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S. Wilhelm,a) J. Jacob, and P. Sagaut

I. INTRODUCTION

Cartesian grids are attractive compared to body-fitted
grids for the flow prediction around complex geometries. Auto-
matic grid generation is indeed easier with Cartesian grids, and
higher grid qualities are obtained around sharp edges and com-
plex shapes. Moreover, numerical methods are more accurate
and simpler to implement on Cartesian grids.1–3 The Lattice
Boltzmann Method (LBM) is an alternative to the classical
approach involving the resolution of the Navier-Stokes equa-
tions. It is typically used on Cartesian grids with cubic cells
which contribute to its efficiency.

Accounting for the shape of an arbitrary solid body using
Cartesian grids is mainly to be done, thanks to two methods: the
cut-cell method and the Immersed Boundary Method (IBM).
In the cut-cell grid, no cells are defined inside the solid body,
and cells are cut at the intersection between the volumetric
grid and the solid.1 In the immersed boundary method, the
volumetric grid is defined in the whole computational domain,
including inside the solid body. A force-field is then added to
the governing flow equations to simulate the presence of the
solid.4–6 In both methods, the boundary nodes do not neces-
sarily lie on the solid boundary. A reconstruction method for
the velocity at the boundary nodes based on an interpolation
step is then necessary. On cut-cell grids, extrapolation methods
have been proposed to estimate the velocity at the bound-
ary nodes from the velocity predicted at neighbouring fluid
nodes.1,3 Similarly, interpolation methods are also used in IBM
in which the velocity is reconstructed at solid nodes to recover
the correct boundary condition at the wall. Examples can
be found in the literature for Navier-Stokes computations7,8

and for LBM.9

For the prediction of turbulent flows at high Reynolds
numbers relevant for real engineering applications, the
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Reynolds-Averaged Navier-Stokes (RANS) approach can be
used in conjunction with Cartesian grids. Iaccarino and
Verzicco7 studied the use of the Spalart-Allmaras (SA) turbu-
lence model coupled with the IBM. A RANS-IBM methodol-
ogy was also proposed by Capizzano10 using the k − g and the
k − ω TNT turbulence models. Kalitzin and Iaccarino11 used
the k − ω, k − g, and Spalart-Allmaras RANS turbulence
models with the IBM approach for the prediction of the flow
inside a turbine blade passage. The flow prediction around
airfoils has been performed with the k −ω Shear Stress Trans-
port (SST) turbulence model using the Navier-Stokes IBM
approach12 and with the Spalart-Allmaras turbulence model
using the cut-cell approach1 or using LBM with an immersed
surface.9,13 When a RANS turbulence model is used on a Carte-
sian grid, the turbulent viscosity has to be determined at the
boundary node.7 The turbulence quantities such as k and ω
(or ε) in two-equation models exhibit steep gradients and local
extrema near the wall within the buffer layer. High accuracy of
the numerical scheme and sufficient grid resolution are there-
fore required near the wall. According to Wilcox,14 the scaled
distance to the wall y+ should be lower than 2.5 for the inte-
gration of the k − ω model through the viscous sublayer and
lower than 1 for the k − ε model. As explained by Iaccarino
and Verzicco,7 this is an issue for RANS simulations with
the immersed solid boundary since the explicit resolution of
the boundary layer with a Cartesian grid is too expensive at
a high Reynolds number. Grid refinement in the wall normal
direction only is not enabled using a uniform Cartesian grid,
and isotropic grid refinement in the boundary layer may lead
to an important number of cells, much higher than classical
grids used for direct numerical simulation. Therefore, a wall
model must be used inside the first off-wall node for both the
velocity profile and the quantities related to the turbulence
model.

Two methods are mainly used for wall modeling when
addressing the issue of predicting the mean velocity profile
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within the first cell.15 First, a simplified equation for the turbu-
lent boundary layer (TBLE) equipped with an algebraic mixing
length eddy viscosity model can be solved on an embedded
grid between the wall and the first off-wall node; see, e.g.,
Ref. 10. Such an approach may be interpreted as a dramati-
cally simplified version of the coupling between a boundary
layer code (within the first cell) and a classical Navier-Stokes
RANS solver. Second, the problem can be further simplified
assuming that, when properly scaled, the tangential veloc-
ity profile follows a universal analytical algebraic law. Most
existing wall models rely on a logarithmic-type profile. The
tangential velocity is then given by a relation between the
tangential velocity, the distance to the wall, and the fric-
tion velocity. Algebraic wall models are more often used
than TBLE for RANS simulations because of their simplic-
ity. For body-fitted grids, the no-slip boundary condition is
thus replaced by the prescription of the wall shear stress. The
latter is computed assuming that the first computed point lies
within the inner layer and inverting the non-linear analytical
velocity profile, thanks to an iterative procedure. It has been
shown that the wall model should be consistent with the turbu-
lence model used outside the boundary layer. Such wall mod-
els have been developed for body-fitted grids in RANS16,17

and Large Eddy Simulation (LES).18,19

Along with the wall model for the velocity profile, wall
models for the quantities of RANS turbulence models have
been proposed. Kalitzin et al.16 derived the analytical solu-
tions of turbulence equations of the Spalart-Allmaras, k − ω,
k − g, 32 − f RANS turbulence models in the viscous sublayer
and logarithmic layer while tabulated functions are defined
in the buffer layer. Knopp et al.17 proposed a near-wall solu-
tion for ω different from the one proposed in the work of
Kalitzin et al.16 This solution for ω is used by Zhou,12 while
k is determined to ensure consistency between the velocity
profile and the turbulence model in the boundary layer. Sim-
ilarly, Capizzano10 calculated the boundary value for k from
the mixing length eddy viscosity model used in the TBLE
and the analytical expression of the second variable of the tur-
bulence model. In the studies of Iaccarino and Verzicco7 and
Kalitzin and Iaccarino,11 the authors took advantage of the lin-
ear behavior of the turbulent quantity in the Spalart-Allmaras
model.

The use of Cartesian grids further complexifies the prob-
lem since the velocity is not predicted at the boundary node
and therefore has to be reconstructed. The wall model is thus
used for high Reynolds number cases instead of the interpola-
tion methods mentioned above for laminar flow simulations.10

Moreover, the distance to the wall of the first off-wall node is
highly variable on a Cartesian grid. This may induce numerical
instabilities when using a wall model based on this distance.
Many studies have been performed in the field of IBM to
develop methodologies of application of a wall model on a
Cartesian grid. They mainly consist of first applying the wall
model to a point where the velocity is predicted in order to cal-
culate the friction velocity from the wall model. The velocity
at the boundary node is thus determined using the wall model
with this calculated friction velocity. Research studies can be
distinguished by the choice of the point to first apply the wall
model which can be defined at a constant10–12 or variable20–22

distance to the wall. Interpolation methods are again necessary
to determine the velocity at this point.

As mentioned above, an iterative procedure is generally
required to compute the friction velocity by inverting the alge-
braic wall function. Newton’s method is usually used with
several iterations for convergence.2,12 Alternatively, tabulated
functions can be found16 by performing the inversion of the
wall function once on a well-resolved numerical simulation
and storing the inverse function in a look-up table. This itera-
tive method is time-consuming and may introduce numerical
errors in the determination of flow quantities at the boundary
nodes.

