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We report on small-scale instabilities in a thermally driven rotating annulus
filled with a liquid with moderate Prandtl number. The study is based on direct
numerical simulations and an accompanying laboratory experiment. The computations
are performed independently with two different flow solvers, that is, first, the
non-oscillatory forward-in-time differencing flow solver EULAG and, second, a
higher-order finite-difference compact scheme (HOC). Both branches consistently
show the occurrence of small-scale patterns at both vertical sidewalls in the Stewartson
layers of the annulus. Small-scale flow structures are known to exist at the inner
sidewall. In contrast, short-period waves at the outer sidewall have not yet been
reported. The physical mechanisms that possibly trigger these patterns are discussed.
We also debate whether these small-scale structures are a gravity wave signal.

Key words: baroclinic flows, geophysical and geological flows, internal waves

1. Introduction
In the midlatitude troposphere, dynamic low- and high-pressure systems and the

large-scale polar jet, a narrow band of high wind speeds in the upper troposphere,
develop due to the lateral temperature gradient between the polar region and the
equatorial region and form due to midlatitude baroclinic instability. The meandering
jet pattern and the embedded cyclonic and anticyclonic pressure systems transport
heat and momentum from the tropical to the polar region.

The tropospheric jet is linked with the occurrence of atmospheric inertia–gravity
waves (hereafter IGWs for short). O’Sullivan & Dunkerton (1995) found that nearly
balanced baroclinic life cycles could lead to spontaneous emission of IGWs at the jet
exit region. This hypothesis was confirmed later (Plougonven & Snyder 2005, 2007;
Viùdez & Dritschel 2006). Field measurements (Plougonven, Teitelbaum & Zeitlin
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FIGURE 1. (Colour online) (a) Sketch of the research cavity with a baroclinic wave
of dominant azimuthal wavenumber m = 4, courtesy of Yongtai Wang. (b) Photo of the
differentially heated rotating annulus laboratory experiment. The cooled inner cylinder and
the two outer cylinders heated in between can be seen. The experiment has a free top
surface and a flat bottom. Particle motion in a layer close to the surface has been made
visible by a green laser plane.

2003) reveal that two distinct regions are responsible for intense emission of IGWs,
namely, first, the region of the maximum wind speed within the jet and, second, the
region of the strongest curvature of the jet. While Plougonven et al. suggested that
geostrophic adjustment leads to the emission of IGWs, Zhang (2004), studying the
emission of IGWs from the tropospheric jet in a numerical experiment, supposed
that IGWs are emitted from flow imbalance. Later, Vanneste (2013) reported that
the evolution of well-balanced flows would lead to the emission of IGWs through
spontaneous imbalance, especially in baroclinic life cycles. This is due to the fact
that locally large Rossby numbers can be found in localized atmospheric features like
in fronts, from which IGWs can be emitted even if the flow is balanced on large
scales.

Quite recently, it was realized that a thermally driven rotating annulus is a suitable
testbed for studies on spontaneous imbalance of baroclinic jets; see Williams, Haine
& Read (2008), Flór, Scolan & Gula (2011), Borchert, Achatz & Fruman (2014),
Vincze et al. (2016) and Hien et al. (2018). Hien et al. (2018) pointed out that
for the annulus flow, only some part of the gravity waves seems to result from
spontaneous emission. A residual part comes from other sources. To correctly interpret
experimental and numerical annulus results on spontaneous imbalance, it is hence
of importance to study boundary layer instabilities and to find out whether these
instabilities can radiate gravity waves into the region of the baroclinic jet. This is the
purpose of the present investigation.

The thermally driven rotating annulus, figure 1, is a laboratory-scale set-up for
studying midlatitude atmospheric flows, which are driven by the baroclinicity of
the flow state by analogy with atmospheric flows. The set-up generally consists of
a cylindrical gap; the bounding walls rotate uniformly around the vertical axis of
symmetry with frequency Ω . The lateral temperature gradient, ∆, is set by cooling
the inner sidewall and heating the outer one, and the cooled inner sidewall then
reflects the Earth’s polar region and the heated outer sidewall its equatorial region.
The research cavity represents the midlatitudes, where a vertically and horizontally
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sheared mean flow is generated due to the lateral temperature gradient and the
rotation of the annulus. The flow regimes are mainly determined by Ω and ∆, and
their general characteristics are only weakly dependent on material properties of
the liquid (Fein & Pfeffer 1976). However, it should be noted that studies with air
as working fluid show somewhat different characteristics of the large-scale flows
(Randriamampianina et al. 2006; Castrejón-Pita & Read 2007; Read et al. 2008).

Using non-dimensional parameters, Ω and ∆ are typically captured by the Taylor
number, Ta, and the thermal Rossby number, Ro. Both Ta and Ro include the
geometric parameters of the research cavity, specifically its aspect ratio, Γ =d/(b− a),
with d as the fluid depth and (b− a) as the gap width. The radius ratio, η, is given
by η = a/b, with a as the inner radius and b as the outer radius of the gap. The
material properties of the working fluid are defined by the Prandtl number, Pr. The
three parameters Ta, Ro and Pr read as

Ta=
4Ω2(b− a)5

ν2d
, Ro=

α1gd
Ω2(b− a)2

, Pr=
ν

κ
, (1.1a−c)

with α as the volumetric expansion coefficient of the fluid, ν as the kinematic
viscosity, κ as the thermal diffusivity and g as the acceleration due to gravity. The
Taylor number includes the Coriolis parameter, f = 2Ω , squared and measures the
strength of Coriolis acceleration relative to viscous dissipation. The thermal Rossby
number measures the thermal forcing with respect to Coriolis forcing.

Thanks to a large number of experimental and numerical studies and theoretical
investigations performed in the past 50 years, started independently by Hide (1958)
and Fultz et al. (1959), the dynamics of regular large-scale flow regimes has
been thoroughly explored. The overall regime diagram, given by the rotation rate
and the temperature difference, generally divides the parameter space into three
distinct regions. The basic flow regime, determined by axisymmetric flow, the wavy
flow regime, delimited by an anvil-shaped domain in the Ta–Ro parameter plane,
where steady and time-dependent patterns of baroclinic waves of different azimuthal
wavenumber occur, and the irregular flow regime at relatively high rotation rates, also
called geostrophic turbulence. As in the troposphere, the wave flow is characterized
by a large-scale jet stream that meanders between the inner and outer sidewalls due
to the waves that occur because of baroclinic instability of the sheared mean flow,
surrounded by cyclonic and anticyclonic eddies.

To give an impression of the large-scale flow patterns that develop at specific
rotation rates, figure 2 shows (φ, r) snapshots of temperature differences at different
parameter points extracted from EULAG computations (φ as azimuth; r as radius).
Here, panel (a) (Ta= 5.79× 106, Ro= 3.99) indicates a complex flow of coexisting
wave modes m = 2 and m = 3. Recent computations (von Larcher & Dörnbrack
2015) and accompanying laboratory experiments (von Larcher & Egbers 2005)
reported similar complex flows in the close neighbourhood of the parameter point,
too. Previous studies have suggested that these complex flows may occur from
nonlinear wave–wave interactions, including interference vacillations, sideband effects
or resonant triad interaction, e.g. Ohlsen & Hart (1989), Früh & Read (1997).

