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Abstract

In the framework of displacement-based equivalent single layer (ESL) plate theories for laminates, this paper presents a generic and automatic
method to extend a basis higher-order shear deformation theory (polynomial, trigonometric, hyperbolic. . . ) to a multilayer C0

z higher-order shear
deformation theory. The key idea is to enhance the description of the cross-sectional warping: the odd high-order C1

z function of the basis model is
replaced by one odd and one even high-order function and including the characteristic zig-zag behaviour by means of piecewise linear functions.
In order to account for arbitrary lamination schemes, four such piecewise continuous functions are considered. The coefficients of these four
warping functions are determined in such a manner that the interlaminar continuity as well as the homogeneity conditions at the plate’s top and
bottom surfaces are a priori exactly verified by the transverse shear stress field. These C0

z ESL models all have the same number of DOF as the
original basis HSDT. Numerical assessments are presented by referring to a strong-form Navier-type solution for laminates with arbitrary stacking
sequences as well for a sandwich plate. In all practically relevant configurations for which laminated plate models are usually applied, the results
obtained in terms of deflection, fundamental frequency and local stress response show that the proposed zig-zag models give better results than
the basis models they are issued from.

Keywords: Plate theory, Zig-Zag theory, Warping function, Laminates, Sandwich

1. Introduction

Among the numerous theories that have been developed for mul-
tilayered plates, those belonging to the Equivalent-Single Layer (ESL)
family are of practical interest due to their relatively small number of
unknowns, that is independent of the number of layers. Within this
ESL class, the classical lamination theory (CLT) which has been pro-
posed first, does not take into account the transverse shear behaviour
and is, therefore, accurate only for thin plates, for which the transverse
shear deformation can be neglected. First order shear-deformation the-
ories (FSDT) have then been proposed to overcome this problem upon
retaining a transverse shear deformation that is constant throughout the
plate’s thickness. Its accuracy with regard to the plate’s gross response
(transverse deflection, low vibration frequencies) results nevertheless
dependent on shear correction factors. Higher-order shear deformation
theories (HSDT) have been subsequently proposed in order to avoid
the need of these problem-dependent shear correction factors. This
is accomplished upon describing the through-thickness behaviour of
the in-plane displacement field by means of functions of order greater
than one, which thus introduces an enhanced description of the trans-
verse shear deformation. The most well-known HSDT is the Vlasov–
Levinson–Reddy’s third order theory (ToSDT). Polynomial functions
are not the unique way to enrich the kinematic field, a wide variety of
functions have been used, in particular trigonometric, hyperbolic, and
exponential functions, as summarized in recent review papers [1, 2].

In all the theories cited above, the transverse shear deformation
is included into the kinematic field by means of functions of class C1

along the thickness direction z. This leads to continuous transverse
shear strains and hence to a discontinuous transverse shear stress field,
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which violates equilibrium conditions within multilayered structures.
Authors have thus proposed to use piecewise continuous, differentiable
functions of z, often referred to as zig-zag functions. These functions
are commonly constructed in such a manner that appropriate jumps
of their derivatives at the interfaces restore the transverse stress con-
tinuity. Such Zig-Zag (ZZ) theories have appeared around the half
of the twentieth century with Ambartsumyan [3, 4], and Osternik and
Barg [5], and have been continuously receiving attention until now.
An earlier paper that belongs to this category is due to Lekhnitskii [6],
but it was limited to the study of beams. The approach by Lekhnitskii
has been extended to plates 50 years later by Ren [7]. While the ap-
proaches by Ambartsumyan and Lekhnitskii rely on the exact verifica-
tion of the constitutive equation connecting the transverse shear stress
and the kinematic fields, Murakami [8] formulated a ZZ theory by pos-
tulating these two fields in an independent manner thanks to Reissner’s
mixed variational theorem (RMVT) dedicated to multilayered plates
[9]. For more recent developments of RMVT-based ZZ theories, the
interested reader may refer to papers by Carrera [10], Demasi [11] and
Tessler [12, 13]. Murakami’s zig-zag function (MZZF) has been also
extensively applied to classical displacement-based variable kinemat-
ics approaches, see, e.g., [14, 15]. Within a comprehensive discussion
about ZZ theories, Groh and Weaver have recently proposed a mixed
ZZ theory based on Hellinger-Reissner’s principle [16].

Among these several approaches, more details of which can be
found in the review papers [17–19], only a subset of these ZZ-theories
are able to satisfy the appropriate interlaminar continuity (IC) of both,
the displacement and the transverse shear stress fields. These two re-
quirements (ZZ and IC) have been summarized by the acronym C0

z –
requirements [20]. In the following, we shall limit our attention to
those ZZ theories that satisfy exactly the C0

z−requirements. A more
detailed examination is next proposed of some pioneering works, with
the aim of establishing the background and highlighting the differences
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with the family of models proposed in this paper.

• Ambartsumyan’s approach is based on the early paper [3], in
which it is assumed that the transverse shear stress vary along
z according to a quadratic parabola with nil values at the outer
surfaces. On page 20 of the later book [4], this assumption is
formally expressed by the expressions τxz = f1(z)ϕ(x, y) and
τyz = f2(z)ψ(x, y). It leads to 4 kinematic functions, but only
two of them are independent, based on the primitives of f1(z)
and f2(z). Conceived for orthotropic shells, the theory pre-
sented in the 1958 paper is not yet a ZZ theory, but in the 1970
book [4], page 75, an extension to symmetric multilayered or-
thotropic plates is given, which exhibits 4 zig-zag kinematic
functions issued from two modified functions f1(z) and f2(z).
This extension is perhaps due to Osternik and Barg [5], which
is cited in the 1970 Ambartsumyan’s book (see also Carrera’s
review paper [17]).

• In 1969, Whitney extends Ambrartsumyan’s theory to anisotropic
plates, more specifically to general symmetric laminates and
orthotropic non-symmetric laminates [21]. Following Ambart-
sumyan’s approach, Whitney starts from an assumed transverse
shear stress field and ends up with 4 kinematic functions that
are expressed as the superimposition of a polynomial third or-
der ToSDT function and a zig-zag linear functions, see equation
6 of [21].

• Sun and Whitney propose in 1973 a layerwise model, which is
the starting point for deriving an ESL model upon eliminating
the parameters of the N−1 upper layers [22]. The resulting ESL
model is equivalent to a first order zig-zag model with 4 kine-
matic functions. The link between such models has been dis-
cussed in detail in [23]. It has constant transverse shear stresses,
which is the drawback of first-order models.

• The 1986 paper by Ren [7] proposes 4 kinematic functions from
a priori given transverse shear stress functions and applies the
resulting zig-zag model to cross-ply laminates. Four displace-
ment unknowns are introduced to take into account the trans-
verse shear behaviour, which yields a 7-parameter model which
is difficult to compare with our 5-parameter models.

• Cho and Parmerter formulate a ZZ theory for symmetric [24]
and general [25] orthotropic composite plates. Starting point
are 2 kinematic functions which are the superimposition of a cu-
bic polynomial and a linear zig-zag function expressed in terms
of the Heaviside function. The coefficients are determined by
enforcing the transverse stress continuity, which leads to the
coupling of the x− and y−directions in the kinematic field. It
therefore appears that the theory is in fact based on 4 kinematic
functions (see equation 4 of [25]). In his historical review,
Carrera demonstrated the equivalence of Cho and Parmerter’s
model with Ambartsumyan’s model.

• It is finally worth mentioning the ZZ theory fulfilling the C0
z –

requirements that is based on trigonometric functions and de-
veloped by Ossadzow and coworkers [26, 27]. The construc-
tion of the kinematic zig-zag functions follows a similar path
as proposed by Cho and Parmerter, but the trigonometric cos
and sin functions replace the quadratic and cubic terms of the
polynomial expansion, respectively.

A conforming finite element based on a trigonometric ZZ theory
enhanced through a transverse normal strain has been developed for
laminated plates [28]. References [29, 30] extend the procedure of Cho
and Parmerter to a wider family including polynomial, trigonometric,

exponential and hyperbolic functions. However, the authors only con-
sider two kinematic functions, which reduces the applicability of their
models to cross-ply laminates.

In [31, 32], corresponding polynomial and trigonometric C0
z zig-

zag models have been constructed from basis polynomial and trigono-
metric HSDT by using four functions, which shall be hereafter referred
to as warping functions. While in these works the warping functions
were obtained from transverse stress fields obtained from 3D solutions
or from equilibrium equations, the present paper presents a general
procedure for extending a basis higher-order shear deformation the-
ory (bHSDT) to a multilayer higher-order shear deformation theory
(mHSDT) that meets the C0

z−requirements. This extension consists in
the construction of four C0

z warping functions starting from the native
functions that characterize the basis theory: it can be applied to any
couple of odd and even functions and has no limitation concerning the
lamination scheme.

