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Models that can be used to describe nanoporous gold are often generated either by phase-field or Monte-Carlo methods. It is not ascertained that these models are closely matching experimental systems, and there is a need for other variants. Here is proposed an original approach to generate alternative models, which is solely based on molecular dynamics simulations. Structures obtained with this method are structurally characterized by determining the ligaments diameter distributions, the scaled genus densities and the interfacial shape distributions. Selected mechanical characterizations are also done by deforming the structures in tension and in compression. Structural and mechanical properties are in good agreement with experimental and theoretical published results.

Introduction

Sponge-like nanoporous gold (NPG) is a nanoarchitectured free-standing material resulting from the self-organization of gold after the selective dissolution of silver in a AuAg alloy. NPG can be potentially useful in various fields such as catalysis [START_REF] Fujita | Atomic origins of the high catalytic activity of nanoporous gold[END_REF] (due to its high specific surface area and to its atomic sized defects created by the curvature of ligaments), detection of biomolecules [START_REF] Wei | Nanoporous gold film based immunosensor for label-free detection of cancer biomarker[END_REF][START_REF] Chen | Biofunctionalized nanoporous gold for electrochemical biosensors[END_REF] (due to its high conductivity and good biocompatibility) and of neural activity in noisy environments [START_REF] Seker | The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies[END_REF], or as photosystems [START_REF] Jia | Enhanced Photoelectrocatalytic Activity of Methanol Oxidation on TiO 2 -Decorated Nanoporous Gold[END_REF][START_REF] Peter | Functionalized Nanoporous Gold Leaf Electrode Films for the Immobilization of Photosystem I[END_REF]. In addition to being potentially functionalized, NPG has the interesting property of being both light and resistant. However, some of its characteristics remain poorly understood [START_REF] Jin | Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts[END_REF]. For example, the strength and stiffness tend to deviate from the Gibson-Ashby scaling laws [START_REF] Ruestes | Hardening under compression in Au foams[END_REF][START_REF] Sun | Mechanical properties and scaling laws of nanoporous gold[END_REF][START_REF] Liu | Interpreting anomalous low-strength and low-stiffness of nanoporous gold: Quantification of network connectivity[END_REF]. Also, gold is known to be a highly ductile material but NPG yields by brittle fracture during tensile tests [START_REF] Biener | Microscopic failure behavior of nanoporous gold[END_REF][START_REF] Briot | Mechanical properties of bulk single crystalline nanoporous gold investigated by millimetre-scale tension and compression testing[END_REF]. Hence, it is of great interest to understand the fundamental elementary mechanisms leading to this behavior.

Molecular dynamics (MD) simulations are wellsuited for investigating mechanisms at the atomic scale. However, a prerequisite for such simulations is to have realistic models of NPG. These are usually generated using phase-field [START_REF] Ruestes | Hardening under compression in Au foams[END_REF][START_REF] Sun | Mechanical properties and scaling laws of nanoporous gold[END_REF][START_REF] Ruestes | Mechanical properties of Au foams under nanoindentation[END_REF][START_REF] Farkas | Mechanical response of nanoporous gold[END_REF][START_REF] Mangipudi | Topologydependent scaling laws for the stiffness and strength of nanoporous gold[END_REF], Monte-Carlo [START_REF] Ngô | Anomalous compliance and early yielding of nanoporous gold[END_REF][START_REF] Ngô | On the origin of the anomalous compliance of dealloying-derived nanoporous gold[END_REF][START_REF] Zinchenko | Nanoporous gold formation by dealloying: A Metropolis Monte Carlo study[END_REF][START_REF] He | Deformation mechanisms and ductility enhancement in core-shell Cu@Ni nanoporous metals[END_REF] methods. Phasefield methods are based on numerically solving the Cahn-Hilliard equation to reproduce spinodal decomposition. The dealloying process is then modeled as a diffusion phenomenon at the interface between two phases. Monte-Carlo methods explore multiple configurations of the system and keep the best ones based on thermodynamic considerations. The geometry of NPG models can next be compared to tomographic reconstructions of NPG samples. The latter can be obtained using focused ion beam [START_REF] Mangipudi | A FIB-nanotomography method for accurate 3d reconstruction of open nanoporous structures[END_REF], transmission electron microscope [START_REF] Rösner | Reconstructing a Nanoporous Metal in Three Dimensions: An Electron Tomography Study of Dealloyed Gold Leaf[END_REF] or by transmission x-ray microscope [START_REF] Yu-Chen Karen Chen-Wiegart | Structural evolution of nanoporous gold during thermal coarsening[END_REF][START_REF] Yu-Chen Karen Chen | Morphological and topological analysis of coarsened nanoporous gold by x-ray nanotomography[END_REF]. Note that these reconstructed samples can also be used as realistic models of NPG for MD simulations.

