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Graphical models

o A graphical model over A = [[i_; A; is a decomposable function:

¥ T, \i = R* (the A; are finite) which writes, Vx € A:

Y(x) = ©pesB(xB),

where B is a set of subsets of V = {1,...,n}
and ® € {[],>_, min,max...} is a combination operator.

)
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Graphical models

o A graphical model over A = [[i_; A; is a decomposable function:
¥ T, \i = R* (the A; are finite) which writes, Vx € A:

Y(x) = ©pesB(xB),

where B is a set of subsets of V = {1,...,n}
and ® € {[],>_, min,max...} is a combination operator.
o Used to model as well:
» Uncertainty: (Hidden) Markov Chains, Bayesian networks, Markov
Random Fields, Gaussian Graphical models, Possibilistic networks...
» Preferences: (Weighted) Constraint Satisfaction Problems, Cost
Function Networks...
» Both uncertainty and preferences: Influence Diagrams...

)
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Graphical models MA

o A graphical model over A = [[i_; A; is a decomposable function:
¥ T, \i = R* (the A; are finite) which writes, Vx € A:

Y(x) = ©pesB(xB),

where B is a set of subsets of V = {1,...,n}
and ® € {[],>_, min,max...} is a combination operator.
@ Used to model as well:
» Uncertainty: (Hidden) Markov Chains, Bayesian networks, Markov
Random Fields, Gaussian Graphical models, Possibilistic networks...
» Preferences: (Weighted) Constraint Satisfaction Problems, Cost
Function Networks...
» Both uncertainty and preferences: Influence Diagrams...
@ In numerous application domains:
» Reasoning: causal inference, information extraction...
» Computers: Computer vision, speech recognition, LDPC codes...
» Bioinformatics: Gene regulatory networks, protein structure...
» Environmental modelling: Spatial and spatiotemporal processes...

)
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@ Graphical models
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Examples of probabilistic graphical models (1) MA

TOULOUSE

Definition (Markov chain)
o X =(Xi,...,Xy,) is a set of variables, with finite domains {A;}i=1 . n.
P(x1,....xn) = P(x1) X P(xe|x1) X ... X P(Xn|xn-1)
——  —— ———
Y1(x)  Y12(x,%) Y(n—1)n(Xn—1,%n)




Examples of probabilistic graphical models (1)

Definition (Markov chain)

@ X =(Xi,...,Xy,) is a set of variables, with finite domains {A;}j=1 .

P(x1,...,xn) = P(x1) X P(xa|x1) X ... X P(Xn|Xn—1)
——  —— ———
P1(a)  Yr2(xa,x2) Y(n—1)n(Xn—1,Xn)

Definition (Hidden Markov chain)
e X =(Xi,...,Xp) is an unobserved Markov chain.
© Z=(2,...,Zy) is a set of observed variables.
e P(z|x) =T, P(zi|x;) (independent observations).

n—1

P(x,z) = w X H P(zi|x;) x P(xix1|xi) | % P(zn|xn)

¥1(x1) i=1 bi(xi,2i) Pl (Xi,Xit1) Yn(Xn,2n)
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Examples of probabilistic graphical models (2) MA

Definition (Bayesian network)
e X =(Xi,...,Xy,) is a set of variables, with finite domains {A;}i=1 . n.
e Par(i)C{1,...,i—1}Vi=2,...,n.

P(x1,...,xp) = P(x1) x H P(xi|xpar(iy)
~—— —_—————

i=2
Y1(x1) Ypar(iyu{iy (XiXPar(i))




Examples of probabilistic graphical models (2)

Definition (Bayesian network)

o X =(Xq,...

o Par(i) C{1,...,i—1},Vi=2,...,n.

, Xn) is a set of variables, with finite domains {A;}i—1, .

P(xt,. %) = POa) x [T P(xilxpar(i)
Y d ~—————

i=2
Y1(x1) YPar(i)u{i} (Xi:XPar(i))

Definition (Markov Random Field)

e G =(V,E) is an undirected graph with vertices V = {1,...,n},

edges E € V x V and C is the set of cliques of G.

o {¢Yc: Xc— R+*}cec are strictly positive functions.