The paper is organized as follows. Section 2 introduces the nota-
tion and points out the properties that the four warping functions are
required to fulfil. The extension of a bHSDT up to an mHSDT ful-
filling all C0

z –requirements is described in Section 3. Three different
basis models are exemplarily considered, which pertain respectively to
the polynomial, trigonometric and hyperbolic type. It is also shown
that the warping functions are components of a second-order tensor,
hence being covariant with rotations about the z−axis. Section 4 re-
ports the numerical evaluations: the C0

z warping functions effectively
increase the accuracy of the basis (non zig-zag) model and this en-
hancement is quite insensitive with respect to the type of functions
used for the model. A discussion is proposed in Section 5 in order to
substantiate the limitations of conventional ZZ models with respect to
particularly “constrained” configurations with very low number of lay-
ers and length-to-thickness ratios: in these cases, accuracy may only
be assured by resorting to warping functions that contain more layer-
specific information, just as LayerWise models do. The main conclu-
sions are finally summarised in Section 6.

2. Definitions and general properties

This paper deals with a generic method to extend a basis higher-
order shear deformation theory (bHSDT) to a multilayer higher-order
shear deformation theory (mHSDT). This Section introduces the nota-
tion employed for identifying the various plate theories along with the
fundamental properties that the underlying approximating functions
are required to satisfy.

2.1. The basis theories
We consider a basis high-order shear deformation theory (bHSDT)

for which the kinematic field can be written in the following general
form: uα(z) = u0

α − zw0
,α + φ(z)γ0−

α3

u3(z) = w0

(1a)

(1b)

where u0
α are the membrane displacements at z = 0, w0 is the deflection

at z = 0, γ0−
α3 are the transverse engineering strains at z = 0−, and φ(z)

is a C1 odd function. The choice of the 0− coordinate is a convention
useful to avoid undetermined shear strains if an interface lies at z = 0.
The z = 0 plane is assumed to be the middle plane of the plate, the
lower and upper faces are respectively located at z = −h/2 and z = h/2.

Written in the form reported in equation (1), the function φ(z) must
verify φ(0) = 0 and φ′(0−) = φ′(0) = 1 to give sense to the notations,
and φ′(±h/2) = 0 to enforce null transverse shear stresses at the top
and bottom of the plate. Due to the C1 property of φ(z), such theories
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do not have particular abilities to deal with multilayered plates. Indeed,
the continuity of φ′(z) induces discontinuities of the transverse shear
stresses σα3 at the interfaces. Table 1 summarizes the functions φ(z),
along with the reference author and the type of the approximation, that
will be extended to a ZZ model in Section 3.

2.2. The multilayer HSDT
A multilayer theory is a plate theory which is dedicated to compos-

ite plates upon fulfilling the C0
z –requirements. The generic expression

for the kinematics of a multilayer HSDT (mHSDT) is of the form:uα(z) = u0
α − zw0

,α + ϕαβ(z)γ0−
β3

u3(z) = w0

(2a)

(2b)

where ϕαβ(z) are four piecewise C1 functions, sometimes called warp-
ing functions, that are requested to fulfil specific properties, as it will be
discussed below. Among these properties, specific jump values need
to be prescribed to their derivatives for enforcing continuity of trans-
verse stresses at the interfaces. In order to construct an mHSDT that is
applicable to arbitrary laminates, it is important to consider four func-
tions ϕαβ(z), and hence to retain the coupling between γ0−

13 (resp. γ0−
23 )

and u2 (resp. u1). In fact, models written with only two functions, i.e.,
with ϕ12(z) = ϕ21(z) = 0, are only applicable to cross-ply laminates.

Model Type φ(z)

Reddy[33] Polynomial z − 4z3

3h2

Touratier[34] Trigonometric
h
π

sin
(
π

z
h

)
Soldatos[35] Hyperbolic

cosh
(

k
2

)
z − h

k sinh
(
k z

h

)
cosh

(
k
2

)
− 1

Table 1: Original bHSDT φ(z) functions. The parameter k of the hyperbolic
function allows to generalise the original model with k = 1 [35].

2.3. Required properties for the functions ϕαβ(z)
Formula (2a) shows that the piecewise functions ϕαβ(z) must be

continuous at each interface to respect the continuity of the in-plane
displacements. Since u0

α denotes the membrane displacements at z = 0,
the functions ϕαβ must fulfil the following homogeneity condition

ϕαβ(0) = 0 (3)

Figure 1 illustrates the continuity and homogeneity conditions for a
practical example (a [−10/0/40] laminate, trigonometric mHSDT).

The compatible strain field defined by generic mHSDT kinematic
field of Eq. (2) reads

εαβ(z) = ε0
αβ − z

2 w0
,αβ + 1

2 (ϕαγ(z)γ0−
γ3,β + ϕβγ(z)γ0−

γ3,α)

εα3(z) = 1
2ϕ
′
αβ(z)γ0−

β3

ε33(z) = 0

(4a)

(4b)

(4c)

The transverse shear strains εα3(z) must be defined in each layer, but
they also should be discontinuous at the interfaces for allowing the
transverse shear stresses σα3(z) to be continuous in order to fulfil the
equilibrium condition. Indicating by ζi the z-coordinate of the ith
interface, with i = 1, 2 . . .N − 1, ζ0 = −h/2 and ζN = h/2, the
functions ϕαβ(z) are thus required to be piecewise C1 over the inter-
vals ]ζi−1, ζi[. Furthermore, since γ0−

β3 represents the engineering shear

strain at z = 0−, the derivatives of the functions ϕαβ(z) are required to
fulfil the following homogeneity conditions:

ϕ′αβ(0
−) = δαβ (5)

Figure 2 illustrates these conditions with the same practical example
as before.

Due to the continuity of the ϕαβ(z), in-plane strains εαβ(z) are con-
tinuous. Following the classical plate approach, the normal stress
σ33(z) is set to 0, which leads to the use of reduced (in-plane) stiff-
nesses Qαβγδ(z) in place of the stiffnesses Cαβγδ(z). It is further recalled
that there is no physical reason for the in-plane stresses σαβ(z) to be
continuous at interfaces between adjacent layers with dissimilar stiff-
ness coefficients.

−0.4 −0.2 0 0.2 0.4
−h/2

−h/6

0

h/6

h/2

ϕ11(z)
−1 0 1

·10−2ϕ12(z)

[−10/0/40]

Homogeneity

Continuity

Continuity

Figure 1: Illustration of the continuity and homogeneity conditions prescribed
on the ϕαβ(z) functions (a [−10/0/40] laminate, trigonometric mHSDT). Only
two of the four functions have been plotted.

0 0.5 1
−h/2

−h/6

0

h/6

h/2

ϕ′11(z)
−0.1 0 0.1

ϕ′12(z)

[−10/0/40]

Homogeneity

Figure 2: Illustration of the homogeneity conditions prescribed on the ϕ′αβ(z)
functions (a [−10/0/40] laminate, trigonometric mHSDT). Only two of the four
functions have been plotted.

The constitutive equation defines the transverse shear stresses in
terms of strains as follows:

σα3(z) = Cα3β3(z)ϕ′βγ(z)γ0−
γ3 (6)

For equilibrium reasons, these transverse stresses need to be continu-
ous at the interfaces, and also to be null at z = ±h/2 if the applied load
remains normal to the plate. These conditions are expressed as

Cα3γ3(ζ−i )ϕ′γβ(ζ
−
i ) = Cα3γ3(ζ+

i )ϕ′γβ(ζ
+
i ) (i ∈ {1,N − 1})

Cα3γ3(−h/2)ϕ′γβ(−h/2) = 0

Cα3γ3(+h/2)ϕ′γβ(+h/2) = 0

(7a)

(7b)

(7c)
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0 0.5 1
−h/2

−h/6

0

h/6

h/2

ϕ′11(z)
−0.1 0 0.1

ϕ′12(z)

[−10/0/40]

Prescribed
jumpsNull values

Null values

Figure 3: Illustration of the homogeneous bottom and top conditions, and the
jump values prescribed on the ϕ′αβ(z) functions (a [−10/0/40] laminate, trigono-
metric mHSDT). Only two of the four functions have been plotted.