To compare NPG models, different structural properties can be used, such as the ligaments diameter distribution (D m ), the scaled genus density (g v ) which quantifies the connectivity, and the interfacial shape distribution (ISD) which is the dis-tribution of the local curvature of the ligaments and characterizes the morphology. The structural properties of NPG are highly correlated to mechanical or catalytic properties [START_REF] Fujita | Atomic origins of the high catalytic activity of nanoporous gold[END_REF][START_REF] Mangipudi | Topologydependent scaling laws for the stiffness and strength of nanoporous gold[END_REF][START_REF] Badwe | Me-chanical properties of nanoporous gold in tension[END_REF]. Models can also be compared on the basis of mechanical considerations. The elastic moduli, the strength, the local and global mechanisms of plastic deformation, as well as the mechanisms of rupture are appropriate indicators.

Hereinafter, we present a new method to generate NPG models which is entirely based on molecular dynamics. The purpose of this paper is twofold: first, to describe the method, and second to propose few structural and mechanical characterizations demonstrating the soundness of the generated systems. The method is fully described in section 2. The following section presents the results of the structural and mechanical characterizations. Finally, the main conclusions are outlined in section 4.

Methods

The MD simulations were run with the opensource code LAMMPS [START_REF] Plimpton | Fast parallel algorithms for short-range molecular dynamics[END_REF]. Periodic boundary conditions have been applied along the three directions of space, and a timestep of 1 fs has been used to assure integration stability of Newton equations. The different characterizations have been made with the open source software Ovito [START_REF] Stukowski | Visualization and analysis of atomistic simulation data with Ovito-the open visualization tool[END_REF] and the commercial package Avizo.

General concepts of the method

To illustrate the different steps of the method, one can refer to the figure 1. Two different species with defined concentrations are first introduced in the simulation box. Gold and silver are chosen because their melting temperatures are relatively close. Then, a first MD run is performed at a temperature T d , here equal to 1800 K, higher than the melting point of both elements. By making the Ag and Au phases artificially immiscible (see section 2.2), the system evolves to form distinct Au and Ag phases, as shown in the figure 3. These phases are continuous and their morphologies essentially depend on simulation time, initial concentrations and temperature. Finally, the silver phase is deleted and the liquid gold one is replaced by a crystalline phase using a homemade script detailed in section 2.5, leading to a monocrystalline NPG.

Interatomic potentials

In the MD simulations, the Au-Au and Ag-Ag interactions are described by the EAM potentials developed by Foiles et al. [START_REF] Foiles | Embeddedatom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys[END_REF]. The lattice parameter of Au given by this potential is 4.08 Å. For the Au-Ag interactions, a fully repulsive Lennard-Jones potential is used. Although such a potential is not able to provide a realistic description of the Au-Ag alloy, it is convenient to accelerate the demixing since it makes Au and Ag strictly immiscible. The energy versus the distance between two atoms is given by :

E(r) = 4 σ r 12 - σ r 6 , r < r c ( 1 
)
where r is the interatomic distance, σ is the distance at which the energy equals zero, is a scaling energy parameter and r c is the cutoff distance (i.e. the distance beyond which two atoms do not interact).

