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ABSTRACT
In this paper, we present a novel light field denoising algo-
rithm using a vector-valued regularization operating in the 4D
ray space. More precisely, the method performs a PDE-based
anisotropic diffusion along directions defined by local structures
in the 4D ray space. It does not require prior estimation of
disparity maps. The local structures in the 4D light field are
extracted using a 4D tensor structure. The paper then describes
the strategy retained for setting the diffusion tensor parameters
for the targeted denoising application. It then analyzes the
influence of the model parameters on the denoising perfor-
mance. Experimental results show that the proposed denoising
algorithm performs well compared to state of the art methods
while keeping tractable complexity.

Index Terms—Light Field, regularization, anisotropic diffusion, de-
noising

1. INTRODUCTION
Light field imaging has emerged as a promising technology
for a variety of applications including photorealistic render-
ing, computational photography and computer vision. Various
camera designs have been proposed to capture real light fields
going from camera arrays [1], to single cameras mounted on
moving gantries, and plenoptic cameras [2], [3]. These camera
architectures present different characteristics in terms of spatial
and angular resolution. Plenoptic cameras rely on multiplexing
and use an array of microlenses placed in front of the sensor to
capture multiple low resolution views in one 2D sensor image.
This easy way to capture multiple view-points, suffers from a
low spatial resolution and reduced light throughput, resulting in
visible noise artefacts, compared to 2D classical cameras.

This paper addresses the problem of denoising in dense light
fields. Denoising is an ill-posed problem which, to be solved, re-
quires introducing some prior knowledge on the kind of typical
images we try to restore, which helps restricting the class of
admissible solutions. The authors in [4] use a Gaussian mixture
model (GMM) prior for light field patches, and then exploit
this prior within a Bayesian inference framework for light field
denoising. In [5], the light field is denoised by stacking EPIs
in a 3D volume using the VBM4D video denoising method [6],
while the authors in [7] apply a hyper-fan shaped filter in a
4D discrete Fourier transform domain. The BM3D denoising
algorithm [8] is extended in [9] to light fields.
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Smoothness priors have been widely used together with
regularization schemes for inverse problems in 2D imaging such
as denoising. The only approach of regularization proposed so
far for light field denoising is the one of [10] using a global
variational framework integrating contributions of regularizers
on vector fields computed in EPI 2D spaces. The authors use
2D structure tensors computed in epipolar plane images (EPI)
to estimate disparity between light field views. With the help
of the estimated disparity, they project all the views on a
target viewpoint and solve the regularization using a global
optimization framework with total variation priors. The final
regularizer is written as the contributions of regularizers on
vector fields in EPI 2D spaces, with user-defined constants
which adjust the amount of smoothing on the different views
or EPIs. Errors in disparity maps may however translate into
annoying artefacts in particular along edges.

In this paper, we propose instead a regularization method
operating directly in the 4D ray space that does not require prior
estimation of disparity maps. The method performs a PDE-based
diffusion with anisotropy steered by a tensor field based on local
structures in the 4D ray space that we extract using a light
field 4D tensor structure. To enhance coherent structures, the
smoothing along directions, surfaces, or volumes in the 4D ray
space is done with a diffusivity coefficient that is derived from
the amount of local variations in the 4D space. More precisely,
the diffusivity coefficient is computed as a function of the 4
eigenvalues of the 4D structure tensor. The diffusion is isotropic
in homogenous regions with no strong structures, whereas it
follows structures in non homogenous regions.

The proposed regularization model has been applied for
denoising light fields from the EPFL dataset [11]. Experimental
results show that the proposed method compares well to the best
state of the art method [9], even outperforming it at high noise
levels, while being considerably faster. We refer to our method
as Anisotropic Diffusion Denoising 4D (ADD4D).

2. 4D ANISOTROPIC DIFFUSION
Let L(x, y, u, v) denote the 4D representation of a light field,
describing the radiance of a light ray parameterized by its
intersection with two parallel planes [12], and where (u, v)
denote the angular (view) coordinates and (x, y) the spatial
(pixel) coordinates.

2.1. 4D structure tensor
To perform light field regularization along pre-defined directions
which would preserve edges, one has to first characterize local
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Fig. 1: 4D tensor driven diffusion is able to denoise highly damaged light fields. Center views for Vespa and DangerDeMort from the EPFL dataset. (a,c)
With Additive Gaussian noise (σ = 100

255
, PSNR= 8.13 dB); (b,d) After denoising giving global PSNR on all subapertures of 29.31 dB (b) and 28.50 dB (d).

structures in the image, or here the light field. While light field
regularization methods are usually applied per Epipolar Plane
Image (EPI) of the light field with directions given by 2D
structure tensors often smoothed with a 2D Gaussian kernel, we
consider instead a direct computation of 4D structure tensors
in the 4D ray space, which is defined as the symmetric and
semipositive definite 4× 4 matrix [13]:

T =
1

C

C∑
c=1

∇Lc ⊗∇Lᵀ
c , (1)

where C is the number of color channels. The notation ∇Lc
denotes the gradient or partial derivatives in the 4 dimen-
sions of the color channel Lc. A smoothed version Tω =
T∗Gω(x, y, u, v) of the structure tensor is in practice computed
to retrieve a more coherent geometry, where Gω(x, y, u, v) is a
Gaussian kernel smoothing along the four light field dimensions.
Its spectral elements, i.e. the eigenvectors νi, i = 1 . . . 4 and
the eigenvalues λi, i = 1 . . . 4 of the 4D structure tensor T
respectively give the orientations of the local structures in the
4D rays space and the vector-valued variations along these
structures. We therefore have:

Tω =
4∑
i=1

λiνiν
T
i (2)

The eigenvector ν1 with the largest eigenvalue λ1 gives the
dominant orientation of the local structures in the 4D ray space.
The ratios between the eigenvalues gives information on the type
of structure present in the local neighborhood.

3. TRACE-BASED PDE DIFFUSION
We consider a trace-based PDE as introduced in [14] for 2D
images, which we here extend to 4D light fields as:

∂Lc
∂t

= trace(DHc) (3)

where Hc is the 4D Hessian matrix of the c channel of L,
defined as:
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 (4)

and D is a diffusion tensor to be defined according to the
regularization goals.

To be adapted to the local structures in the 4D ray space of
the light field, the diffusion process must be driven by a specific
tensor, called diffusion tensor chosen so that it has the same
set of eigenvectors νi, i = 1 . . . 4 as the structure tensor T. A
diffusion tensor is therefore constructed as:

D =
4∑
i=1

αiνiν
T
i , (5)

where the coefficient αi set the smoothing strength along the
direction given by νi, and are chosen according to the goal of
the diffusion.

3.1. Setting the diffusion tensor parameters
For denoising purpose, the coefficients αi controlling the
strength of the diffusion have to depend on the quantity of local

variation. Considering ψ =
√∑4

i=1 λi as a measure of local
variation [15], we set these parameters as αi = fi(ψ). The
functions fi(ψ) are chosen to abide by denoising goal. Firstly,
the diffusion should be isotropic in regions where there is no
apparent direction, i.e. where L is homogeneous:

lim D
ψ→0

= aI⇒ f1(0) = f2(0) = f3(0) = f4(0). (6)

Conversely, in regions where structures are clearly appearing,
no diffusion must be performed in order to preserve geometry,
that is:

lim D
ψ→inf

= 0⇒ f1(ψ) = f2(ψ) = f3(ψ) = f4(ψ) = 0. (7)

Also, the diffusion must be performed along the orientations of
the local structures, given by the eigenvectors having the lowest
eigenvalues. We assume that more structure there is, more the
eigenvectors corresponding to the lowest eigenvalues must drive
the diffusion. For instance, for a high quantity of structure, the
diffusion should only be performed in the ν4 direction. In other
words, if the structure is clearly shaped, the diffusion should
only correct structure singularities with the highest degree.
Applying such reasoning to the other eigenvectors, we obtain
the condition:

f1(ψ) ≤ f2(ψ) ≤ f3(ψ) ≤ f4(ψ). (8)

We therefore propose the function fi meeting the conditions of
equations 6, 7 and 8:

fi(ψ) = e
−
(
ψ
ρi

)γ
, with ρ1 ≤ ρ2 ≤ ρ3 ≤ ρ4 (9)



where ρi is a parameter related to the quantity ψ of local varia-
tions corresponding to a point where the diffusion strength f(ψ)
significantly varies. The parameter γ defines the exponential
behaviour of the function. In the particular case where γ = 2,
the parameter ρi corresponds to the standard deviation of the
function f(ψ). This parameterization allows the tuning of the
diffusion process on the basis of structure properties.

3.2. Model tuning

We discuss here the influence of the model parameters for
denoising. Instead of parameterizing independently every ρi, we
propose the following expression:

ρi = ρ0α
i−1, (10)

which allows a simplification of the model to two parameters.
Figure 3 plots different functions fi(ψ) parameterized by ρi. We
set α and γ to 2 and study the influence of ρ0 on the denoising
process. One can note that α is related to an anisotropic ratio,
while ρ0 is related to a local variation intensity.
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Fig. 3: Functions fi(ψ) controlling smoothing strength of the diffusion
tensor along orientations defined by the four eigenvectors νi, with ρ0 =

0.05.

