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Abstract

We describe a local low rank approximation method based on super-rays for light field com-
pression. Super-rays can be seen as a set of super-pixels that are coherent across all light
field views. A super-ray based disparity estimation method is proposed using a low rank
prior, in order to be able to align all the super-pixels forming each super-ray. A dedicated
super-ray construction method is described that constrains the super-pixels forming a given
super-ray to be all of the same shape and size, dealing with occlusions. This constraint is
needed so that the super-rays can be used as a support of angular dimensionality reduc-
tion based on low rank matrix approximation. A low rank matrix approximation is then
computed on the disparity compensated super-rays using a singular value decomposition
(SVD). A coding algorithm is then described for the different components of the resulting
low rank approximation. Experimental results show performance gains compared with two
reference light field coding schemes (HEVC-based scheme and JPEG-Pleno VM 1.1).

1 Introduction

Light field imaging has emerged as a promising technology for a number of applica-
tions going from photo-realistic image-based rendering to a variety of computer vision
applications such as e.g. 3D modeling, object detection, classification, recognition.
However, light fields represent very large volumes of high dimensional data, hence the
need for designing efficient compression algorithms. In this paper, we focus on the
problem of compression of dense light fields, as those captured by plenoptic cameras,
which represent very large volumes of highly redundant data. While a number of
methods have already been published in the literature aiming at adapting standard-
ized solutions (in particular HEVC) to light field data as in [1–3], here we focus on
the problem of reducing the angular dimension of light fields with a low rank ap-
proximation method. An homography-based low-rank approximation method called
HLRA has been shown to give very good light fields compression performances in [4].
However, the low rank approximation in [4] is done globally on the entire light field.

In this paper, we explore the use of super-ray based local low rank approximation
models for further improving the performance of the light field compression algorithm.
The super-rays are used here as a way to better expose redundancy across the different
views compared to a global homography-based alignment as done in [4], and in turn
to further reduce the angular light field dimension. The concept of super-ray has been
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initially introduced in [5] as an extension of super-pixels to address the computational
complexity issue in light field image processing tasks. Super-rays can be seen as the
clustering of rays of the light field within and across views, hence corresponding to
the same set of 3D points of the imaged scene.

Figure 1: Overview of the super-ray based low rank approximation and coding chain
(encoder), and Light field reconstruction steps (decoder).

In this paper, a dedicated super-ray construction method is first proposed so that
super-rays can be used as the support of the low rank approximation. The central
view is taken as a reference view on which super-pixels are constructed using the
SLIC algorithm [6]. The super-rays which are constructed must group super-pixels
which are consistent across the views while being constrained to be of same shape
and size. The corresponding super-pixels in all views are found thanks to disparity
compensation. In order to do so, a novel method is proposed to estimate the disparity
for each super-ray using a low rank prior, so that the super-rays are constructed to
yield the lowest approximation error for a given rank.

Due to occlusions, individual super-pixels may contain less pixels than the com-
plete area captured in the corresponding super-ray (gathering information from super-
pixels of all the views). The super-pixels are thus extended with the occluding pixels
to satisfy the shape and size constraint. A low rank approximation is then computed
for the set of extended super-rays that are stacked in a vectorized form in different
columns of a matrix X. The rank r approximation of the set of extended super-rays is
expressed as a product of a matrix B, containing r columns corresponding to basis (or
eigen) images in a vectorized form, with a matrix C containing weighting coefficients.
The matrix B is re-arranged into two sets of eigen images, respectively corresponding
to the light rays visible and occluded in the central view. An image sequence formed
with both those sets of ‘occluded’ and ‘visible’ eigen images is encoded using HEVC.

The method is also compared against one HEVC-based scheme which first forms
a pseudo video sequence from all the views and then code this sequence with HEVC-
inter coding [7], and with the verification model of JPEG-Pleno (VM 1.1) [8]. Ex-
perimental results show that a rate saving of up to −58.19% and −54.33% can be
achieved compared with [7] and [8].



2 Related Work

This section does not give an exhaustive review of all light field compression tech-
niques proposed so far but rather focuses on the most recent work on the topic.
Existing solutions can be broadly classified into two categories: approaches directly
compressing the lenslet images or approaches coding the views extracted from the raw
data. Methods proposed for compressing the lenslet images mostly extend HEVC in-
tra coding modes by adding new prediction modes to exploit similarity between lenslet
images [1], [2] . In [9], a different approach is proposed using a depth based segmen-
tation of the light field into 4D spatio angular blocks with prediction followed by
JPEG2000.