In order to have a fully repulsive potential, σ must be equal or higher than r c . The continuity of the energy as a function of the interatomic distance is ensured by making σ and r c equal. σ is the most influential parameter. A too low value leads to the formation of atom clusters embedded in the other phase. A too high value prevents cluster formation but creates a significant void region between the two phases. This void may lead to an error in the setting of foam density (detailed in section 2.3). Besides, the higher is σ, the smoother is the interface. These cases described above are shown in Fig. 2. In the following we chose σ = r c = 7 Å (Fig. 2 (b)) and = 0.001 eV as appropriate values.

Initial setup

With our method, the relative density ρ can be precisely set. It is defined as the density of the foam over the density of the bulk, and is also equal to the volume of the gold phase V Au over the total volume of the foam V . In addition, we have :

N Au = V Au × δ Au , (2) 
where N Au is the number of gold atoms and δ Au is the volumetric atomic density of the gold phase at T d . δ Au depends on the temperature and is computed by first filling a cubic simulation box of 22 nm 3 with fcc gold atoms and next letting the system evolves at the temperature T d in the NPT ensemble for 100 ps with the EAM Au-Au potential. δ Au is then obtained by dividing the number of Au atoms by the volume of the box. Hence, the number of Au atoms to put in the simulation box for the desired ρ at T d is:

N Au = ρ × V × δ Au (3)
By the same line of reasoning, the number of silver atoms to put in the simulation box to fill the remaining volume is:

N Ag = (1 -ρ) × V × δ Ag (4)
Note that this does not take into account the reduction of gold phase volume due to the relaxation of surface stresses during the stabilization of the upcoming crystalline structure. 

Demixing process

The estimated numbers of gold and silver atoms are next randomly placed in the simulation box, 1000 steps are first performed using the conjugate gradient algorithm to move apart overlapping atoms. Then a MD run is done in the NVT ensemble at T d and with a temperature damping parameter of 0.05 ps. The gold phase morphology, and in particular the mean diameter D m of foam ligaments can be monitored during the demixing by computing the specific surface S v = S Au /V Au of the gold phase with a software like Ovito [START_REF] Stukowski | Visualization and analysis of atomistic simulation data with Ovito-the open visualization tool[END_REF] (where S Au and V Au are the surface area and the volume of the gold phase, respectively). S v is shown to be inversely proportional to the D m (Fig. 4), which is determined using the skeletonization method detailed in the section 3.1). The proportionality coefficient has a weak dependence on ρ and on the parameters used to determine S v . In Ovito, S v is obtained by meshing the surface using a virtual probing sphere method [START_REF] Stukowski | Computational Analysis Methods in Atomistic Modeling of Crystals[END_REF]. The sphere radius is here set to 5 Å so that the ratio V Au /V is equal to ρ. The duration of the MD run then depends on the desired morphology (controlled by a visual inspection and S v monitoring). Typically, a mean diameter of 4 nm is attained after 100 ps with the potentials used in this work (Fig. 4). Once the mean diameter has attained the desired value, the MD simulation is stopped.

The use of the repulsive potential makes gold and silver immiscible, allowing for phase separation thanks to volume diffusion. Then the process re-sembles spinodal decomposition. However, it is not obvious that the resulting phase separation mechanism is exactly the same to the one modeled by phase field approaches. For instance, it is interesting to note that, being atomistic, our method allows for atomic diffusion at the Ag-Au interface during model generation, leading to gold surface smoothening as in dealloying. 

