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Nathalie Peyrarda, Marie-José Crosa, Simon de Givrya, Alain Francb,
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Graphical models

A graphical model over Λ =
∏n

i=1 Λi is a decomposable function:
ψ :
∏

i Λi → R+ (the Λi are finite) which writes, ∀x ∈ Λ:

ψ(x) = �B∈BψB(xB),

where B is a set of subsets of V = {1, . . . , n}
and � ∈ {

∏
,
∑
,min,max ...} is a combination operator.

Used to model as well:
I Uncertainty: (Hidden) Markov Chains, Bayesian networks, Markov

Random Fields, Gaussian Graphical models, Possibilistic networks...
I Preferences: (Weighted) Constraint Satisfaction Problems, Cost

Function Networks...
I Both uncertainty and preferences: Influence Diagrams...

In numerous application domains:
I Reasoning: causal inference, information extraction...
I Computers: Computer vision, speech recognition, LDPC codes...
I Bioinformatics: Gene regulatory networks, protein structure...
I Environmental modelling: Spatial and spatiotemporal processes...
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1 Graphical models

2 Inference tasks

3 Variable elimination, elimination ordering, treewidth

4 Message passing
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Examples of probabilistic graphical models (1)

Definition (Markov chain)

X = (X1, . . . ,Xn) is a set of variables, with finite domains {Λi}i=1,...,n.

P(x1, . . . , xn) = P(x1)︸ ︷︷ ︸
ψ1(x1)

×P(x2|x1)︸ ︷︷ ︸
ψ12(x1,x2)

× . . .× P(xn|xn−1)︸ ︷︷ ︸
ψ(n−1)n(xn−1,xn)

Definition (Hidden Markov chain)

X = (X1, . . . ,Xn) is an unobserved Markov chain.

Z = (Z1, . . . ,Zn) is a set of observed variables.

P(z |x) =
∏n

i=1 P(zi |xi ) (independent observations).

P(x , z) = P(x1)︸ ︷︷ ︸
ψ1(x1)

×

n−1∏
i=1

P(zi |xi )︸ ︷︷ ︸
ψi (xi ,zi )

×P(xi+1|xi )︸ ︷︷ ︸
ψ′i (xi ,xi+1)

× P(zn|xn)︸ ︷︷ ︸
ψn(xn,zn)
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Examples of probabilistic graphical models (2)

Definition (Bayesian network)

X = (X1, . . . ,Xn) is a set of variables, with finite domains {Λi}i=1,...,n.

Par(i) ⊆ {1, . . . , i − 1}, ∀i = 2, . . . , n.

P(x1, . . . , xn) = P(x1)︸ ︷︷ ︸
ψ1(x1)

×
n∏

i=2

P(xi |xPar(i))︸ ︷︷ ︸
ψPar(i)∪{i}(xi ,xPar(i))

Definition (Markov Random Field)

G = (V ,E ) is an undirected graph with vertices V = {1, . . . , n},
edges E ∈ V × V and C is the set of cliques of G .

{ψC : XC → R+∗}C∈C are strictly positive functions.

P(x1, . . . , xn) =
1

Z︸︷︷︸
ψ∅, normalizing constant

×
∏
C∈C

ψC (xC )
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Examples of non-probabilistic graphical models

Definition (Possibilistic networks)

X = (X1, . . . ,Xn) is a set of variables, with finite domains {Λi}i=1,...,n.

Par(i) ⊆ {1, . . . , i − 1}, ∀i = 2, . . . , n.

π(X1, . . . ,Xn) takes values in a finite totally ordered scale L.

π(x1, . . . , xn) = min
{
π(x1)︸ ︷︷ ︸
ψ1(x1)

, min
i=2,...,n

π(xi |xPar(i))︸ ︷︷ ︸
ψPar(i)∪{i}(xi ,xPar(i))

}

Definition (Cost Functions networks)

{wC : XC → R+}C∈C are positive functions.

w(x1, . . . , xn) =
∑
c∈C

wC (xC )
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More complex graphical models

Some graphical models can have more than one combination operator:

Markov decision process / Influence Diagram

Markov chain/Bayesian network plus decision variables plus
cost functions network

Expected utility function

→ We will limit ourselves to single operator graphical models!
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Graphical model definition

Definition (Graphical model)

Let X = (X1, . . . ,Xn) be a set of variables.

Xi takes values in Λi ⊆ R.

A realization of X is denoted x = (x1, . . . , xn), with xi ∈ Λi .

A graphical model over X is a function ψ :
∏

i Λi → R, which writes,
∀x ∈ X :

ψ(x) = �B∈BψB(xB),

where B is a set of subsets of V = {1, . . . , n}, ψB :
∏

i∈B Λi → R
and � ∈ {

∏
,
∑
,min,max ...} is a combination operator.
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Why are these models called “graphical”?

