
HAL Id: hal-02116334
https://hal.science/hal-02116334v1

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact and approximate inference in graphical models
Régis Sabbadin, Nathalie Peyrard, Marie-Josée Cros, Simon de Givry, Alain

Franc, Stephane Robin, Thomas Schiex, Matthieu Vignes

To cite this version:
Régis Sabbadin, Nathalie Peyrard, Marie-Josée Cros, Simon de Givry, Alain Franc, et al.. Exact and
approximate inference in graphical models. 10th International Conference on Scalable Uncertainty
Management (SUM), Oct 2017, Granada, Spain. �hal-02116334�

https://hal.science/hal-02116334v1
https://hal.archives-ouvertes.fr

Exact and Approximate Inference in Graphical Models
Variable Elimination and beyond

Nathalie Peyrarda, Marie-José Crosa, Simon de Givrya, Alain Francb,
Stéphane Robinc ,

Régis Sabbadina, Thomas Schiexa, Matthieu Vignesa,d

a INRA UR 875 MIAT, Toulouse, France
b INRA UMR 1202, BioGeCo, Bordeaux, France

c INRA-AgroParisTech, UMR 518 MIA, Paris, France
d IFS, Massey University, Palmerston North, New Zealand

SUM’17, Granada, Spain
October, 5, 2017

1 / 31

Graphical models

A graphical model over Λ =
∏n

i=1 Λi is a decomposable function:
ψ :
∏

i Λi → R+ (the Λi are finite) which writes, ∀x ∈ Λ:

ψ(x) = �B∈BψB(xB),

where B is a set of subsets of V = {1, . . . , n}
and � ∈ {

∏
,
∑
,min,max ...} is a combination operator.

Used to model as well:
I Uncertainty: (Hidden) Markov Chains, Bayesian networks, Markov

Random Fields, Gaussian Graphical models, Possibilistic networks...
I Preferences: (Weighted) Constraint Satisfaction Problems, Cost

Function Networks...
I Both uncertainty and preferences: Influence Diagrams...

In numerous application domains:
I Reasoning: causal inference, information extraction...
I Computers: Computer vision, speech recognition, LDPC codes...
I Bioinformatics: Gene regulatory networks, protein structure...
I Environmental modelling: Spatial and spatiotemporal processes...

2 / 31

Graphical models

A graphical model over Λ =
∏n

i=1 Λi is a decomposable function:
ψ :
∏

i Λi → R+ (the Λi are finite) which writes, ∀x ∈ Λ:

ψ(x) = �B∈BψB(xB),

where B is a set of subsets of V = {1, . . . , n}
and � ∈ {

∏
,
∑
,min,max ...} is a combination operator.

Used to model as well:
I Uncertainty: (Hidden) Markov Chains, Bayesian networks, Markov

Random Fields, Gaussian Graphical models, Possibilistic networks...
I Preferences: (Weighted) Constraint Satisfaction Problems, Cost

Function Networks...
I Both uncertainty and preferences: Influence Diagrams...

In numerous application domains:
I Reasoning: causal inference, information extraction...
I Computers: Computer vision, speech recognition, LDPC codes...
I Bioinformatics: Gene regulatory networks, protein structure...
I Environmental modelling: Spatial and spatiotemporal processes...

2 / 31

Graphical models

A graphical model over Λ =
∏n

i=1 Λi is a decomposable function:
ψ :
∏

i Λi → R+ (the Λi are finite) which writes, ∀x ∈ Λ:

ψ(x) = �B∈BψB(xB),

where B is a set of subsets of V = {1, . . . , n}
and � ∈ {

∏
,
∑
,min,max ...} is a combination operator.

Used to model as well:
I Uncertainty: (Hidden) Markov Chains, Bayesian networks, Markov

Random Fields, Gaussian Graphical models, Possibilistic networks...
I Preferences: (Weighted) Constraint Satisfaction Problems, Cost

Function Networks...
I Both uncertainty and preferences: Influence Diagrams...

In numerous application domains:
I Reasoning: causal inference, information extraction...
I Computers: Computer vision, speech recognition, LDPC codes...
I Bioinformatics: Gene regulatory networks, protein structure...
I Environmental modelling: Spatial and spatiotemporal processes...

2 / 31

1 Graphical models

2 Inference tasks

3 Variable elimination, elimination ordering, treewidth

4 Message passing

3 / 31

Examples of probabilistic graphical models (1)

Definition (Markov chain)

X = (X1, . . . ,Xn) is a set of variables, with finite domains {Λi}i=1,...,n.

P(x1, . . . , xn) = P(x1)︸ ︷︷ ︸
ψ1(x1)

×P(x2|x1)︸ ︷︷ ︸
ψ12(x1,x2)

× . . .× P(xn|xn−1)︸ ︷︷ ︸
ψ(n−1)n(xn−1,xn)

Definition (Hidden Markov chain)

X = (X1, . . . ,Xn) is an unobserved Markov chain.

Z = (Z1, . . . ,Zn) is a set of observed variables.

P(z |x) =
∏n

i=1 P(zi |xi) (independent observations).