From liquid gold to the final NPG model

The liquid silver phase is next entirely deleted. In order to replace the liquid gold phase by a crystalline phase, one can create a surface mesh of the liquid phase and fill this closed surface by a crystalline phase. Some open source codes exist for this purpose (see for example Nanosculpt [START_REF] Prakash | Nanosculpt : A methodology for generating complex realistic configurations for atomistic simulations[END_REF]). We developed a homemade procedure for additional flexibility and potentialities (like creating a polycrystalline foam). In this one, the simulation box that already contains the gold liquid phase is entirely filled with a monocrystalline gold fcc structure. The chosen crystallographic orientations are <100> in the three principal directions x, ŷ and ẑ of the simulation box. We focus here on monocrystalline structures, given the dimensions of MD models [START_REF] Senior | Synthesis of tough nanoporous metals by controlled electrolytic dealloying[END_REF][START_REF] Van Petegem | On the Microstructure of Nanoporous Gold: An X-ray Diffraction Study[END_REF][START_REF] Parida | Volume Change during the Formation of Nanoporous Gold by Dealloying[END_REF], even if it is possible to generate polycrystalline NPG with this method. Next, logical operations are performed to keep only atoms of the crystalline phase that overlap or are very close to atoms of the liquid phase (with a maximum separation of 3 Å). Finally, the entire liquid phase is deleted.

Afterwards, stresses in the newly created crystalline foam are relaxed according to the following procedure. First, a MD run is performed at 900 K in the NVT ensemble during 0.2 ns. This run allows for a rough relaxation of surface stresses. A second MD run is next performed in the NPT ensemble at 900 K during 1 ns to make pressure vanish on the simulation box. A resulting structure is shown in figure 5. Because of the known limitations of MD calculations (number of atoms, time scale) and to preserve a minimum number of ligaments in the simulation box, D m is kept lower than 7 nm in this work. Diameters for some of the experimental NPG are in this range [START_REF] Qian | Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation[END_REF][START_REF] Zhang | Dealloying strategy to fabricate ultrafine nanoporous gold-based alloys with high structural stability and tunable magnetic properties[END_REF][START_REF] Qian | Alumina coating of ultrafine nanoporous gold at room temperature and their optical properties[END_REF][START_REF] Zhang | Formation of ultrafine nanoporous gold related to surface diffusion of gold adatoms during dealloying of Al 2 Au in an alkaline solution[END_REF].

At this point, we have generated a single crystalline nanoporous gold structure, which is visually similar (see Fig. 5) to other models reported in the literature [START_REF] Mangipudi | Topologydependent scaling laws for the stiffness and strength of nanoporous gold[END_REF], or to real samples reconstructed by tomography [START_REF] Yu-Chen Karen Chen | Morphological and topological analysis of coarsened nanoporous gold by x-ray nanotomography[END_REF][START_REF] Fujita | Three-dimensional morphology of nanoporous gold[END_REF].

MD Mechanical tests

A first MD run is performed at 100 K in the NPT ensemble during 0.5 ns for thermalization. For all the compressive and tensile uniaxial deformation tests a constant engineering strain rate of 10 8 s -1 is used, as well as damping parameters of 0.1 ps and 1 ps for temperature and pressure control. The tests are performed by varying the box dimension along ẑ and allowing only dimensions along x and ŷ to relax. The structures are deformed along [100] from 0 % to 30 % engineering strain, both in tension and in compression. The elastic moduli are calculated by a linear fit of the stress-strain curves for strains ranging from 0% to 2%.

Results

The aim of this part is to validate our approach by comparing structural and mechanical characterizations of our models to the state of the art. Results shown in figures 6, 8, 10, 12 and 13 are obtained using the same foam model. All other results (that show a dependance on ρ) are obtained with multiple models of different D m .

Structural analysis

In this section the relevant structural properties of our NPG models are compared to the literature. The skeletonization method is suitable to compute the mean diameter D m of the foam ligaments. In this approach [START_REF] Ma | A Fully Parallel 3d Thinning Algorithm and Its Applications[END_REF][START_REF] Tsao | A parallel thinning algorithm for 3-D pictures[END_REF], the volume is thinned until only a one-voxel thick skeleton remains. After thinning, each ligament can be distinguished. At each point of the skeleton, the number of removed voxels allows to determine the local thickness. With this information, the diameter of each ligament and therefore the mean diameter of the foam can be obtained. Figure 6 shows the probability density function of the ligaments diameter of one of our systems (ρ = 0.43, V 45 3 nm 3 and D m = 3.7 nm). This quantity can be described by a normal distribution for all our models. A second important property is the scaled genus density:

g v = g V × S -3 v , ( 5 
)
where g is the genus of the closed surface, V the total volume of the foam and S v the specific surface. The genus is calculated as follows: first, the surface mesh is built with millions of triangular faces using the method implemented in Ovito [START_REF] Stukowski | Computational Analysis Methods in Atomistic Modeling of Crystals[END_REF], based on the alpha-shape method. Then, one can compute:

χ = V -E + F, ( 6 
)
where χ is the Euler characteristic, V the number of vertices, E the number of edges and F the number of faces forming the closed surface. Then, the genus is: A simpler definition of the genus is the number of holes, or handles, made by the closed surface. For example, a sphere, a torus and a double torus have a genus g = 0, g = 1 and g = 2, respectively. Hence, the genus is representative of the connectivity (the topology) of the foam. But this quantity is not convenient for comparing systems whose volume or mean diameter are different. This is why the genus is usually normalized by the total volume of the foam and made dimensionless by the cubed characteristic thickness of the foam given by S -3 v (which is proportional to D 3 m ). All the values of g v available in the literature to our knowledge as well as ours are plotted as a function of ρ in Fig. 7. g v for our structures appears to be nearly proportional with ρ . Such a dependence could be related to the range of studied ligament diameter. For instance Kwon et al. [START_REF] Kwon | The topol-ogy and morphology of bicontinuous interfaces during coarsening[END_REF] show that g v for NPG models can depend on the ligament diameter under certain conditions. However, it is also reported that experimental structures with different diameters are self-similar and that g v does not depend on the ligament diameter [START_REF] Hu | Nanoporous gold: 3d structural analyses of representative volumes and their implications on scaling relations of mechanical behaviour[END_REF]. Note that, the g v values of the latter study are not included in Fig. 7 because their data are normalized by D 3 m and not by S -3 v . There is a relatively fair agreement with other results except for ρ = 0.5. However the available data are rather scarce. The general trend is an increase of g v as a function of ρ. This could be explained by considering that for two systems of equal D m and V but with two different ρ values, the one with the lowest ρ will also have less ligaments, and hence a smaller genus. From a different but related point of view, decreasing the relative density should increase the aspect ratio of the ligaments to ensure percolation during the demixing. The aspect ratio being greater, the number of connections in the foam decreases.

g = 1 -(χ/2), (7) 
The third quantity used to characterize the morphology is the interfacial shape distribution (ISD). The ISD is a representation of the two principal curvatures (κ 1 and κ 2 ) of a surface.

Table 1: Relations between principal curvatures and simple geometries. The "xor" logical operation is an exclusive "or".

κ 1 = 0 and κ 2 = 0 Plane κ 1 = 0 xor κ 2 = 0 Cylinder κ 1 = κ 2 Sphere κ 1 × κ 2 > 0 Ellipsoid κ 1 × κ 2 < 0
Hyperboloid κ 1 and κ 2 are defined as the minimum and maximum normal curvatures of each discrete element of the surface. This concept can be illustrated by the special cases reported in Table 1. The ISD for one of our models is represented in figure 8. The comparison of this figure with those reported in the literature suggests that our models are in good agreement with experimental NPG [START_REF] Mangipudi | A FIB-nanotomography method for accurate 3d reconstruction of open nanoporous structures[END_REF][START_REF] Yu-Chen Karen Chen-Wiegart | Structural evolution of nanoporous gold during thermal coarsening[END_REF][START_REF] Yu-Chen Karen Chen | Morphological and topological analysis of coarsened nanoporous gold by x-ray nanotomography[END_REF].

Note that the atomistic model structures are generated using periodic boundary conditions but that the structural characterization is made within a finite volume. In order to evaluate the influence of non-periodic conditions, we increased the number of replicated volumes in all three directions and repeated the structural analysis. For instance, the Figure 9 represents g v for four different models as a function of the number of replicated volumes. Models with a small number of ligaments were deliberately chosen to enhance the finite size effect. One can see that the variations of g v as a function of the number of replicated periodic volumes are much lower than those due to ρ. Nevertheless, this indicates that the influence of periodicity should be taken into account for structural analysis. 