P(Xl, cee

) Xn)

1

Z
<~

g, normalizing constant

x [T velxc)

cecC




Examples of non-probabilistic graphical models M

Definition (Possibilistic networks)
e X =(Xi,...,Xy,) is a set of variables, with finite domains {A;}i=1 . n.
@ Par(i)C{1,...,i—1}Vi=2,...,n.

e 7(Xi,...,X,) takes values in a finite totally ordered scale L.

50

731, %) = min{ w0a), min  7(xilxeary) )
N~ [=2,...,N N—_———

P1(x1) Ypar(iyu{i} (XiXPar(i))




Examples of non-probabilistic graphical models M

Definition (Possibilistic networks)

e X =(Xi,...,Xy,) is a set of variables, with finite domains {A;}i=1 . n.

@ Par(i)C{1,...,i—1}Vi=2,...,n.

e 7(Xi,...,X,) takes values in a finite totally ordered scale L.
71, k) =min{ 70a), min - 7(xlxea) )
N~ i=2,...,n —_———
Y1(x1) Ypar(iyu{i} (XiXPar(i))

Definition (Cost Functions networks)
o {wc : Xc = RT} . are positive functions.

W(Xi,...,Xp) = Z we(xc)

ceC

31



More complex graphical models MA

TOULOUSE

Some graphical models can have more than one combination operator:

Markov decision process / Influence Diagram

@ Markov chain/Bayesian network plus decision variables plus
cost functions network

@ Expected utility function

— We will limit ourselves to single operator graphical models!



Graphical model definition M~

Definition (Graphical model)
o Let X =(Xi,...,X,) be a set of variables.
@ X; takes values in A; C R.
@ A realization of X is denoted x = (x1, ..., X,), with x; € A;.

o A graphical model over X is a function ¢ : [[; A; = R, which writes,

Vx € X:
P(x) = ©peBYB(XB),

where B is a set of subsets of V = {1,...,n}, ¥ : [[;cg\i = R
and ® € {[],>_, min,max...} is a combination operator.

31



Why are these models called “graphical”?

They admit “graphical” representations:
@ Useful for variables interactions vizualization

o Allow to directly extract computational features:
Treewidth, perfect elimination ordering...

@ Graphical properties sometimes exploited directly in algorithms

31



Why are these models called “graphical”? MA

Graphical representations of a graphical model:
@ Directed graph representation
= Represent conditional dependence between variables...
o Undirected graph representation
= Represent conditional indepence between variables...
And useful to compute variable elimination orderings
@ Hypergraph representation
= Directly represents the graphical model functions scopes
@ Factor graph representation

= Equivalent to hypergraph representation.
Useful in message passing algorithms

10/31



lllustration on a bayesian network MA

TOULOUSE

P(Xi,...,X5) = P(X1)P(X2|X1)P(X3|X1)P(Xa| X1, X3)P(X5| X2, Xs)

11/31



lllustration on a bayesian network Mo

TOULOUSE

P(Xi,...,X5) = P(X1)P(X2|X1)P(X3|X1)P(Xa| X1, X3)P(X5| X2, Xs)

Directed acyclic graph

e

‘
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lllustration on a bayesian network Mo

TOULOUSE

P(Xy,..., Xs) = P(X1)P(X2|X1)P(X3|X1)P(Xa| X1, X3)P(X5| X2, Xs)

Directed acyclic graph Undirected graph

11/31



lllustration on a bayesian network M

uuuuuuuu

P(X1,...,Xs) = P(X1)P(Xa|X1)P(X3|X1)P(Xa| X1, X3) P(X5| X, Xa)
Y12(X1, X2) = P(X1)P(X2|X1)
P134(X1, X3, Xa) = P(X3|X1)P(Xa| X1, X3) ; 92a5(X2, Xa, Xs5) = P(Xs5|X2, Xa)
Directed acyclic graph Undirected graph

ot

Hypergraph

P12 ° ‘°
134
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lllustration on a bayesian network Mo

TOULOUSE

P(X1,...,Xs) = P(X1)P(Xa|X1)P(X3|X1)P(Xa| X1, X3) P(X5| X, Xa)
Y12(X1, X2) = P(X1)P(X2|X1)
P134(X1, X3, Xa) = P(X3|X1)P(Xa| X1, X3) ; 92a5(X2, Xa, Xs5) = P(Xs5|X2, Xa)
Directed acyclic graph Undirected graph

Hypergraph

o © ‘o
V134

(5 ))tbass
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© Inference tasks
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Inference tasks in graphical models MA

