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SELFISH MINING IN ETHEREUM

CYRIL GRUNSPAN AND RICARDO PÉREZ-MARCO

Abstract. We study selfish mining in Ethereum. The problem is combinato-

rially more complex than in Bitcoin because of major differences in the reward

system and a different difficulty adjustment formula. Equivalent strategies in
Bitcoin do have different profitabilities in Ethereum. The attacker can either

broadcast his fork one block by one, or keep them secret as long as possible

and publish them all at once at the end of an attack cycle. The first strategy
is damaging for substantial hashrates, and we show that the second strategy is

even worse. This confirms what we already proved for Bitcoin: Selfish mining

is most of all an attack on the difficulty adjustment formula. We show that the
current reward for signaling uncle blocks is a weak incentive for the attacker to

signal blocks. We compute the profitabilities of different strategies and find out
that for a large parameter space values, strategies that do not signal blocks are

the best ones. We compute closed-form formulas for the apparent hashrates

for these strategies and compare them. We use a direct combinatorics analysis
with Dyck words to find these closed-form formulas.

1. Introduction

1.1. Selfish mining strategies in Ethereum. Research on selfish mining (in
short SM) in Ethereum is quite recent. We can mention as recent contributions [1]
(numerical study) and [3].

The authors of [3] use a Markov chain model and compute the stationary prob-
ability. Then they study what they call the “absolute revenue” of the attacker
which corresponds to the apparent hashrate after a difficulty adjustment as ex-
plained in our articles on blockwithholding attacks in the Bitcoin network (see [4],
[5], [6]). Their theoretical analysis seems also confirmed by their numerical simu-
lations. They do not provide closed-form formulas (for example Formulas (8) and
(9) in Section 3-E involve double infinite sums). But more importantly, their study
is limited to the following strategy of the attacker:

(1) The attacker refers to all possible orphan blocks;
(2) When new blocks are validated by the honest miners, the attacker makes

public the part of his fork sharing the same height as the “honest” blockchain.

(See Algorithm 1 in [3], Lines 1 and 19 from Section 3-C)

We label this strategy as “Strategy 1” or SM1. The procedure of a Bitcoin selfish
miner to release his secret fork is irrelevant for the profitability of the classical
selfish mining attack. However, this is not so in Ethereum. In particular, the
precise algorithm presented in [3] is not the most profitable as we will prove. An
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alternative strategy for the attacker would be to keep secret all his fork until he is
on the edge of being caught-up by the honest miners. Then, and only at this critical
moment, he would release his complete fork and override the public blockchain. We
label this second strategy as “Strategy 2” or SM2. In Bitcoin, both strategies have
the same effect since only matters the number of blocks mined by the attacker
and added to the official blockchain. But in Ethereum, this is not so because of
the different reward incentives that gives rewards to “nephew” blocks who refer
to “uncle” blocks. “Uncle” blocks are orphan blocks with a parent in the official
blockchain, and the descendants of this parent in the official blockchain are its
“nephew” blocks. Also uncle blocks get rewards when referred by nephews.

1.2. Performance of Ethereum selfish mining strategies. To understand
what the best strategy for the attacker is, we need an in-deep knowledge of the
nature of the selfish mining attack. In [4] we give a correct economic modeling with
a model of repetition game, and we consider the time element that is absent from
older Markov chain models. What is important for the attacker is to maximize
the number of validated blocks in the official blockchain per unit of time, which is
different from the percentage of blocks he validates. With this correct modeling, it
becomes then clear that the attack is an exploit on Bitcoin’s difficulty adjustment
formula, that does include the orphan blocks. Then the attacker lowers artificially
the difficulty, at the expense of orphaned honest blocks, and succeeds to validate
more blocks per unit of time.

Point (2) in “Strategy 1” creates numerous competitions between the attacker’s
fork and the honest blockchain. This increases the production of orphan blocks
that becomes important for a substantial hashrate of the attacker. Signaling these
orphan blocks yields additional rewards to the attacker, but it goes against its
main goal to lower the difficulty. Indeed, the difficulty’s adjustment formula in
Ethereum counts for “uncles”, that are the orphan blocks directly attached to the
main chain. Therefore, increasing the number of uncles by Point 2 has the following
contradictory effects: On one hand, the attacker’s revenue increases because of the
new “inclusion rewards”, but on the other hand, the difficulty is not lowered, so the
attacker ends up mining less official blocks per unit of time in Strategy 1 compared
to Strategy 2.

On the contrary, if the attacker decides to avoid competitions with honest miners
as much as possible, he will earn less inclusion rewards (he can even decide to ignore
totally these rewards) but his speed of validation of blocks will increase. So, what
is the best strategy will depend very sensitively on the parameters of the reward
system.

As explained in [5], the correct benchmark to compare profitabilities of two
strategies is the revenue ratio

Γ =
E[R]

E[T ]

where R is the revenue of the miner per attack cycle and T is the duration of an
attack cycle. In Bitcoin, after a difficulty adjustment, this quantity becomes in the
long run proportional to

Γ̃ =
E[Rs]

E[L]
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where L (resp. Rs) is the number of new blocks (resp. new blocks mined by the
attacker) added to the official blockchain per attack cycle. The difficulty adjustment
is not continuous in Bitcoin as it is updated every 2016 official new blocks. With
the martingale tools introduced in [4], we computed how long it takes for the attack
to become profitable (this computation is not possible with the old Markov chain
model).

In Ethereum, the difficulty adjustment formula is different. The revenue ratio is
proportional to

Γ̃ =
E[R]

E[L] + E[U ]

where U is the number of referred uncles and R is the total revenue of the attacker
in the attack cycle. Moreover, the revenue R per attack cycle has three different
contributions :

(1) The revenue Rs coming from “static” blocks.
(2) The revenue Ru coming from “uncles” blocks.
(3) The revenue Rn coming from “nephews” blocks.