P(x , z) = P(x1)︸ ︷︷ ︸
ψ1(x1)

×

n−1∏
i=1

P(zi |xi)︸ ︷︷ ︸
ψi (xi ,zi)

×P(xi+1|xi)︸ ︷︷ ︸
ψ′i (xi ,xi+1)

× P(zn|xn)︸ ︷︷ ︸
ψn(xn,zn)

4 / 31

Examples of probabilistic graphical models (1)

Definition (Markov chain)

X = (X1, . . . ,Xn) is a set of variables, with finite domains {Λi}i=1,...,n.

P(x1, . . . , xn) = P(x1)︸ ︷︷ ︸
ψ1(x1)

×P(x2|x1)︸ ︷︷ ︸
ψ12(x1,x2)

× . . .× P(xn|xn−1)︸ ︷︷ ︸
ψ(n−1)n(xn−1,xn)

Definition (Hidden Markov chain)

X = (X1, . . . ,Xn) is an unobserved Markov chain.

Z = (Z1, . . . ,Zn) is a set of observed variables.

P(z |x) =
∏n

i=1 P(zi |xi) (independent observations).

P(x , z) = P(x1)︸ ︷︷ ︸
ψ1(x1)

×

n−1∏
i=1

P(zi |xi)︸ ︷︷ ︸
ψi (xi ,zi)

×P(xi+1|xi)︸ ︷︷ ︸
ψ′i (xi ,xi+1)

× P(zn|xn)︸ ︷︷ ︸
ψn(xn,zn)

4 / 31

Examples of probabilistic graphical models (2)

Definition (Bayesian network)

X = (X1, . . . ,Xn) is a set of variables, with finite domains {Λi}i=1,...,n.

Par(i) ⊆ {1, . . . , i − 1}, ∀i = 2, . . . , n.

P(x1, . . . , xn) = P(x1)︸ ︷︷ ︸
ψ1(x1)

×
n∏

i=2

P(xi |xPar(i))︸ ︷︷ ︸
ψPar(i)∪{i}(xi ,xPar(i))

Definition (Markov Random Field)

G = (V ,E) is an undirected graph with vertices V = {1, . . . , n},
edges E ∈ V × V and C is the set of cliques of G .

{ψC : XC → R+∗}C∈C are strictly positive functions.

P(x1, . . . , xn) =
1

Z︸︷︷︸
ψ∅, normalizing constant

×
∏
C∈C

ψC (xC)

5 / 31

Examples of probabilistic graphical models (2)

Definition (Bayesian network)

X = (X1, . . . ,Xn) is a set of variables, with finite domains {Λi}i=1,...,n.

Par(i) ⊆ {1, . . . , i − 1}, ∀i = 2, . . . , n.

P(x1, . . . , xn) = P(x1)︸ ︷︷ ︸
ψ1(x1)

×
n∏

i=2

P(xi |xPar(i))︸ ︷︷ ︸
ψPar(i)∪{i}(xi ,xPar(i))

Definition (Markov Random Field)

G = (V ,E) is an undirected graph with vertices V = {1, . . . , n},
edges E ∈ V × V and C is the set of cliques of G .

{ψC : XC → R+∗}C∈C are strictly positive functions.

P(x1, . . . , xn) =
1

Z︸︷︷︸
ψ∅, normalizing constant

×
∏
C∈C

ψC (xC)

5 / 31

Examples of non-probabilistic graphical models

Definition (Possibilistic networks)

X = (X1, . . . ,Xn) is a set of variables, with finite domains {Λi}i=1,...,n.

Par(i) ⊆ {1, . . . , i − 1}, ∀i = 2, . . . , n.

π(X1, . . . ,Xn) takes values in a finite totally ordered scale L.

π(x1, . . . , xn) = min
{
π(x1)︸ ︷︷ ︸
ψ1(x1)

, min
i=2,...,n

π(xi |xPar(i))︸ ︷︷ ︸
ψPar(i)∪{i}(xi ,xPar(i))

}

Definition (Cost Functions networks)

{wC : XC → R+}C∈C are positive functions.

w(x1, . . . , xn) =
∑
c∈C

wC (xC)

6 / 31

Examples of non-probabilistic graphical models

Definition (Possibilistic networks)

X = (X1, . . . ,Xn) is a set of variables, with finite domains {Λi}i=1,...,n.

Par(i) ⊆ {1, . . . , i − 1}, ∀i = 2, . . . , n.

π(X1, . . . ,Xn) takes values in a finite totally ordered scale L.

π(x1, . . . , xn) = min
{
π(x1)︸ ︷︷ ︸
ψ1(x1)

, min
i=2,...,n

π(xi |xPar(i))︸ ︷︷ ︸
ψPar(i)∪{i}(xi ,xPar(i))

}

Definition (Cost Functions networks)

{wC : XC → R+}C∈C are positive functions.

w(x1, . . . , xn) =
∑
c∈C

wC (xC)

6 / 31

More complex graphical models

Some graphical models can have more than one combination operator:

Markov decision process / Influence Diagram

Markov chain/Bayesian network plus decision variables plus
cost functions network

Expected utility function

→ We will limit ourselves to single operator graphical models!

7 / 31

Graphical model definition

Definition (Graphical model)

Let X = (X1, . . . ,Xn) be a set of variables.

Xi takes values in Λi ⊆ R.

A realization of X is denoted x = (x1, . . . , xn), with xi ∈ Λi .