In this work, an explicit wall model is proposed that do
not rely on an iterative procedure for the determination of the
friction velocity. Moreover, its use on Cartesian grids is very
simple and enables the evaluation of the velocity at boundary
nodes without the previous determination of the friction veloc-
ity. The purpose of this work is to assess the validity and the
robustness of this wall model on the prediction of the aerody-
namic flow around an airfoil at a high Reynolds number. The
Lattice Boltzmann Method (LBM) is used for the prediction of
the flow. The LBM is an appealing approach for Computational
Fluid Dynamics (CFD) compared to the classical Navier-
Stokes-based methods. The LBM is a local method particularly
well suited for massively parallel simulations.23,24 Contrary to
the Navier-Stokes equations, it does not involve the compu-
tation of a non-local non-linear term. Moreover, the pressure
is obtained by means of an equation of state easier to solve
than the Poisson equation involved in classical methods.25

LBM has become very popular for the prediction of subsonic
aerodynamic flows. Low angles of attack on the airfoil are con-
sidered so that the flow remains attached and is resolved using
a RANS approach based on the Spalart-Allmaras turbulence
model.

The paper is organized as follows. The governing equa-
tions considered in this work are presented in Sec. II. The
numerical method is then discussed in Sec. III. The proposed
wall model and its implementation are described in Sec. IV.
In Sec. V, the proposed model and its practical implemen-
tation are assessed considering the flow prediction around a
two-dimensional (2D) clean airfoil at several angles of attack
and two Reynolds numbers. Finally, conclusions of this study
are given in Sec. VI.

II. MACROSCOPIC GOVERNING EQUATIONS
A. Navier-Stokes equations

We consider the three-dimensional Navier-Stokes equa-
tions for an incompressible flow,

∂ui

∂xi
= 0, (1)

∂ui

∂t
+
∂uiuj

∂xj
= −

1
ρ

∂p
∂xi

+
1
ρ

∂τij

∂xj
, (2)

where ui is the velocity component in the xi direction, ρ is
the density, p is the static pressure, and τij is the total stress
tensor.



In this work, the RANS approach is used so that the macro-
scopic quantities in Eqs. (1) and (2) are mean quantities in the
sense of Reynolds averaging. Note that the mean operator 〈.〉
is omitted for the sake of simplicity. Therefore, τij is the sum
of the viscous and Reynolds stress tensors,

τij = 2(µ + µt)Sij, (3)

where µ is the dynamic viscosity of the fluid, µt is the turbulent
viscosity provided by the RANS turbulence model, and Sij is
the strain rate tensor,

Sij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (4)

B. Spalart-Allmaras turbulence model

The Spalart-Allmaras (SA) turbulence model is used for
the RANS calculations in this work. This one-equation model
is more versatile and powerful than algebraic models and easier
to implement than two-equation models. Moreover, it is known
for its robustness.26 This model was initially developed for the
prediction of aerodynamic flows using dimensional analysis,
Galilean invariance, and selected dependence on the molecular
viscosity.27

The SA model consists of a transport equation for the
working viscosity ν̃ defined from the eddy viscosity νt .
According to the Prandtl assumption, the eddy viscosity has a
linear behavior in the logarithmic zone of the boundary layer:
νt = κuτy, where y is the distance to the wall and uτ is the
friction velocity.16 The working viscosity ν̃ is defined in order
to preserve this linear behavior ν̃ = κuτy in the logarithmic
layer but also in the buffer layer and in the viscous sublayer.
The eddy viscosity νt is calculated from the working viscosity
ν̃ as follows:

νt = ν̃fv1, (5)

with the damping function f31 defined as

fv1 =
χ3

χ3 + c3
v1

with χ =
ν̃

ν
, (6)

where ν is the kinematic viscosity of the fluid and c31 is a
constant of the model.

The Spalart-Allmaras model has been originally devel-
oped in 1992,28 and several variants of the model have since
been proposed. The baseline and negative SA model used
in this work is described in this section. Two other variants
of the original model have been tested which are described
in the Appendix along with the results obtained with these
variants.

The original version of the SA model27,28 without the
laminar suppression term and the trip term is first consid-
ered. Indeed, as explained in the work of Allmaras et al.,29

the laminar term is negligible in fully turbulent flows with
large free-stream values for ν̃. In Ref. 29, a version of the SA
model is also proposed for the case χ < 0. On coarse grids and
during unphysical transient states, the discrete solution of the
SA model can lead to negative values of ν̃.30 A modification of
the production, destruction, and diffusion terms of the original
SA model is proposed to avoid negative values of the working
viscosity. The model is thus as follows:

• For χ > 0, the equation for the working viscosity is

∂ν̃
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, (7)

where dw is the distance from the nearest wall.
Similar to the eddy viscosity, the vorticity mag-

nitude Ω is modified into S̃ through a damping func-
tion fv2 in order to preserve its log-layer behavior
S̃ = uτ/(κy) in the whole boundary layer. However,
similarly for ν̃, the discrete solution can lead to nega-
tive S̃ values. A correction is proposed in the work of
Allmaras et al.29 such that

S̃ =



Ω + S̄ if S̄ ≥ −cv2Ω

Ω +
Ω(c2

v2Ω+cv3S̄)

(cv3−2cv2)Ω−S̄
if S̄ < −cv2Ω

, (8)

with

S̄ =
ν̃

κ2d2
w

fv2 (9)

and

fv2 = 1 −
χ

1 + χfv1
. (10)

The function fw is defined to accelerate the decaying
behavior of the destruction term in the outer region of
the boundary layer,

fw = g*
,
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+
-

1
6

,
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w

, 10

)
.

(11)

• For χ < 0, the following equation is solved instead:
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with

fn =
cn1 + χ3

cn1 − χ3
. (13)

Moreover, the turbulent viscosity νt is set to 0 if
χ is negative.



The model constants are

σ = 2/3, κ = 0.41, cb1 = 0.1355, cb2 = 0.622,

cw1 =
cb1

κ2
+

1 + cb2

σ
, cw2 = 0.3, cw3 = 2,

cv1 = 7.1, cv2 = 0.7, cv3 = 0.9, cn1 = 16.
(14)

III. NUMERICAL METHOD
A. The lattice Boltzmann method

In this work, the Lattice Boltzmann Method (LBM)23,31,32

is used for the numerical resolution of the macroscopic gov-
erning equations (1) and (2). This approach describes the
dynamics of a group of particles that collide and propagate
over a discrete lattice based on the Boltzmann equation at the
mesoscopic level. This equation describes the evolution of a
particle distribution function f = f (~x,~c, t) that represents the
probability density of particles with velocity ~c at time t and
position ~x. In LBM, the Boltzmann equation is discretized in
the velocity space on a DdQq (d dimensions and q velocities)
lattice.