We present denoising results with different set-ups for a
single light field. The model integration is performed using
the same time step of 0.1 to raise parameters influence of the
denoising. Fig. 2a and 2b, show that, for low and medium noise
(σ = 10

255 , σ = 40
255 ), a low value of ρ0 (respectively 0.01 and

0.03) prevents the model to damage the light field structures. On
the other hand, a low value of ρ0 is not suitable for high noise
levels as shown in 2d, where the model is unable to diffuse along
the structures, hence many iterations are needed to remove the
noise. For high values of ρ0, we can observe a more efficient
behaviour regarding noise reduction. But in this case, the model
can damage the structures (more than with low values of ρ0), as
we can see when the number of iterations increases.

Fig. 2d-f show that, for the different values of the parameter
ρ0, when increasing the number of iterations, the model con-
verges to the same PSNR curve, at both low and high noise level.
This shows that, even for very different intensities of added
noise, the model is mostly responsible for the new structures
of the light field. In other words, noise is simply cleaned more
or less quickly while the model is on its way to its intrinsic
regularization evolution.

Method σ = 10
255

σ = 20
255

σ = 30
255

σ = 40
255

σ = 50
255

HF4D [7] 31.07 25.80 22.61 20.34 18.59
BM3D [8] 35.42 32.85 31.36 30.25 29.32

BM3D Epi [17] 36.09 33.48 31.90 30.71 29.67
VBM4D [18] 36.07 33.52 31.92 30.67 29.63

VBM4D Epi [5] 36.13 33.51 31.92 30.72 29.72
LFMB5D [9] 36.50 34.21 32.87 31.84 30.99

ADD4D 36.13 33.88 32.67 31.84 31.19

Table 1: Comparison of light field denoising methods (state of the art
results are courtesy of [9]). PSNR in dB.

4. DENOISING RESULTS

The proposed denoising model is applied on 12 light fields of
the EPFL dataset [11] extracted using Dansereau’s Matlab light
field toolbox [16] in the same conditions as in [9]. They are cho-
sen to allow comparison to state of the art methods. Because of
the strong irregularities in the angular dimension resulting from
the vignetting effect, we chose to denoise only the subapertures
that are not affected by the later and therefore limit the size
of light fields to 11×11. Indeed, because of its regularization
properties, our method would also correct artefacts at angular
corners (i.e. the vignetting effect), hence the measured PSNR
would not only reflect the denoising performance.

For our experiments we chose to use the same model
parameterized by ρ0 = 0.05, α = γ = 2, and tensor smoothing
is set to ω = 5 in the spatial and angular directions. Integration
of Eq. 3 is performed using the Runge-Kutta 4 scheme, and
the time step is set to 0.1. One iteration takes 7 minutes to
compute on a i7-6600U without any parallelization, and best
PSNR is usually obtained from 4 iterations to 20 depending
on the light field and the model. For comparison, LFBM5D
performs approximately in 7 hours on an octo core processor
(but without angular cropping). On a 10 iterations basis for our
method, this gives an estimated 26 times faster result. Detailed
results are provided1 to show angular consistency. In figure 4,
we observe that our model is able to remove low noise while
keeping fine original structures. Our model is also able to deal
with high level of noise as shown in figures 1 and 5, where we
can see in the last that the result qualitatively matches the best
existing method. In table 1 we can see the denoising model we
used outperforms other methods for a high level of noise, while
comparing well for low levels.

5. CONCLUSION

In this paper we proposed a new approach for denoising light
fields. Using structural properties in the four dimension space,
we showed that tensor oriented diffusion can drastically reduce
noise while keeping most of the structures of the subaperture
images. We believe that this work can be extended with dif-
ferent denoising models depending on scene’s disparities and
structures, and can highly benefit of parallelization.

1. http://clim.inria.fr/research/ADD4D
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(a) Initial gaussian noise : σ = 10
255
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(d) Model parameter : ρ0 = 0.04
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(e) ρ0 = 0.06
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(f) ρ0 = 0.10

Fig. 2: Denoising behaviour for different noise levels applied to the Bike light field. Each curve represents the PSNR evolution along the iterations of the
diffusion for: (top row) - different values of the parameter ρ0 of the model, and for different noise levels For low and medium noise (a,b), we can see that the
best PSNR is obtained for a low value of the parameter σ0; (bottom row) - different noise levels, and for different values of the parameter ρ0 of the model .

(a) (b) (c)

Fig. 4: Denoising of IsoChart light field. Center views. (a) Original. (b) Gaussian noise of σ = 10
255

, PSNR 28.13 dB. (c) Using our method, 4 iterations,
PSNR 35.10 dB.

(a) (b) (c)

Fig. 5: Denoising of Bikes light field. Center views. (a) Gaussian noise of σ = 50
255

, PSNR 14.15 dB. (b) Result obtained using LFBM5D, PSNR 29.91 dB.
(c) Using our method, 19 iterations, PSNR 30.10 dB.
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