A graphical model over X is a function ψ :
∏

i Λi → R, which writes,
∀x ∈ X :

ψ(x) = �B∈BψB(xB),

where B is a set of subsets of V = {1, . . . , n}, ψB :
∏

i∈B Λi → R
and � ∈ {

∏
,
∑
,min,max ...} is a combination operator.

8 / 31

Why are these models called “graphical”?

They admit “graphical” representations:

Useful for variables interactions vizualization

Allow to directly extract computational features:
Treewidth, perfect elimination ordering...

Graphical properties sometimes exploited directly in algorithms

9 / 31

Why are these models called “graphical”?

Graphical representations of a graphical model:

Directed graph representation
⇒ Represent conditional dependence between variables...

Undirected graph representation
⇒ Represent conditional indepence between variables...
And useful to compute variable elimination orderings

Hypergraph representation
⇒ Directly represents the graphical model functions scopes

Factor graph representation
⇒ Equivalent to hypergraph representation.
Useful in message passing algorithms

10 / 31

Illustration on a bayesian network

P(X1, . . . ,X5) = P(X1)P(X2|X1)P(X3|X1)P(X4|X1,X3)P(X5|X2,X4)

ψ12(X1,X2) = P(X1)P(X2|X1)

ψ134(X1,X3,X4) = P(X3|X1)P(X4|X1,X3) ; ψ245(X2,X4,X5) = P(X5|X2,X4)

Directed acyclic graph

1 2

3 4

5

Undirected graph

1 2

3 4

5

Hypergraph

1 2

3 4

5ψ134

ψ12

ψ245

Factor graph

1 2 3 4 5

ψ12 ψ134 ψ245

11 / 31

Illustration on a bayesian network

P(X1, . . . ,X5) = P(X1)P(X2|X1)P(X3|X1)P(X4|X1,X3)P(X5|X2,X4)

ψ12(X1,X2) = P(X1)P(X2|X1)

ψ134(X1,X3,X4) = P(X3|X1)P(X4|X1,X3) ; ψ245(X2,X4,X5) = P(X5|X2,X4)

Directed acyclic graph

1 2

3 4

5

Undirected graph

1 2

3 4

5

Hypergraph

1 2

3 4

5ψ134

ψ12

ψ245

Factor graph

1 2 3 4 5

ψ12 ψ134 ψ245

11 / 31

Illustration on a bayesian network

P(X1, . . . ,X5) = P(X1)P(X2|X1)P(X3|X1)P(X4|X1,X3)P(X5|X2,X4)

ψ12(X1,X2) = P(X1)P(X2|X1)

ψ134(X1,X3,X4) = P(X3|X1)P(X4|X1,X3) ; ψ245(X2,X4,X5) = P(X5|X2,X4)

Directed acyclic graph

1 2

3 4

5

Undirected graph

1 2

3 4

5

Hypergraph

1 2

3 4

5ψ134

ψ12

ψ245

Factor graph

1 2 3 4 5

ψ12 ψ134 ψ245

11 / 31

Illustration on a bayesian network

P(X1, . . . ,X5) = P(X1)P(X2|X1)P(X3|X1)P(X4|X1,X3)P(X5|X2,X4)

ψ12(X1,X2) = P(X1)P(X2|X1)

ψ134(X1,X3,X4) = P(X3|X1)P(X4|X1,X3) ; ψ245(X2,X4,X5) = P(X5|X2,X4)

Directed acyclic graph

1 2

3 4

5

Undirected graph

1 2

3 4

5

Hypergraph

1 2

3 4

5ψ134

ψ12

ψ245

Factor graph

1 2 3 4 5

ψ12 ψ134 ψ245

11 / 31

Illustration on a bayesian network

P(X1, . . . ,X5) = P(X1)P(X2|X1)P(X3|X1)P(X4|X1,X3)P(X5|X2,X4)

ψ12(X1,X2) = P(X1)P(X2|X1)

ψ134(X1,X3,X4) = P(X3|X1)P(X4|X1,X3) ; ψ245(X2,X4,X5) = P(X5|X2,X4)

Directed acyclic graph

1 2

3 4

5

Undirected graph

1 2

3 4

5

Hypergraph

1 2

3 4

5ψ134

ψ12

ψ245

Factor graph

1 2 3 4 5

ψ12 ψ134 ψ245

11 / 31

1 Graphical models

2 Inference tasks

3 Variable elimination, elimination ordering, treewidth

4 Message passing

12 / 31

Inference tasks in graphical models

There are basically two usual inference tasks that can be solved using
graphical models:

Optimizing:

Most likely solutions in stochastic graphical models

x∗ = arg max
x

P(x1, . . . , xn)

Most likely solutions in possibilistic networks

x∗ = arg max
x
π(x1, . . . , xn)

min-cost solutions in cost function networks

x∗ = arg min
x

w(x1, . . . , xn)

13 / 31

Inference tasks in graphical models
There are basically two usual inference tasks that can be solved using
graphical models:

Optimizing

Counting:

Marginal probabilities computation in stochastic graphical models

P(xB) =
∑
xB̄

P(xB , xB̄)

Normalizing constant computation in Markov Random Fields

Z =
∑

x

∏
C∈C

ψC (xC)