In this work, the D3Q19 lattice given by

~cα =




(0, 0, 0), α = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1), α = 1 − 6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1), α = 7 − 18

(15)

is used. The associated lattice Boltzmann equation with the

time step ∆t and space step
−→
∆x = ~cα∆t is given by33

fα(~x + ~cα∆t, t + ∆t) − fα(~x, t) = ∆t Ωα(~x, t), (16)

where Ωα is the collision operator.
The macroscopic quantities (density ρ, momentum ρui,

and momentum flux tensor Πij) are then computed from the
velocity moments of the distribution functions as follows:

ρ =

q−1∑
α=0

fα, (17a)

ρui =

q−1∑
α=0

fαcαi, (17b)

Πij =

q−1∑
α=0

fαcαicαj. (17c)

The collision operatorΩα is usually interpreted as a relax-
ation toward an equilibrium state. Using the Bhatnagar-Gross-
Krook (BGK) model,34 one has

Ωα = −
1
τ

(fα − f eq
α ), (18)

with τ being the relaxation time and f eq
α being the local

equilibrium function given by

f eq
α = ρωα

[
1 +

cαiui

c2
s

+
1

2c4
s

Qαijuiuj

]
, (19)

where cs is the speed of sound, ωα are the weighting
coefficients of the D3Q19 scheme, and Qαij = cαicαj − c2

s δij.
In order to ensure good numerical stability and conver-

gence properties in high Reynolds number flows, the hybrid

recursive regularized BGK collision operator proposed in the
work of Jacob et al.35 is used. The distribution function
is split into the sum of the equilibrium f eq

α and the non-
equilibrium f neq

α distribution functions, which leads to the
following regularized collision operator:

Ωα = −
1
τ

f neq
α , (20)

where

f neq
α = σHRR f neq,LBM

α + (1 − σHRR) f neq,FD
α , (21)

with

f neq,FD
α = −

τρωα

2c2
s

Qαij

(
∂uj
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+
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∂xj

)
,

f neq,LBM
α =

Qαij

2c4
s

∑
α

cαicαj(fα − f eq
α ), (22)

with σHRR = 0.98 in the present study.

B. Discretization of the SA model

The equation of the Spalart-Allmaras model is solved
for χ = ν̃/ν. A second-order accurate finite difference
scheme is used for the resolution of the equations of the
Spalart-Allmaras model. The temporal derivative is discretized
using the first-order Euler explicit scheme. A hybrid upwind-
centered scheme is used for the advection term. Gradi-
ents and Laplacian operators are calculated using a centered
scheme.

The eddy viscosity νt calculated by the SA model is intro-
duced in the relaxation time of the regularized BGK model

such as τ =
1
2

+
ν + νt

c2
s

in order to take into account turbulence

effects in the collision operator.

C. Near-wall treatment

In this work, a Cartesian cut-cell grid is used to solve
the LBM scheme in the fluid domain. The lattice Boltzmann
method needs particular treatment at boundary nodes which
are the nodes that do not have all their neighboring nodes
in the fluid domain. The distribution functions in directions
of these missing neighboring nodes are unknown. The dis-
tribution functions at the boundary nodes need therefore to
be reconstructed to complete the LBM scheme. There are
two main approaches for this reconstruction: the bounce-back
approach or the wet boundary conditions.23 In this paper, an
approach belonging to the second category is used in which
the distribution functions at boundary nodes are reconstructed
based on macroscopic variables and their derivatives. This
approach is similar to the one proposed by Verschaeve and
Müller.36

The distribution function at a boundary node is calcu-
lated as the sum of the equilibrium f eq

α and non-equilibrium
f neq
α distribution functions given by Eqs. (19) and (22). The

non-equilibrium distribution function is calculated according
to f neq,FD

α . The missing distribution function can then be deter-
mined from the macroscopic variables u and ρ at the boundary
node. The reconstruction method of the macroscopic values at
a boundary node is illustrated in Fig. 1, whereF is the bound-
ary node of interest and� andN nodes are the neighboring fluid
nodes ofF at which all required information is available.



FIG. 1. Wall treatment strategy used for the LBM calculation;F: boundary
node of interest, � and N: neighboring fluid nodes of F, ◽ and 4: other
boundary nodes, and •: reference point for the application of the wall model;
the dashed line surrounds the fluid nodes used to calculate the velocity at the
reference point Ref.

We address here high Reynolds number flows. As
explained in the Introduction, it would be too expensive to
explicitly resolve the boundary layer using a Cartesian grid.
A wall model is thus used to evaluate the tangential velocity
at the boundary node. The wall model is a function g defining
the universal rescaled tangential velocity profile u+ in the tur-
bulent boundary layer as a function of the normalized distance
to the wall y+,

u+ = g(y+), (23)

with
u+ =

u
uτ

and y+ =
yuτ
ν

, (24)

where u is the tangential velocity at the distance y to the wall,
ν is the kinematic viscosity of the fluid, and uτ is the friction
velocity related to the wall shear stress such as τw = ρu2

τ .
Malaspinas and Sagaut37 proposed a method to use a

wall model with the LBM approach for a body-fitted grid.
As explained in the Introduction, methods of application of a
wall model with a Cartesian grid have been developed prin-
cipally for the IBM. Methods for the velocity reconstruction
at the boundary node that use only fluid points can thus be
adapted in this work. A common practice consists of defin-
ing a fictitious node on the line normal to the wall passing
through the boundary node and located at an arbitrarily fixed
distance to the wall, thereby imitating a body-fitted grid.10,11,38

This fictitious node, called Ref point in this work, is repre-
sented with a • in Fig. 1. This point is located at a distance of
2.5dx from the wall in the present work, where dx is the local
grid size. The tangential velocity at the Ref point is calcu-
lated using the modified Shepard’s Inverse Distance Weighting
(IDW) interpolation of tangential velocities resolved at the �
and N nodes. It is reminded that IDW originates in the min-
imization of an error cost function related to a measure of

deviations between tuples of interpolating points and tuples of
interpolated points, leading to an optimized interpolation pro-
cedure that can be interpreted as a generalization of Lagrange
interpolation.

The wall model (23) is then applied at the Ref point in
order to determine the friction velocity uτ . An iterative pro-
cedure is often needed to determine uτ from Eq. (23). Then,
using this obtained friction velocity uτ , the wall model (23)
is applied at the boundary node to determine the tangential
velocity u.

The density at the boundary node is calculated by using
IDW interpolation of densities at the � and N nodes.

Finally, the normal velocity at the boundary node is
equated to the velocity of the solid boundary in the normal
direction, which is equal to zero for a stationary wall.

Macroscopic values are thus known at the boundary node.
The velocity gradients at the boundary node are calculated
using one-sided finite difference discretization in the fluid.
The distribution function at the boundary node can then be
calculated using Eqs. (19) and (22).

IV. A NEW EXPLICIT POWER-LAW-BASED
WALL MODEL
A. Velocity profile in a turbulent boundary layer

As explained in Sec. III C, a wall model describes the
profile of the scaled tangential velocity in the turbulent bound-
ary layer. In the viscous sublayer, the velocity profile is linear.
The logarithmic law of the wall is classically used to describe
the velocity profile in the boundary layer outside the viscous
sublayer,

u+ =
1
κ

ln(y+) + C, (25)

where κ ∼ 0.41 is the von Karman constant and C is a constant.
This is the most popular model for engineering applications.
An iterative procedure is necessary to determine the fric-
tion velocity from the non-linear relation (25) with known
tangential velocity.

However, several authors have questioned the validity of
the logarithmic law of the wall and in particular the univer-
sal character of its parameters κ and C, which are assumed to
be independent of the Reynolds number.39,40 Marusic et al.41

have shown, based on experiments in the laboratory boundary
layer, pipe flow, and atmospheric surface layer, that the mean
velocity and streamwise turbulent intensities have a univer-
sal logarithmic behavior at Reynolds numbers ranging from
2 × 104 to 6 × 105. The associated coefficients in Eq. (25) are
κ = 0.39 and C = 4.3.