In Bitcoin’s revenue analysis only Rs is present. Therefore, for Ethereum we have

Γ̃ =
E[R]

E[L] + E[U ]
=

E[Rs] + E[Ru] + E[Rn]

E[L] + E[U ]

The new terms on the numerator E[Ru] and E[Rn] increase the revenue of the
attacker and are incentives for block withholding attacks. On the other hand, the
new term E[U ] in the denominator plays against the profitability of the attack and
tends to mitigate the attack. Only an exact computation of these terms can show
which one is the most profitable strategy. Another particularity of Ethereum is
the continuous adjustment of the difficulty. Thus a block-witholding attack is very
quickly profitable.

There are other selfish mining strategies in Ethereum. For instance, the attacker
can publish his secret blocks slowly, two by two, instead of one by one. In this
article we limit our study to Strategy 1 and Strategy 2. The main result are
the closed-form formulas for the apparent hashrates in Strategy 1 and 2. The
main conclusion is that the effect on the difficulty adjustment is prevalent, so that
Strategy 2 outperforms Strategy 1.

2. A combinatorics approach

In this section we present a general setup that is common for all strategies. We
apply our combinatorics approach to selfish mining as done previously for Bitcoin
[6]. Dyck words and Catalan numbers are a powerful tool to compute the revenue
ratio of a selfish miner in Bitcoin. In [6] we proved the following Theorem and
Corollary:

Theorem 2.1. Let L be the number of official new blocks added to the official
blockchain after an attack cycle. We have

P[L = 1] = p ,

P[L = 2] = pq + pq2 ,
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and for n ≥ 3,

P[L = n] = pq2(pq)n−2Cn−2

where Cn = (2n)!
n!(n+1)! is the n-th Catalan number.

Corollary 2.2. We have E[L] = 1 + p2q
p−q .

We can represent the combinatorics information of an attack cycle ω by the
chronological sequence of blocks, S (for Selfish) and H (for Honest). The relation
between selfish mining and Dyck words is the following (see [6]),

Proposition 2.3. Let ω be an attack cycle starting with SS. Then, ω ends with H
and the intermediate sequence w defined by ω = SSwH is a Dyck word.

Definition 2.4. For n ≥ 0, we denote by Cn(x) =
∑n
k=0 Ckx

k, the n-th partial
sum of the generating series of the Catalan number.

Example 2.5. We have C4(x) = 1 + x+ 2x2 + 5x3 + 14x4.

Definition 2.6. We define π0 = π1 = 0 and for k ≥ 2,

πk = pq2(1k=2 + 1k≥2 · (pq)k−2Ck−2) .

The following lemma results from Theorem 2.1.

Lemma 2.7. Let ω be an attack cycle.

• For k ≥ 0, the probability that ω is won by the attacker and L(ω) = k is
πk.
• For k ≥ 2, the probability that ω is won by the attacker and L(ω) ≤ k is
pq2 + pq2Ck−2(pq).

Proof. We have either ω = SHS or ω starts with SS. The result then follows from
Lemma 6.2 in the Appendix. �

For Ethereum, the “static” part Rs of the revenue of the selfish miner coming
from rewards for validated blocks is the same as for Bitcoin. However, we need to
add the new terms Rs and Rn coming from uncle and nephew rewards.

Definition 2.8. If ω is an attack cycle, we denote by U(ω) (resp. Us(ω), Uh(ω))
the random variable counting the number of uncles created during the cycle ω which
are referred by nephew blocks (resp. nephew blocks mined by the selfish miner,
nephew blocks mined by the honest miners) in the cycle ω or in a later attack cycle.

We denote by V (ω) the random variable counting the number of uncles created
during the cycle ω and are referred by nephew blocks (honest or not) in an attack
cycle strictly after ω.
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We take from [3] the notation Ku for the uncles reward function, and we denote
by π the inclusion reward (see the glossary at the end).

For a general block withholding strategy, the random variables from Definition
2.8 do not contain all the information for the computation of the attacker’s revenue.
It depends not only on the number of uncles mined by the attacker but also on their
distance d to its corresponding nephews.

However, for a miner following a selfish mining strategy, the part of his revenue
coming from uncle rewards are easy to compute, as shown in the next Proposition,
because only the case d = 1 is possible. This observation was already made in [3].

Proposition 2.9. Let Ru(ω) be the total amount of uncle rewards of the selfish
miner during an attack cycle ω. We have:

E[Ru] = p2q(1− γ)Ku(1) .

Currently on Ethereum we have Ku(1) = 7
8b.

Proof. Let ω be an attack cycle. If ω = SHH with a second honest block mined on
top of another honest block after a competition, the attacker has an uncle which is
referred by the second honest block of the honest miners in the cycle ω. Otherwise,
if ω 6= SHH then the attacker has no uncle in the cycle ω (the only uncle blocks are
those mined by the honest miners). �

The apparent hashrate is the long term apparent hashrate of the attacker after
the manipulation of the difficulty by the attacker.

Definition 2.10. We denote by q̃B, resp. q̃E, the long term apparent hashrate of
the selfish miner in Bitcoin, resp. Ethereum, defined by

q̃B =
E[Rs]

E[L]

q̃E =
E[Rs] + E[Ru] + E[Rn]

E[L] + E[U ]

For Bitcoin we have the following formula (see [2] and [4]),

q̃B =
[(p− q)(1 + pq) + pq]q − (p− q)p2q(1− γ)

pq2 + p− q
For Ethereum only E[U ] and E[Us] are relevant for the computation of the ap-

parent hashrate of the selfish miner:

Theorem 2.11. We have

q̃E = q̃B ·
E[L]

E[L] + E[U ]
+
p2q(1− γ)Ku(1)

E[L] + E[U ]
+

E[Us]

E[L] + E[U ]
π .

