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Abstract—We consider the problem of controlling heteroge-
neous controllable resources of a distribution network with
the objective of achieving a certain power flow at the grid
connection point while respecting local grid constraints. The
problem is formulated as a model predictive control (MPC),
where a linearized grid model, to retain convexity, based on
sensitivity coefficients (SCs) is used to model the grid constraints.
We consider and compare the modelling performance of three
different update policies for the SCs: when they are updated
once per day considering static injections, updated once per
day considering point prediction of the nodal injections, and
recursively estimated using on-line measurements. Simulations
are performed considering the CIGRÉ low voltage benchmark
network. Performance is evaluated in terms of convergence speed,
tracking error, and constraints modeling errors. Further, we
perform a sensitivity analysis on the dominant model w.r.t. the
length of the predictive horizon and number of controllable units.

Index Terms—Distributed control, energy storage, photovoltaic
(PV), linear optimal power flow, sensitivity coefficients.

I. INTRODUCTION

Dispatching distribution networks to track a predefined
dispatch plan at the grid connection point (GCP) has been
proposed in the literature as a way to achieve the coordination
between transmission networks and distribution systems (e.g.
[1], [2]) and avoid the activation of expensive reserve. The
work in [3] proposed a control scheme based on the alternating
direction method of multipliers (ADMM) to coordinate the
operations of heterogeneous resources and track the dispatch
plan. The formulation in [3] was experimentally validated with
a battery energy storage systems (BESS) and a curtailable PV
facility, however, without considering the grid constraints on
nodal voltages and branch currents.

Including the exact grid constraints in the optimization prob-
lem leads to a non-convex problem known as optimal power
flow. Its convexification, to increase tractability, is typically
achieved by relaxing non-convex constraints or by linearizing
them. Authors in [4] proposed a convex relaxation, which
works properly for a class of networks, but without considering
shunt elements, and ampacity constraints. An exact convex
OPF, that includes both the shunt elements and line ampacity
constraints, was proposed in [5]. However, both of them do
not apply to meshed networks. A linearization method based
on an iterative approach was described in [6], and in [7]
applied to distribution networks. However, it can only be
applied to networks without shunt elements. An alternative
linearization method that can be applied to both radial and

meshed networks and accounts for shunt elements too is using
sensitivity coefficients (SCs) [8].

In this work, we use voltage, current and loss SCs to develop
linearized grid models. In particular, we report three different
ways to use SCs. Further, we utilize these linearized grid
models for developing a real-time MPC control framework
and compare their performance in terms of convergence speed,
optimality, and constraint modeling errors w.r.t. the exact
AC power flow model. In summary, the main contributions
of this paper are i) inclusion of the grid model into the
formulation of [3], ii) generalization of the distributed MPC
formulation of [3] for any generic controllable unit, and iii)
comparative assessment of different linear grid models for the
MPC formulation.

The paper is organized as follows: Section II presents
the description on the grid models, Section III describes the
proposed control formulation, decomposition into distributed
optimization, and resources’ optimization models, Section IV
presents the simulation results, and Section V summarizes the
contributions of this paper and states the conclusions.

II. GRID MODEL

We consider a generic distribution network (meshed or
radial) consisting of nb nodes and nl branches. Let vectors
v ∈ R(nb−1) and i ∈ Rnl represent nodal voltages magnitudes
and branch currents magnitudes, respectively, and p ∈ R(nb−1)

and q ∈ R(nb−1) the nodal active and reactive controllable in-
jections for all nodes except the slack node. Scalars pl, ql ∈ R
are the total active and reactive transmission losses as seen at
the grid connection point. We assume the following hypothesis
i) the system is in steady-state and can be modeled by phasors,
which is able to track small power-dynamics, ii) the nodes are
PQ nodes, and the nodal injections are not voltage dependent.
The linearized nodal voltages, branch currents and losses can
be expressed as:

v = Av

[
p
q

]
+ bv (1a)

i = Ai

[
p
q

]
+ bi (1b)[

pl

ql

]
= Al

[
p
q

]
+ bl, (1c)