A review of the existing laws of the wall and scaling pro-
posed by different authors for a turbulent boundary layer is
done in the work of Buschmann and Gad-el Hak.39 In partic-
ular, it is shown that the boundary layer can also be described
by a power-law model. Prandtl proposed a power law for the
whole boundary layer at a low Reynolds number,

u+ = A(y+)
1
7 , (26)

where A is a coefficient which may depend on the Reynolds
number. A velocity profile following a 1/n-th power law was
also found in Nikuradse’s experiments for a pipe flow. The



exponent 1/n of the law depends on the Reynolds number
and decreases with increasing Reynolds number.26 Accord-
ing to Prandtl, the logarithmic law of the wall is the limit
of the power law at high Reynolds numbers.42 The power-
law model with n = 7 and constant A = 8.3 was used, for
example, by Werner and Wengle43 in LES. The power-law
model of Werner and Wengle43 was used in the work of Chang
et al.44 for the prediction of turbulent flows over periodic hills
in LES using an IBM on a Cartesian grid. Results similar to
those obtained with a TBLE were observed. Murakami et al.45

also used a power-law model with n = 4 on a flat plate and
n = 2 on a cube.

More recently, Afzal46 showed that both the power-law
and the logarithmic law velocity profiles are solutions of the
matching between the asymptotic forms of the law of the wall
and the defect law in the overlap region of the boundary layer.
On the other hand, some authors of experimental studies found
that both the power law and logarithmic law exist and describe
different parts of the boundary layer.47

In this work, the Spalart-Allmaras turbulence model is
used for the RANS simulations. The following consistent
wall model for velocity was derived in the study of Allmaras
et al.:29

u+(y+) = B + c1 ln((y+ + a1)2 + b2
1) − c2 ln((y+ + a2)2 + b2

2)

− c3 Arctan(y+ + a1, b1) − c4 Arctan(y+ + a2, b2),

(27)

where the constants are defined in Ref. 29. In particular, the SA
model asymptotically predicts the log-law at large Reynolds
numbers. However, this model is complex and requires the
use of an iterative procedure to compute the friction velocity.
Figure 2 displays a comparison of the power-law model of
Werner and Wengle43 with the wall model of the SA model
and the logarithmic law of Marusic et al.41 The power law is
in agreement with the logarithmic laws for 50 < y+ < 1000
with less than 2% of difference in the u+ velocity predicted by
the power law and the logarithmic law.

FIG. 2. Comparison of the logarithmic and power law models.

On the other hand, Abe and Antonia48 have recently
obtained the relation between the skin friction Cf and the
Reynolds number Reb in a turbulent channel flow with the bulk
velocity Ub. This relation, reported in Eq. (28), is obtained
from a logarithmic model for the velocity in the channel flow,

1√
Cf
= 1.80 ln(Reb

√
Cf ) − 0.163. (28)

Using the same method as in the study of Abe and
Antonia,48 the corresponding relation is obtained for the power
law, u+ = A(y+)B,

Cf =

(
2 ∗ 8B ∗ (B + 1)2

A2

) 1
B+1

Re
− 2B

B+1
b . (29)

An iterative procedure is required in order to determine
Cf from Eq. (28), whereas (29) is explicit. Figure 3 presents
the dependence of the skin friction Cf to the Reynolds num-
ber Reb in a turbulent channel flow using a logarithmic law
or a power law for the velocity in the channel flow. Both
models have a similar behavior for large Reynolds numbers
Reb > 103.

The logarithmic and power law wall models are in agree-
ment with the range of Reynolds numbers and y+ values
considered in this work.

Several formulas for the parameter A and the exponent
B = 1/n have been proposed, based on experimental data47

or by identification of the power and logarithmic laws.46,49

Castro-Orgaz and Dey49 used a power law to model the entire
boundary layer with parameters calculated by analogy with a
logarithmic law and a law of the wake. These parameters are
functions of the Reynolds number. Moreover, formulas have
been proposed to take into account the pressure gradient and
roughness effects in the power-law model.50,51 Breuer et al.52

proposed an extended version of the wall model of Werner
and Wengle,43 taking into account the effect of the streamwise
pressure gradient for LES calculations. Additional improve-
ments were also proposed using the artificial eddy viscosity
concept and a new definition of the relative thickness of the

FIG. 3. Comparison of the skin friction for the logarithmic and power law
models in a turbulent channel flow.



viscous sublayer. This extended wall model was applied to a
periodic arrangement of hills involving separated flows. The
prediction of the separated zone was slightly improved com-
pared to the original model, but the improvement linked to the
inclusion of the pressure gradient effect was small.

B. Power-law model for the turbulent boundary layer

In this work, a power-law model is used to describe the
velocity profile in the turbulent boundary layer because of
its simplicity of implementation and its ease of use. The 1/n
power-law model with constant parameters (independent of
the Reynolds number) is evaluated in this work,

u+ =



y+ if y+ ≤ y+
c

A(y+)B if y+ ≥ y+
c

, (30)

with B = 1/7. yc is the height of the viscous sublayer and
y+

c = ycuτ/ν. According to Werner and Wengle,43 y+
c = 11.81.

The parameter A can be calculated by continuity of the velocity
profile at y+

c ,

y+
c = A(y+

c )B ⇐⇒ A = (y+
c )1−B. (31)

For y+
c = 11.81 and B = 1/7, one has A ≈ 8.3 which is in

agreement with the value used by Werner and Wengle.43

The expression for the friction velocity uτ is explicitly
obtained from (30), written in non-scaled units, at a distance
y > yc to the wall,

u(y)
uτ
= A

( yuτ
ν

)B
, (32)

leading to
uτ = u(y)

1
1+B A

−1
1+B y

−B
1+B ν

B
1+B , (33)

which is an explicit relation that do not require a non-linear
iterative method to compute the skin friction.

It is also convenient to check whether the point lies
within the viscous sublayer or not in a fast and non-expensive
way. To this end, one introduces the local Reynolds number
Rel(y) = yu(y)/ν = y+u+(y+). The critical Reynolds number is
defined at the top of the viscous sublayer by Rec = Rel(yc)
= (y+

c )2 and is known since y+
c is fixed. If the local Reynolds

number at the first off-wall point is lower than Rec, then
the linear law is used. Otherwise, the exponential law is
selected.

Observing that for two points in the fluid such as y1 ≥ yc

and y2 ≥ yc,

Rel(y1)
Rel(y2)

=
y1u(y1)
y2u(y2)

=

(
y1

y2

)1+B

, (34)

the height of the viscous sublayer yc can be estimated as
follows:

yc = y2

(
Rec

Rel(y2)

) 1
1+B

. (35)

C. An explicit near-wall treatment for LBM

For the application of the power-law in LBM simulations,
the reference point Ref defined in Sec. III C is used. The power
law can be applied at the reference point,

u+
Ref =




y+
Ref if y+

Ref ≤ y+
c

A(y+
Ref )B if y+

Ref ≥ y+
c

. (36)

If y+
Ref ≤ y+

c , then both the reference point and the
boundary node lie within the viscous sublayer and

u(y)
uRef

=
y

yRef
⇐⇒ u(y) = uRef

y
yRef

. (37)

If y+
Ref ≥ y+

c , we suppose that the boundary node is also in
the power-law region (i.e., y+ ≥ y+

c ). By dividing the expres-
sion for u+(y+) at the boundary node [Eq. (30)] by the one for
u+

Ref [Eq. (36)], the expression for the non-scaled tangential
velocity at the boundary node is directly obtained,

u(y)
uRef

=

(
y

yRef

)B

⇐⇒ u(y) = uRef

(
y

yRef

)B

. (38)

Contrary to the logarithmic law of the wall (25), the
friction velocity uτ is not needed for the calculation of the
velocity at the boundary node. Note that the knowledge of
the coefficient A is also not necessary. The use of a wall
model on a Cartesian grid is thus simplified by using a
power-law model.