Currently on Ethereum we have Ku(1) = 7
8 and π = 1

32 .
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Proof. Using Proposition 2.9, we have:

q̃E =
E[Rs] + E[Ru] + E[Rn]

E[L] + E[U ]

=
E[Rs]

E[L]
· E[L]

E[L] + E[U ]
+

E[Ru]

E[L] + E[U ]
+

E[Us]

E[L] + E[U ]
π

= q̃B ·
E[L]

E[L] + E[U ]
+
p2q(1− γ)Ku(1)

E[L] + E[U ]
+

E[Us]

E[L] + E[U ]
π

�

In next sections we compute E[Us] and E[U ] for different selfish mining strategies.

3. Strategy 1: Maximum belligerence signalling all uncles.

We consider here the strategy described in [3] where the attacker engages in
competition with the honest miners as often as possible, and signals all possible
“uncles’.

3.1. General definitions and basic results.

Definition 3.1. The relative height of an orphan block b validated by the honest
miners is the difference between the height of the secret fork of the attacker at the
time of creation of b and the height of b. We denote it h(b).

Example 3.2. For ω = SSSHSHSHH, the first three “honest” blocks have relative
height equal to 2 and the last “honest” block has a relative height equal to 1.

Proposition 3.3. Let b be an uncle block mined by an honest miner and signaled
by a nephew block which is at a distance d of b. Then, we have h(b) < d.

Proof. Let b′ be the last block mined by the selfish miner at the date of creation of
b. Notice that h(b) is also the number of blocks between b’s parent and b′. Thus
the distance between b and a possible nephew is necessarily strictly greater than
h(b). �

Note 3.4. Let n ≥ 0 and ω = SSw be an attack cycle with w = w1 . . . w2n+1,
wi ∈ {S,H} and w2n+1 = H. Then, w can be identified with a simple finite
path (Xi)06i62n+1 starting from 0, satisfying: ∀i 6 2n + 1, Xi = Xi−1 + 1 (resp.
Xi = Xi−1 − 1) if wi = S (resp. wi = H) and ending at X2n+1 = −1 (see the
Appendix). The index i indicates the (i+2)-th block validated during ω. It has been
mined by the attacker (resp. honest miners) if Xi = Xi−1+1 (resp. Xi = Xi−1−1).

Proposition 3.5. Let ω = SSw an attack cycle starting with two S with w =
w1 . . . w2n+1, wi ∈ {S,H} and w2n+1 = H. We denote by X : [0, 2n+ 1] −→
[−1,+∞] the path associated with w as in Note 3.4. For i 6 2n + 1, let bi denote
the i-th validated block in w. Then we have:

Xi < Xi−1 =⇒ h(bi) = Xi + 2
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Proof. By induction on i, we show that Xi + 2 represents the advance of the fork
created by the attacker over the official blockchain at the time of creation of the
i-th block in w. Now, if Xi < Xi−1 then by Note 3.4, bi is a block validated by
the honest miners. So h(bi) is well defined, and we get the result using Definition
3.1. �

Proposition 3.6. Let ω = SSw be an attack cycle starting with two S and let bi
be the i-th block validated in w. We denote by X the associated path according to
Note 3.4. If bi is an uncle then we have:

(1) Xi < n1 − 2
(2) Xi < Xi−1

Proof. This follows from Proposition 3.3 and Proposition 3.5. �

Definition 3.7. If ω = SSw is an attack cycle starting with two blocks S, then we
denote by H(ω) the random variable counting the number of blocks in the cycle ω
fulfilling (1) and (2) from Proposition 3.6.

If w is an attack cycle, the condition ω = SS . . . means that ω starts with two S.

Proposition 3.8. We have:

E[H(ω)|ω = SS . . .] =
p

p− q

(
1−

(
q

p

)n1−1
)

Proof. See Lemma 6.1 in the Appendix. �

3.2. Expected number of referred uncles by attack cycle. We can be more
precise in Proposition 3.6.

Lemma 3.9. Let ω = SSw and X be the associated path from Note 3.4. We denote
by bi the i-th block in w and suppose that conditions (1) and (2) from Proposition
3.6 are satisfied. The probability for bi to be an uncle is equal to γ, except when bi
is the first block validated by the honest miners, then this probability is 1.

Example 3.10. Suppose that n1 = 4 and let ω = SSw with w = SHSSSHHHH.
The blocks validated by the honest miners correspond to an index i ∈ E =
{2, 6, 7, 8, 9}. We have X6 = 2 and Xi < 2 for i ∈ E and i 6= 6. The first
block validated by the honest miners is an uncle with probability 1. The second
block validated by the honest miners is a stale block which cannot be referred by a
nephew block. All other blocks validated by the honest miners in ω can be uncles
with probability γ. Note also that the last three blocks of the honest miners are
not referred in ω and will be referred by the first future official block of the next
attack cycle.