TOULOUSE

There are basically two usual inference tasks that can be solved using
graphical models:

e Optimizing:
Most likely solutions in stochastic graphical models

x* =argmax P(xq, ..., Xpn)
X

Most likely solutions in possibilistic networks

x* = argmaxm(xy,...,Xn)
X

min-cost solutions in cost function networks

x* =argminw(xy,...,x,)
X

13/31



Inference tasks in graphical models

There are basically two usual inference tasks that can be solved using
graphical models:

@ Optimizing
o Counting:

Marginal probabilities computation in stochastic graphical models

P(xg) = Z P(xg, xg)

TOULOUSE

Normalizing constant computation in Markov Random Fields

Z=> "I veclxo)

x CeC

Solution counting in constraint satisfaction problems

#SAT = [{x, w(x) = 0}

14 /31



Inference tasks in graphical models MA

There are basically two usual inference tasks that can be solved using
graphical models:

o Optimizing
o Counting

These are sometimes interleaved, in more complex problems:

Maximum Expected Utility computation in influence diagrams

MEU =max> ...max» P(x,..., x| d1, ..., dm)U(x,d)

dp, X5, dpy X5,

Generalized Quantified Boolean Formula satisfiability

UnSAT = minmax...minmaxw(xy, ..., Xn, Vi, -« -, Ym)
XA YBy XA, VB ——

2 Yy

— Some of the following inference approaches may be used as well for
these more complex tasks!

15/31



Inference approaches MA

TOULOUSE

@ Exact inference
» Exhaustive exploration (optimizing, solution finding, counting)
» Heuristic search (optimizing, solution finding)
» Variable elimination (counting, optimizing, solution finding)
@ Approximate inference
» Sampling based approaches:

counting, optimizing, both (e.g. reinforcement learning)...
» Heuristic-based approaches

» Loopy belief-propagation (approximate counting or optimizing)
» Variational approximation (stochastic models)

16 /31
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© Variable elimination, elimination ordering, treewidth
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Variable elimination, case of Hidden Markov Chains MA

Problem

Computing the most likely values of variables H given a realization o of
the variables O. The problem is to compute arg max, p(H = h|O = o),
or equivalently the argument of:

T-1
S VYp, (1) (H VY, Hy1 (his hiv1)vo,,H; (o, hi)) Yo, Hy (o1, hT)

hi,....hT pale

Remarks:
@ The number of possible realizations of H is exponential in T

@ Nevertheless, this optimization problem can be solved in a number of
operations linear in T using the well-known Viterbi algorithm

18/31



Variable elimination in HMC: Viterbi algorithm Mo

TOULOUSE

max_ ¥p, () (H VUi, iy (hiy hiz1)o,mi (04 i)) Yor,Hy (o7, hT)
hyeshr

i=1

Viterbi algorithm

0 O

O—©

19/31



Variable elimination in HMC: Viterbi algorithm MA

TOULOUSE

T2
= max d)Hl(hl)(H 1/1Hf,Hf+1(hf,hi+1)¢o;,H;(0i,hi))

hi,.. hr—1 1

XwOT—l,HT—l(OT*h hTfl) X rT;,aX /(/}HT—lsHT(hT*]-’ hT)¢OT7HT(OT7 hT)
T

New potential function wé)r”rfl(oT"hT*l)

Viterbi algorithm

@5@5
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Variable elimination in HMC: Viterbi algorithm MA

TOULOUSE

T2
=, max iy, (hy) (H 1/1Hf,Hf+1(hi,hi+1)¢o;,H;(0iahi))

By, h
! i=1

XwOT—l,HT—l(OT*h hTfl) X rT;,ax /(/}HT—lsHT(hT*]-’ hT)¢OT7HT(OT7 hT)
T

New potential function wé)r”rfl(oT"hT*l)

Viterbi algorithm

19/31



Variable elimination, bayesian network MA

TOULOUSE

P(X1,...,Xe) = P(X1)P(X3)P(Xe| X1, X3)P(X2|Xs)P(Xa|Xs)P(X5| X2, Xa)

Directed graph

20/31



Variable elimination, bayesian network M

uuuuuuuu

P(X1,...,Xs) = P(X1)P(X3)P(Xs|X1, X3)P(X2|Xs)P(Xa|Xs)P(X5|X2, Xa)
P(X1,...,X6) = 136(X1, X3, X6)h26(X2, X6)1hae(Xa, X6)1h2a5(X2, Xa, Xs)
P(X1,...,X6) = t136926v46Y245