We can pre-multiply equations (7b) and (7c) with the compliance ten-
sors S δ3α3(−h/2) and S δ3α3(+h/2), respectively, to obtain:ϕ

′
δβ(−h/2) = 0

ϕ′δβ(+h/2) = 0

(8a)

(8b)

Figure 3 illustrates the top and bottom nullity conditions and the jump
conditions prescribed on the ϕ′αβ(z) functions. The following relations
summarize all the properties that the functions ϕαβ(z) are required to
verify:

ϕαβ(0) = 0

ϕαβ(ζ−i ) = ϕαβ(ζ+
i ), (i ∈ {1,N − 1})

ϕ′αβ(0
−) = δαβ

Cα3γ3(ζ−i )ϕ′γβ(ζ
−
i ) = Cα3γ3(ζ+

i )ϕ′γβ(ζ
+
i ) (i ∈ {1,N − 1})

ϕ′αβ(−h/2) = 0

ϕ′αβ(+h/2) = 0

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)

According to the free indexes in the above formulas, we can see that
there are 4 + 4(N − 1) + 4 + 4(N − 1) + 4 + 4 = 8(N + 1) conditions for
the four functions ϕαβ.

3. The extension process

This Section describes the procedure for extending a generic bHSDT
to a corresponding mHSDT. The construction of the C0

z warping func-
tions is described and their tensorial character highlighted.

3.1. Construction of the four ϕαβ(z) functions
Given a composite plate consisting of N layers, the goal is to find

four ϕαβ(z) functions that obey to all the properties summarized in
Eq. (9). Observing that the φ(z) function of the bHSDT is an odd func-
tion, one possibility would be to use it directly and to merely find an
even γ(z) function with suitable properties, in order to build the four
warping functions from the basis spanned by the following 2N + 2
elements

( φ(z), γ(z), Zi(z), 1i(z) ) (10)

Zi(z) and 1i(z) represent the restrictions on the interval ]ζi−1, ζi[ of the
linear and the constant (unitary) functions, respectively. Instead of
φ(z) and γ(z), the method proposed here uses more general and less
constrained f (z) and g(z) functions, and hence is easier to use. The link

that remains between the bHSDT and the corresponding mHSDT is the
nature of the functions that will be used to form the basis (polynomial,
trigonometric, hyperbolic. . . ). In any case, these high-order functions
are responsible for tailoring the transverse shear deformation, while
the constant and linear elements introduce the characteristic zig-zag
distribution of the in-plane displacements.

We need two functions of class C1: an odd function f (z), and an
even function g(z) verifying g′(±h/2) , 0, viz.:

f (z) = − f (−z)

g(z) = g(−z)

g′(±h/2) , 0

(11a)

(11b)

(11c)

Now consider the four piecewise functions:

ϕαβ(z) = aαβ f (z) + bαβg(z) + ci
αβZi(z) + di

αβ1i(z) (12)

where summation is implied over the dummy index i = 1, 2, . . .N.
These four functions are defined with 4(2 + 2N) = 8(N + 1) constants.
The expression for the derivatives of the four functions is

ϕ′αβ(z) = aαβ f ′(z) + bαβg′(z) + ci
αβ1i(z) (13)

Just as the transverse shear strains, these four derivatives are not de-
fined at the N − 1 interfaces. Although Dirac’s delta function might be
used to formally write these derivatives, this is not useful because the
relation in Eq. (9d) only involves their values at the layers’ limits. Sub-
stituting Eqs. (12) and (13) into Eqs. (9) yields the following system
of 8(N + 1) equations:

di0
αβ = 0

ci
αβζi + di

αβ = ci+1
αβ ζi + di+1

αβ (i ∈ {1,N − 1})
aαβ f ′(0−) + bαβg′(0−) + ci0

αβ = δαβ

Ci
α3γ3

(
aγβ f ′(ζi) + bγβg′(ζi) + ci

γβ

)
= Ci+1

α3γ3

(
aγβ f ′(ζi) + bγβg′(ζi) + ci+1

γβ

)
(i ∈ {1,N − 1})

aαβ f ′(−h/2) + bαβg′(−h/2) + c1
αβ = 0

aαβ f ′(+h/2) + bαβg′(+h/2) + cN
αβ = 0

(14a)

(14b)

(14c)

(14d)

(14e)

(14f)

The index i0 corresponds to the number of the layer which contains the
z = 0− coordinate. Since it seems difficult to formulate a recursive pro-
cess to determine all the coefficients, the linear system (14) is solved
for the 8(N + 1) unknown coefficients aαβ, bαβ, ci

αβ, d
i
αβ (i = 1, 2 . . .N).

Table 2 reports some functions f (z) and g(z) that can be chosen
to build an mHSDT model. While these functions allow to accommo-
date the transverse shear behaviour inside each layer, the linear and
constant contributions are responsible for the ZZ behaviour, that is the
respect of displacement and transverse stress continuities at the lay-
ers’ interfaces. It should be noted that a “mixed” model can be con-
structed by using functions of different nature, for example the hyper-
bolic odd function sinh(kz/h) can be considered in conjunction with
the even trigonometric function cos(πz/h). Analytical expressions for
the warping functions for a single-layer plate are reported explicitly in
Appendix.

3.2. Computational aspects
The construction of the linear system (14) can be automated be-

cause its structure does not depend on the choice of the functions f (z)
and g(z). Indeed, only few values of these functions and of their deriva-
tives, taken at specific z coordinates, have to be sent to the routine. The
solution of the (8N+8)×(8N+8) linear algebraic system can be carried
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Nature f (z) g(z) Name
Polynomial z3 z2 ToZZ

Trigonometric sin
(
π

z
h

)
cos

(
π

z
h

)
SiZZ

Hyperbolic sinh
(
k

z
h

)
cosh

(
k

z
h

)
HyZZ

Table 2: Nature of the original bHSDT and corresponding couple of functions
f (z) and g(z) used to build the mHSDT.

out with a classical algorithm and provides the coefficients defining the
four warping functions ϕαβ(z). It may be noted that either numerical or
semi-analytical versions of the warping functions can be used. Numer-
ical versions, which consist on a sufficiently dense table of values, are
more suitable for computing the numerous generalized stiffness and
mass terms of the plate model within a numerical quadrature scheme.

3.3. Stress functions
Once the ϕαβ(z) functions are built, one can compute the corre-

sponding stress functions ψαβ(z). They do not bring new informa-
tion to the models, as these stress functions are a direct consequence
of the warping functions, but they are useful to illustrate and under-
stand the static response of the mHSDT. Let us replace in equation (6),
the middle-plane transverse strains by the corresponding middle-plane
stresses:

σα3(z) = Cα3β3(z)ϕ′βγ(z) γ0−
γ3 = 4 Cα3β3(z)ϕ′βγ(z) S γ3δ3(0−)σ0

δ3 (15)

Note that the 0− exponent of γ0−
γ3 is not required to appear in the in-

terlaminar continuous stress σ0
δ3, but it is found in the S γ3δ3(0−) term.

Eq. (15) permits to define the 4 stress functions of the model

ψαβ(z) = 4 Cα3γ3(z)ϕ′γδ(z) S δ3β3(0−) (16)

through which the transverse shear stresses are expressed as

σα3(z) = ψαβ(z)σ0
β3 (17)

3.4. Tensorial character of the ϕαβ(z)
The tensorial character of the ϕαβ(z) functions follows directly

from their definition, see Eq. (2). This tensorial character concerns
only the 2D (x, y) space. Also, the equations of the system (9) are
tensor equations, i.e., their form is invariant with respect to rotations
about the z axis. It implies that all the coefficients aαβ, bαβ, ci

αβ, di
αβ

are second order tensors and must, therefore, obey to the formulas of
coordinate transformation for second order tensors.

The tensorial character of the warping functions implies that the
four functions ϕαβ(z) of a laminate whose lamination sequence is s =

[θ1/θ2/ . . . /θN] must be linked to the four functions ϕ̄αβ(z) of the lami-
nate whose stacking sequence is s̄ = s+θ = [(θ1 +θ)/(θ2 +θ)/ . . . /(θN +

θ)].
In order to identify this relation, let us consider the s̄–laminate,

in a Cartesian frame (x, y, z), and suppose it undergoes a pure shear
deformation of its middle plane γ̄γγ. In this case, the kinematic field
of Eq. (2a) can be written ūα(z) = ϕ̄αβ(z)γ̄0

β3 or, in matrix notation,
ū = ϕ̄ϕϕγ̄γγ. Consider the matrix of change of coordinates Pθ from the
Cartesian frame (x, y, z) to a Cartesian frame (x′, y′, z), rotated from the
previous one by an angle θ about the z-axis. In the rotated frame, this
shear strain is γγγ = Pθγ̄γγ and it “acts” on the s–laminate producing the
in-plane kinematic field u. In the original frame, the s̄–laminate is then
subjected to the kinematic field ū = P−1

θ u. Therefore, the following

relation is established: ϕ̄ϕϕ = P−1
θ ϕϕϕPθ. Since the transformation matrix

is

Pθ =

[
c s
−s c

]
with c = cos(θ) and s = sin(θ) (18)

one can compute the warping functions for the s̄–laminate directly
from those for the s–laminate according to

ϕ̄11 = ϕ11c2 + ϕ22 s2 + (ϕ12 + ϕ21)sc
ϕ̄12 = −(ϕ11 − ϕ22)sc + ϕ12c2 − ϕ21 s2

ϕ̄21 = −(ϕ11 − ϕ22)sc − ϕ12 s2 + ϕ21c2

ϕ̄22 = ϕ11 s2 + ϕ22c2 − (ϕ12 + ϕ21)sc

(19)

Two examples of such transformations are given next for illustra-
tion purposes. Figure 4 compares the native warping functions of a
[45/−45] laminate against those obtained from a [0/90] laminate after
rotating them by an angle of 45◦. The same comparison is proposed in
figure 5 for the two laminates [−25/−15/25] and [−10/0/40] and with
a rotation of −15◦.