They admit “graphical” representations:

Useful for variables interactions vizualization

Allow to directly extract computational features:
Treewidth, perfect elimination ordering...

Graphical properties sometimes exploited directly in algorithms
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Why are these models called “graphical”?

Graphical representations of a graphical model:

Directed graph representation
⇒ Represent conditional dependence between variables...

Undirected graph representation
⇒ Represent conditional indepence between variables...
And useful to compute variable elimination orderings

Hypergraph representation
⇒ Directly represents the graphical model functions scopes

Factor graph representation
⇒ Equivalent to hypergraph representation.
Useful in message passing algorithms
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Illustration on a bayesian network

P(X1, . . . ,X5) = P(X1)P(X2|X1)P(X3|X1)P(X4|X1,X3)P(X5|X2,X4)

ψ12(X1,X2) = P(X1)P(X2|X1)

ψ134(X1,X3,X4) = P(X3|X1)P(X4|X1,X3) ; ψ245(X2,X4,X5) = P(X5|X2,X4)

Directed acyclic graph

1 2

3 4

5

Undirected graph

1 2

3 4

5

Hypergraph

1 2

3 4

5ψ134

ψ12

ψ245

Factor graph

1 2 3 4 5

ψ12 ψ134 ψ245
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1 Graphical models

2 Inference tasks

3 Variable elimination, elimination ordering, treewidth

4 Message passing
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Inference tasks in graphical models

There are basically two usual inference tasks that can be solved using
graphical models:

Optimizing:

Most likely solutions in stochastic graphical models

x∗ = arg max
x

P(x1, . . . , xn)

Most likely solutions in possibilistic networks

x∗ = arg max
x
π(x1, . . . , xn)

min-cost solutions in cost function networks

x∗ = arg min
x

w(x1, . . . , xn)

13 / 31



Inference tasks in graphical models
There are basically two usual inference tasks that can be solved using
graphical models:

Optimizing

Counting:

Marginal probabilities computation in stochastic graphical models

P(xB) =
∑
xB̄

P(xB , xB̄)

Normalizing constant computation in Markov Random Fields

Z =
∑

x

∏
C∈C

ψC (xC )

Solution counting in constraint satisfaction problems

#SAT = |{x ,w(x) = 0}|
14 / 31



Inference tasks in graphical models
There are basically two usual inference tasks that can be solved using
graphical models:

Optimizing

Counting

These are sometimes interleaved, in more complex problems:

Maximum Expected Utility computation in influence diagrams

MEU = max
dD1

∑
xS1

. . .max
dDk

∑
xSk

P(x1, . . . , xn︸ ︷︷ ︸
x

| d1, . . . , dm︸ ︷︷ ︸
d

)U(x , d)

Generalized Quantified Boolean Formula satisfiability

UnSAT = min
xA1

max
yB1

. . .min
xAk

max
yBk

w(x1, . . . , xn︸ ︷︷ ︸
x

, y1, . . . , ym︸ ︷︷ ︸
y

)

→ Some of the following inference approaches may be used as well for
these more complex tasks!

15 / 31



Inference approaches

Exact inference
I Exhaustive exploration (optimizing, solution finding, counting)
I Heuristic search (optimizing, solution finding)
I Variable elimination (counting, optimizing, solution finding)

Approximate inference
I Sampling based approaches:

counting, optimizing, both (e.g. reinforcement learning)...
I Heuristic-based approaches
I Loopy belief-propagation (approximate counting or optimizing)
I Variational approximation (stochastic models)
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1 Graphical models

2 Inference tasks

3 Variable elimination, elimination ordering, treewidth

4 Message passing
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Variable elimination, case of Hidden Markov Chains

Problem

Computing the most likely values of variables H given a realization o of
the variables O. The problem is to compute arg maxh p(H = h|O = o),
or equivalently the argument of:

max
h1,...,hT

ψH1(h1)

(
T−1∏
i=1

ψHi ,Hi+1
(hi , hi+1)ψOi ,Hi

(oi , hi )

)
ψOT ,HT

(oT , hT )

Remarks:

The number of possible realizations of H is exponential in T

Nevertheless, this optimization problem can be solved in a number of
operations linear in T using the well-known Viterbi algorithm
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Variable elimination in HMC: Viterbi algorithm

max
h1,...,hT

ψH1 (h1)

(
T−1∏
i=1

ψHi ,Hi+1 (hi , hi+1)ψOi ,Hi (oi , hi )

)
ψOT ,HT

(oT , hT )

Viterbi algorithm

H1 H2 HT−1 HT

O1 O2 OT−1 OT
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Variable elimination in HMC: Viterbi algorithm