Beyond the abovementioned regimes, further remarkable flow characteristics such
as, e.g., weak waves, dispersive waves, amplitude oscillations, shape or structural
vacillations (SVs), have been observed by a number of laboratory and numerical
studies. These complicated large-scale flow patterns are the result of generally
nonlinear dynamic processes. Structural vacillations, in particular, occur near the
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FIGURE 2. (Colour online) The EULAG model. Maps in the (φ, r) plane of the
temperature difference, in K, at different parameter points (Ta, Ro), showing large-scale
wave modes of specific azimuthal wavenumber m: (a) Ta= 5.79× 106, Ro= 3.99, complex
flow of m= 2 and m= 3; (b) Ta= 12.25× 106, Ro= 1.89, m= 3; (c) Ta= 16.68× 106,
Ro= 1.38, m= 3; (d) Ta= 28.13× 106, Ro= 0.82, m= 4; (e) Ta= 129.59× 106, Ro= 0.18,
m= 4. It should be noted that the grid resolution is 192× 192× 67 in x, y, z, and the
the colourbar has different scaling in each panel. Horizontal slices are taken just below
the free top surface.

transition to the fully irregular wave flow regime. Read et al. (2008) reported on
temporal fluctuations of the flow that develops in the SV regime. These fluctuations
are going to progressively disturb the regularity of the waves, which then leads to a
transition to irregular waves with increasing rotation rate. A number of publications
document the rich variety of the flow patterns that have been observed for the
so-called Hide experiment, e.g. Pedlosky (1970), Hide & Mason (1975), Hignett
(1985), Morita & Uryu (1989), Read et al. (1992), Früh & Read (1997), Lu & Miller
(1997), Pfeffer et al. (1997), Früh (2015) and Read et al. (2015).

Today, the annulus is still of interest for validating computational fluid dynamics
codes incorporating new numerical concepts; see Vincze et al. (2015). The Hide
experiment is also an ideal testbed to study multiple-scale interactions. This might
be due to the relatively simple geometry of the annulus, with well-defined boundary
conditions, in contrast to the flows observed in the atmosphere, which are influenced
by a large number of uncontrollable processes.

The study presented here is particularly concerned with the occurrence of
small-scale features. These small-scale patterns are observed at both vertical sidewalls
in regions where the jet stream interacts with the sidewall and is largely curved. We
will particularly focus on the outer sidewall region, as the occurrence of small-scale
phenomena in this region has not been discussed in previous studies to the best of
the authors’ knowledge. However, we will also present results for the inner sidewall
region when appropriate. The findings have been detected independently in direct
numerical simulations with two different flow solvers, that is the geophysical flow
solver EULAG and the higher-order compact (HOC) code. Furthermore, accompanying
laboratory experiments show similar signals of small-scale instabilities. In order to
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preserve clarity, we only focus on a few particular parameter points even though our
findings are observed for a broad range of parameters.

The paper is organized as follows. A survey of IGWs in a rotating baroclinic
annulus is given in the next section. The numerical models and the laboratory set-up
are described in § 3. The main results of the numerical simulations and the laboratory
experiment are given in § 4. In § 5, possible mechanisms that may originate the
small-scale instabilities are discussed. The paper then ends with a conclusion, § 6.

2. Inertia–gravity waves in a thermally driven rotating annulus

The existence of gravity waves in a thermally driven rotating annulus has recently
been discussed by Jacoby et al. (2011), Borchert et al. (2014) and Randriamampianina
& Crespo del Arco (2015). Jacoby et al. (2011) and also Randriamampianina &
Crespo del Arco (2015) reported that the observed small-scale instabilities, i.e.
short-period waves, are located close to the inner sidewall of the annulus and
are embedded in the large-scale baroclinic wave field. Jacoby et al. (2011) found
that the short-period waves result from a localized instability of the thin thermal
boundary layer and that they occur in regions of strong shear and downwelling
tightly connected to the large-scale baroclinic wave flow. Randriamampianina (2013)
and Randriamampianina & Crespo del Arco (2015) proposed as generation mechanism
a Kelvin–Helmholtz instability (KHI) invoking resonant over-reflection. That is, a
density overturn was observed along the bottom boundary layer, associated with the
presence of a reversal flow and a stagnation point, signalling the occurrence of KHI.
There, IGWs result from the break of this KHI impinging on the inner cold wall.

Borchert et al. (2014) investigated numerically emission of IGWs in two different
configurations of the model set-up. The first set-up had a gap width b− a= 0.075 m
and a fluid depth d = 0.135 m, with a lateral temperature difference of ∆ = 8 K,
denoted as the classic configuration. This set-up corresponds to an accompanied
laboratory experiment (von Larcher & Egbers 2005; Harlander et al. 2011). The
second set-up, where b− a= 0.50 m, d = 0.04 m and ∆= 30 K, was used with the
intent of studying the occurrence of IGWs in an atmosphere-like configuration, for
which N > f , where N is the Brunt–Väisälä frequency and f is the inertial frequency.
In the real atmosphere, N/f ≈ 100, whereas N/f < 1 in the classic configuration. In
both configurations, the results indicated IGW activity close to the inner sidewall but
also along the baroclinic wave front which seems to be emitted spontaneously.

Apart from Jacoby et al. (2011), who claimed to have found IGW activity by
analysing time series data of a laboratory experiment, IGW activity in the classic
experimental configuration of the rotating annulus has not been reported. This might
be due the different scales in time and space of the equilibrated large-scale flow
and the small-scale patterns. Furthermore, as IGWs apparently exist within the
thin boundary layers as well, their weak signal might be a further objective for
measurement techniques in laboratory experiments. However, signals of IGW activity
have been reported by Read (1992), and in mechanically forced two-layer fluid
laboratory experiments on baroclinic waves, Lovegrove, Read & Richards (2000) and
Williams et al. (2008) have claimed to have detected IGWs. Formation of small-scale
IGWs in the presence of baroclinic instability in a salt-stratified experiment was
reported by Flór et al. (2011). More recently, signatures of IGWs have been found
in a thermohaline annulus experiment (Vincze et al. 2016).

It is interesting to note that short-period waves are also observed in similar rotating
flow set-ups, e.g. in thermally driven Couette–Taylor systems. These set-ups are
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similar to the baroclinic annulus but with a much larger aspect ratio. Usually, the
thermal Rossby number is too large to exhibit baroclinic instability, but interesting
spiral structures have been observed (Leppiler et al. 2008; Viazzo & Poncet 2014).

3. Numerical and experimental methods and parameters

The numerical simulations and laboratory experiments are performed by using the
same model geometry. The gap width is 0.075 m, with a= 0.045 m and b= 0.120 m,
and d = 0.135 m, where, as mentioned above, a (b) is the inner (outer) radius and
d is the fluid depth. With these values, the radius ratio is calculated to be η= 0.375
and the aspect ratio is Γ = 1.8. The Prandtl number is set to Pr = 7.0, i.e. we use
the material properties of water for the fluid, in agreement with the laboratory set-up.
All models consider a free top surface. However, the convective exchange between the
fluid and the environment at the top surface is not taken into account in the numerical
simulations. The equations are solved in a rotating reference frame, attached to the
cavity, for the two codes.