Undirected graph / Hypergraph
Directed graph

20/31



Variable elimination, bayesian network M

uuuuuuuu

P(X1,...,Xs) = P(X1)P(X3)P(Xs|X1, X3)P(X2|Xs)P(Xa|Xs)P(X5|X2, Xa)
P(X1,...,X6) = 136(X1, X3, X6)h26(X2, X6)1hae(Xa, X6)1h2a5(X2, Xa, Xs)
P(X1,...,X6) = t136926v46Y245

Undirected graph / Hypergraph

Directed graph

Compute v = max P(X1,...,Xe) = max 1136269461245

X1,.,X6 1,--,X6

20/31



Elimination ordering

TOULOUSE

@ Variable elimination, for elimination order
™= {X67 X57 X4v X3a X27 Xl}:

a = Xmax 136(X1, X3, X6 )26 (X2, X6)0ae(Xa, X6 )1245( X2, Xa, Xs)

(67

max  tass maX¢136¢26¢46 max  Yoa5tinzs
150, X5 X1,..,Xs5

max max maXx = maXx
e Xa 1/)1234 1/)245 Xe,o X 1/’1234%4 Xt Xa 1/’1234

Q
I

21/31



Elimination ordering

TOULOUSE

@ Variable elimination, for elimination order
™= {)<67)<57)<4v)<3a)<27)<1}:

a = Xmax 136(X1, X3, X6 )26 (X2, X6)0ae(Xa, X6 )1245( X2, Xa, Xs)

a = _max s maX¢136¢26¢46 max  Yoa5tinzs
1., X5 X1,0.,X5
1
a = max max s max = max
m: 7X4”l/)1234 thoas = Xh'..7X41/)12341/)24 xl,...,x4¢1234
/(/}/
1234

21/31



Elimination ordering

TOULOUSE

@ Variable elimination, for elimination order
™= {X67 X57 X4v X3a X27 Xl}:

(67

(67

Q

xmax 136(X1, X3, X6 )26 (X2, X6)0ae(Xa, X6 )1245( X2, Xa, Xs)
1ye:+3/\6

/
maX 45 MaXP136YP26YPae = MaX Y45
1,...,x5¢ 5 Y136926Y) xl,...,xfb V1234

! ! !/ 1
max max 45 = max = max
M Y1234 Pa Va5 % Y1234Y24 % Y123a

> Is there an elimination order generating “smaller scopes” functions?

/
¢1234

(5 )24

21/31



Elimination ordering

@ Variable elimination, for elimination order
™= {X67 X5’ X47 X37 X2a Xl}:

a = max 136(X1, X3, X6 )26 (X2, X6)0ae(Xa, X6 )1245( X2, Xa, Xs)
1, )

o = _max o maX7/)1361/261/46— max_ 124511034
1500, X5 X1, X5

a = max max = max = max
X X¢1234 g5 = xmax V1o34ng = X1 V1a3a

[RRRE)

> Is there an elimination order generating “smaller scopes” functions?

o Yes! m* = {X5,X4,X2,X6,X3,X1}Z

a = max
A 1136%26 146245

a = _max Y136Y26ae max¢245_ max 913626 a6154
X1,-,Xa X1,-, X

a = max max = max maxhs = max
XM 7X2¢136 Vs = X,x3,x61/}136 g = X2 X61/136

21/31
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Elimination ordering

TOULOUSE

@ Yes! * = {)(5,)(4,)(2,)(6,)(3,)(1}:

o =
X1,X3,X6,X2,X4,X5 1136%26 146245

a = max 136Y26Ya6 maxw245_ max_ 1136261a61"4
X1,-,Xa Xi,---,Xa

a = max max = max max i =  max
X% Y136 Voo = XM, Y136 Vo = X2, Xs X Y136

21/31



Elimination ordering

TOULOUSE

o Yes! * = {)(5,)(4,)(2,)(6,)(3,)(1}:

o =
XI’X3’X6’X2’X4,X5 113626146245

a = _max 1136Y26Ya6 maxw245_ max_ 11364264a61"
Xisees Xa Xiy..0y Xa

a = max max = max max s = max
X% Y136 Voo = XM, V136 Vo = X2, Xs X Y13

21/31



Elimination ordering

TOULOUSE

@ Yes! * = {X5,X4,X2,X6,X3,X1}:

o =
X1,X3,X6,X2,X4,X5 1136%26 146245

a = max 136Y26Ya6 max¢245_ max_ 1136261a61"4
Xisees Xa Xiy..03 Xa

a = max max = max max i =  max
XM Y136 Vgs = X% 1136 g = X%, V136

21/31



Elimination ordering

TOULOUSE

!
Vlss o

@ Yes! * = {X5,X4,X2,X6,X3,X1}:

o =
X1,X3,X6,X2,X4,X5 1136%26 146245

a = max 136Y26Ya6 max¢245_ max_ 1136261a61"4
Xisees Xa Xiy..03 Xa

a = max max = max max i =  max
XM Y136 Vgs = X% 1136 g = X%, V136

= 7 generates functions with 4 variables, instead of 3 at most for 7*!

21/31



Treewidth MA

TOULOUSE

Let H = {Hi,...,Hmn} be the hypergraph of the graphical model.

Definition (Variable/vertex elimination)

Let i € {1,..., n} be a vertex/variable number. We define:

%“:{Hjeﬂ,/gz/-/j}u{ U HJ-\{i}}.

I'GHJ‘G’H

22 /31



Treewidth
Let H = {Hi,...,Hmn} be the hypergraph of the graphical model.

Definition (Variable/vertex elimination)

Let i € {1,...,n} be a vertex/variable number. We define:

wi={Henigmru{ | H\{}}

fEHjGH

Definition (Induced width)

o Let 7 be an elimination order (m(k) is the k' eliminated vertex).
o Let #* be the hypergraph generated after k vertices eliminations
(H® = H and H" = 0).
= The induced width is the size of the largest generated hyperedge
(minus 1), during the process :

IW,(H)= max max |H|—1.
k=0,..,n—1 HeHk




Treewidth M

Let H = {Hi,...,Hmn} be the hypergraph of the graphical model.

Definition (Treewidth)

TW(#H), the treewidth of H is the minimum induced width over all
elimination orders:

TW(H) = mﬂin IWL(H).

23 /31



Treewidth MA

Let H = {Hi,...,Hmn} be the hypergraph of the graphical model.

Definition (Treewidth)

TW(#H), the treewidth of H is the minimum induced width over all
elimination orders:

TW(H) = mﬂin IWL(H).

Undirected graph / Hypergraph

23/31



Treewidth M

Let H = {Hi,...,Hmn} be the hypergraph of the graphical model.

Definition (Treewidth)

TW(#H), the treewidth of H is the minimum induced width over all
elimination orders:

TW(H) = mﬂin IWL(H).

Undirected graph / Hypergraph
o m={6,54321}

@ IW,(H)=3

23/31



Treewidth M

Let H = {Hi,...,Hmn} be the hypergraph of the graphical model.

Definition (Treewidth)

TW(#H), the treewidth of H is the minimum induced width over all
elimination orders:

TW(H) = mﬂin IWL(H).

Undirected graph / Hypergraph
o m={6,54321}

0 IW, (H)=3

o m ={5,2,4,6,3,1}

o TW(H)=TIW,-(H)=2

23/31



Treewidth computation M

uuuuuuuu

Variable elimination takes exponential space/time in induced width J

= Important to find a “good” elimination order (small induced width)

24 /31



Treewidth computation MA

TOULOUSE

Variable elimination takes exponential space/time in induced width

= Important to find a “good” elimination order (small induced width)

Determining the treewidth is a hard problem
@ Computing the treewidth is NP-hard
@ Approximating the treewidth with constant factor?
= Not known whether in P or NP-hard

24 /31



Treewidth computation

TOULOUSE

Variable elimination takes exponential space/time in induced width

= Important to find a “good” elimination order (small induced width)

Determining the treewidth is a hard problem
@ Computing the treewidth is NP-hard

@ Approximating the treewidth with constant factor?
= Not known whether in P or NP-hard

Treewidth computation is a Fixed Parameter Tractable problem
e An O (TW(H)TW(H)3n) solution algorithm (impractical)
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Treewidth computation

TOULOUSE

Variable elimination takes exponential space/time in induced width

= Important to find a “good” elimination order (small induced width)

Determining the treewidth is a hard problem
@ Computing the treewidth is NP-hard

@ Approximating the treewidth with constant factor?
= Not known whether in P or NP-hard

Treewidth computation is a Fixed Parameter Tractable problem
e An O (TW(H)TW(H)3n> solution algorithm (impractical)

= In practice, elimination order heuristics (e.g. min-fill).