= max
h1,...,hT−1

ψH1 (h1)

(
T−2∏
i=1

ψHi ,Hi+1 (hi , hi+1)ψOi ,Hi (oi , hi )

)
×ψOT−1,HT−1

(oT−1, hT−1)×max
hT

ψHT−1,HT
(hT−1, hT )ψOT ,HT

(oT , hT )︸ ︷︷ ︸
New potential function ψ′OT ,HT−1
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Variable elimination, bayesian network

P(X1, . . . ,X6) = P(X1)P(X3)P(X6|X1,X3)P(X2|X6)P(X4|X6)P(X5|X2,X4)

P(X1, . . . ,X6) = ψ136(X1,X3,X6)ψ26(X2,X6)ψ46(X4,X6)ψ245(X2,X4,X5)

P(X1, . . . ,X6) = ψ136ψ26ψ46ψ245

Directed graph

1 2

3 4

56

Undirected graph / Hypergraph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

Compute α = max
X1,...,X6

P(X1, . . . ,X6) = max
X1,...,X6

ψ136ψ26ψ46ψ245
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Elimination ordering

Variable elimination, for elimination order
π = {X6,X5,X4,X3,X2,X1}:

α = max
X1,...,X6

ψ136(X1,X3,X6)ψ26(X2,X6)ψ46(X4,X6)ψ245(X2,X4,X5)

α = max
X1,...,X5

ψ245 max
X6

ψ136ψ26ψ46 = max
X1,...,X5

ψ245ψ
′
1234

α = max
X1,...,X4

ψ′1234 max
X5

ψ245 = max
X1,...,X4

ψ′1234ψ
′
24 = max

X1,...,X4

ψ′′1234

I Is there an elimination order generating “smaller scopes” functions?

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

Yes! π∗ = {X5,X4,X2,X6,X3,X1}:

α = max
X1,X3,X6,X2,X4,X5

ψ136ψ26ψ46ψ245

α = max
X1,...,X4

ψ136ψ26ψ46 max
X5

ψ245 = max
X1,...,X4

ψ136ψ26ψ46ψ
′
24

α = max
X1,...,X2

ψ136 max
X4

ψ′246 = max
X1,X3,X6

ψ136 max
X2

ψ′26 = max
X1,X3,X6

ψ′136

⇒ π generates functions with 4 variables, instead of 3 at most for π∗!
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π = {X6,X5,X4,X3,X2,X1}:
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ψ136(X1,X3,X6)ψ26(X2,X6)ψ46(X4,X6)ψ245(X2,X4,X5)

α = max
X1,...,X5

ψ245 max
X6

ψ136ψ26ψ46 = max
X1,...,X5

ψ245ψ
′
1234

α = max
X1,...,X4

ψ′1234 max
X5

ψ245 = max
X1,...,X4

ψ′1234ψ
′
24 = max

X1,...,X4

ψ′′1234

I Is there an elimination order generating “smaller scopes” functions?

1 2

3 4

5ψ′1234 ψ245

Yes! π∗ = {X5,X4,X2,X6,X3,X1}:
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X1,X3,X6,X2,X4,X5
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ψ136ψ26ψ46ψ
′
24
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Treewidth
Let H = {H1, . . . ,Hm} be the hypergraph of the graphical model.

Definition (Variable/vertex elimination)

Let i ∈ {1, . . . , n} be a vertex/variable number. We define:

H↓i = {Hj ∈ H, i 6∈ Hj} ∪
{ ⋃

i∈Hj∈H
Hj \ {i}

}
.

Definition (Induced width)

Let π be an elimination order (π(k) is the kth eliminated vertex).

Let Hk be the hypergraph generated after k vertices eliminations
(H0 = H and Hn = ∅).

⇒ The induced width is the size of the largest generated hyperedge
(minus 1), during the process :

IW π(H) = max
k=0,..,n−1

max
H∈Hk

|H| − 1.
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Treewidth

Let H = {H1, . . . ,Hm} be the hypergraph of the graphical model.

Definition (Treewidth)

TW (H), the treewidth of H is the minimum induced width over all
elimination orders:

TW (H) = min
π
IW π(H).

Undirected graph / Hypergraph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

π = {6, 5, 4, 3, 2, 1}

IW π(H) = 3

π∗ = {5, 2, 4, 6, 3, 1}

TW (H) = IW π∗(H) = 2
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Treewidth computation

Variable elimination takes exponential space/time in induced width

⇒ Important to find a “good” elimination order (small induced width)

Determining the treewidth is a hard problem

Computing the treewidth is NP-hard

Approximating the treewidth with constant factor?