3.1. The EULAG numerical model

The EULAG set-up used here has been previously used in the context of a parameter
study of large-scale flow dynamics (von Larcher & Dörnbrack 2015) and in the
framework of a comprehensive benchmark test with respect to a laboratory reference
experiment (Vincze et al. 2015). The governing partial differential equations are
evaluated with a semi-implicit non-oscillatory forward-in-time differencing algorithm
(Smolarkiewicz 1991; Smolarkiewicz & Margolin 1997, 1998; Prusa, Smolarkiewicz
& Wyszogrodzki 2008). The Navier–Stokes equations are solved in the Boussinesq
approximation in the Eulerian flux-form advection scheme.

We use a Cartesian (x, y, z) domain with physical lengths 0.258× 0.258 m in the
x and y directions and 0.135 m in the z direction, where z is the height. In this
Cartesian domain, the annulus geometry is defined by using the usual conversion from
Cartesian to polar coordinates. The grid dimension is set to 384× 384× 201 in x, y,
z. This results in a grid resolution of 1x = 1y = 1z = 0.067 × 10−2 m. The time
step increment, 1t, is set to 2.5× 10−3 s to ensure a small Courant–Friedrichs–Lewy
(CFL) number.

The sidewalls and end walls of the annulus are modelled with the immersed
boundary approach (Goldstein, Handler & Sirovich 1993; Smolarkiewicz et al. 2007).
At the sidewalls and at the bottom end wall as well, no-slip conditions are set,
i.e. U= (u, v,w)= 0, with U as the velocity vector, (u, v) as its horizontal components
and w as its vertical component. At the free top end wall, only the vertical velocity
component is bounded as w = 0; hence, we follow a free slip approach for the top
boundary.

To model the lateral temperature difference, ∆= Tout − Tin, with Tout =+∆/2 and
Tin=−∆/2 relative to a reference temperature of T = 293.15 K, we set T = Tout (Tin),
where the radius is equal to the outer (inner) radius of the research cavity. Rotation
is implemented with the Coriolis parameter by default. The computations have been
realized by, first, establishing the temperature difference in the research cavity while
setting rotation rate to zero. Once the temperature difference has been established in
the fluid, the rotation rate is set to the desired value.

.
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3.2. The HOC code
The Navier–Stokes–Boussinesq equations are written in primitive variables for
cylindrical coordinates. Conservation equations are solved on a fully staggered
grid using a Fourier approximation in the homogeneous tangential direction. In
the radial and vertical directions, the solutions are approximated using a fourth-order
compact finite-difference scheme. The mesh in these two directions is refined near
the boundaries using a hyperbolic tangent distribution (Abide & Viazzo 2005).

The time advancement is second-order accurate and is based on the combination of
an Adams–Bashforth for the convective terms with an implicit backward-Euler scheme
for the viscous terms. The velocity–pressure coupling is solved using a projection
algorithm. For each azimuthal wavenumber, the problem reduces at each time step to a
set of 2D Helmholtz and Poisson equations (Oguic, Viazzo & Poncet 2015). Equations
are directly solved in their dimensional form.

For the imposed temperature gradient and the rotation rate considered here, a grid
resolution composed of 131 × 181 × 384 points in the radial, axial (vertical) and
azimuthal directions has been used with a time step of 1t= 10−2 s.

With this grid resolution, the thermal boundary layer, the thickness of which has
been estimated a priori as 1.9 mm, cf. § 5.1, is described with 16 grid points in the
radial direction, with a minimum mesh spacing of 1r= 0.1 mm. This high resolution
guarantees that the wall layers are accurately resolved.

3.3. Laboratory experiment
The tank consists of three concentric cylinders mounted on a turntable (see figure 1).
While the inner cylinder is made of anodized aluminium and is cooled by a thermostat,
the middle and outer ones are made of borosilicate glass. The outer sidewall of the
experiment gap is heated by a heating coil that is mounted at the bottom of the outer
cylinder bath. The annulus has a flat bottom and free top surface. As working fluid,
deionized water has been used. The experiment can be controlled via the rotation rate
of the annulus, Ω , and the temperature difference between the cooled inner and heated
outer cylinders, ∆= Tout − T in.

A particle image velocimetry (PIV) system is used to measure the horizontal
velocity components below the fluid surface; see Harlander et al. (2015). The surface
temperature is measured by an infrared camera (InfraTec; spatial resolution 640× 480
pixels, thermal resolution <0.08 K, spectral range 7.5–14 µm). The PIV system and
infrared camera are mounted above the annulus on a corotating mast.

3.4. Parameters
For our study, we select different parameter points as given in table 1. These
parameters are chosen with the purpose of studying small-scale instabilities in the
wave flow regime, where we focus on a steady wave at moderate rotation rate and
on an SV mode at higher rotation rate before the transition to geostrophic turbulence.
The former is simulated by EULAG and the latter by HOC, and both regimes are
studied in the laboratory experiment.

By inspecting the numerical simulations and the laboratory experiments we find
some differences, particularly in the azimuthal wavenumber of the large-scale wave
flow. This non-uniformity is not surprising but underlines the dynamics of the flow
that under some circumstances could lead to baroclinic wave manifestations at similar
parameter points, the so-called intransitivity phenomenon. For instance, an alteration
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Model Ω (r.p.m.) Ω (rad s−1) Tref (K) ∆ (K) Ta (107) Ro m

EULAG 6.06 0.635 293.15 6.7 2.81 0.82 4
Forward-in-time differencing
HOC 13.00 1.361 300.15 8.0 12.92 0.21 4(SV)
Finite-difference discretization
LAB I 5.8 0.607 304.95 8.0 2.58 1.07 3
LAB II 6.0 0.628 304.95 7.8 2.76 0.98 3
LAB III 14.5 1.518 301.65 8.0 16.0 0.17 4(SV)
Laboratory experiment

TABLE 1. Parameters of the numerical simulations with the EULAG model and the
HOC model, and of the laboratory experiments. Here, Ω is the rotation rate, Tref is the
reference temperature, Ta is the Taylor number, Ro is the thermal Rossby number and m
is the dominant azimuthal wavenumber of the large-scale flow; 4(SV) denotes a structural
vacillation of a wavenumber 4 mode.

of the zonal wavenumber is possible when the parameter point of interest is close to a
transition between different wave modes with subsequent wavenumbers; see, e.g., von
Larcher & Egbers (2005).

