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Abstract

Graph-based transforms have been shown to be powerful tools for image compression. How-
ever, the computation of the basis functions becomes rapidly untractable when the support
increases, i.e. when the dimension of the data is high as in the case of light fields. Local
transforms with limited supports have been investigated to cope with this difficulty. Never-
theless, the locality of the support may not allow us to fully exploit long term dependencies
in the signal. In this paper, we describe a graph-based prediction solution that allows taking
advantage of intra prediction mechanisms as well as of the good energy compaction prop-
erties of the graph transform. The approach relies on a separable spatio-angular transform
and derives low frequency spatio-angular coefficients from one single compressed reference
view and from the high angular frequency coefficients. In the tests, we used HEVC-Intra,
with QP=0, to encode the reference frame with high quality. The high angular frequency
coefficients containing very little energy are coded using a simple entropy coder. The ap-
proach is shown to be very efficient in a context of high quality quasi-lossless compression
of light fields.

1 Introduction

The availability of commercial light field cameras has given momentum to the devel-
opment of light field compression algorithms. Many solutions proposed so far adapt
standardized image and video compression solutions (in particular HEVC) to light
field data (e.g. [1] [2] [3]). Recent work investigated the use of homography-based
low rank models for reducing the angular dimension [4], or local Gaussian mixture
models in the 4D ray space [5]. The authors in [6], use a depth based segmentation of
the light field into 4D spatio-angular blocks with prediction followed by JPEG-2000.

In this paper, we consider instead geometry adapted local graph transform with
a support defined by super-rays for light field compression. Super-rays have been
first introduced in [7] as an extension of super-pixels in the 3D domain to group
light rays coming from the same 3D object, i.e. to group pixels having similar color
values and being close spatially in the 3D space. The method performs a k-means
clustering of all light rays based on color and distance in the 3D space. Despite the
limited support, computing the basis functions of the transform (i.e. the eigenvectors
of the Laplacian of the graph) with a non separable spatio-angular graph (i.e. which
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connects pixels both within super-pixels and the ray directions), remains intractable.
We therefore consider separable transforms using the optimization procedure intro-
duced in [8] to preserve angular correlation in the spatial transform domain. The
local support however does not allow us to capture long term spatial dependencies,
unlike efficient predictive schemes used in state of the art codecs as HEVC. To cope
with this limitation, we propose a graph based spatio-angular prediction leading to a
novel coding scheme for light fields.

The approach proposed in this paper is based on the observation that, when using
a spatio-angular non separable transform, most of the light field energy is compacted
in the low angular frequency coefficients. This motivates the design of approaches
that would allow the best compression of these coefficients, e.g. by exploiting spatial
correlation beyond the limits of the local graph transform support. More precisely, in
this paper, we derive the equations allowing us to recover the low angular frequency
coefficients of the spatio-angular transform from an encoded reference view and the
high angular frequency coefficients. Thanks to these equations, the encoding of the
reference view (using any classical encoder having efficient spatial predictors to exploit
spatial correlation) is a way to efficiently encode the low angular frequency coefficients
containing most of the light field energy. The proposed method can be seen as a
graph-based prediction deriving low frequency spatio-angular coefficients from one
single compressed reference view (e.g. top-left view in the experiments) and from the
high angular frequency coefficients. The proposed method keeps the advantages of
reduced basis function computational complexity due to the limited support, and of
the energy compaction of the graph transform.

The method has been assessed in the context of quasi-lossless encoding of light
fields. The compression algorithm proceeds as follows. A reference view is first
compressed using a high quality encoding (we used HEVC with QP = 0 in the
experiments). All the coefficients (except for the low angular frequency coefficients)
of the spatio-angular graph transforms are encoded using a simple arithmetic encoder.
Experimental results show that, when coupled with a powerful intra-prediction tool,
the graph-based spatio-angular prediction brings a substantial gain in bitrate reaching
almost 30%.

The paper is organized as follows. In section 2, a brief overview of the concept
of separable graph transforms based on super-rays is provided. Section 3 gives more
insight on our main contribution, the so-called graph-based spatio-angular prediction
before introducing in section 4 the quasi-lossless compression scheme proposed to
evaluate our prediction. Experimental results are shown in Section 5.