Solution counting in constraint satisfaction problems

#SAT = |{x ,w(x) = 0}|
14 / 31

Inference tasks in graphical models
There are basically two usual inference tasks that can be solved using
graphical models:

Optimizing

Counting

These are sometimes interleaved, in more complex problems:

Maximum Expected Utility computation in influence diagrams

MEU = max
dD1

∑
xS1

. . .max
dDk

∑
xSk

P(x1, . . . , xn︸ ︷︷ ︸
x

| d1, . . . , dm︸ ︷︷ ︸
d

)U(x , d)

Generalized Quantified Boolean Formula satisfiability

UnSAT = min
xA1

max
yB1

. . .min
xAk

max
yBk

w(x1, . . . , xn︸ ︷︷ ︸
x

, y1, . . . , ym︸ ︷︷ ︸
y

)

→ Some of the following inference approaches may be used as well for
these more complex tasks!

15 / 31

Inference approaches

Exact inference
I Exhaustive exploration (optimizing, solution finding, counting)
I Heuristic search (optimizing, solution finding)
I Variable elimination (counting, optimizing, solution finding)

Approximate inference
I Sampling based approaches:

counting, optimizing, both (e.g. reinforcement learning)...
I Heuristic-based approaches
I Loopy belief-propagation (approximate counting or optimizing)
I Variational approximation (stochastic models)

16 / 31

1 Graphical models

2 Inference tasks

3 Variable elimination, elimination ordering, treewidth

4 Message passing

17 / 31

Variable elimination, case of Hidden Markov Chains

Problem

Computing the most likely values of variables H given a realization o of
the variables O. The problem is to compute arg maxh p(H = h|O = o),
or equivalently the argument of:

max
h1,...,hT

ψH1(h1)

(
T−1∏
i=1

ψHi ,Hi+1
(hi , hi+1)ψOi ,Hi

(oi , hi)

)
ψOT ,HT

(oT , hT)

Remarks:

The number of possible realizations of H is exponential in T

Nevertheless, this optimization problem can be solved in a number of
operations linear in T using the well-known Viterbi algorithm

18 / 31

Variable elimination in HMC: Viterbi algorithm

max
h1,...,hT

ψH1 (h1)

(
T−1∏
i=1

ψHi ,Hi+1 (hi , hi+1)ψOi ,Hi (oi , hi)

)
ψOT ,HT

(oT , hT)

Viterbi algorithm

H1 H2 HT−1 HT

O1 O2 OT−1 OT

19 / 31

Variable elimination in HMC: Viterbi algorithm

= max
h1,...,hT−1

ψH1 (h1)

(
T−2∏
i=1

ψHi ,Hi+1 (hi , hi+1)ψOi ,Hi (oi , hi)

)
×ψOT−1,HT−1

(oT−1, hT−1)×max
hT

ψHT−1,HT
(hT−1, hT)ψOT ,HT

(oT , hT)︸ ︷︷ ︸
New potential function ψ′OT ,HT−1

(oT ,hT−1)

Viterbi algorithm

H1 H2 HT−1 HT

O1 O2 OT−1 OT

19 / 31

Variable elimination in HMC: Viterbi algorithm

= max
h1,...,hT−1

ψH1 (h1)

(
T−2∏
i=1

ψHi ,Hi+1 (hi , hi+1)ψOi ,Hi (oi , hi)

)
×ψOT−1,HT−1

(oT−1, hT−1)×max
hT

ψHT−1,HT
(hT−1, hT)ψOT ,HT

(oT , hT)︸ ︷︷ ︸
New potential function ψ′OT ,HT−1

(oT ,hT−1)

Viterbi algorithm

H1 H2 HT−1

O1 O2 OT−1 OT

19 / 31

Variable elimination, bayesian network

P(X1, . . . ,X6) = P(X1)P(X3)P(X6|X1,X3)P(X2|X6)P(X4|X6)P(X5|X2,X4)

P(X1, . . . ,X6) = ψ136(X1,X3,X6)ψ26(X2,X6)ψ46(X4,X6)ψ245(X2,X4,X5)

P(X1, . . . ,X6) = ψ136ψ26ψ46ψ245

Directed graph

1 2

3 4

56

Undirected graph / Hypergraph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

Compute α = max
X1,...,X6

P(X1, . . . ,X6) = max
X1,...,X6

ψ136ψ26ψ46ψ245

20 / 31

Variable elimination, bayesian network

P(X1, . . . ,X6) = P(X1)P(X3)P(X6|X1,X3)P(X2|X6)P(X4|X6)P(X5|X2,X4)

P(X1, . . . ,X6) = ψ136(X1,X3,X6)ψ26(X2,X6)ψ46(X4,X6)ψ245(X2,X4,X5)

P(X1, . . . ,X6) = ψ136ψ26ψ46ψ245

Directed graph

1 2

3 4

56

Undirected graph / Hypergraph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

Compute α = max
X1,...,X6

P(X1, . . . ,X6) = max
X1,...,X6

ψ136ψ26ψ46ψ245

20 / 31

Variable elimination, bayesian network

P(X1, . . . ,X6) = P(X1)P(X3)P(X6|X1,X3)P(X2|X6)P(X4|X6)P(X5|X2,X4)