The intransitivity phenomenon is not unique to the thermally driven rotating annulus
but is inherent to confined rotating flows in general; see, e.g., Abrahamson, Eaton
& Koga (1989). Regarding the thermally driven rotating annulus, multiple equilibria
(different solutions for the same control parameter values Ω and ∆) have been found
in several studies. Recently, in an extensive study, Vincze et al. (2015) compared
a number of numerical models with experimental data. From figure 6 in this paper
it can be seen that there is a parameter region where an m = 3 case coexists with
the m = 4 case. For ∆ = 8 K, the region of coexistence starts at Ω = 6 r.p.m. and
ends at approximately Ω = 16 r.p.m.; from then on, the system shows a unique
m = 4 solution. For the parameters chosen in the present study, multiple equilibria
exist even for smaller Ω . This is the reason why the experiment shows an m = 3
and the simulation an m= 4 case. However, the intention here is to demonstrate that
the instabilities in the Stewartson layers are robust features occurring at different
parameter points.

4. Results
We will begin this section with a phenomenological description of the small-scale

flow patterns. Afterwards, we will consider quantitative measures. It is worth
mentioning here that although we have chosen different values of Ta and Ro for the
HOC and EULAG computations to cover different large-scale flows, the findings with
respect to the small scales correspond very well, underlining that these wave-like
features are generic and occur for quite different regimes of flow. In particular,
very similar characteristics of the small-scale flow patterns have been found in the
Stewartson layers, i.e. in regions close to the inner and outer vertical sidewalls of the
annulus.

4.1. Small-scale features in the sidewall boundary layers
The notion ‘small-scale’ means here that we consider scales much smaller than the
typical scale of the baroclinic wave, the latter of which is a fraction of the perimeter
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FIGURE 3. Isosurface snapshots of the small-scale instabilities in the vertical sidewall
regions. (a,c) The EULAG model for T = 296.15 K (a) and T = 291.15 K (c). (b,d) The
HOC model for T = 304.4 K (b) and T = 298.5 K (d). It should be noted that the holes
in (b,c,d) are artificial in the sense they reflect that the specific value of the isosurface is
not given there at the time increment shown.

of the tank. The non-dimensional azimuthal wavenumber is between 3 and 4 in the
cases we discuss. Nevertheless, we will see that the small-scale structures are tightly
connected to the large-scale baroclinic wave.

Figure 3 shows temperature isosurfaces from a simulation with EULAG and HOC
(see table 1). The isosurfaces have been chosen such that features close to the inner
and outer sidewalls can be resolved and, moreover, the baroclinic wave is visible in
the upper and lower parts of the annulus. It is obvious that at the cold inner wall,
ripples can be found where the cold cyclones of the baroclinic wave touch the inner
cylinder. At the warm outer sidewall, the ripples occur in the jet exit region which is
just upstream of the cyclone. Both features are mainly restricted to the sidewall region.
It should be noted that the structures are more pronounced in the EULAG model due
to the different sidewall boundary conditions implemented in the models (see §§ 3.1
and 3.2).

The ripples at the outer heated wall have not been observed in previous studies
and their origin and properties are unclear. In contrast to the ripples at the inner wall,
which propagate downward while travelling with the baroclinic wave, the ripples at
the outer wall form a nearly stationary wave packet which is slowly overtaken by the
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upstream front of the baroclinic wave. The ripples fade out close to the corresponding
downstream part of the wave and form anew upstream; see figure 3. In this way, the
wave packet is dragged along with the baroclinic wave. It is not obvious whether
IGWs are emitted from the outer wall. We note that, while the velocity vectors are
essentially tangential to the ripples at the inner wall, they are mainly perpendicular to
the ripples at the outer wall, pointing to different mechanisms of instability. However,
for the instability at the inner wall, it is known that IGWs can be emitted (Jacoby
et al. 2011; Randriamampianina 2013; Randriamampianina & Crespo del Arco 2015)
and that the local instability hence affects the bulk of the flow.

In order to detect more precisely the onset of the small-scale features observed
towards the inner and outer sidewalls, we have carried out a series of computations
using as initial conditions the time-averaged fields (associated with a low-pass
filtering) obtained from solutions computed previously. This approach is aimed
at identifying how these small-scale structures occur and propagate during the
development of baroclinic motion. To detect these structures, we make use of the
scalar Q-criterion proposed by Hunt (1987) and Hunt, Wray & Moin (1988) to
delineate coherent structures in turbulent flows. The Q-criterion is defined by

Q= 1
2(||A||

2
− ||S||2), (4.1)

where ||S|| = [tr(SSt)]1/2, ||A|| = [tr(AAt)]1/2, with S and A as the symmetric and
antisymmetric parts of the velocity gradient tensor ∇U respectively.

Figure 4, for the inner sidewall, and figure 5, for the outer one, show instantaneous
isosurfaces of the Q-criterion (a), and, in order to follow the evolutionary dynamics
of the small-scale structures, corresponding time-azimuth maps (Hovmöller diagrams)
are shown, too (b). The isosurfaces are displayed in the unfolded cylinder with an
orientation view in the (φ, z) plane including the radial direction to allow for the
visualization of both small-scale and large-scale structures. The isosurface images,
therefore, correspond to three-dimensional Cartesian representations in (r, φ, z) at
constant time, and the Hovmöller diagrams are time-azimuth maps at fixed radial and
axial locations. The two isosurfaces correspond to the same specific value but, for
the inner sidewall features, figure 4, the viewpoint of the isosurface is from the inner
cylinder, while for the outer sidewall structures, figure 5, it is from the outer sidewall,
therefore showing the large-scale waves towards the interior of the cavity. It should
be noted that we have selected a specific range to magnify the small-scale structures
in the Hovmöller plots and that in both figures the initial time step is the same.

Both figures underline the different characteristics of the small-scale features at
the inner and outer sidewalls. For the inner sidewall, the isosurface diagram shows
the small-scale structures between mid-depth and the bottom endwall which are
inclined with respect to the horizontal. The corresponding Hovmöller plot (figure 4b)
shows that the structures evolve with a period of approximately 15 s, denoted by
the horizontal plateaus. Afterwards, they start to propagate in a retrograde direction
with respect to the large-scale baroclinic drift. At the outer sidewall, figure 5, the
small-scale structures are organized in packets that are connected to the large-scale
wave flow and propagate with it. Finally, these two phenomena exhibit the same
temporal undulation which results from the oscillatory motion of the wave due to
its SV characteristics. We have obtained a period of approximately 10 s for the
small-scale features. Moreover, their shape appears to be more regular than the shape
of the small-scale patterns at the inner sidewall.