−0.5 0 0.5
−h/2

0

h/2

ϕ11(z)
−0.3 −0.2 −0.1 0

ϕ12(z)

−0.3 −0.2 −0.1 0
−h/2

0

h/2

ϕ21(z)
−0.4 −0.2 0 0.2 0.4

ϕ22(z)

Native [0/90] Rotated [0/90] Native [45/−45]

Figure 4: Tensorial behaviour of the warping functions: comparison between
the native warping functions of a [45/−45] laminate and those obtained by the
coordinate transformation from a [0/90] laminate.

4. Numerical results

A numerical evaluation is proposed in order to assess the accuracy
of the basis models and their corresponding enhancement through ZZ
warping functions with respect to the plate’s length-to-thickness ratio,
number of layers, and stacking sequence. All bHSDT listed in Table 1
are compared with their corresponding enhancements defined by the
functions listed in Table 2. The factor k in the hyperbolic functions has
been set equal to 2 in the subsequent numerical investigations. Note
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−0.4 −0.2 0 0.2 0.4
−h/2

−h/6

h/6

h/2

ϕ11(z)
−4 −2 0

·10−2ϕ12(z)

−5 0

·10−2

−h/2

−h/6

h/6

h/2

ϕ21(z)
−0.2 0 0.2

ϕ22(z)

Native [−10/0/40] Rotated [−10/0/40]
Native [−25/−15/25]

Figure 5: Tensorial behaviour of the warping functions: comparison between
the native polynomial [−25/−15/25] functions and those obtained by the coor-
dinate transformation of the [−10/0/40].

finally that all considered models have the same number of DOF as the
bHSDT, i.e., 5 DOF.

In order to encompass a quite broad range of stiffness mismatch
between adjacent layers, the study will investigate laminated as well
as sandwich plates with composite skins and a honeycomb core. The
material properties used for the composite and the honeycomb layers
are reported in Table 3.

The numerical assessment of the different models is carried out by
referring to an exact solution of the 2D differential equations govern-
ing the plate bending problem. Square, simply-supported plates are
considered, for which we compute the fundamental eigenfrequency
as well as the static response under bi-sinusoidal transverse pressure
loads of amplitude q/2 acting at the top and the bottom surfaces of
the plate. A Navier-type strong-form solution is found for all consid-
ered laminates, where the simply-support conditions of arbitrary, non
cross-ply laminates are opportunely relaxed as discussed in [36]. The
warping functions and stress functions of the bHSDT and mHSDT are
compared against those that have been extracted from the 3D solutions
following the procedure detailed out in [31].

The points at which quantities are output are defined as follows:

A = (a/2, 0, 0); A′ = (a/2, 0, h/4)

B = (0, a/2, 0); B′ = (0, a/2, h/4)

C = (a/2, a/2, 0); C+ = (a/2, a/2, h/2)

(20)

Deflections w, first natural frequencies ω and stresses are given ac-

cording to following adimensionalisation

w = 100
Eref

2 h3

q a4 w , ω =
a2

h

√
ρref

Eref
2

ω

σαβ = 10
h2

q a2 σαβ , σα3 = 10
h

q a
σα3

(21)

where for sandwich plates Eref
2 and ρref are the values of the core ma-

terial. It is important to specify that the transverse shear stress values
reported in the tables and their distributions across the plate thickness
plotted in the figures are obtained from the equilibrium equations upon
integrating the in-plane stresses.

E1 E2 E3 G23 G13 G12 να3 ν12 ρ

Composite (c) 25Ec
2 Ec

2 Ec
2 0.2Ec

2 0.5Ec
2 0.5Ec

2 0.25 0.25 ρc

Honeycomb (h) Eh
2 Ec

2/25 12.5Eh
2 1.5Eh

2 1.5Eh
2 0.4Eh

2 0.02 0.25 ρc/15

Table 3: Material properties (α = 1, 2)

4.1. The [0/90]n laminates
The models are tested for the antisymmetric cross-ply laminates

[0/90]n, where different numbers of layers are considered with n =

1, 2, 3, 4, 5, 10. In table 4, non-dimensional deflection, transverse shear
stresses and fundamental frequency are given for the Sin and the SiZZ
models, and compared to the exact solution. The length-to-thickness
ratio is set to a/h = 10. Very similar results are obtained with poly-
nomial and hyperbolic bHSDT/mHSDT models and are omitted from
Table 4 for the sake of clarity. The results clearly shows the accu-
racy improvement introduced by the C0

z warping functions, in particu-
lar for the deflection and the fundamental frequency: the enhancement
on these two quantities appears to decrease as the number of layers
increases, although for n = 10 it is still larger than 5% and 3%, respec-
tively.

Only two warping functions are required for a cross-ply lami-
nate because the cross-coupling functions are identically nil, ϕ12(z) =

ϕ21(z) = 0. The functions ϕ11(z) and ϕ22(z) of the polynomial bHSDT
(ToSDT) and of the polynomial, trigonometric and hyperbolic mHSDT
are compared in Figures 6 and 9 for the n = 2 and n = 4 configura-
tions, respectively. The differences between the 3 mHSDT are seen
to be negligible, and the curves for the trigonometric and hyperbolic
bHSDT have been omitted for the sake of clarity because they are prac-
tically coincident with those of the ToSDT.

As far as the impact of warping functions on the local stress re-
sponse is concerned, the values in Table 4 for the transverse shear
stresses at the selected points do not allow to well appreciate it, but
their through-the-thickness distributions obtained with the extended
mHSDT model are closer to the exact solution in comparison to the
bHSDT models. This can be seen by comparing the two stress func-
tions ψ11(z) and ψ22(z) depicted in Figures 7 and 10 for the cases n = 2
and n = 4, respectively. On the other hand, Figures 8 and 11 report
the transverse shear stress distributions computed for the two configu-
rations n = 2 and n = 4, respectively, upon integrating the equilibrium
equations starting from the in-plane stresses. This post-processing pro-
cedure is seen to annihilate all differences between the bHSDT and the
mHSDT, thus providing distributions that very accurately recover the
exact 3D solution.

All considered models for the cross-ply laminate [0/90]2 are as-
sessed in Table 5 with respect to the length-to-thickness ratio a/h. It is
obvious that the improvement of the mHSDT over the bHSDT is more
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important for thick plates than for thin plates, it decreases from more
than 10% for a/h = 4 to about 0.1% for a/h = 100. This is not surpris-
ing as it is well known that the effect of the transverse shear increases
as a/h diminishes.

It is worthwhile to make some comments about an expected sym-
metry for the warping functions of the considered antisymmetric cross-
ply laminates. Indeed, one should expect the ϕ11(z) functions to be
equal to the corresponding ϕ22(−z) functions, but figures 6 and 9 show
that this is not the case. This is due to the fact that the z = 0− coordinate
has been chosen for prescribing the ϕ′11(0−) = ϕ′22(0−) = 1 conditions.
This choice “hides” the expected property, which can nevertheless be
easily restored: dividing ϕ22(−z) by ϕ′22(0+) yields in fact exactly the
function ϕ11(z). Note that, since there are no such constraints on the
stress functions, the symmetry ψ11(z) = ψ22(−z) is immediately appar-
ent in Figures 7 and 10.

−0.4 −0.2 0 0.2 0.4
−h/2

−h/4

0

h/4

h/2

ϕ11(z)
−0.5 0 0.5

ϕ22(z)

ToSDT ToZZ SiZZ HyZZ Exact

Figure 6: Warping functions of the [0/90]2 square plate with a/h = 10 for each
considered model.

0 0.5 1
−h/2

−h/4

0

h/4

h/2

ψ11(z)
0 0.5 1

ψ22(z)

ToSDT ToZZ SiZZ HyZZ Exact

Figure 7: Transverse shear stress functions of the [0/90]2 square plate with
a/h = 10 for each considered model.