D. Boundary condition for the Spalart-Allmaras
turbulence model

The boundary conditions for the turbulent quantities
should be consistent with the RANS turbulence model used
to resolve the flow in order to avoid grid dependency of the
solution.16,17 Moreover, according to Iaccarino and Verzicco,7

the resolution of the turbulent quantities of a RANS model is
an important issue when using an immersed solid boundary
method. The accuracy of the flow prediction is influenced by
the behavior of these quantities in the vicinity of the wall.
The linear behavior of ν̃ in the whole boundary layer (see
Sec. II B) is thus very attractive from a numerical point of
view when used in conjunction with a Cartesian grid. The
near-wall resolution of ν̃ is thus less sensitive to the near-wall

FIG. 4. Computational grid. (a) Computational domain; c is the airfoil chord.
(b) Refinement offsets around the airfoil.



TABLE I. Characteristics of grids A, B, and C.

Grid B (leading and Grid C
Grid A trailing edges refined) (wake refined)

Smallest cell size (%c) 0.07 0.035 0.07
Number of nodes

10 15.8
23-26 depending on

(in million) the angle of attack

grid resolution than for other turbulence models and is con-
sistent with the interpolations used in the wall treatment of
Cartesian grids.11

When the Spalart-Allmaras model is used along with
the power-law model defined in Sec. IV B, uτ is calculated
using Eq. (33) after the velocity is calculated at the bound-
ary node. The value of χ is then obtained with the relation
χ = κy+ at the boundary node according to the definition
of ν̃ in the Spalart-Allmaras model presented in Sec. II B.
This boundary condition is thus consistent with the SA
model.

V. APPLICATION TO THE TURBULENT FLOW
AROUND A 2D AIRFOIL

To validate the proposed power-law wall model and its
numerical implementation, the flow around a NACA 23012
airfoil at a chord-based Reynolds number Re = 16 × 106 and a
Mach number Ma = 0.18 is computed. Three angles of attack,
namely, α = 0◦, 5◦, and 10◦, are considered. Calculations are
performed using the baseline and negative SA model pre-
sented in Sec. II B. The dependency versus the SA variants
is investigated in the Appendix. For the LBM simulation, the
speed of sound is cs = 340 m/s and the kinematic viscosity is
ν = 1.5 × 10−5 m2/s.

A. Calculation setup

The present simulations are carried out using a time-
marching method that converges toward a steady state for the
studied range of angles of attack.

The computational domain is illustrated in Fig. 4. Its size
in the spanwise direction (z) corresponds to one cell size at the
coarsest level of refinement which is equal to 8.7%c, where
c is the airfoil chord. Periodic boundary conditions are used
in that direction. The simulation can thus be considered as a
pseudo-two-dimensional case.

The free-stream velocity is imposed at the inlet of the com-
putational domain with an angle corresponding to the angle of
attack. A constant density condition is prescribed at the outlet.

Sponge layers are defined according to Xu and Sagaut53

at the inlet and outlet with, respectively, a fixed velocity and
fixed density to prevent spurious reflection of disturbances and
ensure convergence toward a steady state. It consists of adding
a source term to the LBM equation which is defined as follows:

Fi = σSL(x)(Φ(t + ∆t) − Φtarget), (39)

where Φ is the considered physical variable that should reach
the valueΦtarget in the sponge layer. In this work, target values
of density and velocity are defined as their corresponding far-
field values. σSL is the absorbing strength defined as follows:

σSL(x) =
3125(Lsponge − x)(x − x0)4

256(Lsponge − x0)5
, (40)

where Lsponge is the width of the sponge layer and x0 is its
starting position. The solution field in the sponge layer can
thus be expressed as

Φ̃(t + ∆t) = Φ(t + ∆t) − σSL(x)(Φ(t + ∆t) − Φtarget). (41)

Lsponge corresponds to four chord lengths from the inlet
and the outlet in this study. Moreover, for the case with an

FIG. 5. Grid refinement (a) at the lead-
ing edge, (b) at the trailing edge, and
(c) in the wake for the angle of attack
α = 0◦.



FIG. 6. Convergence history of lift coefficient CL (a) and drag coefficient CD (b) for the angle of attack α = 0◦.

angle of attack equal to 0◦, the upper and lower boundaries are
defined as frictionless walls with sponge layers on the density
of two chord widths.

For the other angles of attack, the lower surface is defined
as an inlet with inclined velocity and the upper surface is an
outlet condition with imposed density. For the SA model, χ = 0
is imposed on the airfoil surface. The free-stream value χ = 2
is imposed at the inlet to ensure a fully turbulent calculation.

B. Verification and validation

A grid convergence study is performed first, and sim-
ulations are validated against Xfoil results. Xfoil is a solver
written by Drela54 dedicated to the design and analysis of 2D
subsonic airfoils. The viscous formulation for the calculation

of the boundary layer and wake available in Xfoil is used
in this work. It is based on two equations from the integral
boundary layer formulation. Results in Xfoil are generated
for the same Reynolds and Mach numbers as for the LBM
simulation. Furthermore, Xfoil uses the envelope en transi-
tion criterion to determine where laminar-turbulent transition
occurs on the airfoil depending on the amplification factor of
the frequency that causes transition. For this purpose, the user-
specified parameter ncrit , linked to the log of this amplification
factor, should be adapted in Xfoil depending on the distur-
bance level of the flow around the airfoil. Since the Xfoil results
are used to validate the RANS calculations in fully turbulent
mode, a small value of ncrit , ncrit = 0.001, is used to bypass
the transition mechanism in Xfoil, as recommended in the
documentation.54

FIG. 7. Convergence history of lift coefficient CL (a) and drag coefficient CD (b) for the angle of attack α = 5◦.



FIG. 8. Convergence history of lift coefficient CL (a) and drag coefficient CD (b) for the angle of attack α = 10◦.

1. Computational grids

A multi-domain uniform grid is used to refine the grid
around the airfoil. Two types of refinement are used: rectan-
gular boxes and offsets from the airfoil surface to efficiently
refine the grid in the near-wall region, as shown in Fig. 4.
At each refinement level, the grid size is halved in each
direction.

Three different computational grids have been designed
to evaluate the grid influence on the results (see Table I). Grid
A is the one presented in Fig. 4. Grid B is based on grid A with
additional refinement at both the leading and trailing edges
by addition of an additional offset on 10% of the chord at
both edges (see Fig. 5). Grid C consists of grid A with grid
refinement in the near-wake region over two chord lengths, as

shown in Fig. 5 for α = 0◦. This refinement region is adapted
for each angle of attack, following the wake angle behind the
airfoil.

The simulations are performed over about 17 flow through
times to ensure the convergence toward a steady state. This
corresponds to 240 000 iterations on grids A and C and
480 000 iterations on grid B. The time step is indeed twice
smaller for the calculation on grid B due to the additional
refinement level. The convergence of the aerodynamic lift
CL and drag CD coefficients is shown in Figs. 6–8 for
the three angles of attack considered in this work. Grids
A and C have the same convergence history. The con-
verged values of CL and CD on grid B are different than
the ones on grids A and C, and this will be discussed
in Sec. V B 2.