where Av ∈ R(nb−1)×2(nb−1), Ai ∈ Rnl×2(nb−1), and Al ∈
R2×2(nb−1) and bv ∈ R(nb−1), bi ∈ Rnl , and bl ∈ R2 are
linear transformation matrices, and vectors respectively. In this



work, these linear transformation parameters are determined
using the method of [8] that allows to uniquely compute the
SCs as a function of the grid topology and grid state. The
method involves solving a load-flow and a systems of linear
equations (identified by the function ξ hereafter) presented in
[8], which has a unique solution for every operating point
when the load-flow Jacobian is locally invertible. (refer to
Theorem 8.1 in [9]).

The linear model (1) is static, in the sense that the values
of the matrices at time t are computed based on the former
knowledge of all the nodal injections at time t. In practical grid
applications, like real-time control and scheduling of power
systems, which typically require to compute the control actions
for future time intervals, determining the linear transformation
parameters entails the use of point predictions of the nodal
injections, with a look-ahead time that depends on the length
of the control horizon. From this standpoint, we can envisage
three policies to compute and update the linear transformation
parameters (LTPs).

Let the index t denote the current time index, T the number
of intervals in the control horizon (e.g., at time-resolution ∆t
= 5 minute), t = t, t + 1, . . . , T the time indices spanning
from the time t∆t to the end of the control horizon T∆t, and
punc
t ∈ R(nb−1), and qunc

t ∈ R(nb−1) the uncontrollable active
and reactive power nodal injections (obtained by measurement
for the time t∆t, and by forecasts for subsequent intervals
t∆t). The three update policies are:

1) the SCs are computed using a single operating point and
kept fixed throughout the control horizon; At and bt can
be expressed as1, 2:

Av
t = ξ(p̂t + punc

t , q̂t + qunc
t ) (2a)

bv
t = −Av

t

[
p̂t + punc

t − punc
t

q̂t + qunc
t − qunc

t

]
+ v̂t; (2b)

2) the SCs are estimated using the point-predictions of load
and generation for each time interval t; At, and bt can
be expressed as:

Av
t = ξ(punc

t ,qunc
t ) (3a)

bv
t = v̂t; (3b)

3) the SCs are updated based on the trajectory of the control
action optimized during the previous time interval. Also,
the last power set-point is propagated to the next time
interval; At, and bt can be expressed as:

Av
t = ξ(p̂t−1 + punc

t−1, q̂t−1 + qunc
t−1) (4a)

bv
t = −Av

t

[
p̂t−1 + punc

t−1 − punc
t

q̂t−1 + qunc
t−1 − qunc

t

]
+ v̂t−1. (4b)

Since the SCs are constant, the first policy may fail in
respecting the voltage and current constraints in cases of
sudden power variations along the day. The second and third

1For the sake of brevity, LTPs for voltage model are only presented, the
same procedure can be followed for current, and loss models.

2The symbols with .̂ refer to values known from previous operating point.

policies use dynamic SCs with updated information, however
they require the availability of point predictions. To verify
which among the three policies perform better, we perform in
Sec. IV a detailed assessment of their performance.

III. CONTROL FRAMEWORK

We consider a distribution grid interfacing a cluster of
controllable units and uncontrollable prosumption that is dis-
patched at its GCP according to a pre-determined dispatch
plan. The dispatch plan, computed as in [2], is an optimal
power consumption trajectory over a certain horizon (e.g.,
5-minute resolution for the next 24 hours) computed before
operation (e.g., the day-ahead). It is the sum of two elements:
i) point predictions of the aggregated uncontrollable prosump-
tion, and, ii) offset profile of each flexible resource, responsible
to embed into the dispatch plan the energy demand required
to restore optimal levels of flexibility in the controllable
resources. The objective of the control is to coordinate the
action of the controllable resources to track the dispatch
plan on a 5-minute basis while respecting constraints of all
resources as well as those of the grid (this last modelled by
using the linear grid models discussed above). In the following,
we first formulate the control problem in a centralized manner,
and, then we show how it can be decomposed by leveraging
on the ADMM-technique [10].