4.2. The [30/−30]n laminates
The [30/−30]n laminate family is next considered, for which all

four warping functions are required due to the off-axis orientation an-
gles. For the moderately thick plate characterized by a/h = 10 with
n = 4, figure 12 compares the warping functions ϕαβ(z) of the ToSDT

0 1 2 3
−h/2

−h/4

0

h/4

h/2

σ13(B)
0 1 2 3

σ23(A)

ToSDT ToZZ SiZZ HyZZ Exact

Figure 8: Post-processed transverse shear stresses of the [0/90]2 square plate
with a/h = 10 for each considered model.

−0.4 −0.2 0 0.2 0.4
−h/2

−h/4

0

h/4

h/2

ϕ11(z)
−0.5 0 0.5

ϕ22(z)

ToSDT ToZZ SiZZ HyZZ Exact

Figure 9: Warping functions of the [0/90]4 square plate with a/h = 10 for each
considered model.

and of the 3 mHSDT with those obtained from the 3D solution; the
corresponding stress functions ψαβ(z) are plotted in figure 13. The dif-
ferences between the three mHSDT are again negligible. Even if the
discrepancy with respect to the exact stress functions may be relevant,
very accurate transverse shear stresses are obtained from the integra-
tion of the equilibrium equations, as shown in figure 14.

The numerical values for deflection, stresses and fundamental fre-
quency are reported in tables 6 and 7. The results in table 6 refer to
the trigonometric models Sin/SiZZ for a fixed length-to-thickness ra-
tio a/h = 10 and for different numbers of layers n = 1, 2, 3, 4, 5, 10.
Note that the relative errors for σ23(B′) and σ13(A′) for n = 4 have
not been reported because the values of the exact solution are very
small. Table 7 compares the considered mHSDT for various ratios
a/h and the fixed n = 2 case. The same conclusions can be drawn
as those concerning the cross-ply [0/90]n laminates: exception made
for the 2-layer n = 1 case, mHSDT models substantially improve the
corresponding bHSDT models, and this difference is more significant
if the a/h ratio is low. The improvement is more systematic for the
global response than for the local stress response, for which a certain
dependency is observed with respect to the number n of the stacking
sequence.
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−h/4
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Figure 10: Transverse shear stress functions of the [0/90]4 square plate with
a/h = 10 for each considered model.
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−h/2
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Figure 11: Post-processed transverse shear stresses of the [0/90]4 square plate
with a/h = 10 for each considered model.

4.3. A general non-symmetric anisotropic laminate
In order to give evidence of the generality of the proposed method

for constructing an mHSDT, a laminate with a stacking sequence of the
most general nature is next considered. For this example, the arbitrary
stacking sequence [−20/40/70/−15/0/40/−60] has been taken. The
four warping functions of the polynomial, trigonometric and hyper-
bolic mHSDT are plotted in figure 15 along with the warping functions
of the polynomial ToSDT and of the 3D solution. The corresponding
stress functions are plotted in figure 16. The distribution across the
thickness at points A and B of the transverse shear stresses obtained
from the equilibrium equations are illustrated in figure 17. As in the
previous examples, all curves are in good agreement.

Numerical results for the global and local stress response are re-
ported in table 8. A substantial improvement is evident of the pre-
dictions provided by the mHSDT over those provided by the bHSDT
for laminates with low length-to-thickness ratios, i.e., when the trans-
verse shear behavior plays a certain role. The improvement is here
clearly visible not only for the global response (deflection and funda-
mental frequency), but also for the local bending and transverse shear
stresses.

−0.4 −0.2 0 0.2 0.4
−h/2

−h/4

0
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h/2
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−0.2 −0.1 0 0.1
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ϕ21(z)
−0.4 −0.2 0 0.2 0.4

ϕ22(z)
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Figure 12: The four warping functions for the [30/−30]4 laminate with a/h =

10
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Figure 13: Transverse shear stress functions for the [30/−30]4 laminate with
a/h = 10
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Figure 14: Transverse shear stresses from equilibrium equations for the
[30/−30]4 laminate with a/h = 10
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Figure 15: Warping functions of the [−20/40/70/−15/0/40/−60] laminate
with a/h = 10 for each considered model

Seq. Model w(C) % σ13(B) % σ22(C+) % ω %
[0/90] Sin 1.2132 −1.17 1.1990 −2.84 7.4827 +2.41 8.9869 +0.72

SiZZ 1.2046 −1.87 1.1792 −4.45 7.4983 +2.62 9.0204 +1.10
Exact 1.2275 1.2341 7.3065 8.9226

[0/90]2 Sin 0.68725 −9.86 2.7806 +2.37 5.2317 −1.43 11.998 +5.41
SiZZ 0.75863 −0.49 2.7250 +0.33 5.3714 +1.21 11.425 +0.38
Exact 0.76239 2.7161 5.3074 11.382

[0/90]3 Sin 0.63818 −7.91 2.2818 −0.87 5.2357 +0.64 12.459 +4.28
SiZZ 0.69191 −0.16 2.2781 −1.03 5.2907 +1.70 11.972 +0.20
Exact 0.69303 2.3018 5.2026 11.948

[0/90]4 Sin 0.62262 −7.05 2.4403 +0.36 5.3053 +1.12 12.617 +3.79
SiZZ 0.66969 −0.02 2.4229 −0.36 5.3433 +1.84 12.171 +0.12
Exact 0.66982 2.4316 5.2467 12.156

[0/90]5 Sin 0.61566 −6.61 2.3214 −0.35 5.3673 +1.17 12.689 +3.54
SiZZ 0.65965 +0.06 2.3138 −0.67 5.4030 +1.84 12.265 +0.08
Exact 0.65923 2.3294 5.3053 12.255

[0/90]10 Sin 0.60663 −5.99 2.3575 +0.06 5.5367 +0.71 12.785 +3.20
SiZZ 0.64650 +0.19 2.3464 −0.41 5.5853 +1.59 12.390 +0.02
Exact 0.64530 2.3561 5.4979 12.388

Table 4: Comparison between the Sin and the SiZZ models for the [0/90]n
with n = 1, 2, 3, 4, 5, 10 (a/h = 10).

a/h Model w(C) % σ13(B) % σ22(C+) % ω %
4 ToSDT 1.6093 −17.8 2.6745 +12.9 6.9699 −3.63 7.8250 +11.4

ToZZ 1.9484 −0.49 2.3752 +0.30 7.7158 +6.69 7.1053 +1.13
Sin 1.6091 −17.8 2.6605 +12.3 7.0862 −2.02 7.8237 +11.3
SiZZ 1.9571 −0.05 2.3490 −0.81 7.7644 +7.36 7.0847 +0.84
Hyp 1.6086 −17.8 2.6794 +13.1 6.9271 −4.22 7.8273 +11.4
HyZZ 1.9434 −0.75 2.3852 +0.72 7.6943 +6.39 7.1161 +1.28
Exact 1.9581 2.3681 7.2321 7.026

10 ToSDT 0.68655 −9.95 2.7829 +2.46 5.2112 −1.81 12.004 +5.47
ToZZ 0.75496 −0.97 2.7302 +0.52 5.3587 +0.97 11.453 +0.63
Sin 0.68725 −9.86 2.7806 +2.37 5.2317 −1.43 11.998 +5.41
SiZZ 0.75863 −0.49 2.7250 +0.33 5.3714 +1.21 11.425 +0.38
Hyp 0.68619 −9.99 2.7838 +2.49 5.2038 −1.95 12.007 +5.49
HyZZ 0.75336 −1.18 2.7321 +0.59 5.3536 +0.87 11.466 +0.73
Exact 0.76239 2.7161 5.3074 11.382

100 ToSDT 0.50834 −0.16 2.8039 +0.03 4.8715 −0.02 14.024 +0.08
ToZZ 0.50906 −0.02 2.8034 +0.01 4.8731 +0.01 14.014 +0.01
Sin 0.50835 −0.16 2.8039 +0.02 4.8718 −0.02 14.024 +0.08
SiZZ 0.50910 −0.01 2.8033 +0.00 4.8732 +0.01 14.014 +0.01
Hyp 0.50834 −0.16 2.8039 +0.03 4.8715 −0.02 14.024 +0.08
HyZZ 0.50904 −0.02 2.8034 +0.01 4.8730 +0.01 14.015 +0.01
Exact 0.50915 2.8032 4.8727 14.013

Table 5: Comparison between the different models for the square [0/90]2 plate
with a varying length to thickness ratio.