Using these observations, we can now compute E[U ].
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Proposition 3.11. We have:

E[U ] = q +
q3γ

p− q
− p3

p− q

(
q

p

)n1+1

γ − qn1+1(1− γ)

Proof. If ω = H, then U(ω) = 0. If ω ∈ {SHS,SHH}, then, U = 1. Otherwise, ω
starts with two consecutive S. Then, by Proposition 3.8 and Lemma 3.9, we have,

E[U ] = (0·p)+1·(pq2+p2q)+(E[H(ω)|ω = SS . . .]γ+(1−γ)(p+pq+. . .+pqn1−2))·q2

The last term comes from the following fact: When the first honest block present in
ω corresponds to an index i satisfying Xi < n1 + 2, then its contribution to E[U ] is
underestimated by E[H(ω)|ω = SS . . .]γ because it has probability 1 to be an uncle.
This only occurs when ω starts with SS...SH with the first k blocks validated by
the selfish miner with k 6 n1, from where we get the last term. In conclusion we
have:

E[U ] = pq +

(
p

p− q

(
1−

(
q

p

)n1−1
)
γ

)
· q2 + (1− γ)(1− qn1−1) · q2

and we get the result by rearranging this last equation. �

Note 3.12. In particular, we obtain lim
n1→∞

E[U ] = q + q3γ
p−q . This limit can also be

derived by observing that if n1 = ∞, then E[U |L = n] = 1 + γ(n − 2) and using
Theorem 2.1.

Now, we compute the expected number of uncles per attack cycle which are
referred by nephews (honest or not) belonging to the next attack cycle.

Lemma 3.13. The probability for an attack cycle to end with exactly k consecutive
appearances of “H” with k ≥ 1, conditional that it starts with SS, is pqk−1.

Proof. Let k ≥ 1. An attack cycle ω ends with exactly k consecutive appearances
of “H” if and only if ω = SSwH where w is a Dyck word that ends with exactly
k − 1 “H”. The result then follows from Appendix, Lemma 6.4. �

Proposition 3.14. We have:

E[V ] =
q2

p
(1− qn1−1)γ + (1− γ)pq2 1− (pq)n1−1

1− pq

Proof. If an attack cycle ω does not start with two S, then V (ω) = 0. If ω starts
with two “S” and ends with exactly k “H” in a row (k ≥ 1), then only the last n1−1
blocks can be uncles signaled by future blocks. This happens with probability γ
for each block H in this sequence, except for the first block validated by the honest
miners if it belongs to this sequence. In this last case, ω = SS . . . SH . . .HH with at
most n1 letters S and n1 − 1 letters “H”. So, by Lemma 3.13, we have

E[V ] = q2
∑
k≥1

inf(k, n1 − 1)pqk−1γ + (1− γ)q

n1−1∑
k=1

(pq)k

�
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3.3. Expected revenue of the selfish miner from inclusion rewards. We
compute now E[Uh].

Proposition 3.15. We have:

E[Uh] = p2q + (p+ (1− γ)p2q)

(
q2

p
(1− qn1−1)γ + (1− γ)pq2 1− (pq)n1−1

1− pq

)

Proof. We have Uh(ω) = U
(1)
h (ω) + U

(2)
h (ω) where U

(1)
h (ω) (resp. U

(2)
h (ω)) counts

the number of uncles referred by honest nephews only present in ω (resp. in the

next attack cycle after ω). It is clear that U
(1)
h (SHH) = 1 and U

(1)
h (ω) = 0 if

ω 6= SHH. So,

(1) E[U
(1)
h ] = p2q

Moreover, given ω, the probability that H is the next official block after ω is p +
(1 − γ)p2q. This happens if and only if the next attack cycle is either H or SHH.
If this event occurs, then the first honest block in the next attack cycle will signal
the previous uncles created in ω. Therefore, we have

(2) E[U
(2)
h ] = (p+ (1− γ)p2q) · E[V ]

Hence, we get the result by (1), (2) and Proposition 3.14. �

Corollary 3.16. We have

E[Us] =q +
q3γ

p− q
− pq2

p− q

(
q

p

)n1−1

γ − qn1+1(1− γ)

−
[
p2q + (p+ (1− γ)p2q)

(
q2

p
(1− qn1−1)γ + (1− γ)pq2 1− (pq)n1−1

1− pq

)]

Proof. With the same notations as above, we have: U(ω) = Us(ω) +Uh(ω) and we
use Proposition 3.11 and Proposition 3.15. �

3.4. Apparent hashrate of Strategy 1. Using Theorem 2.11, Proposition 3.11
and Corollary 3.16 we can plot the region of (q, γ) ∈ [0, 0.5]× [0, 1] of dominance of
the selfish mining Strategy 1 (SM1) over the honest strategy. This corresponds to
q̃E > q. We obtain Figure 1.

We compute now the expected revenue of the honest miners by attack cycle. We
compute first the expected distance between uncles and nephews by attack cycle.
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HM SM1

Figure 1. Comparing HM and SM1 strategies.

3.5. Expected distance between uncles and nephews by attack cycle. If b
is an uncle, we denote by δ(b) the distance between b and its nephew. We start by
a remark.

Remark 3.17. Let b be an orphan block validated by the honest miners as in
Definition 3.1. If b is an uncle then δ(b) = h(b) + 1.

Definition 3.18. If ω = SSw is an attack cycle starting with two blocks S, we set

D(ω) =
∑
b

(h(b) + 1)

where the sum is taken over all honest blocks b in ω fulfilling Conditions (1) and
(2) from Proposition 3.6.