P(X1, . . . ,X6) = ψ136(X1,X3,X6)ψ26(X2,X6)ψ46(X4,X6)ψ245(X2,X4,X5)

P(X1, . . . ,X6) = ψ136ψ26ψ46ψ245

Directed graph

1 2

3 4

56

Undirected graph / Hypergraph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

Compute α = max
X1,...,X6

P(X1, . . . ,X6) = max
X1,...,X6

ψ136ψ26ψ46ψ245

20 / 31

Elimination ordering

Variable elimination, for elimination order
π = {X6,X5,X4,X3,X2,X1}:

α = max
X1,...,X6

ψ136(X1,X3,X6)ψ26(X2,X6)ψ46(X4,X6)ψ245(X2,X4,X5)

α = max
X1,...,X5

ψ245 max
X6

ψ136ψ26ψ46 = max
X1,...,X5

ψ245ψ
′
1234

α = max
X1,...,X4

ψ′1234 max
X5

ψ245 = max
X1,...,X4

ψ′1234ψ
′
24 = max

X1,...,X4

ψ′′1234

I Is there an elimination order generating “smaller scopes” functions?

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

Yes! π∗ = {X5,X4,X2,X6,X3,X1}:

α = max
X1,X3,X6,X2,X4,X5

ψ136ψ26ψ46ψ245

α = max
X1,...,X4

ψ136ψ26ψ46 max
X5

ψ245 = max
X1,...,X4

ψ136ψ26ψ46ψ
′
24

α = max
X1,...,X2

ψ136 max
X4

ψ′246 = max
X1,X3,X6

ψ136 max
X2

ψ′26 = max
X1,X3,X6

ψ′136

⇒ π generates functions with 4 variables, instead of 3 at most for π∗!

21 / 31

Elimination ordering

Variable elimination, for elimination order
π = {X6,X5,X4,X3,X2,X1}:

α = max
X1,...,X6

ψ136(X1,X3,X6)ψ26(X2,X6)ψ46(X4,X6)ψ245(X2,X4,X5)

α = max
X1,...,X5

ψ245 max
X6

ψ136ψ26ψ46 = max
X1,...,X5

ψ245ψ
′
1234

α = max
X1,...,X4

ψ′1234 max
X5

ψ245 = max
X1,...,X4

ψ′1234ψ
′
24 = max

X1,...,X4

ψ′′1234

I Is there an elimination order generating “smaller scopes” functions?

1 2

3 4

5ψ′1234 ψ245

Yes! π∗ = {X5,X4,X2,X6,X3,X1}:

α = max
X1,X3,X6,X2,X4,X5

ψ136ψ26ψ46ψ245

α = max
X1,...,X4

ψ136ψ26ψ46 max
X5

ψ245 = max
X1,...,X4

ψ136ψ26ψ46ψ
′
24

α = max
X1,...,X2

ψ136 max
X4

ψ′246 = max
X1,X3,X6

ψ136 max
X2

ψ′26 = max
X1,X3,X6

ψ′136

⇒ π generates functions with 4 variables, instead of 3 at most for π∗!

21 / 31

Elimination ordering

Variable elimination, for elimination order
π = {X6,X5,X4,X3,X2,X1}:

α = max
X1,...,X6

ψ136(X1,X3,X6)ψ26(X2,X6)ψ46(X4,X6)ψ245(X2,X4,X5)

α = max
X1,...,X5

ψ245 max
X6

ψ136ψ26ψ46 = max
X1,...,X5

ψ245ψ
′
1234

α = max
X1,...,X4

ψ′1234 max
X5

ψ245 = max
X1,...,X4

ψ′1234ψ
′
24 = max

X1,...,X4

ψ′′1234

I Is there an elimination order generating “smaller scopes” functions?

1 2

3 4

5ψ′1234 ψ245

Yes! π∗ = {X5,X4,X2,X6,X3,X1}:
α = max

X1,X3,X6,X2,X4,X5

ψ136ψ26ψ46ψ245

α = max
X1,...,X4

ψ136ψ26ψ46 max
X5

ψ245 = max
X1,...,X4

ψ136ψ26ψ46ψ
′
24

α = max
X1,...,X2

ψ136 max
X4

ψ′246 = max
X1,X3,X6

ψ136 max
X2

ψ′26 = max
X1,X3,X6

ψ′136

⇒ π generates functions with 4 variables, instead of 3 at most for π∗!

21 / 31

Elimination ordering

Variable elimination, for elimination order
π = {X6,X5,X4,X3,X2,X1}:

α = max
X1,...,X6

ψ136(X1,X3,X6)ψ26(X2,X6)ψ46(X4,X6)ψ245(X2,X4,X5)

α = max
X1,...,X5

ψ245 max
X6

ψ136ψ26ψ46 = max
X1,...,X5

ψ245ψ
′
1234

α = max
X1,...,X4

ψ′1234 max
X5

ψ245 = max
X1,...,X4

ψ′1234ψ
′
24 = max

X1,...,X4

ψ′′1234

I Is there an elimination order generating “smaller scopes” functions?