A. Centralized model predictive control
We consider r = 1, . . . , R controllable resources connected

to the grid, which can participate in tracking the dispatch
plan. Let p̂disp

t be the dispatch plan set-point, the qgcp
t the

decision variable for the reactive power at the GCP at time t,
xr the decision vector (active and reactive power set-points)
for resource r, where xr = [xr,t+1, . . . , xr,T ] is referring to
the power set-points from next time interval till end of the
horizon T∆t. Here, xr,t = [pr,t, qr,t], where pr,t, and qr,t
are elements of nodal power generation vectors pt, and qt
respectively. The problem can be formulated as to minimize
the sum of operation costs of different resources, fr(xr,t), as:

minimize
x1,...,xR

R∑
r=1

T∑
t=t+1

fr(xr,t). (5a)

subject to:
R∑
r=1

pr,t + 1Tpunc
t + plt = p̂disp

t t = t+ 1, . . . , T (5b)

R∑
r=1

qr,t + 1Tqunc
t + qlt = qgcp

t t = t+ 1, . . . , T (5c)

|qgcp
t | ≤

|p̂disp
t |

tan(π/2− θm)
t = t+ 1, . . . , T (5d)

Φr(xr) ≤ 0 r = 1, . . . , R (5e)

vmin ≤ vt ≤ vmax t = t+ 1, . . . , T (5f)
0 ≤ it ≤ imax t = t+ 1, . . . , T (5g)
Grid constraints (1) t = t+ 1, . . . , T. (5h)



Here, eq. (5b) enforces the controllable units to track dispatch
plan throughout the control horizon. Eq. (5c), (5d) are the
constraints on the reactive power at the GCP: it is defined
by the intended power factor at the GCP, represented by
cos (θm). Eq. (5e) represents the constraints of individual
resources, where Φr represents the constraint set for each
resource r. Eq. (5f) and (5g) express the limits on the nodal
voltages [vmin, vmax] and branch currents [0, imax] respectively.
The formulation in (5) is convex since fr, and the resource
constraints (5e) are convex in xr, and other constraints are
linear. For brevity, the constraints (5c)-(5h) are denoted by
Ψ(x1, . . .xR) ≤ 0 in the following.

B. From centralized to distributed

Following the method described in [3], we introduce a
barrier function g with zero cost when the tracking error (5b)
is respected and infinity otherwise:

g(x1,t, . . . , xR,t) =

{
0 (5b) is respected
∞ otherwise.

(6)

Let zr be the auxiliary variables to copy the behaviour of
original variables xr, the so-called copied variables. We can
reformulate the optimization problem (5) as:

minimize
x1,...xR

z1,...zR

T∑
t=t+1

{
R∑
r=1

fr(xr,t) + g(z1,t, . . . , zR,t)

}
(7a)

subject to:

xr = zr r = 1, . . . , R (7b)
Ψ(z1, . . . ,zR) ≤ 0. (7c)

The problem in (7) is a standard sharing problem and separable
in xr. It can be solved in a distributed manner by each
resources; then, the solutions from each resource can be sent
to the aggregator that accounts for the global constraints and
objectives. The set of constraints (7b) can be moved into the
cost function by using a sequence of Lagrangian multipliers,
denoted by yr. The augmented Lagrangian can be written as:

Lρ =

T∑
t=t+1

{
R∑
r=1

fr(xr,t) + g(z1,t, . . . , zR,t)

}
+

+
ρ

2

R∑
r=1

(
||xr − zr||22

)
+

R∑
r=1

yr
T (xr − zr).