2 Separable Graph Transforms

2.1 Local Support

The first step to construct the graph transform is to define its support. Here, we
consider local supports based on super-rays. To be well suited for local separable
graph transforms, the super-rays need to be consistent across the views. We hence
consider the approach described in [8] to first compute super-pixels in the top-left



view, and then project, using the top left view disparity, its segmentation labels to
all the other views. The occluded pixels are assigned the label of the neighboring
super-ray corresponding to the foreground objects (i.e. having the higher disparity).
As for appearing pixels, they will be clustered with the background super-rays (i.e.
having the lower disparity).

2.2 Spatial Graph Transforms

We define the luminance signal in a view v of the light field as xv. A graph is then
defined in each super-ray k of each view v. More precisely, pixels xk,v with the same
label k and belonging to the same view v are gathered in a graph Gk,v = {Vk,v, Ek,v},
whose edges are defined between horizontal and vertical adjacent pixels. For each
graph Gk,v, an adjacency matrix Ak,v is defined, depicting the connections between
pixels. The luminance of the pixels is considered as a real signal xk,v defined on the
vertices Vk,v of the graph. As proposed in [9], a graph transform is defined based
on the Laplacian matrix Lk,v = Dk,v −Ak,v, where Dk,v is a diagonal degree matrix
whose ith diagonal element is equal to the sum of the weights of all edges incident
to node i. The spatial graph transform basis is given by the eigenvectors Uk,v of the
Laplacian Lk,v. The spatial graph transform coefficients for each graph are obtained
by calculating:

x̂k,v = U>k,vxk,v. (1)

Inversely, the luminance values of the pixels belonging to the graph are retrieved from

xk,v = Uk,vx̂k,v. (2)

The spatial graph Laplacian in the super-ray k undergoes slight changes in different
views v due to occlusions. Therefore, the basis functions of each spatial graph trans-
form Uk,v are not the same in the different views v, resulting in decreased correlation
of the spatial transform coefficients x̂k,v across views. To circumvent this issue, we
have proposed in [8], a basis optimization procedure to find the basis functions Uk,v

that approximately diagonalize their respective Laplacians Lk,v while being coherent
across the views, given the scene geometry. By coherence, we mean the similarity
of the eigenvectors in different views along the epipolar lines of the light field. In
the following, Uk,v denotes the optimized basis functions. Inside a super-ray k, the
spatial transform coefficients x̂k,v are thus correlated between the views v. In the
next section, we explain how an angular transform is used to capture this correlation.

2.3 Angular Graph Transforms

The purpose of this transform is to capture the correlation existing between the spatial
transformed coefficients of each super-ray along the rays direction. For a super-ray
k, we denote by spatial-band b, the vector formed by all the bth spatial transform
coefficients existing in the views. More precisely, x̂b

k = [x̂k,v(b)]v=1:V, s.t. b<|xk,v |, where
V is the number of views.

We then define the graphs across views, for each band b. We link the horizontal
and adjacent views together with edges with weights of 1. If we have isolated nodes,



we connect them to their nearest neighbor based on the euclidean distance between
view indices. Since we do not have necessarily the same number of pixels for a specific
super-ray in all the views, the number of spatial coefficients after the spatial transform
differs along the views. Therefore, for each spatial-band b as previously defined, we
build a different graph between the views where the band b exists.

For each super-ray k, and for each band b, the Adjacency Ab
k and degree Db

k

matrices are used to compute the inter-view Laplacian as Lb
k = Db

k − Ab
k. The

eigenvectors Vb
k of Lb

k are then used to define the angular graph transform basis. The
angular transform coefficients are obtained by calculating:

ˆ̂xb
k = Vb

k
>x̂b

k. (3)

3 Graph-based Spatio-Angular Prediction

Due to the high level of correlation between the different views of a light field, the
energy of the transformed coefficients ˆ̂xb

k is highly compacted in the low angular
frequencies. However, some correlation remains between the coefficients of different
super-rays k, and is not yet captured by the graph-transforms introduced previously.
We thus propose to use already existing tools that have been proven to efficiently
tract these correlations: efficient image coders involving intra prediction methods.
More precisely, a reference view is coded using one of these efficient coders, and is
used to recover a part of the spatio-angular spectrum at the receiver side, precisely,
the one with the highest energy. In other words, we propose to compact most the light
field energy on a very small set of coefficients thanks to the spatio-angular transform
introduced before. And then, instead of simply coding these coefficients, we recover
them from the reference view and the high angular frequencies. For that aim, we
introduce a prediction tool that works as follows.