FIG. 9. Comparison of the y+ and y+
Ref values for (a) grid A and (b) grid B on the airfoil for the angle of attack α = 0◦.



FIG. 10. Comparison of the y+ and y+
Ref values lower than 100 for grid B for

the angle of attack α = 0◦.

Figure 9 displays the y+ values at boundary nodes and y+
Ref

at the reference points in the case α = 0◦. The wall model is
indeed applied at both types of points. y+ at boundary nodes
is highly fluctuating due to the staircase-like form of the grid
around the airfoil. This value varies around 200 with maximum
values locally reaching 500 at the leading edge for grid A. On
grid B, the y+ value at boundary nodes is mostly lower than
200 at the trailing and leading edges and is the same as for grid
A elsewhere. At the reference point, y+

Ref depends on the local
grid size ∆x and the friction velocity since y+

Ref = 2.5∆xuτ/ν.
y+

Ref reaches high values especially at the leading edge on grid
A. Refining the grid at the leading and trailing edges in grid B
divided y+

Ref by two in these refinement regions.

As can be seen in Fig. 10, regions where the boundary
nodes lie in the viscous sublayer (y+ < 11.81) are very sparse.
Moreover, y+

Ref is generally higher than 100 except at the lead-
ing and trailing edges, near-stagnation points, where the use of
a wall model is not justified. Note that the same observations
have been made for α = 5◦ and 10◦. A model for the viscous
sublayer is thus not necessary, and only the power-law model
of Eq. (30) is used.

2. Aerodynamic coefficients

The aerodynamic performance of an airfoil is classi-
cally evaluated using the lift (CL) and drag (CD) coefficients
calculated as follows:

CL =
L

1
2 ρ∞V2

∞ce
, CD =

D
1
2 ρ∞V2

∞ce
, (42)

where c is the airfoil chord, e is the span of the airfoil consid-
ered in the simulation, and V∞ and ρ∞ are, respectively, the
free-stream velocity and density. L and D are the lift and drag
forces applied on the airfoil, respectively, with

L = ~Fa·~eY , (43)

D = ~Fa·~eX , (44)

where~eX and~eY are the unit vectors, respectively, in the direc-
tion parallel and normal to the free-stream velocity vector.
~Fa is the sum of the pressure and viscous forces applied on the
airfoil,

~Fa =

∫∫
Sa

−p~ndS +
∫∫

Sa

( ¯̄τ : ~n)dS, (45)

where ¯̄τ is the viscous stress tensor and ~n is the outward
pointing unit vector normal to the airfoil surface Sa.

Different methods for the force calculation applied on a
body in a fluid are presented in the study of Van Dam.55 The
surface integration consists in calculating the force directly
from Eq. (45). However, when using Cartesian grids, the pres-
sure and stress tensor are calculated at the boundary nodes

FIG. 11. (a) Lift coefficient CL and (b) drag coefficient CD calculated with far-field integration for grids A, B, and C.



FIG. 12. Pressure coefficients Cp for grids A, B, and C at the angles of attack α = 0◦ (a), 5◦ (b), and 10◦ (c); for α = 0◦, an enlargement of the prediction near
the trailing edge is presented in the dotted outline.

which do not systematically lie on the airfoil surface. These
quantities have to be extrapolated on the vertices of the surface
grid of the airfoil to perform the integration in Eq. (45). The
force acting on a body can also be obtained with far-field inte-
gration where this force is derived from the global conservation
law of momentum applied to a control volume encompassing
the body. According to Chao and Van Dam,56 the accurate
prediction of the drag using surface integration necessitates an
accurate prediction of the pressure distribution on the airfoil
surface. They compared both methodologies of calculation,
surface and far-field integration, in a RANS simulation on a
body-fitted grid. They obtained fairly good agreement between
surface and far-field integration with very well predicted pres-
sure profile. However, the extrapolation performed for the
surface integration when using Cartesian grids may lead to
oscillations of the stress tensor and pressure distribution on

the surface and thus to errors in the surface integration.57 In
this work, the far-field integration is used to preclude the use
of extrapolated values on the airfoil surface. This estimation
method of the drag is thus not based on interpolated values on
the airfoil surface.

A control volume Vc is defined around the airfoil. Contrary
to Chao and Van Dam,56 the inlet and side surfaces were not
moved to infinity to restrict the far-field integration to the outlet
surface only. All surfaces of the control volume are considered
in the present work. The inlet surface, denoted by index in,
is located approximately one chord upstream of the airfoil
when the outlet surface, denoted by index out, is put 3.5 chords
downstream the airfoil. The upper (index 1) and lower (index
2) surfaces are defined at about one chord from the airfoil. The
conservation law of momentum applied to the control volume
Vc delimited by surface S = Sin + S1 + S2 + Sout for the RANS



steady-state solution is∫∫
S
ρ~u(~u·~n)dS = Σ~F = −~Fa +

∫∫
S
−p~ndS +

∫∫
S
( ¯̄τ : ~n)dS,

(46)
where ~n is the outward pointing normal to the surface S, ~u is
the mean velocity vector, p is the mean pressure, and ¯̄τ is the
viscous stress tensor. The force acting on the airfoil is thus

~Fa = −

∫∫
S
ρ~u(~u·~n)dS +

∫∫
S
−p~ndS +

∫∫
S
( ¯̄τ : ~n)dS. (47)

It is worth noting that in Xfoil, the lift coefficient is calculated
by surface pressure integration, whereas the drag coefficient is
calculated using the Squire-Young formula at the last point in
the wake. A comparison of drag coefficients calculated using
the Squire-Young formula or surface integration in RANS
body-fitted simulations of flows around airfoils is presented
in the study of Coder and Maughmer.58 Very good agreement
was found between both methods, and the error was within
2%-3% in the low drag range.

Figure 11 compares the lift and drag coefficients obtained
by far-field integration for the three angles of attack on the
three grids compared with Xfoil results. Very similar results are
obtained on grids A and C. This means that the grid refinement
in the wake has no effect on the aerodynamic coefficients’
prediction for the considered cases. The prediction of CL is
good for α = 0◦ and 5◦ with the three grids. For α = 10◦, CL is
underestimated with grids A and C and better predicted with
grid B. Similarly, grid refinement at the leading and trailing
edges improves the drag coefficients’ prediction for α = 0◦

and 5◦ which are well predicted with grid B. CD is yet slightly
overestimated at α = 10◦ with grid B. However, the validity
of the Xfoil results, and of the Squire-Young formula, at this
higher angle of attack may be called into question. Note that we
have checked that the estimation of CL and CD is not dependent
on the size of control volume Vc.

3. Pressure coefficient

For a finer validation of the numerical results, the pres-
sure coefficient distributions obtained with the present method
are compared with Xfoil results for the three angles of attack
under consideration. The pressure coefficient Cp is calculated
as follows:

Cp =
p − p∞
1
2 ρ∞V2

∞

, (48)

where p∞ is the free-stream pressure. As explained in
Sec. V B 2, the values of p calculated at the boundary nodes
have to be extrapolated on the vertices of the surface grid of
the airfoil in order to calculate the Cp coefficient.