To get a better insight into the dynamics of the flow and to find possible links
between the inner and outer small-scale features, Lagrangian tracers are implemented
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FIGURE 4. (Colour online) The HOC model. (a) Instantaneous isosurface of the Q-criterion
Q= 10−4 s−2 with Q ∈ [−1.9, 1.0] s−2 displayed in the unfolded cylinder with an orien-
tation view in the (φ, z) plane and a viewpoint from the inner sidewall, φ ∈ [0, 2π] and z∈
[0, 135] mm (supplemental movie 1, available at https://doi.org/10.1017/jfm.2018.10). (b)
Azimuth-time Hovmöller map of the Q-criterion; data are taken at fluid depth z= 28 mm
marked by the horizontal red line in (a). The vertical red line at t = 48 s indicates the
time when the isosurface snapshot is taken.

and their tracks are recorded. Four million particles are uniformly released in a (φ, z)
plane at radius r = 45.15 mm; thus, the position is located inside the inner sidewall
boundary layer. Figure 6 displays a snapshot of the tracks, coloured by the local
temperature, 150 s after their release. At the inner sidewall, the particles follow the
downward flow (coloured dark blue due to the temperature of the inner sidewall),
and they remain confined within the boundary layer until the occurrence of the small-
scale structures. In this region, an overturn of the flow is detected as fluid of warmer
temperature (coloured light blue–green), corresponding to these small-scale features, is
located below areas with colder fluid (coloured dark blue). This phenomenon is also
observed in figure 3, where the small-scale structures are indicated by the formation
of ridges of constant temperature. Even if the small-scale structures propagate partly
into the fluid interior, most of them are absorbed by the jet stream. At the outer
sidewall, the small-scale features start to develop towards the bottom of the cavity
when the outbound jet impinges at the outer sidewall. Following the red coloured
paths corresponding to the temperature of the outer sidewall, they indicate that the
small-scale features occur preferentially towards the anticyclonic cell and propagate
upward while remaining confined along the outer sidewall. Regarding possible links
between the inner and outer small-scale features, it is not evident yet whether the
occurrence of one pattern triggers the formation of the other. However, this should be
considered in more detail in future work.
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FIGURE 5. (Colour online) The HOC model. (a) Instantaneous isosurface of the
Q-criterion Q= 10−4 s−2 with Q∈ [−1.9, 1.0] s−2 displayed in the unfolded cylinder with
an orientation view in the (φ, z) plane and a viewpoint from the outer sidewall, φ ∈ [0,2π]
and z ∈ [0, 135] mm (supplemental movie 2). (b) As in figure 4, but the Hovmöller map
is taken at fluid depth z= 52.4 mm, as marked by the horizontal red line in (a).

By comparing figures 4, 5 and 6, we can conclude that at the cold inner sidewall,
small-scale structures propagate downward not affected by the large-scale baroclinic
wave. When arriving towards the bottom endwall, these features are attracted by the
outbound jet with a strong acceleration, inducing a significant change in their local
inclination with respect to the horizontal. The lack of particles along the inner wall,
cf. figure 6, underlines the strong acceleration of the flow towards the formation of the
jet. At the outer sidewall, the fluctuations are strongly attached to the large-scale wave.
We found that these structures possess a different period in comparison with the inner
features. Moreover, the outer sidewall structures show more regular spatial behaviour
than those observed towards the inner sidewall, particularly in terms of inclination and
wavelength.

4.2. Gravity wave signature
When looking for the spatial signature of gravity waves in a large-scale flow, a natural
choice is to plot the horizontal part of the divergence. Large-scale incompressible
flows are nearly balanced, that is, close to the geostrophic equilibrium, characterized
by a small Rossby number. (It should be noted that, here, we mean the usual Rossby
number, ε =U/fL, and not the thermal Rossby number.) For such flows, the vertical
velocity and in particular its vertical derivative, ∂w/∂z, is much smaller than the
horizontal counterparts, and hence the horizontal divergence, ∇h · v, is close to zero.
Locally, however, the Rossby number can be of order one or larger, and then the
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FIGURE 6. (Colour online) The HOC model. Snapshot of the tracks of particles 150 s
after release. Four million particles are uniformly released in a (φ, z) plane at radius r=
45.15 mm (supplemental movies 3 and 4). Particles are coloured by the local temperature:
blue (red) colour = cold (hot) temperature (K). The locations of IGWs at the inner
sidewall (ripples at the outer one) are highlighted by ellipses (rectangles).
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FIGURE 7. (Colour online) The EULAG model. Horizontal structure of ∇h · v in a
mid-depth surface plot (a) and for a (φ, z) cross-section extracted at r= 116 mm (4 mm
from the outer sidewall) (b). It should be noted that white colour represents data in
the interval [−10−2, 10−2] that are masked out, and thus not printed, to highlight the
small-scale features.

vertical part of the divergence becomes important. This is the case for the velocity
field of IGWs, which are typical structures for flows away from the geostrophic
equilibrium.

In figure 7, we plot the horizontal structure of ∇h · v in a horizontal slice at
mid-depth and in an axial–azimuthal plane close to the outer sidewall. From the
horizontal section (figure 7a), we clearly separate the small-scale features with a large
|∇h · v| close to the boundaries, the vertical sidewalls, from the almost non-divergent
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flow in the bulk of the cavity. Clearly, the features are tightly connected to the
baroclinic wave. However, the baroclinic wave front itself seems to be rather balanced
and the instability is restricted to the boundary layers. In figure 7(b), we display the
vertical structure of ∇h · v. As mentioned before (by inspecting isosurfaces of the
temperature field), we see that the rolls slope with respect to the axial direction,
a typical feature for gravity wave packets. Obviously, the packet is strongest in
mid-depth of the annulus.

Interestingly, in figure 7(b), we also see larger-scale structures in ∇h · v at the top
and bottom that have different characteristics from the ripples in mid-depth. They
might be related to the enhanced vertical motion in regions where the horizontal flow
interferes with the sidewall. However, it should be noted that the local ratio between
the stratification parameter N and the Coriolis parameter f varies significantly along
the outer wall. This can be seen in figure 3(c) in Borchert et al. (2014). As described
previously, these authors performed numerical simulations for an annulus with the
same geometry as given in table 1 and with ∆ = 8 K and Ω = 6 r.p.m. The value
of N/f shows a local maximum of approximately 0.5 at the corner formed by the
bottom and the outer sidewall. In the corresponding upper corner, the ratio reduces
to N/f ≈ 0.1. This change in stability has a strong impact on the characteristics of
IGWs: two waves with the same frequency have, e.g., an angle of 45◦ at the bottom
but nearly 90◦ at the top, where the angle is measured between the orientation of the
wave crest and the horizontal. Hence, in our study, the structures at the bottom and
the top might also be signatures of gravity waves generated by the same or a different
kind of instability from the ripples at mid-depth.

In summary, we can say that the instability that takes place at the outer sidewall
is manifested in the form of ripples and rolls reminiscent of gravity wave packets,
trapped in the axial direction and showing a significant amplitude mainly in mid-depth
of the Stewartson boundary layer.

4.3. Multiscale flow structure in the outer wall layer
In § 4.1, we have shown that the onset of the small-scale features is linked with
the onset of the large-scale baroclinic wave. To analyse the small-scale patterns in
a settled wave mode, we make use of the singular spectrum analysis (SSA) technique
and use the toolkit by Vautard, Yiou & Ghil (1992), Dettinger et al. (1995) and Ghil
et al. (2002). Here, an oscillatory mode is characterized by a pair of nearly equal
eigenvalues (EVs).

We use the EULAG data and take a time series of temperature difference at radius
r= 118.6 mm (1.4 mm from the outer sidewall) and at fluid depth d = 54 mm. The
sampling time is approximately 950 s. We set the window length M, that is the
number of temporal lags, to M = 100 (approximately 5 % of the data). It should be
noted that we also performed some tests with smaller and larger temporal lags to
prove the robustness of the results.