Proposition 3.19. We have:

E[D(ω)|ω = SS . . .] =
p

(p− q)2

(
2p− q −

(
p+ n1(p− q)

)
·
(
q

p

)n1−1
)

Proof. Let ω = SSw be an attack cycle starting with two S with w = w1 . . . wν and
let X be the associated path according to Note 3.4. In particular, we have Xν = −1
and Xi ≥ 0 for i < ν. By Proposition 3.5 and Lemma 6.1 in the Appendix, we
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have:

E[D(ω)|ω = SS . . .] = E

[
ν∑
i=1

(Xi + 3) · 1(Xi<n1−2)∧(Xi<Xi−1)

]

= E

[
ν∑
i=1

Xi · 1(Xi<n1−2)∧(Xi<Xi−1)

]
+ 3E

[
ν∑
i=1

·1(Xi<n1−2)∧(Xi<Xi−1)

]

=
p

(p− q)2

(
2q − p−

(
q + (n1 − 2)(p− q)

)
·
(
q

p

)n1−1
)

+
3p

p− q

(
1−

(
q

p

)n1−1
)

=
p

(p− q)2

(
2q − p+ 3(p− q)−

(
q − 2(p− q) + n1

(
p− q

)
+ 3
(
p− q

))
·
(
q

p

)n1−1
)

Hence, we get the result. �

Definition 3.20. Let ω be an attack cycle. We set

∆(ω) =
∑
b

δ(b)

The last sum being taken over all refered uncles in ω.

Proposition 3.21. We have

E[∆] =pq +
pq2γ

(p− q)2

(
2p− q −

(
p+ n1(p− q)

)
·
(q
p

)n1−1
)

+
(1− γ)q

p
(q(1 + p)− (1 + n1p)q

n1)

Proof. We proceed as in the proof of Proposition 3.11. If ω = H, then ∆(ω) = 0.
If ω ∈ {SHS,SHH}, then, ∆(ω) = 1. Otherwise, ω starts with two consecutive S.
Then, using Lemma 3.9, we get

E[∆] = pq2 + p2q + (E[D(ω)|ω = SS . . .]γ + (1− γ)(2p+ 3pq + . . .+ n1pq
n1−2)) · q2

The last term comes from the following fact: when the first honest block present in
ω corresponds to an index i satisfying Xi < n1 + 2, then its contribution to E[∆] is
underestimated by E[D(ω)|ω = SS . . .]γ because it has probability 1 to be an uncle.
This only occurs when ω starts with SS...SH with the first k blocks validated by
the selfish miner with k 6 n1, from where we get the last term. We have:

2q + 3q2 + . . .+ n1q
n1−1 = −1 +

(
qn1+1 − 1

q − 1

)′
= −1 +

(
qn1+1

q − 1

)′
−
(

1

q − 1

)′
= −1 +

(n1 + 1)qn1

q − 1
− qn1+1

(q − 1)2
+

1

(q − 1)2

= −1 +
1

p2
+

qn1

(q − 1)2
((n1 + 1)(q − 1)− q)

=
1− p2

p2
− qn1

p2
(q + (n1 + 1)p)

=
q(1 + p)

p2
− qn1

p2
(1 + n1p)
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So,

(3)
(
2p+ 3pq + . . .+ n1pq

n1−2
)
q2 =

q

p

(
q(1 + p)−

(
1 + n1p

)
qn1
)

Hence we get the result using Proposition 3.19. �

3.6. Deflation. With the new difficulty adjustment formula, the duration time of
an attack cycle in Ethereum is (E[L] + E[U ])τ1 where τ1 is the mean interblock
time in Ethereum (which is currently 15 seconds). The number of coins created
in an attack cycle is

(
E[L] + 7

8E[U ]− 1
8E[∆] + E[U ]π

)
b where b is the coinbase in

Ethereum. Thus, on average, there is a monetary creation of

E[L] +
(

7
8 + π

)
E[U ]− E[∆]

8

E[L] + E[U ]
b

for every inter-block time τ1, whereas without selfish miner, it is only b on average.
So, selfish mining leads to a deflation index

(4) ι =

(
1
8 − π

)
E[U ] + E[∆]

8

E[L] + E[U ]

Currently we have π = 1
32 , thus ι > 0.

3.7. Apparent hashrate of the honest miners. Let p̃ be the apparent hashrate
of the honest miners in presence of a selfish miner. We have

(5) p̃+ q̃ = 1− ι
where q̃ is the apparent hashrate of the selfish miner. We observe numerically that
q̃ > q − ι for any values of (q, γ). So, even if the attack is not profitable for the
selfish miner (case q̃ < q) we have p̃ < p which means that the honest miners are
impacted by the presence of a selfish miner in the network.

4. Strategy 2A: Brutal Fork signaling all uncles.

We study now another Selfish Mining Strategy (Strategy 2 or SM2): Brutal
fork. In this case, the attacker keeps secret his blocks as long as possible and only
releases its fork, all at once, at the end of the attack cycle. We call this strategy
”brutal fork” because this leads, periodically, to deep reorganizations of the official
blockchain. Strategy 2A (or SM2A) corresponds to the case when also the attacker
refers all possible uncles.

Proposition 4.1. We have E[U ] = q − qn1+1.

Proof. We have U = 0 if and only if the attack cycle is H or if it starts with n1 + 1
blocks of type S. Otherwise, we have U = 1. So,

E[U ] = P[U > 0] = 1− (p+ qn1+1) = q − qn1+1

�

We compute now E[V ]

Proposition 4.2. We have E[V ] = pq2 · 1−(pq)n1−1

1−pq .
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Proof. We have V = 1 if and only if the attack cycle ω is SS..SH..H with 2 ≤ k ≤ n1

S. In that case, the first H is an uncle signaled by the first future official block in
the attack cycle after ω. Otherwise, V = 0. So, E[V ] = pq2 + . . . + pn1−1qn1 , and
we get the result. �

Proposition 4.3. We have E[Uh] = p2q +
(
p+ (1− γ)p2q

)
pq2 · 1−(pq)n1−1

1−pq .