Solutions extracting and coding views, code the views as pseudo video sequences
using HEVC [7], [10], or the latest JEM coder [11], or extend HEVC to multi-view
coding [12]. Methods using view synthesis have also been proposed in [13] using
convolutional neural networks to synthesize all the views from the corner views, or
in [14] where the authors use a linear approximation computed with Matching Pursuit
for disparity based view prediction.

The most closely related work to the proposed method is the approach proposed
in [15], in the sense that local models exploiting disparity are considered in the 4D rays
space for compression. However, the models in [15] are 4D steered Gaussian Mixture
Models (GMM), referred to as steered mixture of experts, while the proposed local
models are based on low rank priors. The second most related work is the method in
[4] introducing a global homography-based low rank approximation approach for light
field compression. However, the proposed approach differs from the above approach,
and extends it, by proposing a coding scheme based on local low rank models using
a novel disparity estimator also exploiting low rank priors.

3 Notations and scheme overview

Let L(u, v, x, y) be a light ray of the light field L, and (u, v, x, y) its coordinates
using the two plane parametrisation, where (u, v) and (x, y) are the angular (view)
and spatial (pixel) coordinates respectively. A view with angular coordinates (u, v)
is denoted Iu,v. The overall scheme is depicted in Fig.1 and comprises the following
steps:

• Super-rays construction with the help of the disparity maps of all views.

• Low-rank based disparity optimization and compensation of each super-ray.

• Super-rays extension so that all super-pixels forming a SR are of same size.

• Low rank approximation of the set of extended super-rays.

• Splitting the eigen images into a first set {Bl
v}l∈J1,rK (with r the approximation

rank) corresponding to the light rays visible in the central view, and a second
set {Bl

o}, very sparse, and containing eigen values of super-rays extensions.

• Encoding the information to be transmitted to the decoder, i.e., the two sets of
eigen images {Bl

v} and {Bl
o}, the matrix of coefficients C, and side information

needed at the decoder to find the super-rays and perform the inverse alignment.

These different steps are detailed below.



4 Super-ray construction with low rank based disparity optimization

Here, we present a super-ray construction method which constrains the projections
of a super-ray on each view to be of same shape and size.

4.1 Light field over-segmentation

A k-means clustering method is applied on the entire light field in order to group
pixels of all the views which are in local regions and which are similar in colour
(in CIELAB colourspace) and in disparity. This clustering, extending the concept of
super-pixels, forms so-called super-rays since it groups pixels (and super-pixels) across
views which are assumed to correspond to the same set of 3D points in space. This
leads to a segmentation of all the views into super-pixels which are coherent across
the views. The clustering into super-rays is performed using the disparity estimation
method of [16]. We then assume that all pixels belonging to a given super-ray have
the same disparities referred to as the centroid disparities.

To compute the low rank approximation, the super-pixels in each super-ray need
to be aligned by disparity compensation. We show in the experimental section that
disparity estimated independently of the low rank constraint, e.g. as in [16], is not
optimal for our low rank based coding scheme. We hence propose in the next section
a novel disparity optimization method for each super-ray based on a low rank prior.

4.2 Disparity estimation of super-rays using a low rank prior

We use a low rank prior on each super-ray as a means to locally approximate the
light field and jointly perform disparity compensation so as to align similar pixels
from different views and render the approximation even more efficient. For a given
super-ray, let hd be the set of disparity compensation operators hd

i for each super-pixel
at a view (ui, vi) forming the super-ray. The disparity compensation hd

i is defined as

hd
i : (x, y) 7→ (x+dx(ui−uc), y+dy(vi−vc)), and d is the vector

(
dx dy

)>
to estimate.