Yes! π∗ = {X5,X4,X2,X6,X3,X1}:

α = max
X1,X3,X6,X2,X4,X5

ψ136ψ26ψ46ψ245

α = max
X1,...,X4

ψ136ψ26ψ46 max
X5

ψ245 = max
X1,...,X4

ψ136ψ26ψ46ψ
′
24

α = max
X1,...,X2

ψ136 max
X4

ψ′246 = max
X1,X3,X6

ψ136 max
X2

ψ′26 = max
X1,X3,X6

ψ′136

⇒ π generates functions with 4 variables, instead of 3 at most for π∗!

21 / 31

Elimination ordering

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

Yes! π∗ = {X5,X4,X2,X6,X3,X1}:

α = max
X1,X3,X6,X2,X4,X5

ψ136ψ26ψ46ψ245

α = max
X1,...,X4

ψ136ψ26ψ46 max
X5

ψ245 = max
X1,...,X4

ψ136ψ26ψ46ψ
′
24

α = max
X1,...,X2

ψ136 max
X4

ψ′246 = max
X1,X3,X6

ψ136 max
X2

ψ′26 = max
X1,X3,X6

ψ′136

⇒ π generates functions with 4 variables, instead of 3 at most for π∗!

21 / 31

Elimination ordering

1 2

3 4

6ψ136

ψ26

ψ46

ψ′24

Yes! π∗ = {X5,X4,X2,X6,X3,X1}:

α = max
X1,X3,X6,X2,X4,X5

ψ136ψ26ψ46ψ245

α = max
X1,...,X4

ψ136ψ26ψ46 max
X5

ψ245 = max
X1,...,X4

ψ136ψ26ψ46ψ
′
24

α = max
X1,...,X2

ψ136 max
X4

ψ′246 = max
X1,X3,X6

ψ136 max
X2

ψ′26 = max
X1,X3,X6

ψ′136

⇒ π generates functions with 4 variables, instead of 3 at most for π∗!

21 / 31

Elimination ordering

1 2

3

6ψ136

ψ′26

Yes! π∗ = {X5,X4,X2,X6,X3,X1}:

α = max
X1,X3,X6,X2,X4,X5

ψ136ψ26ψ46ψ245

α = max
X1,...,X4

ψ136ψ26ψ46 max
X5

ψ245 = max
X1,...,X4

ψ136ψ26ψ46ψ
′
24

α = max
X1,...,X2

ψ136 max
X4

ψ′246 = max
X1,X3,X6

ψ136 max
X2

ψ′26 = max
X1,X3,X6

ψ′136

⇒ π generates functions with 4 variables, instead of 3 at most for π∗!

21 / 31

Elimination ordering

1

3

6ψ′136

Yes! π∗ = {X5,X4,X2,X6,X3,X1}:

α = max
X1,X3,X6,X2,X4,X5

ψ136ψ26ψ46ψ245

α = max
X1,...,X4

ψ136ψ26ψ46 max
X5

ψ245 = max
X1,...,X4

ψ136ψ26ψ46ψ
′
24

α = max
X1,...,X2

ψ136 max
X4

ψ′246 = max
X1,X3,X6

ψ136 max
X2

ψ′26 = max
X1,X3,X6

ψ′136

⇒ π generates functions with 4 variables, instead of 3 at most for π∗!

21 / 31

Treewidth
Let H = {H1, . . . ,Hm} be the hypergraph of the graphical model.

Definition (Variable/vertex elimination)

Let i ∈ {1, . . . , n} be a vertex/variable number. We define:

H↓i = {Hj ∈ H, i 6∈ Hj} ∪
{ ⋃

i∈Hj∈H
Hj \ {i}

}
.

Definition (Induced width)

Let π be an elimination order (π(k) is the kth eliminated vertex).

Let Hk be the hypergraph generated after k vertices eliminations
(H0 = H and Hn = ∅).

⇒ The induced width is the size of the largest generated hyperedge
(minus 1), during the process :

IW π(H) = max
k=0,..,n−1

max
H∈Hk

|H| − 1.

22 / 31

Treewidth
Let H = {H1, . . . ,Hm} be the hypergraph of the graphical model.

Definition (Variable/vertex elimination)

Let i ∈ {1, . . . , n} be a vertex/variable number. We define:

H↓i = {Hj ∈ H, i 6∈ Hj} ∪
{ ⋃

i∈Hj∈H
Hj \ {i}

}
.

Definition (Induced width)

Let π be an elimination order (π(k) is the kth eliminated vertex).

Let Hk be the hypergraph generated after k vertices eliminations
(H0 = H and Hn = ∅).

⇒ The induced width is the size of the largest generated hyperedge
(minus 1), during the process :

IW π(H) = max
k=0,..,n−1

max
H∈Hk

|H| − 1.

22 / 31

Treewidth

Let H = {H1, . . . ,Hm} be the hypergraph of the graphical model.

Definition (Treewidth)

TW (H), the treewidth of H is the minimum induced width over all
elimination orders:

TW (H) = min
π
IW π(H).

Undirected graph / Hypergraph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

π = {6, 5, 4, 3, 2, 1}

IW π(H) = 3

π∗ = {5, 2, 4, 6, 3, 1}

TW (H) = IW π∗(H) = 2

23 / 31

Treewidth

Let H = {H1, . . . ,Hm} be the hypergraph of the graphical model.

Definition (Treewidth)

TW (H), the treewidth of H is the minimum induced width over all
elimination orders:

TW (H) = min
π
IW π(H).