The results of the SSA are given in figure 8. Figure 8(a) shows the eigenvalue
spectrum of the SSA covariance matrix. The first EV explains approximately 17 %
of the total variance of the data series, representing in part the large-scale m = 4
wave flow; cf. figure 8(c). It should be noted that the second EV, approximately 8 %
of the total variance, also represents a part of the large-scale flow. The small-scale
structures are represented by EVs 3–10, arranged in four pairs, with a cumulative
variance of approximately 30 %. For larger EVs, we find the noisy tail of the EV
spectrum. Figures 8(c) and 8(d) show the appropriate reconstruction of the time series
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FIGURE 8. The EULAG model. The SSA of temperature time series data taken at d =
54 mm and r = 118, 6 mm. (a) The EV spectrum (variance over rank); (b) data time
series; (c) reconstruction with EV 1; (d) as (c) but with EVs 3–10. The proportion of
variance is as given in (c) and (d). One should note the different amplitude ranges in (c)
and (d).

for EV 1 and the cumulative one for EVs 3–10. The small-scale patterns appear as
short-period wave trains.

Strikingly, the amplitude of the envelope of these wave trains grows in conjunction
with the cooling cycle of the large-scale mode in figure 8(c), and it decreases during
the heating cycle. This feature does not only underline the previous findings, that, at
the outer sidewall, the small-scale patterns occur mainly prefrontal to the jet stream
and not within the anticyclonic warm cycle; the time series analysis, furthermore,
documents that the large-scale baroclinic wave flow and the small-scale patterns act
as a nearly steady state and multiscale flow system.

4.4. Experimental results
In the following, we briefly describe results from the laboratory experiments given in
table 1. Figure 9 shows the surface temperature of LAB I measured by an infrared
camera that was mounted above the rotating annulus (camera view (a); view in polar
coordinates (b)). The annulus rotates in the anticlockwise direction. The large-scale
structure is dominated by three cold cyclones forming a baroclinic wave of dominant
azimuthal wavenumber m = 3. This pattern is propagating anticlockwise too but
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FIGURE 9. (Colour online) Laboratory experiment, LAB I. The surface temperature field
experimentally observed by using an infrared camera. Camera view (a) and view in polar
coordinates (b) with the azimuth at the abscissa and the radius at the ordinate. The outer
sidewall is at the bottom and the inner sidewall is at the top. The labels at the abscissa
reflect the azimuth positions given in (a).

slightly faster than the annulus rotation, called prograde propagation. One should note
the similarity with the numerical simulation in figure 2(b,c). Clearly visible is also the
warm jet that circles around the baroclinic wave. The jet velocity is strongest in the jet
exit region, which is just upstream of the cyclone close to the outer heated wall. Just
ahead of this region, at the outer boundary, we observe small-scale wave-like features.
The structure is reminiscent of Görtler-type instability, and its position corresponds
well with the small-scale divergence signal visible in figure 7(top), although, due to
the no-heat-flux upper boundary conditions in the numerical simulation, the signal is
rather weak close to the surface. This has already been discussed in a comprehensive
benchmark study by Vincze et al. (2015). It should be noted that outside the jet,
between the cold cyclones, weak anticyclones form. This implies that in front of the
jet exit region, a strong shear can be found.

To see the phase velocity of the small-scale features, we display a time–space
(Hovmöller) diagram of the temperature anomaly in figure 10(a). The temperature
data have been taken from a ring approximately one centimetre away from the
outer heated sidewall and plotted over a period of 5 min. The baroclinic wave is
clearly visible, but also the small-scale features upstream of the wave. Obviously,
they propagate slower than the baroclinic wave. The ripples can also be interpreted
as an almost stationary wave packet that is overtaken by the jet at one end and arises
anew at the other end. Directly above the warm baroclinic wave crest, there is an
even smaller-scale pattern that moves with the baroclinic wave. All of the structures
described above can also be seen in the corresponding EULAG simulation although
with differences in their manifestation (see figure 10b): (i) the intermittent warm
crests of the baroclinic waves, (ii) the small-scale structures in front of the baroclinic
wave, and (iii) the smaller-scale pattern that moves with the baroclinic wave. The
differences are that (i) the baroclinic wave has wavenumber 4 and not 3 (see also
table 1) due to the existence of multiple equilibria for the chosen parameters; (ii)
in contrast to the experiment, most of the small-scale structures in front of the
baroclinic wave crests propagate in a retrograde direction. It should be noted that
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FIGURE 10. (Colour online) Azimuth-time (Hovmöller) maps. Comparison of the
small-scale structures in the laboratory experiment and in the EULAG simulations. (a)
Laboratory experiment, LAB II, surface temperature anomaly 10 mm away from the outer
sidewall measured by the infrared camera; the mean temperature of 304.95 K has been
subtracted. (b) The EULAG temperature difference 4 mm away from the outer sidewall
7 mm below the surface. Here, the mean temperature difference has been subtracted and
afterwards data are gained. It should be noted that the large-scale flow is m = 3 in the
experiment and m= 4 in EULAG. Therefore, the azimuth is cropped in (b) for comparison
with the experiment.

part of this difference is due to the different flow regimes we find for basically the
same parameters (multiple equilibrium). However, it is important to note that the top
free surface boundary condition imposed in the numerical model differs from that in
the laboratory experiment. In the numerical model, a zero-temperature flux condition
together with free slip is applied. In the experiment, a non-zero surface heat flux
occurs due to the open surface. Discrepancies in the temperature are for some part
inferred from these differences. Nevertheless, in spite of the differences, we wanted
to compare the experimental and numerical results to highlight that the major features
can be found for both cases. It should be noted further that the wave packets shown
for the divergence field in figure 7(b) are nearly stationary in the rotating frame of
reference and the features at the surface might not be directly linked to them.

Figure 11 shows (φ, r) maps of the instantaneous temperature field for laboratory
measurements (LAB III) (a) obtained at Ω = 14.5 r.p.m. and for the HOC
computations (b) at Ω = 13 r.p.m. Both parameter points are in the SV regime.
The images are taken at different times covering approximately one-quarter of
the baroclinic drift period, and the HOC images are taken 10 mm below the free

.
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FIGURE 11. (Colour online) Comparison of HOC simulations and results from the
laboratory experiment. (a) Thermographic images of the surface temperature in the LAB
III experiment. (b) Isocontours of the temperature field in the HOC simulations.

top surface. It is important to note that also in the HOC computations the top free
surface boundary condition imposed differs from that in the laboratory experiment,
where a non-zero surface heat flux occurs. Discrepancies in the temperature are for
some part inferred from these differences. However, both the experiment and the
numerics show very similar dynamics, and both approaches exhibit the same strong
swirl developing inside the cyclonic cold cells. We further observe that the oscillatory
flapping of the cold vortices, a typical feature of SV wave modes, is not symmetric.