Mechanical properties

An example of tensile stress-strain curve is plotted in Fig. 10. Its shape closely resembles to other simulations results [START_REF] Sun | Mechanical properties and scaling laws of nanoporous gold[END_REF]. The difference with experimental curves [START_REF] Balk | Tensile and compressive microspecimen testing of bulk nanoporous gold[END_REF] is discussed later in this section.

Using a linear regression between 0 and 2 %, an elastic modulus E = 6.3 GPa is determined. A similar procedure is repeated for other systems, and values are reported in figure 11, with others from the literature. Our values are almost identical in tension or in compression and are in the range of published data obtained by tensile deformation. However, they tend to be slightly lower than those obtained during compression. Dislocation analysis indicates that dislocations and stacking faults are present before any applied deformation. Those are nucleated during the relaxation of surface stresses. Hence, dislocations move at the very beginning of the test. This could explain the low moduli, although tests performed for quasi pristine structures do not lead to significantly higher values. These structures were obtained by relaxing the stresses at a lower temperature.

The Fig. 11 also shows the Young modulus values predicted by the Gibson-Ashby model [START_REF] Gibson | Cellular solids: structure and properties[END_REF]. Most of the experimentally and theoretically reported data, including ours, appear to be lower. It was proposed that this difference may be due to a ligament size effect, with a bending mode contribution [START_REF] Sun | Mechanical properties and scaling laws of nanoporous gold[END_REF].

The analysis of the tensile test corresponding to the figure 10 shows that before 10 % strain, the ligaments are necking and after 10 %, they are progressively breaking, leading to softening. Between 22 % and 25 % two unbroken ligaments remain (over 25 involved in the fracture), and only one between 25 % and 30 %. The system is fully fractured for higher strain values.

NPG is brittle at the macroscopic scale although it has been shown that microscopically, ligaments are characterized by a significant elongation, necking and plasticity prior to failure [START_REF] Biener | Microscopic failure behavior of nanoporous gold[END_REF][START_REF] Badwe | Me-chanical properties of nanoporous gold in tension[END_REF][START_REF] Senior | Synthesis of tough nanoporous metals by controlled electrolytic dealloying[END_REF][START_REF] Li | Ductile-brittle transition in random porous Au[END_REF]. It is commonly agreed that this behavior could be described by a random fuse model, where the rupture of weak ligaments will overload the surrounding ones, resulting in fast propagation of the crack through the nanoporous structure [START_REF] Biener | Microscopic failure behavior of nanoporous gold[END_REF]. According to this model, a sufficiently narrow distribution is needed, otherwise the brittle character should be [START_REF] Briot | Mechanical properties of bulk single crystalline nanoporous gold investigated by millimetre-scale tension and compression testing[END_REF][START_REF] Mangipudi | Topologydependent scaling laws for the stiffness and strength of nanoporous gold[END_REF][START_REF] Balk | Tensile and compressive microspecimen testing of bulk nanoporous gold[END_REF][START_REF] Biener | Nanoporous Au: A high yield strength material[END_REF][START_REF] Hodge | Ag effects on the elastic modulus values of nanoporous Au foams[END_REF][START_REF] Lee | Microfabrication and mechanical properties of nanoporous gold at the nanoscale[END_REF][START_REF] Mathur | Size dependence of effective Youngs modulus of nanoporous gold[END_REF][START_REF] Volkert | Approaching the theoretical strength in nanoporous Au[END_REF][START_REF] Zhu | Mitigation of tensile failure in released nanoporous metal microstructures via thermal treatment[END_REF], computed for phase-field models [START_REF] Ruestes | Hardening under compression in Au foams[END_REF][START_REF] Sun | Mechanical properties and scaling laws of nanoporous gold[END_REF][START_REF] Farkas | Mechanical response of nanoporous gold[END_REF][START_REF] Mangipudi | Topologydependent scaling laws for the stiffness and strength of nanoporous gold[END_REF] and for our systems (in black, red and green, respectively). Top graph: compression tests. Bottom graph: tensile tests. Purple curves show predictions from the Gibson-Ashby model [START_REF] Gibson | Cellular solids: structure and properties[END_REF] for a gold elastic modulus of 80 GPa.

less pronounced [START_REF] Badwe | Me-chanical properties of nanoporous gold in tension[END_REF].