The disparity estimation algorithm proceeds as follows. The horizontal and verti-
cal disparity values dx and dy are first initialized to “0”. Note that even after disparity
compensation, the aligned super-pixels forming a super-ray may have different shapes
and sizes, in particular due to occlusions, which would make the low rank approxima-
tion impractical. To cope with this difficulty, super-pixels with missing information
are filled using occluding pixels. The set of aligned and completed super-pixels is
called extended super-ray. All super-pixels forming a given extended super-ray SR
are stored, in a vectorized form, in a matrix

SR = [SP1 | SP2 | ...] , (1)

where SP i is the vectorized version of the super-pixel from view (ui, vi).
For each extended super-ray, we then solve

argmind,M

∥∥SR ◦ hd −M
∥∥2

F
s.t. rank(M) = r, (2)

where M is a rank r matrix and ‖.‖F is the Frobenius norm. The notation ”◦” stands
for the application of the disparity compensations to align all the super-pixels forming
a super-ray.



We iteratively solve the problem by successively finding M while fixing d, and
updating d while fixing M, at each iteration, until convergence. For a fixed d, the
matrix M of rank r is obtained as M = UΣrV

T where UΣVT is the singular value
decomposition (SVD) of SR ◦ hd and Σr contains only the r largest singular values
of Σ. The set disparity d is updated, by solving (2) for the rank r matrix M fixed.
Minimizing (2) is not trivial due to the non linearity of the term SR ◦ hd.

Assuming the change ∆d at each iteration to be small, we can approximate this
update by local linearity as

SP i ◦ hd+∆d
i ≈ SP i ◦ hd

i +
∂[SP i ◦ hd

i ]

∂dx
∆dx +

∂[SP i ◦ hd
i ]

∂dy
∆dy (3)

= SP i ◦ hd
i +

∂[SP i ◦ hd
i ]

∂x
(ui − uc)∆dx +

∂[SP i ◦ hd
i ]

∂y
(vi − vc)∆dy (4)

Given this approximation, d is updated with the increment ∆̂d obtained by solving

∆̂d = argmin∆d

∑
i

‖Ri − Ji∆d‖2
F , (5)

with, Ri = Mi − SP i ◦ hd
i and Ji =

(
(ui − uc)

∂[SPi◦hd
i ]

∂x
(vi − vc)

∂[SPi◦hd
i ]

∂y

)
.

This problem has the following analytical solution:

∆̂d =

(∑
i

J>i Ji

)−1∑
i

J>i Ri (6)

Equation 2 minimizes the approximation error of the matrix formed by the aligned
views. This approximation error corresponds to the PSNR that we call PSNRin
in the experimental section. We however show in the sequel that significantly better
results are obtained by taking into account the inverse warping (i.e. the corresponding
interpolation errors) in the minimization. At each iteration, for a given d we evaluate∥∥SR− (hd)−1 ◦M

∥∥2

F
to eventually keep the disparity values d minimizing the super-

ray reconstruction error, corresponding to a PSNR that we call PSNRout.

5 Low Rank Approximation

All the matrices corresponding to the different extended and aligned super-rays SRk

are stacked in a matrix X of dimension Rm×n, where n is the number of views and m
is the number of pixels per view of the concatenated extended super-rays. In other
words, the matrix X contains all the pixels of all the views that are locally aligned
super-ray per super-ray.

The matrix X is factorized into a product of a low-rank matrix B ∈ Rm×r and a
coefficient matrix C ∈ Rr×n, with r ≤ n, as

argminB,C ‖X−BC‖2
F , (7)

where ‖.‖F is the Frobenius norm. Optimal factorization is obtained from the singular
value decomposition (SVD) of X into UΣV >. Assuming the singular values in Σ are
in decreasing order, we take B as the r first columns of UΣ, and C as the r first
rows of V >. The set of super-rays {SR} forming the entire light field can thus
be approximated by a linear combination of columns of B, therefore significantly
reducing the amount of data at the cost however of an approximation error.



Figure 2: First 4 eigen-images (shown in false colors) and segmentation maps for the visible
(Bl

v, Mv) and occluded (Bl
o, Mo) sets of pixels (”butterfly” synthetic light field [17]).

6 Compression Scheme

The above low rank approximation leads to a matrix B containing in its columns
eigen images of the extended views (set of extended super-pixels) and to a matrix
C containing coefficients. For the purpose of encoding the matrix B using HEVC,
the data in each column l is re-arranged into two eigen images Bl

v and Bl
o. Bl

v

contains the entries derived from the portions of the extended super-rays which are
visible in the central view. Bl

o contains the entries corresponding to areas occluded
in the central view. Two segmentation maps Mv and Mo are also computed so that
each region in Mv (respectively Mo) is labelled with the index of the super-ray that
will be reconstructed from the collocated region in the Bl

v images (respectively Bl
o).