4.5. Summary of our findings
To summarize our findings regarding the small-scale instabilities, the data analysis
reveals interesting features of the small-scale patterns. That is, (1) they give a small
but significant signal in the direct measures such as, e.g., temperature difference, and
they are also evident in indirect measures such as, e.g., horizontal divergence; (2) at
the (inner) outer sidewall, they occur where the jet stream turns (outbound) inbound,
i.e. where the jet is curved towards the fluid interior; (3) they are inclined with respect
to the horizontal; (4) they are mainly restricted to the wall layer region; (5) they
occur throughout the entire fluid depth, with the strongest signal at the outer sidewall
between z= 0.3 d and z= 0.8 d; (6) they are connected with the large-scale baroclinic
flow. It should be noted that in the inner sidewall region, the small-scale patterns
mainly occur between the bottom and mid-depth rather than above mid-depth. In the
next section, we try to form a coherent quantitative picture of instabilities that are
responsible for the small-scale wavy structures.

5. Discussion
In the previous section, we presented qualitative findings of small-scale instabilities

at the inner and outer sidewalls of the thermally driven rotating annulus and described
their characteristics. At first glance, the listed features are similar to the findings in
the abovementioned publications by Jacoby et al. (2011), Borchert et al. (2014)
and Randriamampianina & Crespo del Arco (2015), although the authors were not
aware of the small-scale instabilities at the outer sidewall but had discussed inner
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sidewall instabilities. In this section, we discuss some mechanisms that are candidates
for generating the small-scale wave-like structures at both the inner and the outer
sidewall boundary layers. In particular, we focus on thermal instability and on inertial
or rotational instability. We will also discuss the nature of the small-scale features as
being IGWs.

5.1. Thermal boundary layer instability
Let us first check whether our results are consistent with the results presented by
Jacoby et al. (2011) for the inner sidewall instabilities. Barcilon & Pedlosky (1967)
found two specific parameters that play an important role in the relative contributions
of the different boundary layers to the heat transfer from the sidewall into the fluid
interior. The first parameter is the Ekman number, here defined as Ek = ν/Ωd2;
the second parameter is the product of the thermal Rossby number and the Prandtl
number, (Ro Pr). For the EULAG set-up, it follows that

Ek= 8.74× 10−5, (Ro Pr)= 0.82× 7.0= 5.74; (5.1a,b)

thus, Ek� (RoPr).
Now, we consider the extent of boundary layers at the vertical sidewalls, that is,

the viscous Stewartson layer, δν , and the thermal boundary layer, δT . Following James,
Jonas & Farnell (1980), we calculate δν = (b− a) 3

√
Ek= 3.3 mm.

In von Böckh & Wetzel (2014), an empirical formula for the calculation of the
thermal boundary layer thickness along a heated vertical wall for a laminar flow is
given. This formula reads as

δT =
L

Nu
, (5.2)

where L is the length of the wall. Here, Nu is the Nusselt number,

Nu= (0.852+ 0.387Ra1/6F)2, (5.3)

with Ra as the Rayleigh number, Ra= (Pr Ta Ro)/4. The parameter F is related to the
Prandtl number and reads as

F= (1+ 0.671Pr(−9/16))(−8/27). (5.4)

In the literature, this approach has been used for a large range of Pr and Ra.
Following this ansatz, we calculate the thickness of the thermal boundary layer as
δT = 1.9 mm, which is in good agreement with the well-known formula for the
convective heat transport in a laminar flow, Pr1/3

= δν/δT , with δν as calculated
above. Obviously, the viscous boundary layer is significantly thicker than the thermal
boundary layer. These values of the boundary layer thicknesses have been used
to provide a first estimate of the adequate numerical grid resolution necessary to
compute a well-resolved solution in sidewall boundary regions.

Generally, the extent of the equilibrated large-scale baroclinic waves is constrained
by the Stewartson layers, and if the Stewartson layers are thicker than the thermal
boundary layers, the feedback between the sidewall temperature forcing and the
baroclinic waves is weak and most of the imposed temperature gradient is handled
in the thermal boundary layer; see Früh (2015).

McBain, Armfield & Desrayaud (2007) analysed the instability of the buoyancy
layer on an evenly heated vertical wall for a stratified fluid with different
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FIGURE 12. The EULAG model. Radial cross-sections of the local Reynolds number
scaled with Rec. The profiles are taken at z = 0.36 d and at specific azimuthal positions
with a cut through an inner sidewall instability (– • –) and through an outer one (——).
At both sidewalls, the calculated thicknesses of the thermal and viscous boundary layers
are indicated by vertical lines: thermal boundary layer δT (dashed lines); viscous boundary
layer δν (dotted lines).

Prandtl numbers. They found that above a critical value of a local Reynolds number,
Rec, the flow becomes unstable and supports two-dimensional travelling waves. For
a fluid of Pr = 7, they determined Rec ≈ 8.58. Following the ansatz by Jacoby et al.
(2011), we estimate a local Reynolds number with

Relocal =
|w| δT

√
2

ν
= 2.676 |w|, (5.5)

where w is the vertical component of the velocity. Thus, local maxima of the Reynolds
number are linked with large values of vertical velocity.

Figure 12 shows an exemplary line plot of Relocal/Rec along two cross-sections,
through an inner and an outer sidewall instability, extracted at z= 0.36 d, i.e. ≈50 mm
above the bottom end wall. In the inner sidewall boundary layers, Stewartson and
thermal boundary layers, the instability condition is fulfilled for the inner sidewall
instability profile (since Relocal/Rec > 1) but not for the outer one. At the outer
sidewall, the instability condition is not fulfilled, either in the profile through the
outer or through the inner sidewall instability. (It is worth mentioning that the peaks
of the graphs align well with the calculated thickness of δT and δν .)

Even if the study of McBain et al. (2007) is concerned with non-rotating flows, we
see that the boundary layer instability theory supports the development of small-scale
instabilities at the inner sidewall but not at the outer sidewall.

5.2. Inertial instability
At both sidewalls, the small-scale instabilities arise where the large-scale jet flow is
turned towards the fluid interior. Hence, there, close to the sidewalls, the horizontal
flow is strongly sheared and, additionally, in part retrograde. Under such conditions,
the flow might result in inertial or rotational instability.

A necessary condition for instability in an ideal fluid, basically inviscid, was
discovered by Rayleigh (1917). It is based on the equilibrium between the centrifugal
force and the radial pressure gradient. The Rayleigh criterion states that a flow is

https://doi.org/10.1017/jfm.2018.10
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


(a) (b)
110

100

90

80

r 
(m

m
)

t (s)

70

60

50

120

105

90

75

60

100 200 300 400 500 600 700

t (s)

100 200 300 400 500 600 700
1.0

1.1

1.2

1.3

1.4

1.5

1.15

1.25

1.20

1.30

1.35

1.40

FIGURE 13. (Colour online) Radius–time Hovmöller plot of Φ ′(r), (5.6), but with Uz= 0.
(a) Experimental LAB II PIV data at fluid depth d = 80 mm (55 mm below the free
top surface); (b) EULAG model data at fluid depth d = 98 mm (37 mm below the top
surface). It should be noted that the inner sidewall is at r= 45 mm and the outer one at
r= 120 mm.

unstable when the velocity profile, U(r), has an inflection point, i.e. where ∂2U/∂r2
=

0. It should be noted that Synge (1933) and Tollmien (1935) have strengthened the
criterion to a sufficient condition. Originally developed for plane-parallel axisymmetric
flows, the Rayleigh criterion was recently generalized for non-axisymmetric flows;
see, e.g., Billant & Gallaire (2005).