(8)

Let ur = yr/ρ be the scaled dual variable, ρ being the penalty
parameter, the above problem can be solved in following three
iterative steps using the scaled-ADMM sharing problem [10]:

1) Original variables update:

xk+1
r := arg min

xr

{ T∑
t=t+1

fr(xr,t) +
ρ

2

∣∣∣∣xr − zkr + ukr
∣∣∣∣2
2

}
(9a)

subject to:

Φr(xr,t) ≤ 0 t = t+ 1, . . . , T. (9b)

2) Copied variables update:

[zk+1
1 , . . . ,zk+1

R ] :=arg min
z1...zR

{
T∑

t=t+1

{
g(z1,t, . . . , zR,t)

}
+

ρ

2

R∑
r=1

∣∣∣∣xk+1
r − zr + ukr

∣∣∣∣2
2

}
(10a)

subject to:

Ψ(z1, . . . ,zR) ≤ 0. (10b)

3) Dual variable updates:

uk+1
r = ukr + xk+1

r − zk+1
r r = 1, . . . , R. (11)

Here, k refers to the iteration index of ADMM. The original
variables xr in (9) is computed in parallel for each resource,
r = 1, . . . , R. The updates of the copied variables zr for
r = 1, . . . , R in (10), require collecting the local solutions
from each resource, and it is solved by the aggregator. Also,
the the dual variables in (11), ur are updated by the aggregator.
Then, the updated solutions of the copied and dual updated are
disseminated to the resources. Eq. (9), (10), and (11) are solved
till convergence criteria is met, i.e., when the primal and dual
residual norms [10] reduce below a tolerance limit. For the
penalty parameter ρ, we follow a self-adaptive approach as
described in [10], [11].

C. Application to a distribution system with BESS and PV

We provide a practical example on how the ADMM for-
mulation is applied to flexible resources such as a BESS unit,
and a controllable PV plant.

1) BESS: the objective is to compute power set-points
while obeying physical limits on the power rating and reservoir
size. We account for BESS losses by integrating its equivalent
series resistance into the network admittance matrix using the
method described in [12]. Let the series xb,t = [pb,t, qb,t] be
the decision variables for active and reactive power, where
xb,t is an element of xb, the BESS decision problem is the
following feasibility problem:

minimize
xb

T∑
t=t+1

1 (12a)

subject to:

SOEt = SOEt−1 − pb,tTs t = t+ 1, . . . , T (12b)

0 ≤ ((pb,t)
2 + (qb,t)

2) ≤ (P bmax)2 t = t+ 1, . . . , T (12c)

aEbmax ≤ SOEt ≤ (1− a)Ebmax t = t+ 1, . . . , T (12d)

where, SOEt is the BESS state-of-energy, Ts is the sampling
time (300 sec in this case), P bmax, and Ebmax are the power and
reservoir capacities respectively, and 0 ≤ a < 0.5 is a fixed
parameter to specify a margin on SOE limits. The constraint
(12c) is to restrict the battery’s apparent power within its four-
quadrant converter capability.



2) PV: the objective is to minimize the total curtailments
and operate at near-unity power factor. Let xg,t = [pg,t, qg,t]
be the decision variables for active and reactive power, where
xg,t is an element of xg . The PV problem is:

minimize
xg

T∑
t=t+1

{
(pg,t − p̂g,t)2 + q2g,t

}
(13a)

subject to:

0 ≤ (pg,t)
2 + (qg,t)

2 ≤ (Sgmax)2 t = t+ 1, . . . , T (13b)
0 ≤ pg,t ≤ p̂g,t t = t+ 1, . . . , T (13c)

where, Sgmax is the rated power of the PV power converter, p̂g,t
is the maximum power point (MPP) forecast of PV generation.
Eq. (13b) and (13c) represent constraints on the active and
reactive power respectively.

IV. SIMULATION AND RESULTS

A. Simulation setup, and input data

1) Setup: The MPC scheme is simulated for the CIGRÉ
low voltage benchmark network [13], i.e., a three-phase
0.4 kV/400 kVA, an 18-node system shown in Fig. 1. The
nominal values of the uncontrollable nodal demands are shown
in Table I. We refer to the setup described in Section III with
physical characteristic of the resources as in Table I.

2) Demand and PV data: We simulate for a weekend (day
1, and day 2), and a working day (day 3). The demand and
PV data are collected from the experimental measurements
described in [14]. They refer to 4 buildings in the electrical
department at EPFL. Fig. 2a shows the prosumption at the
GCP for the 3 days. The dispatch plan is computed using the
procedure described in [2], and it is shown in Fig. 2b. The PV
forecast for three days is shown in Fig. 2c.