Let us consider that the view 1 is coded as a reference. For a given super-ray, its
spatial transform is x̂k,1 = U>k,1xk,1 according to notations introduced in Sec. 2.2. For
a given band b, the inverse angular transform is defined as

x̂b
k = Vb

k
ˆ̂xb
k (4)

⇔
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k(2)
...

x̂b
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where Nb denotes the number of views where the bth band of the kth super-ray is
defined. Since the view 1 is transmitted separately, x̂b

k(1) is available at the decoder.
If we only transmit ˆ̂xb

k(2), . . . , ˆ̂xb
k(Nb), the we are able to retrieve ˆ̂xb

k(1) from the
following equation:

ˆ̂xb
k(1) =

1

Vb
k(1, 1)

x̂b
k(1)−

[
Vb

k(1, 2) · · · Vb
k(1, Nb)

]  ˆ̂xb
k(2)
...

ˆ̂xb
k(Nb)


 . (6)



Equation (6) is our so-called graph-based spatio-angular prediction. The high-
frequency coefficients ˆ̂xb

k(2), . . . , ˆ̂xb
k(Nb) can be seen as prediction coefficients, trans-

mitted to recover the exact light field at the decoder. The basis of the linear prediction
is the graph-transform basis, which makes these coefficients low-energetical and thus
easy to transmit. The spatial coefficients of all the views are then retrieved from the
following equation

 x̂b
k(2)
...

x̂b
k(Nb)

 =

 Vb
k(2, 1)

...
Vb

k(Nb, 1)

 ˆ̂xb
k(1) +

 Vb
k(2, 2) · · · Vb

k(2, Nb)
...

. . .
...

Vb
k(Nb, 2) · · · Vb

k(Nb, Nb)


 ˆ̂xb

k(2)
...

ˆ̂xb
k(Nb)


We will show in the experimental section that the approach is very efficient when

the quantization noise on the reference view is limited, hence for quasi-lossless com-
pression. If the latter is too coarsely compressed, drift and noise amplification might
appear during this prediction step. This is due to the fact that, in Equation (6),
the prediction uses the spatial transform coefficients estimated on the reference view
available at the decoder side. Further study will be dedicated to addressing this
problem in the case of lossy compression.

4 The proposed coding scheme

4.1 Overall description of the coding scheme

The proposed quasi-lossless coding scheme is shown in Figure 1. In order to explore
the inter super-rays dependencies (dependencies between different super-rays), the
top left view x1 is at first compressed with HEVC as an intra frame. It is then
separated into uniform regions using the SLIC algorithm ([10]) to segment the image
into super-pixels, and its disparity map is estimated with [11]. The disparity values
are encoded using simple arithmetic coder. Using both the segmentation map and
the geometrical information, we build consistent super-rays and graphs in and across
all views as explained in section 2.

We apply the separable coherent spatio angular graph transforms on the coded
version of the first view (quasi-lossless coding) and the original versions of all other
frames to compact their energy in fewer coefficients. Since the first view is coded with
very small QP, we are then almost sure that we are not adding angular incoherence
between the first view and the rest of the views. Once we have the spatio-angular
coefficients, instead of sending the whole spectrum with simple arithmetic coding,
we propose to make use of our graph-based prediction and therefore deriving low
frequency spatio-angular coefficients in the decoder side from the top-left reference
view coded with HEVC-Intra and from the high angular frequency coefficients.

We thus send, for all super-rays, the AC coefficients of the Nk,1 first bands after
the second angular graph transform. (Nk,1 is the number of pixels belonging to the
super-ray k in view 1). We come back to the detailed coding of those coefficients in
the sequel.
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Figure 1: Overview of proposed coding scheme.