4.4. A sandwich with laminated faces
A symmetric sandwich plate [0/45/90/−45/c]s is finally consid-

ered, which consists of a honeycomb core and two laminated faces.
The core has a thickness 32h/40 and each composite layer in the face
laminates has the thickness h/40. The material properties are those
listed in table 3. In this case, different interfaces are present, i.e., be-
tween plies of different orientations as well as between faces and core.
The results for all considered bHSDT and corresponding mHSDT are
reported in table 9. The improvement introduced by the mHSDT is
clearly appreciable for all output variables and is more important for
low length-to-thickness ratios (short wavelength). Figure 18 illustrates
the warping functions and the corresponding stress functions are com-
pared in figure 19. As in the previous case studies involving laminated
plates, the transverse shear stresses across the sandwich section ob-
tained from the equilibrium equations are very accurate even for the
bHSDT model, as shown in figure 20.
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Seq. Model w(C) % σ13(B) % σ23(A) % σ23(B′) % σ13(A′) % σ11(C+) % σ22(C+) % ω %
[30/−30] Sin 0.83228 −2.86 1.4199 −5.85 0.79419 −7.31 −1.0567 +5.46 −1.7445 +6.44 4.2767 +1.73 1.6979 +0.13 10.864 +1.62

SiZZ 0.82045 −4.24 1.3835 −8.27 0.78021 −8.94 −1.0770 +7.49 −1.7768 +8.41 4.2448 +0.97 1.6858 −0.58 10.943 +2.36
Exact 0.85678 1.5081 0.85683 −1.0020 −1.6390 4.2042 1.6956 10.691

[30/−30]2 Sin 0.49527 −11.9 3.4961 +3.39 2.0650 +3.50 −0.94454 +7.18 −1.5625 +7.75 2.7054 −4.49 1.0453 −6.23 14.151 +6.63
SiZZ 0.55293 −1.60 3.4038 +0.66 2.0066 +0.58 −0.90016 +2.14 −1.4912 +2.84 2.8315 −0.03 1.0966 −1.63 13.397 +0.95
Exact 0.56190 3.3814 1.9950 −0.88129 −1.4501 2.8325 1.1147 13.270

[30/−30]3 Sin 0.46217 −9.14 2.8292 −1.76 1.6702 −1.99 −0.37059 +22.4 −0.61259 +23.3 2.6441 −0.67 1.0140 −2.22 14.658 +5.00
SiZZ 0.50452 −0.82 2.8254 −1.89 1.6669 −2.18 −0.33604 +10.9 −0.55759 +12.2 2.6963 +1.29 1.0366 −0.04 14.034 +0.54
Exact 0.50868 2.8800 1.7040 −0.30288 −0.49695 2.6619 1.0370 13.959

[30/−30]4 Sin 0.45156 −7.89 3.0408 +0.43 1.7972 +0.20 −0.04576 n.c. −0.07499 n.c. 2.6519 +0.59 1.0135 −0.80 14.832 +4.28
SiZZ 0.48798 −0.46 3.0121 −0.52 1.7806 −0.72 −0.03260 n.c. −0.05420 n.c. 2.6851 +1.85 1.0284 +0.66 14.273 +0.35
Exact 0.49024 3.0279 1.7936 −0.00187 0.00063 2.6364 1.0217 14.223

[30/−30]5 Sin 0.44680 −7.25 2.8815 −0.75 1.7026 −1.05 −0.16727 +20.0 −0.27647 +21.4 2.6677 +1.00 1.0174 −0.29 14.912 +3.92
SiZZ 0.48045 −0.27 2.8700 −1.15 1.6967 −1.39 −0.15842 +13.7 −0.26252 +15.3 2.6952 +2.04 1.0300 +0.95 14.385 +0.25
Exact 0.48174 2.9033 1.7206 −0.13937 −0.22772 2.6413 1.0203 14.349

[30/−30]10 Sin 0.44060 −6.34 2.9297 +0.00 1.7318 −0.32 −0.16383 +11.7 −0.27105 +12.2 2.7238 +0.90 1.0347 −0.15 15.018 +3.41
SiZZ 0.47056 +0.03 2.9115 −0.62 1.7227 −0.84 −0.15541 +5.95 −0.25769 +6.69 2.7522 +1.95 1.0471 +1.04 14.537 +0.10
Exact 0.47043 2.9296 1.7374 −0.14667 −0.24154 2.6996 1.0363 14.523

Table 6: Comparison between the Sin and the SiZZ models for the [30/−30]n with n = 1, 2, 3, 4, 5, 10 (a/h = 10)

a/h Model w(C) % σ13(B) % σ23(A) % σ23(B′) % σ13(A′) % σ11(C+) % σ22(C+) % ω %
4 ToSDT 1.4047 −16.8 3.2615 +17.1 1.9714 +16.1 −0.88282 +45.9 −1.4801 +49.3 4.0098 −8.91 1.5636 −14.6 8.3994 +10.8

ToZZ 1.6454 −2.49 2.7691 −0.57 1.6823 −0.94 −0.65489 +8.26 −1.1232 +13.3 4.5798 +4.04 1.8028 −1.56 7.7493 +2.20
Sin 1.4016 −16.9 3.2354 +16.2 1.9561 +15.2 −0.87575 +44.8 −1.4684 +48.1 4.1035 −6.78 1.5997 −12.6 8.4065 +10.9
SiZZ 1.6509 −2.16 2.7252 −2.14 1.6531 −2.66 −0.62965 +4.09 −1.0825 +9.21 4.6690 +6.07 1.8418 +0.58 7.7311 +1.96
Hyp 1.4049 −16.7 3.2709 +17.4 1.9769 +16.4 −0.88534 +46.3 −1.4842 +49.7 3.9752 −9.70 1.5503 −15.3 8.3994 +10.9
HyZZ 1.6417 −2.71 2.7856 +0.02 1.6931 −0.30 −0.66422 +9.80 −1.1382 +14.8 4.5446 +3.24 1.7875 −2.39 7.7597 +2.34
Exact 1.6875 2.7849 1.6982 −0.60493 −0.99119 4.4020 1.8313 7.5824

10 ToSDT 0.49462 −12.0 3.5008 +3.53 2.0676 +3.64 −0.94579 +7.32 −1.5645 +7.89 2.6881 −5.10 1.0386 −6.83 14.160 +6.71
ToZZ 0.54918 −2.26 3.4129 +0.93 2.0131 +0.90 −0.90522 +2.71 −1.4996 +3.41 2.8104 −0.78 1.0878 −2.41 13.443 +1.30
Sin 0.49527 −11.9 3.4961 +3.39 2.0650 +3.50 −0.94454 +7.18 −1.5625 +7.75 2.7054 −4.49 1.0453 −6.23 14.151 +6.63
SiZZ 0.55293 −1.60 3.4038 +0.66 2.0066 +0.58 −0.90016 +2.14 −1.4912 +2.84 2.8315 −0.03 1.0966 −1.63 13.397 +0.95
Hyp 0.49428 −12.0 3.5024 +3.58 2.0686 +3.69 −0.94624 +7.37 −1.5652 +7.94 2.6818 −5.32 1.0362 −7.04 14.165 +6.74
HyZZ 0.54759 −2.55 3.4162 +1.03 2.0154 +1.02 −0.90704 +2.92 −1.5026 +3.62 2.8025 −1.06 1.0845 −2.71 13.463 +1.45
Exact 0.56190 3.3814 1.9950 −0.88129 −1.4501 2.8325 1.1147 13.270

100 ToSDT 0.31623 −0.23 3.5499 +0.04 2.0842 +0.04 −0.95861 +0.07 −1.5803 +0.08 2.4333 −0.07 0.93570 −0.09 17.781 +0.12
ToZZ 0.31681 −0.05 3.5490 +0.01 2.0837 +0.01 −0.95819 +0.03 −1.5796 +0.04 2.4346 −0.02 0.93622 −0.04 17.765 +0.03
Sin 0.31624 −0.23 3.5498 +0.04 2.0842 +0.04 −0.95860 +0.07 −1.5803 +0.08 2.4335 −0.06 0.93577 −0.08 17.781 +0.12
SiZZ 0.31685 −0.04 3.5489 +0.01 2.0836 +0.01 −0.95814 +0.02 −1.5795 +0.03 2.4348 −0.01 0.93631 −0.03 17.764 +0.02
Hyp 0.31623 −0.23 3.5499 +0.04 2.0842 +0.04 −0.95861 +0.07 −1.5803 +0.08 2.4332 −0.07 0.93568 −0.09 17.781 +0.12
HyZZ 0.31679 −0.06 3.5490 +0.01 2.0837 +0.01 −0.95821 +0.03 −1.5796 +0.04 2.4345 −0.02 0.93618 −0.04 17.765 +0.03
Exact 0.31697 3.5486 2.0834 −0.95791 −1.5790 2.4350 0.93656 17.760