Examples of eigen images Bl
v and Bl

o with their associated maps Mv and Mo are
illustrated in Fig.2.

The data in the images Bl
v and Bl

o and the matrix C are quantized on 16 bits.
The quantized entries of the C matrix are directly transmitted (e.g. coded using a
fixed length code) since the corresponding cost is quite negligible. As shown in Fig.2,
the first 4 eigen images Bl

v and Bl
o, show some correlation. Hence to code them

efficiently using HEVC-Inter, the empty regions of the Bl
o images are completed with

the collocated regions of the corresponding Bl
v images. The Bl

v and Bl
o images are

then interleaved as B1
v, B1

o, ..., B4
v, B4

o, and coded using HEVC-Inter with a GOP
size of 2. The remaining columns of these matrices being less correlated are coded
using HEVC-Intra.

It is also necessary to transmit as side information the two centroid disparity
values per super-ray as well as the two segmentation maps Mv and Mo. The two seg-
mentation maps are compressed without loss using the compresso method described
in [18]. The disparity information (two values dx, dy per super-ray) is encoded using
a fixed length code on 32 bits, which is quite negligible given the small number of
values to be transmitted (in the experiments we considered a partition of the light
fields into 200 super-rays for natural light fields and 240 for the synthetic ones).

7 Light field reconstruction

On the receiver side, the decoded sequence of images B̃l
v and B̃l

o need to be merged to
form the decoded low rank matrix B̃ which contain the eigen images of all the aligned
and extended super-rays. This matrix B̃ is multiplied by the matrix C̃ to obtain the



matrix X̃ of aligned and extended super-rays. An inverse disparity compensation is
then performed per super-ray using its centroid disparities. Each view of the light field
is then reconstructed by progressively mapping each super-ray on each view starting
from the super-rays having the smallest disparity, i.e. starting from background
pixels. Pixels having a higher disparity over-write previously rendered pixels at the
same position with a lower disparity.

Depending on the complexity of the scene, on the number of objects and depth
layers, some parts in the light field may be occluded by several objects. The cor-
responding pixels are referred to here as multiply-occluded pixels. One sets of eigen
images {Bl

o}l is not sufficient to represent multiply-occluded pixels. One alternative
would be to transmit additional sets {Bl

o}l to represent these pixels. However, the
number of such pixels is quite limited and the corresponding matrix would be very
sparse. Instead, we inpaint the corresponding pixels in the reconstructed light field
L̃ using a low rank completion matrix. The low rank matrix completion problem is
posed as the search for the minimum nuclear norm matrix L̂ with entries equal to
those of the matrix L̃ for the known elements of L̃. The problem is mathematically
formulated as

min
L̂
||L̂||∗ s.t. ∀(i, j) ∈ Ω, L̂ij = L̃ij, (8)

where Ω is the set of indices of the known elements in L̃, and ||.||∗ is the nuclear norm
(convex approximation of the rank). This minimization is solved using the Inexact
ALM (IALM) technique [19].

8 Experimental Results

The performances of the proposed disparity estimation and light field compression
methods have been evaluated for the luminance component of light fields shown in
Fig.4 and coming from : 1/- INRIA dataset [20] which contains LFs captured by
a second generation Lytro Illum camera from which we use the 9 × 9 central sub-
aperture images of 625×434 pixels each; 2/- the HCI dataset [17] synthetic LFs 9×9
views of 768×768 pixels; 3/- the ICME 2016 Grand Challenge dataset [21] from which
we take the 9 × 9 central sub-aperture images. The Lytro LFs have been decoded
using the Matlab Light Field Toolbox v0.4 [22] with gamma correction. The methods
involving a low rank prior (HLRA and our method Local Low Rank Approximation
(LLRA)) were evaluated for varying target rank values r = {1, 3, 5, 15, 30, 60} and
HEVC quality parameter QP ∈ {2, 6, 14, 20, 26, 38}. We retain the (r,QP ) pairs
corresponding to the points on the convex enveloppe of the rate distortion graph. For
HEVC Lozenge QP = {10, 14, 17, 20, 23, 26}. The disparity maps used for LLRA and
JPEG Pleno were generated using [16]. For JPEG Pleno we adapted the existing
Fountain V incent 2 configuration files for use on 9×9 LFs and used it for every LF.