Note that to construct the spatial and angular graphs on the decoder side, we do
not need extra information. Since the decoder already receives the top left image and
the disparity values, with the SLIC algorithm, it can deduce the segmentation map
and the super-ray segmentation used to for local graph transforms design and ap-
plication. Furthermore, the decoder have received the spatio-angular high frequency
coefficients. Using those two kinds of information, it can predict the DC spatio-
angular components obtained after the angular graph transform and then reconstruct
the luminance values of all the views as explained in Section 3.

4.2 The coding of the spatio-angular high frequency coefficients

After applying the spatio-angular graph transforms on the whole super-ray, all fre-
quency coefficients are grouped into a three-dimensional array y where y(k, b, v) is
the vth transformed coefficient of the band b for the super-ray k. Using the observa-
tions on all the super-rays in a training dataset (Rock), we can find the best ordering
for quantization. We first sort the variances of coefficients with enough observations
in decreasing order. Using this scanning order, we assign a class number to each
super-ray. More precisely, each super-ray with N coefficients belongs to class i if the
mean energy per high frequency coefficient is less than 1, where the high frequency
coefficients are the last round(N × i/4) coefficients following the scanning order of
the super-rays coefficients defined previously.

We start by finding the super-rays in the first class than remove them from the
search space before finding the other classes, and idem for the following steps. We
code a flag with an arithmetic coder to give the information of the class of super-rays
to the decoder side. In class i, the last round(N × i/4) coefficients of each super-ray
are discarded. Then, the rest of the high frequency spatio-angular coefficients are
quantized uniformly with a small step size Q = 1. Then, they are grouped in 32
uniform groups to enter a simple arithmetic coding assuming an iid model.



5 Experimental results

Figure 2: An example set of light fields used in our experiments. Only the top-left view is
shown for illustration purpose. From left to right: Flower2, Cars, StonePillarsInside and
Friends.

Figure 3: An example set of top-left view disparity maps used in our experiments

To evaluate our proposed spatio-angular prediction method in the full coding
scheme, we apply it on real light fields captured by plenoptic cameras from the
datasets used in [12] and [13]. To avoid the strong vignetting and distortion problems
on the views at the periphery of the light field, we only consider the 8×8 central sub-
aperture images cropped to 364×524 in [12], and 9×9 cropped to 432×624 from [13].
Some of the light fields considered are shown in Figure 2. The full set of light fields
considered for the test is: Flower2, Cars ,Rock and Seahorse from the dataset in [12]
and StonePillarInside and Friends from the dataset of ICIP challenge 2017 and used
in [13]. The method used to estimate the disparity of the top-left views is described
in [11]. Examples of the disparity maps provided are shown in Figure 3. A sparse set
of disparity values and the segmentation maps computed with SLIC [10] are used to
construct local graph supports as described in Section 2. In our experiments, we fix
the number of super-rays for all datasets to 4000. Indeed, an ideal segmentation for
compression purposes, would be the result of a local rate-distortion optimization (as
previously proposed in [14]). For the sake of simplicity in this paper, we use a simple
non adaptive segmentation.

5.1 The importance of exploring the long term dependencies between super-rays

As explained before, we aim at compacting the energy of the light field luminance in
fewer coefficients, then we will predict them based on the knowledge of a coded top-
left view and the high frequency components that most likely are sparse. To illustrate



the effect of our spatio-angular transforms on the energy compaction, we compute in
Table 1 the percentage of total energy that resides in the predicted DC spatio-angular
bands ˆ̂xb

k(1) ∀k, b. Those bands are actually not sent but predicted on the decoder
side, and only the energy that is left is coded as extra information to reconstruct
the original light field. We can observe that most of the energy is compacted in
those coefficients, which shows the efficiency of the spatio-angular decorrelation of
the Graph transforms.