Undirected graph / Hypergraph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

π = {6, 5, 4, 3, 2, 1}

IW π(H) = 3

π∗ = {5, 2, 4, 6, 3, 1}

TW (H) = IW π∗(H) = 2

23 / 31

Treewidth

Let H = {H1, . . . ,Hm} be the hypergraph of the graphical model.

Definition (Treewidth)

TW (H), the treewidth of H is the minimum induced width over all
elimination orders:

TW (H) = min
π
IW π(H).

Undirected graph / Hypergraph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

π = {6, 5, 4, 3, 2, 1}

IW π(H) = 3

π∗ = {5, 2, 4, 6, 3, 1}

TW (H) = IW π∗(H) = 2

23 / 31

Treewidth

Let H = {H1, . . . ,Hm} be the hypergraph of the graphical model.

Definition (Treewidth)

TW (H), the treewidth of H is the minimum induced width over all
elimination orders:

TW (H) = min
π
IW π(H).

Undirected graph / Hypergraph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

π = {6, 5, 4, 3, 2, 1}

IW π(H) = 3

π∗ = {5, 2, 4, 6, 3, 1}

TW (H) = IW π∗(H) = 2

23 / 31

Treewidth computation

Variable elimination takes exponential space/time in induced width

⇒ Important to find a “good” elimination order (small induced width)

Determining the treewidth is a hard problem

Computing the treewidth is NP-hard

Approximating the treewidth with constant factor?

⇒ Not known whether in P or NP-hard

Treewidth computation is a Fixed Parameter Tractable problem

An O
(
TW (H)TW (H)3

n
)

solution algorithm (impractical)

⇒ In practice, elimination order heuristics (e.g. min-fill).

24 / 31

Treewidth computation

Variable elimination takes exponential space/time in induced width

⇒ Important to find a “good” elimination order (small induced width)

Determining the treewidth is a hard problem

Computing the treewidth is NP-hard

Approximating the treewidth with constant factor?

⇒ Not known whether in P or NP-hard

Treewidth computation is a Fixed Parameter Tractable problem

An O
(
TW (H)TW (H)3

n
)

solution algorithm (impractical)

⇒ In practice, elimination order heuristics (e.g. min-fill).

24 / 31

Treewidth computation

Variable elimination takes exponential space/time in induced width

⇒ Important to find a “good” elimination order (small induced width)

Determining the treewidth is a hard problem

Computing the treewidth is NP-hard

Approximating the treewidth with constant factor?

⇒ Not known whether in P or NP-hard

Treewidth computation is a Fixed Parameter Tractable problem

An O
(
TW (H)TW (H)3

n
)

solution algorithm (impractical)

⇒ In practice, elimination order heuristics (e.g. min-fill).

24 / 31

Treewidth computation

Variable elimination takes exponential space/time in induced width

⇒ Important to find a “good” elimination order (small induced width)

Determining the treewidth is a hard problem

Computing the treewidth is NP-hard

Approximating the treewidth with constant factor?

⇒ Not known whether in P or NP-hard

Treewidth computation is a Fixed Parameter Tractable problem

An O
(
TW (H)TW (H)3

n
)

solution algorithm (impractical)

⇒ In practice, elimination order heuristics (e.g. min-fill).

24 / 31

1 Graphical models

2 Inference tasks

3 Variable elimination, elimination ordering, treewidth

4 Message passing

25 / 31

From variable elimination to message passing

Message passing algorithms are powerful procedures
for exact and approximate inference in graphical models:

They are derived from variable elimination algorithms

They can be more powerful for exact inference:
→ Using twice as much work, they provide all marginals of a SGM,
over all variables.

They give either exact or approximate solutions:

Exact Message passing on a tree-graphical model ∼ variable elimination
Exact Message passing on a tree-factor graph graphical model

Approx Message passing in the general case: (generalized) loopy Belief
Propagation (LBP)

26 / 31

Message passing on a tree

Example: Pairwise graphical model

1

2 3

4 5 6 7

ψ12 ψ13

ψ24 ψ25 ψ36 ψ37 µ73(x3)←
∑

x7
ψ37(x3, x7)

µ31(x1)←
∑

x3
ψ13(x1, x3)µ63(x3)µ73(x3)

Messages computation mimics variable elimination

For marginalization, message updates take the form:

∀xj , µij (xj)←
1

K

∑
xi

ψij (xi , xj)ψi (xi)
∏

k 6=j,(i,j)∈E

µki (xi)

27 / 31

Message passing on a tree

Example: Pairwise graphical model

1

2 3

4 5 6 7

ψ12 ψ13

ψ24 ψ25 ψ36 ψ37 µ73(x3)←
∑

x7
ψ37(x3, x7)

µ31(x1)←
∑

x3
ψ13(x1, x3)µ63(x3)µ73(x3)

Once messages have been asynchronously computed along all edges in
the two directions, marginal probabilities can be obtained:

pi (xi) ← 1

Ki
ψi (xi)

∏
j,(j,i)∈E

µji (xi),∀xi ,

pij (xi , xj) ← 1

Kij
ψij (xij)

∏
k 6=j,(k,i)∈E

µki (xi)
∏

l 6=i,(l,j)∈E

µlj (xj).

