ligand) and 3DJX (C5P ligand); the latter
complex was conserved in the dataset to compensate for the
minor under-representation of C5P. The full procedure ends
up with a dataset of 130 protein-nucleotide complexes.
The binding features of the 130 protein-nucleotide complexes
were characterized by the number of contacts between the
protein and its ligand, the fraction of buried surface area,
the number of H-bonds in the binding site and the energy
of interaction as calculated by the MCSS scoring function
(see MCSS) Sup. Note 1. The contacts are calculated us-
ing the program BINANA (34). The full tables including the
molecular features of the protein-nucleotide complexes are
provided in the supplementary materials ( Sup. Note 1).

MCSS. All the proteins were prepared using the CHARMM-
GUI interface (44) to convert the PDB files into CRD and
PSF formats. After removal of all heteroatoms, hydrogens
were added to the protein using the HBUILD command from
CHARMM. Histidine residues have been considered as neu-
tral. The protein targets were then submitted to an energy
minimization (tolerance gradient of 0.1 kcal/mol/Å2). The
average deviation between the experimental structure and the
minimized structure is around 0.5Å.
The nucleotide library of fragments include multiple
conformations, 5’ and 3’ patches (see MCSS documen-
tation: https://www.mcss.cnrs.fr/MCSSDOC/
Welcome.html. The initial default conformation used in
the calculations is a C3’-endo/anti ribonucleotide. A set of
five different patches on the 5’ end was used in the current
study with this nucleotide conformation: R010, R110, R210,
R310, R410. Each binding region was defined by a 17Å3

cubic box centered on the ligand centroid (Fig. 3). MCSS
sample files are provided for the input and nonbonded
parameters ( Sup. Note 2).
The poses generated by MCSS were submitted to a clustering
procedure as a postprocessing based on a hierarchical classi-
fication implemented in the HADDOCK program (45). In
this implementation (46), the pose with the highest number
of neighbors within a given RMSD cutoff is first identified.
This pose and its neighbors constitute the first cluster. All
the members of this initial cluster are then removed and the
next pose with the highest number of neighbors and its neigh-
bors are thus selected to define the second cluster. The pro-
cedure is repeated until the entire set of poses is exhausted.
The RMSD cutoff used was defined at 2Å. For each result-
ing cluster, the pose with the best energy was choosen as a
representative.
Ten protein-nucleotide complexes (PDB IDs: 1HXP, 2CFM,
2Q4H, 3L9W, 3REX 4OKE, 4XBA, 5ERS, 5M45 and 5DJH)
were excluded from post-docking analyses due to 3 main rea-
sons: (1) no native pose (RMSD ≤ 2.0Å) could be generated
because of a nucleotide binding site too buried to be acces-
sible (PDB ID: 5M45, 5DJH). (2) no native pose could be
identified because of a huge deviation (RMSD > 2.0Å) of the
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crystallized ligand minimized within the optimized protein
binding site (PDB IDs: 1HXP, 2CFM, 4OKE, 4XBA, 5ERS).
(3) the native poses identified showed highly unfavorable en-
ergies indicating the presence of steric clashes between the
nucleotide and the minimized binding site (PDB IDs: 2CFM,
2Q4H, 3L9W, 3REX, 4XBA, 5ERS).
The MCSS software may be obtained after signing
a license agreement upon request to Martin Karplus
(marci@tammy.harvard.edu). The source code can be
obtained from a Git repository on the I2BC soft-
ware forge upon registration (https://forge.i2bc.
paris-saclay.fr).
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Supplementary Note 1: Benchmark of 120 protein-nucleotide complexes
Supplementary Table 1 (Table-S1.csv): list of PDB IDs including the ligand ID, the atomic resolution, functional classification,
and EC number.

Fig. 9. Distribution of molecular functions and nucleotide types in the protein-nucleotide benchmark.

Supplementary Table 2 (Table-S2.csv): calculations of the BINANA features (number of contacts, number of H-bonds, buried
fraction of ligand, etc)
Supplementary Table 3 (Table-S3.csv): calculations of the NACCESS surface terms for the fraction of buried surface of the
ligand

Supplementary Note 2: MCSS
MCSS input sample (Data-S1.txt)
MCSS nonbonded parameters sample (Data-S2.txt)
Supplementary Table 4 (Table-S4.csv): MCSS score (including its VdW and elec terms) and RMSD values for each protein-
nucleotide complex
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Supplementary Note 3: Clustering of MCSS generated poses

Fig. 10. Boxplot representation of the number of poses selected by the after clustering. The default boxplot representation was used
with a diamond indicating the average value.
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