Our simulations reproduce the ductile deformation of gold ligaments, as shown in figure 12. We observed that in the fracture plane most of the ligaments are stretched until a one or two-atoms thick wire remains. However, the stress (figure 10) does not fall abruptly as in experiments [START_REF] Briot | Mechanical properties of bulk single crystalline nanoporous gold investigated by millimetre-scale tension and compression testing[END_REF], rather suggesting an overall ductile failure of our NPG models. This issue is typical of molecular dynamics simulations of nanoporous systems [START_REF] Farkas | Mechanical response of nanoporous gold[END_REF].

The first explanation coming to mind is related to the size difference between the numerical and experimental samples. The former includes a small number of ligaments, that could impedes stress concentration, thus limiting fast crack propagation. This inherent limitation of molecular dynamics simulations seems difficult to overcome. Another source of discrepancy is the simulation time scale, dictat- ing a very high strain rate in the mechanical tests. This also imposes a strong limitation on the amount of thermally activated plasticity mechanisms that could occur during the timespan of the simulations. Finally, there is a potential influence of the ligament diameter, which is lower in our systems than in experiments. For instance, in a recent work, it is suggested that very thin ligaments would promote ductility [START_REF] Badwe | Me-chanical properties of nanoporous gold in tension[END_REF]. However, it is also mentioned that in these circumstances the sample fracture would result from uncorrelated ligament failure, leaving a rough fracture surface. It is then interesting and surprising to note that in our simulations, the fracture occurs in a well defined planar region, perpendicular to the deformation axis (Fig. 13), due to correlated ligament ruptures. This specific issue remains unanswered at the moment, stressing the need for further investigations.

Conclusions

In this paper, we describe an original method to generate NPG models by using only molecular dynamics, and perform a structural and mechanical characterization. Comparing our results with the literature shows that realistic foam structures can be generated with this approach. The method consists of demixing two liquid gold and silver phases during the MD simulations by using a repulsive Au-Ag interatomic potential, generating a bicontinuous structure. The gold liquid phase is replaced by a crystalline one, and the silver part is removed. This approach allows to generate models whose mean ligament diameter and relative density can be precisely selected. Experimentally accessible ligament diameter can be obtained by running simulations of only a few 100 ps.

The structure of the models is analyzed by first determining the ligament diameter distributions. The scaled genus density is in agreement with previous results, and is found to increase, seemingly linearly, as a function of the relative density. Computed Interfacial shape distributions are also in good agreement with experiments. In order to characterize the mechanical behavior of our models, uniaxial tests in tension and in compression were performed. In tension, we found that the NPG fails by the successive rupture of several ligaments, localized in a planar region perpendicular to the deformation axis. Unlike in experiments, this process extends over a significant strain range, and is indicative of a ductile failure of the NPG. Finally, we calculated elastic moduli in both tension and com-pression, which are found to be in the range of data reported in the literature.
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Figure 1 :

 1 Figure 1: Graphical summary of the main steps of the procedure.

Figure 2 :

 2 Figure 2: Influence of the Au-Ag potential parameter σ on the demixing process. A part of silver atoms are removed for clarity. Figures a, b and c are snapshots obtained with σ = 2, 7, and 15 Å and simulation times of 150, 60 and 30 ps, respectively. One can see isolated clusters in (a) and the interfacial void in (c). The temperature of demixing is 1800 K, as detailed in section 3.