27 / 31

Message passing on a tree factor graph

Example: Hypergraph and equivalent tree factor graph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

1 2

3 4

56136

26

46

245

The factor graph is not a tree...

But becomes one if we merge variables X2 and X4, to get a new
variable X ′24.

28 / 31

Message passing on a tree factor graph

Example: Hypergraph and equivalent tree factor graph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

1

3

56 24136 246 245

ν6{136}
←−−−−

ν6{246}
−−−−→

µ{136}6
−−−−→

µ{246}6
←−−−−

Now that we have a tree, two different kinds of messages are computed:

Factor-to-variable messages: µfi (xi).

Variable-to-factor messages: νif (xi).

28 / 31

Message passing on a tree factor graph

Example: Hypergraph and equivalent tree factor graph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

1

3

56 24136 246 245

ν6{136}
←−−−−

ν6{246}
−−−−→

µ{136}6
−−−−→

µ{246}6
←−−−−

Update rules: µfi (xi) ←
∑
xf \i

(
ψf (xf)

∏
j∈f \i

νjf (xj)
)
,∀xi ,

νif (xi) ←
∏

f ′ 6=f ,i∈f ′

µf ′i (xi),∀xi .

28 / 31

Message passing on a tree factor graph

Example: Hypergraph and equivalent tree factor graph

1 2

3 4

56ψ136

ψ26

ψ46

ψ245

1

3

56 24136 246 245

ν6{136}
←−−−−

ν6{246}
−−−−→

µ{136}6
−−−−→

µ{246}6
←−−−−

After two complete passes, marginal probabilities can be computed:

pi (xi)←
1

K
ψi (xi)

∏
f ,i∈f

µfi (xi), ∀xi .

28 / 31

General case: Loopy Belief Propagation

When the graphical model is not a tree?

When the factor graph is not a tree?

⇒ Message passing can still be applied, to approximate marginals!

Loopy Belief Propagation

Messages sent asynchronously along edges of the graph/factor graph.

Until an arbitrary convergence condition is met

Convergence to a steady-state is not guaranteed

No guarantee on the “quality” of the approximated marginals

LBP steady states have a variational approximation interpretation

“Good” approximation in practice

29 / 31

General case: Loopy Belief Propagation

When the graphical model is not a tree?

When the factor graph is not a tree?

⇒ Message passing can still be applied, to approximate marginals!

Loopy Belief Propagation

Messages sent asynchronously along edges of the graph/factor graph.

Until an arbitrary convergence condition is met

Convergence to a steady-state is not guaranteed

No guarantee on the “quality” of the approximated marginals

LBP steady states have a variational approximation interpretation

“Good” approximation in practice

29 / 31

General case: Loopy Belief Propagation

When the graphical model is not a tree?

When the factor graph is not a tree?

⇒ Message passing can still be applied, to approximate marginals!

Loopy Belief Propagation

Messages sent asynchronously along edges of the graph/factor graph.

Until an arbitrary convergence condition is met

Convergence to a steady-state is not guaranteed

No guarantee on the “quality” of the approximated marginals

LBP steady states have a variational approximation interpretation

“Good” approximation in practice

29 / 31

General case: Loopy Belief Propagation

When the graphical model is not a tree?

When the factor graph is not a tree?

⇒ Message passing can still be applied, to approximate marginals!

Loopy Belief Propagation

Messages sent asynchronously along edges of the graph/factor graph.

Until an arbitrary convergence condition is met

Convergence to a steady-state is not guaranteed

No guarantee on the “quality” of the approximated marginals

LBP steady states have a variational approximation interpretation

“Good” approximation in practice

29 / 31

Summary and concluding remarks

Graphical models

A convenient approach to model uncertainty and preferences

A very general model, with variants (combination operator)

Useful to solve several problems (optimizing, marginalizing...)

A generic algorithmic approach for exact inference (variable elimination) or
approximate inference (LBP)

Other ways to perform inference in graphical models

Search (maximizing)

Monte-Carlo simulation (lots of theoretical and practical results)

Mathematical programming...

Another important question: Infering structure of GM from data!

30 / 31

Summary and concluding remarks

Graphical models

A convenient approach to model uncertainty and preferences

A very general model, with variants (combination operator)

Useful to solve several problems (optimizing, marginalizing...)

A generic algorithmic approach for exact inference (variable elimination) or
approximate inference (LBP)

Other ways to perform inference in graphical models

Search (maximizing)

Monte-Carlo simulation (lots of theoretical and practical results)

Mathematical programming...

Another important question: Infering structure of GM from data!

30 / 31

References

To read more about the topic of this talk:

N. Peyrard et al. Exact and approximate inference in graphical
models: variable elimination and beyond, 2017.
https://arxiv.org/pdf/1506.08544.pdf

And some very useful references:

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential
families, and variational inference. Foundations and Trends in
Machine Learning, 1(1–2):1–305, 2008.

J. Yedidia, W. Freeman, and Y. Weiss. Constructing free energy
approximations and generalized belief propagation algorithms. IEEE
Transactions on Information Theory, 51(7):2282–2312, 2005.

31 / 31

	Graphical models
	Inference tasks
	Variable elimination, elimination ordering, treewidth
	Message passing