TABLE I
NOMINAL DEMANDS AND CONTROLLABLE UNITS

node Id Demand (kVA) pf Resource (rating)
1, 11, 16, 18 200, 15, 55, 47 0.95 –

15 52 0.95 PV (60 kWp)
17 35 0.95 BESS (500 kWh/300 kW)

B. Comparison of MPC with different linear grid models

1) Performance comparison: The metrics to measure the
control performance of above linear grid models applied to
the distributed MPC scheme are:

• Convergence speed of ADMM: it is measured in time
and number of iterations, both expressed in terms of their
mean, max and min values;

• Tracking error of the dispatch signal: it is the error
between the pre-defined dispatch plan and the net pro-
sumption after MPC. We show the RMSE (root mean
square error), mean and maximum tracking error;

• Error of the linear grid model: nodal voltages and branch
currents are compared against a posteriori AC power
flow. We report the RMSE, mean and maximum error
of voltage and currents.

Fig. 1. CIGRÉ low voltage benchmark network [13]

(a) Prosumption at the GCP for three days.

(b) Dispatch plan at the GCP for three days computed using [2].

(c) MPP PV forecast for three days.

Fig. 2. (a-c) refers to active power profiles of three days

Table II reports the results of the 3 daily dispatching, where
the MPC operates at 5-minute resolution over a shrinking
horizon of 24 hours. If ADMM does not converge by the 5-
minute deadline, a fallback control strategy should be devised.
This will be the focus of future work. Above MPC scheme is
simulated using the three grid models (denoted by M1, M2,
and M3) defined in Sec. II, and the fourth model denoted by
M3*, uses M3, but with averaged SCs (averaged w.r.t. next
time interval). The maximum ADMM iterations was limited
to 100 for above simulations.

Concerning the mean convergence speed, M3* is the fastest.
If we compare the maximum simulation time, M3* is 1.1-2.8
times faster than others. All the models perform equally on
the tracking error performance. Regarding the voltage error,
M2 exhibits the highest error in all the days with a maximum
error up to 4%. Also, the mean voltage error is highest with
M2. Concerning the current error, the M1, M2, and M3 have
the highest errors compared to the ground truth values; it has
a maximum current error up to 33%, which is putting the grid



TABLE II
PERFORMANCE COMPARISON OF DISTRIBUTED MPC CONTROL USING DIFFERENT LINEAR GRID MODELS

Time (sec) Iterations (#) Tracking error (kW) Voltage error (pu) Current error (pu)
Day Model Min Mean Max Min Mean Max RMSE Mean Max RMSE Mean Max RMSE Mean Max

1 M1 2 60 187 3 36.2 100 3.6 -0.33 21.4 6.1e-5 4.4e-9 7.4e-4 5.5e-3 -1.3e-3 6.0e-2
2 M1 3.9 118 265 7 79 100 1.68 -0.28 13.2 1.5e-4 -1.6e-7 1.8e-3 1.6e-2 -1e-2 0.24
3 M1 2.9 121 352 6 77 100 1.2 0.1 14.7 5e-5 -5e-8 5.9e-4 5.4e-3 -3.0e-2 0.1
1 M2 1.7 54 242 3 34 100 0.42 -0.21 2.4 6.3e-3 2.7e-4 4e-2 4e-2 -3e-2 0.18
2 M2 3.7 52 285 6 33 100 0.85 -6e-2 12.71 6e-3 -1.8e-4 5e-2 4e-2 -2.4e-2 0.18
3 M2 4.6 80 292 8 53 100 1.04 0.12 12.4 7.7e-3 -4.1e-3 5.4e-2 4.0e-2 -2.0e-2 0.23
1 M3 27 48 172 17 33 80 0.37 -6e-3 2 1.4e-5 -4.1e-6 3.2e-4 7.1e-4 -7.2e-3 3e-2
2 M3 1.7 123 289 2 81 100 1.2 -1.6e-3 13 9.8e-5 -3.3e-5 1.6e-3 8.2e-3 -1.3e-2 0.12
3 M3 4.3 128 273 8 85 100 2 0.14 14.4 1.9e-4 -4.2e-5 4.2e-3 1.4e-2 -2.6e-2 0.33
1 M3* 18.4 41.2 150 13 30.3 78 0.5 -0.3 2.4 4.8e-6 -3.3e-7 1.3e-4 5.2e-4 -8e-3 2.3e-2
2 M3* 1.8 35 133 2 17 49 0.72 -4.3e-2 2.37 3.1e-6 -1.8e-7 5.5e-5 3.7e-3 -1.4e-2 6.0e-2
3 M3* 2.1 25.2 126.2 2 13 34 0.43 -5.3e-2 1.77 1.7e-5 -6.0e-7 4.3e-4 3.1e-3 -3.0e-2 6.0e-2