Table 1: Percentage of energy residing in the DC spatio-angular bands ˆ̂xb
k(1) ∀ k, b

Light Fields Energy Percentage in ˆ̂xb
k(1) ∀ k, b

Flower 2 99.02 %
Cars 99.34 %
Rock 98.45 %

Seahorse 98.73 %
Stone Pillars Inside 98.26 %

Friends 99.80 %

Thanks to the equations introduced in Section 3, the encoding of the top-left
view (using any classical encoder having efficient spatial predictors to exploit spatial
correlations) can be seen as a way to efficiently encode those DC spatio-angular
frequency coefficients which contain most of the light field energy. We choose the
HEVC intra in order to exploit long term dependencies between super-rays. More
precisely, we code the top left view with HEVC Intra. Then in Table 2, we compare
its performance with respect to using a simple arithmetic coder for the DC spatio-
angular frequency coefficients. The QP of HEVC is set to 0. As for the arithmetic
coder, the observations of each DC spatio-angular frequency coefficient ˆ̂xb

k(1) ∀k, b
are coded separately. We can see for most of the datasets, the gain obtained with
HEVC intra when compared to arithmetic coding without any spatial prediction.

Table 2: Rate comparison between HEVC intra-coding of the first view and entropy coding
of all the DC spatio-angular bands ˆ̂xb

k(1) ∀ k, b using an arithmetic coder assuming an iid
model

Light Fields HEVC intra Entropy coding
Flower 2 1.0 Mbits 1.48 Mbits

Cars 1.06 Mbits 1.54 Mbits
Rock 1.02 Mbits 1.38 Mbits

Seahorse 0.72 Mbits 1.22 Mbits
Stone Pillars Inside 1.81 Mbits 1.66 Mbits

Friends 1.62 Mbits 2.04 Mbits

5.2 Comparative assessment

To assess our Graph-based Spatio-Angular Prediction, we evaluate it in the context
of the quasi-lossless coding scheme in Section 4 against a complete HEVC based



scheme with a QP set to 0 and a GOP of 4. The HEVC version used in the tests
is HM-16.10. The light fields are coded following a raster scanning starting with the
top-left view as a reference intra-coded frame. Results are reported in Table 3 where
we compare mainly the rate needed to code a Light Field under quasi-lossless settings
(based on visual quality assessment, we consider a PSNR higher that 50 dB as a
quasi-lossless compression). A substantial gain in bitrate is observed while preserving
a high quality of the reconstructed light fields. This can be justified by the efficiency
of our spatio-angular graph transforms in terms of compaction along with the ability
of HEVC-intra to effectively exploit spatial correlations in the reference view.

Table 3: Rate comparison between our proposed approach and a traditional HEVC-inter
according to a raster scan order for high PSNR (> 50 dB)

Light Fields HEVC Raster Scan Ours
Flower 2 3.3129 bpp (54.2033 dB) 2.4799 bpp (55.1969 dB)

Cars 3.6688 bpp (54.0812 dB) 2.6258 bpp (55.2009 dB)
Rock 3.2700 bpp (53.7601 dB) 2.0162 bpp (54.7765 dB)

Seahorse 2.4751 bpp (54.3804 db) 1.9762 bpp (55.2844 dB)
Stone Pillars Inside 4.9017 bpp (52.1036 dB) 3.3094 bpp (55.0022 dB)

Friends 3.5400 bpp (52.7986 dB) 2.4436 bpp (54.8196 dB)

6 Conclusion

In this paper, we have explored local separable spatio-angular graph transforms for
light fields compact representation. The limited support of local transforms may not
allow us to exploit long term spatial dependencies. To cope with this limitation, we
have proposed a novel approach to leverage the good spatial de-correlation properties
of traditional codecs (e.g. HEVC intra), making use of efficient predictors, into local
spatio-angular graph transforms. A reference view coded with any efficient codec is
used to predict low angular frequency transform coefficients that, together with the
transmitted high angular transform coefficients, allow recovering the entire graph-
based representation. The scheme has been assessed for high quality (quasi-lossless)
coding of light fields with narrow baselines. Note that the prediction mechanism, in
case of coarser quantization, tends to amplify the quantization noise on the recon-
structed data representation and the method need to be tuned for wider baselines.
Those issues are left for further study.
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