Proof. The proof is almost identical as the proof of Proposition 3.15. If U
(1)
h (ω)

(resp. U
(2)
h (ω)) counts for the number of uncles referred by honest nephews only

present in ω (resp. in the attack cycle just after ω), then we have E[U
(1)
h ] = p2q,

E[U
(2)
h ] =

(
p+ (1− γ)p2q

)
· E[V ] and Uh = U

(1)
h + U

(2)
h . The only difference is the

value of E[V ] which this time is given by Proposition 4.2, and we get the result. �

Corollary 4.4. We have

E[Us] = E[U ]− E[Uh] = q − qn1+1 −
(
p2q +

(
p+ (1− γ)p2q

)
pq2 · 1− (pq)n1−1

1− pq

)

Note 4.5. When γ = 0, the two strategies 1 and 2A are identical: in both cases,
the honest miners always build blocks on top of honest blocks. So, E[U ], E[Uh] and
E[Us] must coincide for γ = 0. We can check in the different formulas that this is
the case. See Propositions 3.11, 3.15,4.1, 4.3 and Corollaries 3.16, 4.4.

4.1. Apparent hashrate of Strategy 2A. We use again Theorem 2.11 and we
plot in parameter space in Figure 2 the region of (q, γ) ∈ [0, 0.5]× [0, 1] comparing
Selfish Mining Strategy 2A to the honest strategy.

We observe that if γ = 0 then we have SM2A is superior to honest mining when
q > 28.65%. Also we have for all values of q and γ that SM2A is superior to SM1.
Therefore it is never profitable for the attacker to engage in competitions with the
honest miners.

4.2. Apparent hashrate of the honest miners. We compute first the expected
distance between an uncle and its nephew. We keep the same notation for ∆ as in
Definition 3.20.

Proposition 4.6. We have E[∆] = q
p

(
q(1 + p)−

(
1 + n1p

)
qn1
)

Proof. If an attack cycle ω starts with S...SH with k S, k ≤ n1, then there is exactly
one uncle in ω and its distance to its nephew is k. In any other cases, there is no
uncle in ω. Therefore, E[∆] =

∑n1

k=1 kpq
k Hence we get the result by (3). �

The apparent hashrate p̃ of the honest miners is p̃ = 1− q̃− ι with ι given by (4).
Numerically, we observe that we have always p̃ < p except in a tiny region when q
and γ is small (q < 6% and γ < 22%).
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HM SM2A

Figure 2. Comparing HM and SM2A strategies.

Figure 3. Comparing p̃ and p: The honest miners are negatively
affected even when the attack is not profitable for the selfish miner
except for a tiny region around (0, 0) (case SM2A).

5. Strategy 2B: Brutal Fork without signaling uncles.

In this strategy, the attacker signals no uncles in order to maximize the impact
on the difficulty adjustment formula. In that case we have Us = 0. In our analysis
of the profitability of the strategy, we need to consider another important rule
of Ethereum’s protocol: a nephew can only signal at most two uncles. Instead
of computing E[U ], it is simpler to compute E[U ′] where U ′(ω) is defined as the
number of signaled uncles with nephews in ω. We have,

(6) E[U ] = E[U ′]

Since the attacker does not signal uncles, we have U ′(ω) = 0 if ω /∈ {H,SHH}.
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To ease notations, we set U ′(H) for U ′({H}).

Lemma 5.1. We have:

P[U ′(H) = 1] =
∑n1−2
i=2

(
1− pq2 − pq2Cn1−2−i(pq)

)
πi + πn1−1 + πn1

P[U ′(H) = 2] =
∑
i+j≤n1

πiπj
P[U ′(H) ≥ 3] = 0

Proof. We have U ′(H) = 1 if and only if the two last attack cycles before H are in
the following order from the oldest to the most recent one: ω′ and ω such that:

(1) ω won by the attacker with L(ω) 6 n1.
(2) ω′ won by the honest miners or by the attacker but with L(ω′) > n1−L(ω).

Note that if L(ω) > n1 − 1 then (2) is automatically satisfied. So,

P[U ′(H) = 1] =

n1−2∑
i=2

(
1− pq2 − pq2Cn1−2−i(pq)

)
πi + πn1−1 + πn1

In the same way, we have U ′(H) = 2 if and only if the two last attack cycles
before H are ω′ and ω such that ω′ and ω are both won by the attacker with
L(ω) + L(ω′) ≤ n1. Indeed, a block can only refer at most two uncles. Hence, we
get the result. �

Example 5.2. For n1 = 6, we have using Example 2.5:

P[U ′(H) = 1] =π5 + π6 +
∑
i64

(1− pq2 − pq2C4−i(pq))πi

=pq2
(
14p4q4 + p3(5− 9q)q3 + 2p2(1− 2q)q2 + p

(
q − 4q2

)
+ 2
)

P[U ′(H) = 2] =π2
2 + 2π2π3 + 2π2π4 + π3

3

=p2q4
(
5p2q2 + 2pq + 4

)
P[U ′(H) ≥ 3] =0

Definition 5.3. We define Pn1
(p, q) = E[U ′(H)].