TABLE III
SENSITIVITY OF THE BEST PERFORMING MODEL W.R.T. HORIZON LENGTH

Horizon Time (sec) Iterations (#) Tracking error (kW) Voltage error (pu) Current error (pu)
Day hours Min Mean Max Min Mean Max RMSE Mean Max RMSE Mean Max RMSE Mean Max

1 12 21.4 41 165 12 33 78 0.55 -0.23 4 2.7e-6 -2.1e-7 9.9e-5 4.2e-4 -8.1e-3 2.2e-2
1 6 9.2 29 127 5 26 71 1.28 -0.16 4 8.2e-6 -1.1e-6 1.9e-4 1.1e-3 -5.6e-3 4e-2
1 3 3.6 29 114 2 33 68 0.81 -0.11 6.4 1.0e-5 -1.3e-6 2.6e-4 1.1e-3 -4.4e-3 3.5e-2
2 12 1.6 31 224 2 17 51 0.77 -0.11 4.8 4e-6 -4.4e-7 6.2e-5 4e-3 -1.4e-2 6e-2
2 6 1.9 24.5 230 2 17.6 48 0.62 -1e-3 4 3.4e-6 -4.2e-7 5.1e-5 4e-3 -1.2e-2 5.7e-2
2 3 2 22 124 2 24 70 1.82 2.5e-2 6 6e-6 -9.8e-7 1.2e-4 3e-3 -1e-2 3e-2
3 12 2 23 176 3 13.3 46 0.98 -0.27 14 1.7e-5 -5.5e-7 4.3e-4 3.2e-3 -3e-2 6e-2
3 6 1.9 29 230 2 18 47 0.6 9.5e-2 7 1.64e-5 -5.5e-7 4.3e-4 3.1e-3 -3e-2 6e-2
3 3 2 23 175 3 13.3 40 0.98 -0.27 14.2 1.7e-5 -5.5e-7 4.3e-4 3.2e-3 -3e-2 6e-2

TABLE IV
SENSITIVITY OF THE BEST PERFORMING MODEL W.R.T. THE NUMBER OF CONTROLLABLE UNITS

BESS Time (sec) Iterations (#) Tracking error (kW) Voltage error (pu) Current error (pu)
# units kWh Min Mean Max Min Mean Max RMSE Mean Max RMSE Mean Max RMSE Mean Max

2 250 3.6 25 254 7 11 72 0.42 0.11 1.5 2.8e-5 -1.5e-6 7.4e-4 2.3e-3 -3.3e-2 4e-2
3 168 7.3 32 121 6 7.3 25 0.5 0.11 1.7 2.2e-6 -4.6e-8 6.4e-5 1e-3 -3e-2 3e-2
4 125 6 43 132 4 8.4 23 0.7 0.3 2.3 2.2e-6 -3.2e-8 6.6e-5 8.8e-4 -3.2e-2 3e-2
5 100 5.2 51 149 4 9 22 0.62 0.25 2.4 2.5e-6 -5e-8 7.9e-5 9e-4 -3e-2 3e-2

at the risk of physical damages. M3* is the best performing in
terms of the voltage, and current errors with maximum error
percentage of 0.043%, and 6% respectively, and we select it
for the next analysis. M3* accounts for probable variations in
the future SCs by averaging the SCs of the current and next
interval, and thus models the grid constraints more accurately.
This also avoids the re-iteration(s) for correcting the SCs.