The pressure coefficient distributions obtained with grids
A, B, and C are compared with Xfoil results in Fig. 12. They
are almost identical which is in agreement with the observation
made in Sec. V B 2. Large variations of Cp are observed at the
trailing edge on grids A and C which are underlined in Fig. 12
for α = 0◦. This is reduced by refining the grid in this region as
shown by the results on grid B. The airfoil has indeed a blunt
trailing edge which may lead to significant variations of Cp if
the grid is not fine enough in this region. Forα = 0◦, the pressure
profile Cp on grid B is in agreement with the one predicted by
Xfoil. For α = 5◦, the pressure coefficient is well predicted

FIG. 13. Comparison of the velocity profiles in the boundary layer obtained
with the original model and with the model modified according to Tamaki
et al.;2 uo and um are, respectively, the velocities obtained with the original
and the modified wall models for a boundary node at a distance yo from the
wall; ym is the distance to the wall required to obtain the velocity um with the
original wall model.

with the three grids despite the slight underestimation of the
maximum of−Cp. The prediction of Cp forα = 10◦ is improved
near the trailing edge on grid B, as for the other angles of attack,
but also near the leading edge.

Small wiggles are observed on the Cp distributions, in
particular, at α = 0◦. This is linked to the boundary treatment
when using Cartesian grids and has been observed in several
studies using the cut-cell method1,3 and immersed boundary
techniques12 in the Navier-Stokes framework or LBM.13,57 In
particular, Hu et al.3 have shown that these oscillations are
linked with the interpolation method used for the solid bound-
ary treatment. In order to avoid such numerical instabilities,

FIG. 14. Pressure coefficient Cp at the angle of attack α = 0◦ with grid B
obtained with the power-law wall model modified as in the work of Tamaki
et al.2



FIG. 15. (a) Lift coefficient CL and (b) drag coefficient CD calculated with far-field integration for grid B with the original power-law wall model [Eq. (38)]
and its version modified as in the work of Tamaki et al.2 [Eq. (50)].

Capizzano10 proposed to assume a linear behavior of the veloc-
ity near the wall when using a Cartesian grid. Based on this
idea, Tamaki et al.2 modified the use of the wall model to obtain
a linear tangential velocity profile between the boundary node
and the reference (Ref ) point. The velocity at the boundary
node is thus calculated according to

u+ = u+
Ref −

∂f
∂y+

�����(y+
Ref )

(y+
Ref − y+), (49)

where f is the function of the wall model.
This modification has been applied to the power-law wall

model used in this work with f (y+) = A(y+)B. Using Eq. (49),
the calculation of the velocity at the boundary node using
Eq. (38) is replaced by

u(y) = uRef + B
uRef

yRef
(y − yRef ). (50)

The original wall model [Eq. (38)] and the modified wall
model according to Tamaki et al.2 [Eq. (50)] are compared
in Fig. 13. With the modified wall model, the velocity profile
is indeed linear between the wall (y = 0) and the Ref point
(y = 2.5dx). For a given distance to the wall yo of the boundary
node, the velocity obtained with the modified wall model um

is higher than that with the original wall model uo.
The pressure coefficient obtained with grid B using this

modified wall model is presented for α = 0◦ in Fig. 14. A
smoother profile is indeed obtained with this method. The
same observation has been made for α = 5◦ and 10◦. Note that
the same results can also be obtained by smoothing the wall
distance of the boundary nodes in the wall model equation.
However, as shown in Fig. 15, the aerodynamic coefficients
obtained are not correct, and the drag coefficient is in par-
ticular overestimated. Smooth pressure profiles can thus be
obtained on Cartesian grids but at the expense of the force
prediction.

In order to evaluate the difference between the original
and the modified model, the distance ym is defined in Fig. 13.
ym corresponds to the distance to the wall of a fictitious node
where the velocity would be um by application of the original
wall model. Applying the modified wall model to boundary
nodes at distance yo to the wall is thus equivalent to applying
the original wall model to boundary nodes at distance ym to
the wall. Figure 16 presents the corresponding y+

o and y+
m val-

ues along the airfoil. The variation range of the y+
m values is

reduced compared to that of the y+
o values. The y+

m values are
also higher than the y+

o values. This means that using the mod-
ified wall model is equivalent to smoothing and increasing the
distance of the first off-wall node in the original model. The

FIG. 16. Comparison of the y+
o and y+

m values for grid B at the angle of attack
α = 0◦.



FIG. 17. Original and modified NACA23012 profiles.

flow physics is thus modified by supposing a linear velocity
profile in the boundary layer or smoothing the wall distance. In
the latter case, the resulting solution can be interpreted as the
solution around a slightly corrugated profile which is obtained
by moving each point of the profile by a distance equal to the
difference between the modified ym and the real yo distance to
the wall. A portion of the resulting modified profile is shown in
Fig. 17. This results in a rough-like profile which may explain
the higher drag obtained with the modified wall model.

As a conclusion, good results are obtained on the predic-
tion of integral values of CL and CD and of the pressure profile
Cp with proper grid definition at the leading and trailing edges.
Grid refinement in the wake does not appear to have a signif-
icant influence in the present cases. The far-field integration
on grid B yields an estimation of the aerodynamic coefficients
that is in very satisfactory agreement with Xfoil results. More-
over, as shown in the Appendix, the power-law model used

in this work is robust in regard to different versions of the
Spalart-Allmaras model.

C. Application to a lower Re number case

The method presented in Secs. V A and V B is now
applied to a lower Reynolds number case in order to fur-
ther validate the power-law model. The Reynolds number is
Re = 1.8× 106 which corresponds to the experiment of Broeren
et al.59 In order not to change the Mach number, Ma = 0.3, the
Reynolds number is modified by scaling the airfoil chord. At
this Reynolds number, grid A defined in Sec. V B leads to y+

values between 0 and 80 with values principally lower than 50
for x/c > 0.5. These values are low and may not be adapted
for the use of the power-law wall model defined in Eq. (38). A
new grid, grid A0, is defined by removing one refinement off-
set around the airfoil, thus leading to y+ values mainly between
20 and 120.

The aerodynamic coefficients obtained by far-field inte-
gration for several angles of attack are compared in Fig. 18
with the Xfoil results and with the experimental measurements
published in the study of Broeren et al.59

The prediction of CL with grids A and A0 is very similar
and in agreement with Xfoil results and is slightly overesti-
mated compared with the experimental measurements for high
angles of attack. The drag coefficient CD obtained with Xfoil
is overestimated compared to the experimental measurements.
At this lower Reynolds number, Xfoil seems to be less reliable.
For angles of attack higher than 5◦, CD is well predicted with
grid A0, whereas it is overestimated with grid A. For α ≥ 5◦,
the y+ value with grid A is mostly lower than 50 over the air-
foil, whereas it has been shown in Sec. IV A that the power-law
model is valid for y+ ≥ 50. This may explain why better results
are obtained with a coarser mesh at high angles of attack. The
experimental measurements present an almost constant value
of CD for α ≤ 5◦. This plateau is not reproduced with the cal-
culations on grids A and A0 in which CD is decreasing with the
angle of attack. Drag values closer to the experiment are thus
obtained with grid A as a consequence of the overestimation

FIG. 18. (a) Lift coefficient CL and (b) drag coefficient CD calculated with far-field integration for grids A and A0 compared with the experimental measurements
(Exp.) of Broeren et al.59 and Xfoil results.



FIG. 19. Pressure coefficients Cp for grids A and A0 at the angles of attack α = 6.2◦ (a) and 9.3◦ (b).

of CD with this grid at high angles of attack. Note however
that the CD values for α ≤ 5◦ are very low so that a small pre-
diction error may seem important since it is of the same order
of magnitude as the CD value.