Example 5.4. When n1 = 6, we have by Example 5.2:

P6(p, q) = pq2
(
14p4q4 + p3(q + 5)q3 + 2p2q2 + p(4q + 1)q + 2

)
Lemma 5.5. We have

E[U ′(ω)|ω = SHH] = (Pn1
(p, q) + 1) · (1− γ) + (pq2 + pq2Cn1−3(pq) + 1) · γ

Proof. Suppose that ω =SHH. We have two cases: The second honest block can
be built on top of a block validated by the selfish miner or not. If the first official
block of ω is honest, then it signals any uncle which is at distance less or equal than
n1, like in the previous situation. Moreover, the first block mined by the selfish
miner is an uncle signaled by the second block mined by the honest miners. This
gives the first term of the right hand side. If the first official block of ω is a block
mined by the attacker, then the first block validated by the honest miners is an
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uncle signaled by the second block mined by the honest miners. This last block will
also signal another uncle which is at distance less than n1 − 1 of the first official
block of ω. There is such an uncle if and only if the attack cycle ω′ before ω is an
attack cycle won by the attacker with L(ω′) ≤ n1 − 1. This gives the second term
of the right hand side. Hence, we get the result. �

Theorem 5.6. We have

E[U ] = (p+ (1− γ)p2q)Pn1
(p, q) + γp2q

(
pq2 + pq2Cn1−3(pq)

)
+ p2q

Proof. We have E[U ] = E[U ′] and

E[U ′] = E[U ′(ω)|ω = H]P[ω = H] + E[U ′(ω)|ω = SHH]P[ω = SHH]

= Pn1
(p, q)p+ (Pn1

(p, q) + 1) · (1− γ)p2q + (pq2 + pq2Cn1−3(pq) + 1) · γp2q

�

5.1. Apparent hashrate of Strategy 2B. The computation of E[U ] is a poly-
nomial expression in p and q that can be carried out with the help of a com-
puter algebra system. We plot in parameter space in Figure 3 the region of
(q, γ) ∈ [0, 0.5]× [0, 1] comparing Selfish Mining Strategies 2A and 2B, and honest
mining. We also compare SM1, SM2A and SM2B in Figure 4.

We observe that if γ = 0 then we have SM2B is superior to honest mining when
q > 28.80%. Also, for q > 30.13% we have that SM2B is even better than SM2A
(whathever γ is). Thus, in this case, the attacker does not even need to bother to
signal blocks.

HM SM2B

SM2A

Figure 4. Comparing the strategies HM, SM2A and SM2B.
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Figure 5. Comparing the strategies SM1 (black), SM2A (blue)
and SM2B (red).

5.2. Apparent hashrate of the honest miners.

Definition 5.7. If ω is an attack cycle, we denote by ∆′(ω) the average num-
ber of the distance between a nephew belonging to ω and an uncle which does not
necessarily belong to ω.

In a similar way as before, we prove:

Lemma 5.8. We have

E[∆′(ω)|ω = H] =
∑
|i|6n1

∑
j

j · ij

(1− pq2 − pq2Cn1−2−|i|(pq)
)∏

j

πij

Definition 5.9. We define Qn1(p, q) = E[∆′(ω)|ω = H]

The same computations as in the previous section leads to

Q5(p, q) = pq2
(
25p3q3 + 20p2q3 + 8p2q2 + 16pq2 + 3pq + 4

)
Q6(p, q) = pq2

(
84p4q4 + 54p3q4 + 25p3q3 + 96p2q4 + 20p2q3 + 8p2q2 + 16pq2 + 3pq + 4

)
This enables us to compute E[∆′] using the following result with n1 = 6.

E[∆′] = (p+ (1− γ)p2q)Qn1
(p, q) + γp2qQn1−1(p, q) + p2q .

Finally, we note that E[∆] = E[∆′]. From here, we get the apparent hashrate of
the honest miners using (4) and (5). We observe numerically that we have always
p̃ < p.
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6. Conclusions

We have given closed-form formulas for the long term profitability of different
selfish mining strategies in the Ethereum network. This is combinatorially more
complex than in Bitcoin network which has a simpler reward system. Precisely, the
particular reward system that incentives signaling blocks is an effective counter-
measure to Selfish mining but only when the count of uncle blocks are incorporated
into the difficulty adjustment formula (this is the case for the current implementa-
tion of the difficulty adjustment formula). This analysis provides a good illustration
of the fact that selfish mining is an attack on the difficulty adjustment formula. We
study, for the first time, selfish mining strategies that do not signal any blocks.
We prove that they are the most profitable ones in the long run. It may appear
counter-intuitive that refusing the signaling fees is the most profitable strategy with
the current reward parameters when q is larger than 30%. But this is explained
again because selfish mining is an attack on the difficulty adjustment formula.

Appendix

6.1. Random walk. We compute the expected numbers of descents in a biased
random walk conditional to be bounded by a fixed bound.

Lemma 6.1. Let (Xk) be a biased random walk starting from X0 = 0 with P[Xk+1 =
Xk + 1] = q and P[Xk+1 = Xk − 1] = p for k ∈ N, with p + q = 1 and q < p. Let
ν(X) be the stopping time defined by ν(X) = inf{i ≥ 0;Xi = −1}, and for n ≥ 0,
let

un(X) =

ν∑
i=1

1(Xi<n)∧(Xi<Xi−1)

vn(X) =

ν∑
i=1

Xi · 1(Xi<n)∧(Xi<Xi−1)

Then we have

un = E[un(X)] =
p

p− q

(
1−

(
q

p

)n+1
)

(7)

vn = E[vn(X)] =
p

(p− q)2

(
2q − p−

(
q + n(p− q)

)
·
(
q

p

)n+1
)

(8)

Proof. We have u0 = 1 (resp. v0 = −1). If X1 = −1, then we have un(X) = 1
(resp. vn(X) = −1). If X1 = 1, then

un(X) =

ν′∑
i=1

1(X′i<n−1)∧(X′i<X
′
i−1) +

ν
′′∑

i=1

1(X
′′
i <n)∧(X

′′
i <X

′′
i−1)