Table 7: Comparison between the different models for the square [30/−30]2 plate with a varying length to thickness ratio

a/h Model w(C) % σ13(B) % σ23(A) % σ23(B) % σ13(A) % σ11(C+) % σ22(C+) % ω %
4 ToSDT 1.4264 −14.3 2.6031 −3.81 2.0206 +3.95 0.24342 +121 0.28916 +137 1.3530 −14.6 3.2716 −5.03 8.3309 +8.83

ToZZ 1.6580 −0.35 2.6973 −0.34 1.9162 −1.42 0.11628 +5.77 0.13017 +6.54 1.4948 −5.61 3.3506 −2.73 7.7204 +0.86
Sin 1.4220 −14.5 2.5788 −4.71 1.9956 +2.67 0.20552 +86.9 0.25560 +109 1.3788 −12.9 3.3185 −3.66 8.3416 +8.97
SiZZ 1.6558 −0.48 2.6733 −1.22 1.9056 −1.96 0.11431 +3.98 0.12505 +2.35 1.5073 −4.83 3.3578 −2.52 7.7234 +0.90
Hyp 1.4270 −14.2 2.6116 −3.50 2.0293 +4.40 0.25631 +133 0.30045 +146 1.3434 −15.2 3.2537 −5.55 8.3299 +8.82
HyZZ 1.6581 −0.34 2.7057 −0.02 1.9200 −1.22 0.11780 +7.15 0.13219 +8.20 1.4892 −5.97 3.3483 −2.80 7.7210 +0.87
Exact 1.6637 2.7063 1.9437 0.10994 0.12217 1.5837 3.4447 7.6547

10 ToSDT 0.49707 −8.91 2.7296 −0.43 2.1253 +0.53 0.18717 +20.2 0.15333 +6.56 0.94788 −5.21 2.3218 −2.19 14.113 +4.85
ToZZ 0.54300 −0.49 2.7445 +0.11 2.1111 −0.15 0.17145 +10.1 0.14648 +1.80 0.97417 −2.58 2.3424 −1.32 13.510 +0.37
Sin 0.49678 −8.96 2.7247 −0.61 2.1191 +0.23 0.17065 +9.58 0.13580 −5.62 0.95372 −4.62 2.3332 −1.71 14.117 +4.88
SiZZ 0.54313 −0.47 2.7401 −0.05 2.1081 −0.29 0.16730 +7.42 0.14065 −2.25 0.97699 −2.30 2.3450 −1.21 13.508 +0.36
Hyp 0.49704 −8.92 2.7313 −0.37 2.1275 +0.63 0.19272 +23.7 0.15920 +10.6 0.94577 −5.42 2.3177 −2.36 14.114 +4.85
HyZZ 0.54278 −0.53 2.7462 +0.17 2.1120 −0.11 0.17309 +11.1 0.14837 +3.11 0.97289 −2.71 2.3412 −1.37 13.513 +0.39
Exact 0.54569 2.7414 2.1142 0.15574 0.14389 0.99995 2.3738 13.460

100 ToSDT 0.31771 −0.16 2.7434 −0.00 2.1414 +0.00 0.13086 +0.17 0.063505 −0.32 0.87950 −0.06 2.1673 −0.03 17.739 +0.08
ToZZ 0.31819 −0.01 2.7436 +0.00 2.1413 −0.00 0.13087 +0.18 0.063699 −0.02 0.87975 −0.04 2.1675 −0.02 17.726 +0.01
Sin 0.31771 −0.16 2.7433 −0.01 2.1413 −0.00 0.13061 −0.03 0.063224 −0.76 0.87957 −0.06 2.1675 −0.02 17.739 +0.08
SiZZ 0.31819 −0.01 2.7435 +0.00 2.1412 −0.00 0.13079 +0.11 0.063590 −0.19 0.87979 −0.03 2.1675 −0.02 17.726 +0.01
Hyp 0.31771 −0.16 2.7434 −0.00 2.1414 +0.00 0.13094 +0.23 0.063599 −0.17 0.87947 −0.07 2.1673 −0.03 17.739 +0.08
HyZZ 0.31819 −0.01 2.7436 +0.00 2.1413 −0.00 0.13090 +0.20 0.063733 +0.04 0.87974 −0.04 2.1675 −0.02 17.726 +0.01
Exact 0.31823 2.7435 2.1413 0.13064 0.063709 0.88006 2.1679 17.725

Table 8: Comparison between the different models for the square [−20/40/70/−15/0/40/−60] plate with a varying length to thickness ratio
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a/h Model w(C) % σ13(B) % σ23(A) % σ23(B) % σ13(A) % σ11(C+) % σ22(C+) % ω %
4 ToSDT 0.21866 −7.30 1.7883 −1.10 1.7141 +1.29 −0.044424 +33.2 −0.044383 +8.65 11.264 −7.33 0.71690 −17.5 10.804 +5.26

ToZZ 0.23595 +0.03 1.8046 −0.20 1.6865 −0.33 −0.034844 +4.44 −0.041229 +0.93 12.231 +0.63 0.79273 −8.82 10.307 +0.42
Sin 0.21785 −7.65 1.7914 −0.93 1.7053 +0.77 −0.043120 +29.2 −0.044101 +7.96 11.417 −6.06 0.72385 −16.7 10.797 +5.20
SiZZ 0.23523 −0.28 1.8043 −0.22 1.6851 −0.42 −0.034756 +4.18 −0.041184 +0.82 12.250 +0.79 0.79315 −8.77 10.321 +0.56
Hyp 0.21867 −7.30 1.7871 −1.17 1.7173 +1.49 −0.044891 +34.6 −0.044511 +8.96 11.203 −7.83 0.71396 −17.9 10.813 +5.35
HyZZ 0.23615 +0.11 1.8047 −0.19 1.6870 −0.31 −0.034879 +4.55 −0.041251 +0.98 12.225 +0.58 0.79249 −8.84 10.304 +0.39
Exact 0.23588 1.8082 1.6922 −0.033362 −0.040850 12.154 0.86938 10.264

10 ToSDT 0.056624 −5.19 1.8124 −0.49 1.7458 +0.59 −0.053324 +7.10 −0.056255 −1.24 8.5063 −2.60 0.44457 −4.96 21.031 +3.36
ToZZ 0.059592 −0.22 1.8210 −0.02 1.7348 −0.05 −0.050626 +1.68 −0.056688 −0.48 8.7373 +0.05 0.45502 −2.72 20.375 +0.14
Sin 0.056527 −5.35 1.8143 −0.39 1.7428 +0.41 −0.052963 +6.38 −0.056327 −1.11 8.5485 −2.11 0.44523 −4.82 21.016 +3.29
SiZZ 0.059484 −0.40 1.8210 −0.02 1.7344 −0.07 −0.050619 +1.67 −0.056669 −0.51 8.7418 +0.10 0.45506 −2.71 20.391 +0.22
Hyp 0.056613 −5.21 1.8117 −0.53 1.7469 +0.65 −0.053452 +7.36 −0.056234 −1.28 8.4900 −2.78 0.44427 −5.02 21.045 +3.43
HyZZ 0.059620 −0.17 1.8209 −0.03 1.7349 −0.04 −0.050629 +1.69 −0.056695 −0.47 8.7358 +0.03 0.45498 −2.73 20.371 +0.12
Exact 0.059723 1.8214 1.7356 −0.049788 −0.056962 8.7331 0.46776 20.347

100 ToSDT 0.025743 −0.12 1.8143 −0.01 1.7549 +0.01 −0.054873 +0.09 −0.058710 −0.03 7.9474 −0.04 0.39366 −0.06 30.985 +0.08
ToZZ 0.025773 −0.01 1.8144 −0.00 1.7547 −0.00 −0.054837 +0.02 −0.058722 −0.01 7.9503 +0.00 0.39375 −0.03 30.962 +0.00
Sin 0.025742 −0.13 1.8143 −0.01 1.7549 +0.01 −0.054868 +0.08 −0.058712 −0.03 7.9480 −0.03 0.39366 −0.05 30.984 +0.07
SiZZ 0.025772 −0.01 1.8144 −0.00 1.7547 −0.00 −0.054837 +0.02 −0.058721 −0.01 7.9503 +0.00 0.39375 −0.03 30.963 +0.00
Hyp 0.025742 −0.12 1.8143 −0.01 1.7549 +0.01 −0.054874 +0.09 −0.058710 −0.03 7.9472 −0.04 0.39366 −0.06 30.985 +0.08
HyZZ 0.025773 −0.01 1.8144 −0.00 1.7547 −0.00 −0.054837 +0.02 −0.058722 −0.01 7.9503 +0.00 0.39375 −0.03 30.962 +0.00
Exact 0.025774 1.8144 1.7548 −0.054825 −0.058728 7.9503 0.39387 30.962

Table 9: Comparison between the different models for the square [0/45/90/−45/c]s sandwich panel with a varying length to thickness ratio

5. Discussion: limitations of ZZ theories

The presented results show that the mHSDT, constructed in such
a manner that all C0

z−requirements are a priori satisfied, can provide
very accurate solutions in terms of deflection, transverse stresses and
fundamental frequency for a very large class of composite plates. In
particular, mHSDT improve the results of bHSDT for moderately thick
plates that consist of a quite large number of layers.