24 /31
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@ Message passing
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From variable elimination to message passing

Message passing algorithms are powerful procedures
for exact and approximate inference in graphical models:

@ They are derived from variable elimination algorithms

@ They can be more powerful for exact inference:
— Using twice as much work, they provide all marginals of a SGM
over all variables.

@ They give either exact or approximate solutions:

Exact Message passing on a tree-graphical model ~ variable elimination
Exact Message passing on a tree-factor graph graphical model
Approx Message passing in the general case: (generalized) loopy Belief
Propagation (LBP)

26/31



Message passing on a tree

Example: Pairwise graphical model

W13
\) 131(a) = i b13(xa, x3)ue3(x3)n73(x3)

25 w36 \\'37 173(x3) < X, ¥37(x3, x7)

Y oY ©

@ Messages computation mimics variable elimination
@ For marginalization, message updates take the form:

VXJ’ Hij XJ Z% Xiy Xj ?/h(X,) H /Lki(Xi)

k#j,(iJ)€E

27 /31



Message passing on a tree MA

Example: Pairwise graphical model

\ k31(xa) = i, 13(xa, x3)ue3(x3)nr3(x3)

O
\\'37 173(3) = 32, ¥3r(x3,x7)
O 00 O

@ Once messages have been asynchronously computed along all edges in
the two directions, marginal probabilities can be obtained:

1
pilxi) ovilxi) IT wiCx), vx,

1

v

J,U,i)EE
1
pij(xi, xj) 4 K¢U(XU) [T mat) TT mCo)-
y k#j,(k,i)€E I#i(1j)€E

27 /31



Message passing on a tree factor graph M

Example: Hypergraph and equivalent tree factor graph

O (o)
m] (%) ] (5)
@ ] ()

@ The factor graph is not a tree...

@ But becomes one if we merge variables X, and X4, to get a new
variable X},.

28/31



Message passing on a tree factor graph M

TOULOUSE

Example: Hypergraph and equivalent tree factor graph

V6{136 V6 {246
136 L /-\ — 64\ 245 5
{136}6\_/“{246}6;] \/ L=

Now that we have a tree, two different kinds of messages are computed:
e Factor-to-variable messages: uf(x;).
@ Variable-to-factor messages: vir(x;).

28/31



Message passing on a tree factor graph MA
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Update rules: ug(x;) Z (z/z,c Xf) H ij X; ) Vx;,
XF\i jef\l

vie(xi) H wei(x:), Vx;.

I icf!
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Example: Hypergraph and equivalent tree factor graph
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After two complete passes, marginal probabilities can be computed:
1
pi(xi) = i(xi) fl;[fﬂfi(xi),VXi-
N
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@ When the graphical model is not a tree?

@ When the factor graph is not a tree?

= Message passing can still be applied, to approximate marginals!
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General case: Loopy Belief Propagation MA

@ When the graphical model is not a tree?

@ When the factor graph is not a tree?
= Message passing can still be applied, to approximate marginals!
Loopy Belief Propagation

@ Messages sent asynchronously along edges of the graph/factor graph.

@ Until an arbitrary convergence condition is met

& Convergence to a steady-state is not guaranteed

2 No guarantee on the “quality” of the approximated marginals

< LBP steady states have a variational approximation interpretation
< “Good" approximation in practice
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Summary and concluding remarks MA
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Graphical models
@ A convenient approach to model uncertainty and preferences
@ A very general model, with variants (combination operator)
@ Useful to solve several problems (optimizing, marginalizing...)

A generic algorithmic approach for exact inference (variable elimination) or
approximate inference (LBP)

v

30/31



Summary and concluding remarks MA

Graphical models
@ A convenient approach to model uncertainty and preferences
@ A very general model, with variants (combination operator)
@ Useful to solve several problems (optimizing, marginalizing...)

A generic algorithmic approach for exact inference (variable elimination) or
approximate inference (LBP)

v

Other ways to perform inference in graphical models
@ Search (maximizing)
@ Monte-Carlo simulation (lots of theoretical and practical results)

@ Mathematical programming...

Another important question: Infering structure of GM from data!
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