The experimental measurements of the pressure coeffi-
cient Cp are available for α = 6.2◦ and α = 9.3◦. Comparison of
the Cp profiles obtained on grids A and A0 with the Xfoil results
and experimental measurements is shown in Fig. 19. First, the
Xfoil results and experimental measurements are in agreement
except at the trailing edge where −Cp obtained with Xfoil is
slightly lower than that experimentally measured. Calculations
on grids A and A0 lead to very similar results which are close
to the experiment expect for the slight underestimation of the
maximum of −Cp.

In conclusion, good results are once more obtained at this
lower Reynolds number, thus further validating the use of the
power-law model for the flow prediction around airfoils.

VI. CONCLUDING REMARKS

An explicit wall model based on a power-law velocity
profile for the description of the turbulent boundary layer is
proposed for high Reynolds number flow RANS simulations.
This model is particularly well suited for the near-wall treat-
ment using Cartesian grids since the evaluation of the friction
velocity is not required for the reconstruction of the velocity at
the boundary nodes. Moreover, contrary to most of the com-
monly used wall models that rely on a logarithmic velocity
profile, no iterative procedure is needed to calculate the fric-
tion velocity if necessary for the computation of the boundary
condition of a RANS model equation or for post-processing
purpose.

LBM-based RANS simulations of the flow around an air-
foil at high Reynolds numbers have been performed to assess
the proposed model and its numerical implementation on uni-
form grids. The Spalart-Allmaras turbulence model has been
used. Verification and validation steps have been conducted in
order to assess the reliability of the numerical simulations. A
grid convergence study based on three grids with refinement in

regions of interest, specifically the leading and trailing edges
and the wake of the airfoil, has been carried out at Re = 16
× 106. Grid refinement near the leading and trailing edges,
where stagnation points occur, has a significant effect on the
accuracy of the results. Numerical simulations at Re = 16× 106

and Re = 1.8 × 106 are validated against results from Xfoil
and experimental measurements looking at integral quantities,
i.e., CL and CD aerodynamic coefficients, and a local quantity,
the Cp distribution.

Very satisfactory results are obtained at both Reynolds
numbers for angles of attack ranging from 0◦ to 10◦. The
methodology presented in this work, namely, the LBM-based
RANS simulation with the power-law wall model, is thus val-
idated for the prediction of attached aerodynamic flows at a
high Reynolds number.

The power-law model is thus promising for simplified
near-wall treatment in LBM with Cartesian grids.
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APPENDIX: ROBUSTNESS OF THE POWER-LAW
MODEL WITH RESPECT TO DIFFERENT SA MODELS
1. Variants of the SA model
a. SA model with the fv3 term (SA-fv3)

Spalart proposed another way, compared to the negative
SA model (see Sec. II B), to handle negative values of the
modified vorticity S̃ which was not published but is referred
to as the “fv3” formulation in the study of Allmaras et al.29

and is presented in the study of Deck et al.60 The model is the
same as the equation for χ > 0 given in Sec. II B but with a



modification of the definition of the modified vorticity in order
to enforce S̃ ≥ 0,

S̃ = fv3Ω +
ν̃

κ2d2
w

fv2,

with fv2 =

(
1 +

χ

cv2

)−3

, fv3 =
(1 + χfv1)(1 − fv2)

χ
, (A1)

with cv2 = 5. All other constants remain the same as in the
original model.

Moreover, to prevent numerical problems, Deck et al.60

proposed to clip χ by taking max(χ, 10−4). This replaces the
use of Eq. (12) since χ is then never negative.

According to Rumsey et al.,61 a delay of the laminar-
turbulent transition is observed with this f33 version compared
to the original SA model even without trip terms (fully tur-
bulent simulation) for Reynolds numbers from one million to
10 × 106.

b. Wall-distance-free version of the SA model

The original SA model relies on the distance to the nearest
wall in the destruction term. The evaluation of this distance
may be difficult to compute and not univocally defined for
realistic geometries, as illustrated in the study of Weiss and
Deck.62 Menter63 transformed the two-equation k − ε model
into a one-equation model in order to establish a connec-
tion between one- and two-equation models. He thus obtained
a local equation without dependence on the distance to the
wall. Rahman et al.64 established a similar equation for the
SA-f33 model and thus proposed a wall-distance-free ver-
sion of the Spalart-Allmaras model. Moreover, they changed
the damping functions and established new expressions for
the constants of the model in order to be able to take non-
equilibrium and anisotropic effects into account. These last
changes are not the purpose of the present work; therefore,

FIG. 20. Convergence history of lift coefficient CL (a) and drag coefficient CD (b) for the angle of attack α = 0◦.

FIG. 21. Convergence history of lift coefficient CL (a) and drag coefficient CD (b) for the angle of attack α = 5◦.



only the wall-distance-free feature is retained, and the transport
equation is

∂ν̃

∂t
+
∂ν̃ui

∂xi
= CbS̃ν̃︸︷︷︸

Production

+
∂

∂xi

((
ν +

νt

σ

)
∂ν̃

∂xi

)
︸                  ︷︷                  ︸

Diffusion

−Cw

(
∂ν̃

∂xi

)2

︸        ︷︷        ︸
Destruction

.

(A2)
The wall-distance dependency is removed, and the first
derivative of ν̃ is introduced in the destruction term. The
diffusion term is also modified since the term involving
the cb2 constant is removed. Moreover, the diffusion term
involves the eddy viscosity νt as in the equation obtained by
Menter.63

In this work, the damping functions fv1, fv2, and fv3, as
well as the definition of S̃, are unchanged according to the
SA-fv3 model. For the numerical resolution of Eq. (A2), νt is

replaced by its expression νt = fv1 ν̃ in the diffusion term. The
constant Cb in the production term is equated to the constant
cb1 of the original model, Cb = cb1 = 0.1355. The formulation
proposed by Rahman et al.64 is used for calculating Cw ,

Cw =

√
Cb

Cµ
(1 + Cb), (A3)

where Cµ = 0.09. This leads to C4 = 1.4. The other constants
are the same as in the original model.

2. Results

Results obtained with these two variants of the SA model
are now compared with those obtained with the baseline and
negative SA model to check the robustness of the proposed
wall modeling approach. In this section, “SA baseline” refers

FIG. 22. Convergence history of lift coefficient CL (a) and drag coefficient CD (b) for the angle of attack α = 10◦.

FIG. 23. (a) Lift coefficient CL and (b) drag coefficient CD calculated with the far-field integration obtained with the three variants of the SA model.



FIG. 24. Pressure coefficients Cp obtained with the three variants of the SA model at the angles of attack α = 0◦ (a), 5◦ (b), and 10◦ (c).

to the variant used in this work and presented in Sec. II B,
while “SA fv3” and “SA fv3 wall distance free” refer to vari-
ants presented in Subsections 1 a and 1 b of the Appendix,
respectively. Calculations are conducted for the high Reynolds
number case Re = 16 × 106 with grid B presented in
Sec. V B.

a. Convergence toward a steady-state solution

The convergence of the aerodynamic coefficients with
the three variants of the SA turbulence model is compared
in Figs. 20–22. The speed of convergence and the converged
values are observed to be identical with the three variants.

b. Aerodynamic coefficients and pressure
distribution

The aerodynamic coefficients CL and CD are presented
in Fig. 23, along with the Cp distributions in Fig. 24. All

variants lead to very similar results irrespective of the angle of
attack.

The three studied variants of the Spalart-Allmaras
turbulence model lead to almost identical results, prov-
ing the robustness of the methodology proposed in this
paper.
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