Figure 3 :

 3 Figure 3: Demixing of gold (in orange) and silver (in grey) phases at different times during a MD simulation.

Figure 4 :

 4 Figure 4: Evolution of the mean diameter Dm of the ligaments foam as a function of time. The inset shows the linear dependence between Dm and 1/Sv, Sv being the specific surface.

Figure 5 :

 5 Figure 5: Example of a NPG model generated using our method, characterized by a relative density ρ = 0.43, a total volume V 45 3 nm 3 and a mean ligament diameter Dm = 3.7 nm.

Figure 6 :

 6 Figure 6: Ligament diameter distribution for one of our models (black curve) and a fitted normal distribution (red dashed curve). The relative density and mean diameter are 0.43 and 3.7 nm, respectively.

Figure 7 :

 7 Figure 7: Scaled genus density versus relative density. The black circles and red squares refer to values obtained with NPG samples[START_REF] Mangipudi | Topologydependent scaling laws for the stiffness and strength of nanoporous gold[END_REF][START_REF] Mangipudi | A FIB-nanotomography method for accurate 3d reconstruction of open nanoporous structures[END_REF][START_REF] Yu-Chen Karen Chen | Morphological and topological analysis of coarsened nanoporous gold by x-ray nanotomography[END_REF] and phase field models[START_REF] Mangipudi | Topologydependent scaling laws for the stiffness and strength of nanoporous gold[END_REF], respectively. The green triangles correspond to our models.

Figure 8 :

 8 Figure 8: Example of an interface shape distribution for one model foam (Sv = 0.668 nm -1 , ρ = 0.43, Dm = 3.7 nm).

Figure 9 :

 9 Figure 9: Variation of the scaled genus density gv as a function of the number of replicated volumes for four systems of different relative densities.

Figure 10 :

 10 Figure 10: Engineering stress versus engineering strain for the same system described in Figs. 6, 8 (ρ = 0.43 and Dm = 3.7 nm).

Figure 11 :

 11 Figure 11: Compilation of elastic moduli measured experimentally[START_REF] Briot | Mechanical properties of bulk single crystalline nanoporous gold investigated by millimetre-scale tension and compression testing[END_REF][START_REF] Mangipudi | Topologydependent scaling laws for the stiffness and strength of nanoporous gold[END_REF][START_REF] Balk | Tensile and compressive microspecimen testing of bulk nanoporous gold[END_REF][START_REF] Biener | Nanoporous Au: A high yield strength material[END_REF][START_REF] Hodge | Ag effects on the elastic modulus values of nanoporous Au foams[END_REF][START_REF] Lee | Microfabrication and mechanical properties of nanoporous gold at the nanoscale[END_REF][START_REF] Mathur | Size dependence of effective Youngs modulus of nanoporous gold[END_REF][START_REF] Volkert | Approaching the theoretical strength in nanoporous Au[END_REF][START_REF] Zhu | Mitigation of tensile failure in released nanoporous metal microstructures via thermal treatment[END_REF], computed for phase-field models[START_REF] Ruestes | Hardening under compression in Au foams[END_REF][START_REF] Sun | Mechanical properties and scaling laws of nanoporous gold[END_REF][START_REF] Farkas | Mechanical response of nanoporous gold[END_REF][START_REF] Mangipudi | Topologydependent scaling laws for the stiffness and strength of nanoporous gold[END_REF] and for our systems (in black, red and green, respectively). Top graph: compression tests. Bottom graph: tensile tests. Purple curves show predictions from the Gibson-Ashby model[START_REF] Gibson | Cellular solids: structure and properties[END_REF] for a gold elastic modulus of 80 GPa.

Figure 12 :

 12 Figure 12: Ligament necking (a-c) and breaking (c-d) during tensile test. The ligament shown here is extracted from the same foam than in figures 6, 8, 10, and 13.

Figure 13 :

 13 Figure 13: Fractured system at 30 % of strain. The fracture is localized in a plane, highlighting the correlation between the ligaments during the crack propagation.