2) Sensitivity analysis: We present the sensitivity analysis
w.r.t. 1) prediction horizon length T∆t, and 2) number of
controllable units in the MPC scheme.

• Sensitivity w.r.t. predictive horizon length: We simulated
for shrinking horizon lengths: 3, 6, and 12 hours. We
used the same controllable units with equal ratings as
before. Table III reports the comparison with horizon
length. Results show that the mean convergence time is
smaller for shorter horizon length due to fewer decision
variables. Also, the model is consistently accurate in
terms of modeling errors. The tracking error performance
with horizon length will be investigated in future work

with particular reference to the possibility of bounding
the error of the linearized load flow equalities.

• Sensitivity w.r.t. the number of controllable units: Table
IV reports the computational performance (for day 3)
when increasing the number of controllable units. We
simulate distributed BESSs with equal size among them
and total energy capacity as the case before, and placed at
nodes 11, 13, 14, 16, and 17. From the table, we observe
that even if the number of BESS units is increased up
to 5, the increase in convergence time and the number of
iterations is not significant, thus denoting good scalability
property. Also, it is noteworthy to mention that voltage
and current errors are consistently small.

C. Output profiles

Fig. 3 shows the simulation results of the MPC algorithm
with the grid model M3* for day 1. In particular, Fig. 3a
refers to the performance of the dispatch plan tracking: it can
be observed that the prosumption at the GCP highly differs
from the dispatch plan due to the incorrect forecast of the



(a) Dispatch plan (black), prosumption realization (shaded area), uncon-
trolled active power flow at the GCP (dashed red).

(b) Battery power injection (upper panel), and battery SOC evolution and
respective limits (bottom panel).

(c) Curtailed PV (shaded area), and theoretical MPP PV (in dashed red)

(d) CDF plot of the voltage error (e) CDF plot of the current error

Fig. 3. MPC operation using M3* on day 1.

prosumption. The MPC is able to control the BESS and PV to
achieve a successful dispatch. Fig. 3b shows the BESS SOC
evolution. Fig. 3c shows the active power set-points of the
PV resource: the curtailed PV is shown in shaded grey, and
maximum possible PV generation in dashed red. From Fig
3c, it can be seen that the control scheme starts curtailing PV
generation from the beginning of the day till hour 16. This
helps to i) keep BESS SOC within its operational limits, and
ii) accurately track the dispatch plan. Finally, figures 3d and
3e report the cumulative distribution functions of the nodal
voltage and branch current modelling errors w.r.t. the AC
power flow computations. They show that the voltage and
current errors, for the 99% of the estimations, are in the range
[-7.2e-6 pu, 3.8e-7 pu] and [-3.9e-4 pu, 1e-3 pu] respectively.

V. CONCLUSIONS

We compared the performance of a grid-aware MPC to
dispatch the operation of resources in a distribution system,
when the underlying grid model (based on sensitivity coeffi-
cients) was updated according to different policies: once per
day considering static injections, once per day considering

dynamic point predictions of the injections, and dynamically
updated during the day. The dispatch plan was computed with
the objective of restoring a suitable level of flexibility in
the available energy storage resources while accounting for
the stochasticity in the prosumption. We simulated for two
resources: PV and BESS. The BESS losses was modeled by
integrating it into the network admittance matrix. The perfor-
mance of the control strategy was evaluated w.r.t. convergence
speed, tracking error and modeling errors. The analysis showed
that the model, where the linear transformation parameters
are updated dynamically using the averaged sensitivity co-
efficients, outperforms others in terms of convergence speed
and accuracy in the modeling of grid constraints. We showed
that the the linear grid model is exact w.r.t. the load-flow
computations, when it is updated dynamically. Further, the
sensitivity analysis of the best performing model showed that
i) the algorithm can be made faster by reducing the horizon
length without compromising its performance, and ii) the
algorithm is scalable w.r.t. the number of controllable units.
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