=un−1(X ′) + un(X
′′
)

with
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X ′i =Xi+1 − 1

ν′ = inf{i > 0;X ′i = −1}

X
′′

i =X ′i+ν′ −X ′ν′

ν
′′

= inf{i > 0;X
′′

i = −1}

By the Markov property, X ′ and X
′′

are two independant simple biased random
walk with a probability p (resp. q) to move to the left (resp. right). So, taking
expectations, we get:

un = p · 1 + q · (un−1 + un)

which is equivalent to

un −
p

p− q
=

(
q

p

)(
un−1 −

p

p− q

)
So we get (7) by induction on n. In the same way, we have:

vn(X) =

ν′∑
i=1

(X ′i + 1) · 1(X′i<n−1)∧(X′i<X
′
i−1) +

ν”∑
i=1

X
′′

i · 1(X
′′
i <n)∧(X

′′
i <X

′′
i−1)

=un−1(X ′) + vn−1(X ′) + vn(X
′′
)

Taking expectations again, we get

(9) vn = p · (−1) + q · (un−1 + vn−1 + vn)

Set cn =
(
p
q

)n
vn. Then, (9) leads to

cn =cn−1 +

(
p

q

)n−1

un−1 −
(
p

q

)n
=cn−1 +

(
2q − p
p− q

)
·
(
p

q

)n
− q

p− q
So, by induction, we get

cn = c0 +

(
2q − p
p− q

)
·
(
p

q

)
·
(
p
q

)n − 1(
p
q

)
− 1

− nq

p− q

After rearranging terms, we get (8). �

6.2. Dyck words. Let D be the space of Dyck words based on the alphabet {S,H}.
If w = w1 . . . w2k with k ∈ N, then we define |w| = k. We have proved in [6] that
we can endow D with a probability measure P̄ given by P̄[w] = p(pq)|w| for w ∈ D.
Note that P̄[w] can be interpreted as the probability that a simple biased random
walk X starting from 0 and stopping at −1 follows exactly the path given by w i.e.,
Xi = Xi−1 + 1 (resp. Xi = Xi−1 − 1) if wi = S (resp. wi = H) for i 6 2|w| and
X2|w|+1 = −1.

Lemma 6.2. Let n ≥ 0 and Dn = {w; |w| 6 n}. Then, P̄[Dn] = pCn(pq) where
Cn(x) is the n-th partial sum of the generating series C(x) of the Catalan numbers.
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Proof. We have

P̄[Dn] =
∑
w∈Dn

p(pq)|w| = p

n∑
k=0

∑
|w|=k

(pq)k = p

n∑
k=0

Ck(pq)k = pCn(pq)

�

We can make more precise Proposition 2.3.

Proposition 6.3. Let ω = SSwH be an attack cycle starting with SS. Then, w ∈ D
and P[ω] = q2P̄[w]

Lemma 6.4. The probability that a Dyck word ends with the subsequence SHH..H
with n letters H at the end is pqn.

Proof. Consider the “reversal” map σ : D −→ D given by

w = w1 . . . w2|w| 7−→ σ(w) = w̃ = w̃2|w| . . . w̃1

with w̃i = S (resp. H) if wi = H (resp. S). Then σ is one to one and preserves
P̄ i.e., for w ∈ D, we have P̄[σ(w)] = P̄[w]. So, the probability that a Dyck word
ends exactly with n letter(s) H is the same as the probability that a Dyck word
starts with n letter(s) S and then is followed by a letter H. Thus this probability is
pqn. �

For w ∈ D, we define f(w) = inf{i ≥ 0;wi = H}.

Lemma 6.5. Let n ≥ 0 and E = {w ∈ D; f(w) 6 inf{|w|, n}}. Then we have

P̄[E] = (1− qn)− p(1− (pq)n)

1− pq
Proof. Let w ∈ D. To have f(w) 6 |w| means that at least one H is followed by an
S i.e., w is not of the form SS...SHH...H. For all integer k 6 n, we have

Σw;(f(w)=k)∧(f(w)6|w|)(pq)
|w| = pqk−1 ·

k−2∑
j=0

qpj

So, if we consider a biased random walk starting from 0 with a probability p to move
to the left (resp. right) then both terms represent the probability of the following
event: We have k − 1 first step(s) to the right, then j + 1 steps to the left with
0 6 j 6 k− 2 and then at least one step to the right before reaching 0. So, we have

P̄[E] =

n∑
k=1

pqk−1 ·
k−2∑
j=0

qpj

= p

n∑
k=1

qk−1 · (1− pk−1)

= p

n∑
k=1

qk−1 − p
n∑
k=1

(pq)k−1

= (1− qn)− p(1− (pq)n)

1− pq
�
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6.3. Glossary.

6.3.1. Revenue ratio and apparent hashrate. The revenue ratio Γ̃ of a miner fol-
lowing a strategy with repetitions of attack cycles like selfish mining is given by

Γ̃ = E[R]
E[T ] where R (resp. T ) is the revenue of the miner after an attack cycle (resp.

the duration time of an attack cycle). The apparent hashrate q̃ is defined by q̃ = Γ̃ τ
b

where b (resp. τ) is the coinbase (resp. interblock time).

6.3.2. Terminology. Ethereum has a special terminology that we summarize.

Uncle orphan block whose parent belongs to the official blockchain
Nephew regular block that refers to an “uncle” which is at a distance less than n1

Distance number of official blocks between a nephew N and a parent’s uncle U.

6.3.3. Mining reward. If an uncle U is referred by a nephew N which is at a distance
d, then U earns an “uncle reward” which is worth Ku(d)b and N gets an additional
reward of Kn(d)b, where b is the coinbase. Also, a nephew can refer at most two
uncles. Today, on Ethereum, we have b = 2 ETH, Ku(d) = 8−d

8 ·1d6n1 with n1 = 6

and Kn(d) = π = 1
32 .

Uncle reward reward granted to an uncle block referred by a nephew
inclusion reward additional reward granted to a nephew that refers an uncle
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