8.1 Performance analysis of the disparity estimation using a low rank prior

We first assess in Fig.3 the performance of the proposed super-ray disparity estima-
tion method based on a low rank prior against an exhaustive search, and disparity



computed independently of the low rank constraint (in the experiments we used dis-
parity values computed with [16]). In the exhaustive search approach, the optimal
disparity values for each super-ray are obtained by evaluating the low rank approx-
imation error for a wide range of integer, and then fraction-pixel refined, disparity
values. We observe that using a low rank prior improves significantly the performance
compared to using input disparity maps computed with no rank constraint. More-
over, our method compares favorably with the exhaustive search. We also observe
that aiming at maximizing the PSNR after inverse warping (PSNRout) during the
SR disparity optimization rather than maximizing the PSNR of the low rank ap-
proximation of the aligned SR (PSNRin) allows us to mitigate the information loss
due to bi-cubic interpolation in forward and inverse warping. In the sequel, we use
the low-rank based and exhaustive search disparity estimation with maximization of
outter PSNR.
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Figure 3: PSNR-Rate performance of the low rank based disparity estimation compared
with an exhaustive search and the use of a disparity map computed with no rank constraint.

8.2 Performance analysis of the complete scheme

Tab. 1 shows the Bjontegaard rate savings obtained for the HLRA method [4] and two
variants of our method with respect to the HEVC-Lozenge [7] and JPEG Pleno Ver-
ification Model [8] anchors and we consistently observe rate savings on natural light
fields compared with the two anchors. In particular, for real light fields, we observe
comparable performance by using the low rank prior to compute the centroid dispar-
ities or by performing an exhaustive search. However, for synthetic light fields, the
lower performance is due to the initialization of the gradient descent ((dx, dy) = (0, 0))
that is not appropriate for larger baselines. By initializing the centroid disparities
of each super-ray to the median disparity of the pixels of a disparity map [16], we
observe in Fig.5 a better performance for LLRA for light fields with larger baselines
such as StillLife and Buddha. For these light fields, LLRA can outperform HLRA
despite the extra signalling cost due to the segmentation in super-rays.

9 Conclusion

This paper has presented a compression scheme for light fields using super-ray based
local low rank models. A novel method for disparity estimation and compensation
was proposed so that the super-rays are constructed to yield the lowest approximation
error for a given rank. The proposed representation is actually based on two low rank
models, one for the central view pixels that are visible in all views and one for the
occlusions. We could observe consistent bitrate savings on all natural light fields



Figure 4: Test light fields. Top row (first two): HCI (Buddha, StillLife) [17]. Top row
(last three): INRIA Dataset (Bench, Fruits, Toys) [20]; Bottom row: ICME Dataset (Foun-
tain Vincent 2, Friends 1, StonePillars, Vespa) [21].

Method HLRA LLRA (exhaustive LLRA (low rank
disparity search) prior disparity)

Anchor HEVC
Lozenge

JPEG
Pleno

HEVC
Lozenge

JPEG
Pleno

HEVC
Lozenge

JPEG
Pleno

F V 2 -40.93% -51.58% -14.41% -8.28% -11.91% -5.65%
Friends 1 -65.62% -73.52% -57.44% -43.07% -58.19% -42.87%
S P I -67.84% -72.45% -54.95% -54.33% -50.24% -50.73%
Vespa -49.57% -61.21% -37.85% -12.61% -36.54% -5.09%
Bench -67.37% -64.25% -46.56% -25.56% -45.65% -25.16%
Fruits -55.15% -59.19% -26.43% -12.54% -27.05% -12.74%
Toys -58.98% -81.05% -41.32% -48.96% -42.09% -48.90%

Table 1: Bjontegaard rate savings for HLRA and LLRA compression schemes with respect
to HEVC-Lozenge and JPEG Pleno VM anchors.

compared to reference methods (HEVC and JPEG-Pleno). However, compared to
global homographies (HLRA), the segmentation in super-rays implies sending extra
side information that can be penalizing at low rate, for light fields with small baselines.
However, for larger baselines, the performances benefit from the better alignment and
approximation of the local model.
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