As a matter of fact, for configurations with a very low number of
layers and strong anisotropy, the constructed mHSDT appear to be not
better than the corresponding bHSDT. This is true in general for any
ZZ theory and is due to the ESL nature of these theories. In order to
point out the limitations of these ZZ theories, we shall next consider
the warping functions obtained from the exact 3D solution [31, 32].
While such warping functions can be defined for general laminates
only in a numerical manner, an analytical expression can be found for
the elementary case of an orthotropic single-layer plate. Exact solu-
tions obtained, e.g., by a state-space approach are expressed in terms
of hyperbolic functions. Therefore, the following two new hyperbolic
warping functions are proposed:

ϕ11(z) =
1

a1 − 1

(
a1z − 1

a2
sinh

(
a2

z
h

))
ϕ22(z) =

1
a3 − 1

(
a3z − 1

a4
sinh

(
a4

z
h

)) (22)

where the coefficients a1, a2, a3, a4 have the expressions
a1 = cosh

(a2

2

)
; a2 =

πh
lx

√
Q1111

G13

a3 = cosh
(a4

2

)
; a4 =

πh
ly

√
Q2222

G23

(23)

and where lx and ly denote the lengths of the plate edges along the x
and y directions, respectively.

It is emphasised that the resulting model, referred to as HySpe
model, is not a member of the hyperbolic mHSDT described in Sec-
tion 3. Two major points should be remarked: first, the HySpe model
employs two odd functions instead of only one odd function (see equa-
tion (A.5)); second, the material properties of the layer as well as the
length-to-thickness ratio l/h appear in the argument of the hyperbolic

function. This HySpe model is next compared against the correspond-
ing “conventional” ZZ model HyZZ, whose analytical expression is
reported in Appendix, equation (A.5) with k = 2, in order to point out
the limitations of the latter model.

Figure 21 compares these two hyperbolic HSDT against the exact
3D solution in terms of transverse shear stress functions for different
values of the elastic moduli: for this, the shear flexibilities 1/G23, 1/G13

and 1/G12 of table 3 are multiplied by the same factor b. From fig-
ure 21 it is apparent that the HyZZ is independent from this coefficient
and that it provides a satisfying approximation to the 3D solution only
for b = 1. As the shear flexibility increases, the error of the “conven-
tional” HyZZ model increases while the stress functions of the HySpe
model are capable of well reproducing the 3D solution.

The influence of the length-to-thickness ratio on the accuracy of
ZZ models is shown in figure 22, where the transverse shear stress
functions obtained by the HySpe model, the HyZZ (k = 2) and the 3D
solution are compared for different values of the lx/h = ly/h = a/h
ratio. The results show that HySpe model has a slight discrepancy
with the 3D solution only for the extremely thick case a/h = 2. Note
that this discrepancy comes from the plane stress assumption that has
allowed to derive the analytical expressions in equation (22). Further-
more, the HyZZ model recovers the correct solution only if the length-
to-thickness ratio is sufficiently large, say a/h ≥ 10.

These observations allow to substantiate the limitations of most
“conventional” ZZ models, such as those that may be formulated within
the general procedure proposed in this paper. On the one hand, warp-
ing functions should depend on the material properties in a far more
complex manner than through the linear coefficients aαβ and bαβ as
identified by equation (12). More specifically, the warping functions
should depend on the ratio between the longitudinal and the transverse
shear moduli: ZZ models whose warping functions depend only on
the transverse shear moduli will always suffer a certain limitation with
respect to highly constrained configurations such as laminated plates
with low number of layers. On the other hand, ‘conventional” ZZ mod-
els suffer a certain inaccuracy in case of thick laminates unless the
length-to-thickness ratio is explicitly taken into account in the warp-
ing functions.
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Figure 16: Transverse shear stress functions of the
[−20/40/70/−15/0/40/−60] laminate with a/h = 10 for each consid-
ered model

6. Conclusion

In this paper, a general method has been presented to extend ba-
sis higher order shear deformation theories (bHSDT) to their multi-
layer counterpart, denoted mHSDT, which a priori and exactly meet
all C0

z−requirements along with the homogeneous shear stress condi-
tions at the plate’s top and bottom surfaces, without introducing any
additional DOF. The method is purely displacement-based as no as-
sumption is introduced about the transverse shear stress behaviour.
The extension process constructs zig-zag models from a couple of one
even and one odd high-order functions of z of arbitrary nature. As
examples, warping functions based on polynomial, trigonometric and
hyperbolic functions have been explicitly addressed by referring to the
couples of functions

(
z3, z2

)
,
(
sin(π z

h ), cos(π z
h )

)
,
(
sinh(k z

h ), cosh(k z
h )

)
,

respectively. For general stacking sequences of N layers, four warp-
ing functions are to be determined by solving a linear system of size
8N + 8. Furthermore, the tensorial character of the warping functions
has been pointed out, which implies that warping functions of a stack-
ing sequence s + θ, defined upon a rotation θ about the z−axis of a
stacking sequence s, must correspond to those of the stacking sequence
s through the well known tensorial transformation.

The considered ESL ZZ mHSDT models have been compared
against the bHSDT for a large variety of composite plates, including
cross-ply, angle-ply, arbitrary laminates and sandwich plates. Exact
solutions are obtained based on a previously developed method, for
the static bending and the fundamental frequency responses of simply-
supported plates. The results indicate that mHSDT substantially in-
crease the accuracy of the bHSDT in most practically relevant applica-
tions. No appreciable difference is found between models formulated
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Figure 17: Post-processed transverse shear stresses of the
[−20/40/70/−15/0/40/−60] laminate with a/h = 10 for each consid-
ered model

in terms of polynomial, trigonometric or hyperbolic functions. A final
discussion has been proposed in order to point out the limitations of
ZZ models with respect to “constrained” configurations characterised
by a low number of layers (say, N ≤ 4) and low length-to-thickness
ratio: in order to recover with good accuracy the exact solution, these
configurations require warping functions that take into account in an
explicit manner also the in-plane stiffnesses of each individual layer.
This contrasts with the “conventional” ZZ approaches, in which only
the transverse shear moduli are considered. While an explicit represen-
tation of the mechanical and geometrical properties of each individual
layer is inherent to LayerWise models, the possibility of formulating
more refined ZZ theories capable of overcoming the limitations of cur-
rently available ESL models will be an object of further studies.

Appendix A. Analytical expressions for one layer

For a plate consisting of one layer, the system of equations (14)
reduces to: 

d1
αβ = 0

aαβ f ′(0−) + bαβg′(0−) + c1
αβ = δαβ

aαβ f ′(−h/2) + bαβg′(−h/2) + c1
αβ = 0

aαβ f ′(+h/2) + bαβg′(+h/2) + c1
αβ = 0

(A.1a)

(A.1b)

(A.1c)

(A.1d)

where δαβ is Kronecker’s delta. Since f ′(−h/2) = f ′(h/2) and g′(−h/2) =

−g′(h/2), one has bαβ = 0 and aαβ f ′(h/2) + c1
αβ = 0 and the solution is
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Figure 18: Warping functions of the square [0/45/90/−45/c]s sandwich panel
with a/h = 10 for each considered model

found to be expressed in terms of only one odd function f (z) as

ϕαβ(z) =
δαβ

f ′(0−) − f ′(h/2)
( f (z) − z f ′(h/2)) (A.2)

Note that the tensorial character of the warping functions is preserved
with ϕ11 = ϕ22; warping functions for an arbitrary layer orientation θ
can be obtained through eq. (19).

For a polynomial HSDT model, setting f (z) = z3 leads to

ϕαβ(z) = δαβ

(
z − 4

3
z3

h2

)
(A.3)

For a Sinus-model, setting f (z) = sin(πz/h) leads to

ϕαβ(z) = δαβ
h
π

sin
(
πz
h

)
(A.4)

For a hyperbolic model one may set f (z) = sinh(kz/h), which yields

ϕαβ(z) = δαβ

(
cosh

(
k
2

)
− 1

)−1 (
cosh

(
k
2

)
z − h

k
sinh

(
k

z
h

))
(A.5)
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