⇒ Not known whether in P or NP-hard

Treewidth computation is a Fixed Parameter Tractable problem

An O
(
TW (H)TW (H)3

n
)

solution algorithm (impractical)

⇒ In practice, elimination order heuristics (e.g. min-fill).
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1 Graphical models

2 Inference tasks

3 Variable elimination, elimination ordering, treewidth

4 Message passing
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From variable elimination to message passing

Message passing algorithms are powerful procedures
for exact and approximate inference in graphical models:

They are derived from variable elimination algorithms

They can be more powerful for exact inference:
→ Using twice as much work, they provide all marginals of a SGM,
over all variables.

They give either exact or approximate solutions:

Exact Message passing on a tree-graphical model ∼ variable elimination
Exact Message passing on a tree-factor graph graphical model

Approx Message passing in the general case: (generalized) loopy Belief
Propagation (LBP)
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Message passing on a tree

Example: Pairwise graphical model

1

2 3

4 5 6 7

ψ12 ψ13

ψ24 ψ25 ψ36 ψ37 µ73(x3)←
∑

x7
ψ37(x3, x7)

µ31(x1)←
∑

x3
ψ13(x1, x3)µ63(x3)µ73(x3)

Messages computation mimics variable elimination

For marginalization, message updates take the form:

∀xj , µij (xj )←
1

K

∑
xi

ψij (xi , xj )ψi (xi )
∏

k 6=j,(i,j)∈E

µki (xi)
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Message passing on a tree

Example: Pairwise graphical model

1

2 3

4 5 6 7

ψ12 ψ13

ψ24 ψ25 ψ36 ψ37 µ73(x3)←
∑

x7
ψ37(x3, x7)

µ31(x1)←
∑

x3
ψ13(x1, x3)µ63(x3)µ73(x3)

Once messages have been asynchronously computed along all edges in
the two directions, marginal probabilities can be obtained:

pi (xi ) ← 1

Ki
ψi (xi )

∏
j,(j,i)∈E

µji (xi ),∀xi ,

pij (xi , xj ) ← 1

Kij
ψij (xij )

∏
k 6=j,(k,i)∈E

µki (xi )
∏

l 6=i,(l,j)∈E

µlj (xj ).
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Message passing on a tree factor graph

Example: Hypergraph and equivalent tree factor graph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

1 2

3 4

56136

26

46

245

The factor graph is not a tree...

But becomes one if we merge variables X2 and X4, to get a new
variable X ′24.
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Message passing on a tree factor graph

Example: Hypergraph and equivalent tree factor graph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

1

3

56 24136 246 245

ν6{136}
←−−−−

ν6{246}
−−−−→

µ{136}6
−−−−→

µ{246}6
←−−−−

Now that we have a tree, two different kinds of messages are computed:

Factor-to-variable messages: µfi (xi ).

Variable-to-factor messages: νif (xi ).
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Message passing on a tree factor graph

Example: Hypergraph and equivalent tree factor graph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

1

3

56 24136 246 245

ν6{136}
←−−−−

ν6{246}
−−−−→

µ{136}6
−−−−→

µ{246}6
←−−−−

Update rules: µfi (xi ) ←
∑
xf \i

(
ψf (xf )

∏
j∈f \i

νjf (xj )
)
,∀xi ,

νif (xi ) ←
∏

f ′ 6=f ,i∈f ′

µf ′i (xi ),∀xi .
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Message passing on a tree factor graph

Example: Hypergraph and equivalent tree factor graph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

1

3

56 24136 246 245

ν6{136}
←−−−−

ν6{246}
−−−−→

µ{136}6
−−−−→

µ{246}6
←−−−−

After two complete passes, marginal probabilities can be computed:

pi (xi )←
1

K
ψi (xi )

∏
f ,i∈f

µfi (xi ), ∀xi .
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General case: Loopy Belief Propagation

When the graphical model is not a tree?

When the factor graph is not a tree?

⇒ Message passing can still be applied, to approximate marginals!

Loopy Belief Propagation

Messages sent asynchronously along edges of the graph/factor graph.

Until an arbitrary convergence condition is met

Convergence to a steady-state is not guaranteed

No guarantee on the “quality” of the approximated marginals

LBP steady states have a variational approximation interpretation

“Good” approximation in practice
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Summary and concluding remarks

Graphical models

A convenient approach to model uncertainty and preferences

A very general model, with variants (combination operator)

Useful to solve several problems (optimizing, marginalizing...)

A generic algorithmic approach for exact inference (variable elimination) or
approximate inference (LBP)

Other ways to perform inference in graphical models

Search (maximizing)

Monte-Carlo simulation (lots of theoretical and practical results)

Mathematical programming...

Another important question: Infering structure of GM from data!
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