For more general rotating flows, however, it is known that the Rayleigh criterion is
not strictly correct. For example, the Rayleigh criterion does not incorporate instability
of a flow showing density variations or axial shear. To investigate boundary layer
instability in a rotating cylindrical tank, Hart & Kittelman (1996) considered an
experiment where the upper lid rotates somewhat faster than the tank. For this
mechanically driven flow, the Stewartson layer shows azimuthal and axial shear. In a
thermally driven rotating annulus, an axial shear in the bulk of the fluid is given due
to the baroclinic state of the system. Moreover, application of the Hart criterion to the
sidewall instabilities implies the assumption that the radial shear in the jet region at
the sidewalls is much higher than the axial shear, which, in consequence, is neglected.
However, it is observed that the axial velocity component, Uz, becomes significant
towards the inner and outer sidewalls, i.e. where the small-scale instabilities appear.
Hart & Kittelman (1996) proposed a criterion that takes into account the effect of
the axial velocity component in the rotating reference frame, involving the Coriolis
shear instability mechanism. This condition reads as

Φ ′(r)= 2Ω cos(γ )
(

2Ω cos(γ )+
dU′

dr

)
< 0, (5.6)

where tan(γ )=Uz/Uφ and U′ is the velocity magnitude tangent to the wall at angle

γ , with U′ =
√

U2
φ +U2

z .
Figure 13 shows radius–time Hovmöller diagrams of the left-hand side of (5.6) for

the LAB II case and for EULAG data when we assume Uz = 0. Obviously, for this
simplified situation, the boundary layer is stable since (5.6) is not fulfilled as the
left-hand side is positive everywhere. It should be noted that we observe the same in
subsurface sections below mid-depth (not shown). However, this changes dramatically
when we include the shear of the axial flow. Figure 14 shows the variation of the
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FIGURE 14. (Colour online) The HOC model. A (φ, z)-plot of Φ ′(r), (5.6), at radius
r= 119.3 mm. Here, Φ ′(r) is represented by colours and lines correspond to isotherms.

adapted generalized Rayleigh discriminant Φ ′(r), the left-hand side of (5.6), in a (φ, z)
diagram. The HOC data have been taken at radius r = 119.3 mm, which is close to
the outer wall where the intensity of the small-scale structures is highest. The Coriolis
shear instability condition is fulfilled, that is, Φ ′(r) is negative in the region where
the ripples are dominant and particularly in the mid-depth area, as revealed by the
variations of the isocontours of temperature. This result is in good agreement with
the signature of the horizontal divergence shown in figure 7.

It is worth recalling that centrifugal instability and Coriolis shear instability
correspond here to the same phenomenon, as both refer to the same criterion, e.g.
Chomaz et al. (2010), although the Coriolis shear mechanism is more generally
invoked in a rotating reference frame.

From the analysis of both circulation criteria, we conclude that the small-scale
instabilities at the outer sidewall, but not at the inner sidewall, are generated by an
inertial instability rather than by an instability of the thermal boundary layer.

5.3. Inertia–gravity waves
In the previous sections, we have shown that the small-scale patterns at the inner and
outer sidewalls are probably generated by different instability mechanisms. Finally,
in this section, we discuss the possibility that the small-scale structures are a gravity
wave signal. As described above, it has previously been claimed that IGWs have
been found at the inner sidewall in the classic rotating annulus set-up. It is, therefore,
reasonable to examine whether the small-scale patterns at the outer sidewall are
IGWs, too. The discussion is based on the IGW dispersion relation, which reads as
(cf. Gill 1982; Fritts & Alexander 2003)

ω̃= (ω−U · k)=±

√
N2(k2 + l2)+ f 2m2

k2 + l2 +m2
, (5.7)

with N =
√

gαδT/δz as the Brunt–Väisälä buoyancy frequency (δT/δz as the vertical
temperature gradient) and f =2Ω as the Coriolis parameter. The intrinsic frequency, ω̃,
corresponds to the one that would be observed in a frame moving with the background
flow, here the large-scale baroclinic wave flow. The + prefix denotes positive and the
− prefix negative (retrograde) phase speeds. For positive ω̃, the IGW frequency range
reads as N < ω̃ < f , and for negative ω̃, the IGW criterion reads as −N > ω̃ >−f .

The Doppler frequency U · k is

U · k= (Uφ,Ur,Uz) · (k, l,m)=Uφk+Url+Uzm, (5.8)
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and k, l, m as the azimuthal, radial and axial wavenumbers. The Doppler frequency
occurs in the frame of reference moving with the rotating annulus, where ω is the
measured frequency of the small-scale ripples.

In the following analysis, the wavenumbers are estimated from cross-sections of
instantaneous fluctuation fields. The inner sidewall features also are located very close
to the inner wall but have a 3D structure as they propagate into the fluid interior. We
focus on the HOC computations for the IGW analysis at the inner sidewall and use
the EULAG data for the analysis at the outer sidewall. With this, we consider both
the flow regime at moderate rotation rate (EULAG) and the SV flow regime at higher
rotation rate (HOC).

From the HOC computations, we obtain a drift frequency of ωd ≈ 0.02 rad s−1 for
the large-scale baroclinic wave mode, and from figure 4 we observe a retrograde phase
speed of frequency ωg≈−0.42 rad s−1 for the small-scale instabilities (obtained in the
frame rotating with the cavity). To determine the nature of the small-scale features, ωg

can be compared with another value provided independently from the Doppler effect
involving the intrinsic gravity wave frequency, ω̃; see (5.7).

The dimensional values of the wavenumbers are estimated to be k= 6.27 cm−1, l=
10.47 cm−1 and m = 3.25 cm−1. The value of the zonal wavenumber k is taken at
a radius of rbl = 0.005 m, i.e. 5 mm from the inner sidewall, corresponding to the
location of the highest intensity of the inner sidewall small-scale fluctuations. Here,
an estimate of the buoyancy frequency yields N ≈ 0.78 rad s−1, which results in an
N/f ratio of N/f ≈ 0.29, with f = 2.72 rad s−1. With this, the intrinsic frequency is
calculated to be ω̃≈−1.03 rad s−1.

For the small-scale instabilities using the Doppler relation, ω= ω̃+ k U, since at the
inner sidewall the motion of the background flow corresponds to the uniform drift
of the baroclinic waves in the zonal direction Uφ = rblωd. With this, we determine
a gravity wave frequency of ω ≈ −0.52 rad s−1, which is in good agreement with
ωg. Exact agreement cannot be expected due to the wave variability, and, furthermore,
keeping in mind that wavenumbers are estimated from instantaneous fields.

Now, we inspect the ripples at the outer wall and examine whether they are
locally consistent with the IGW dispersion relation, too. From the EULAG numerical
simulation, we know that the ripples are attached to the baroclinic wave and
hence move roughly with the same speed, that is, c ≈ 0.004 m s−1. The azimuthal
wavenumber of the large-scale flow is estimated to be kd ≈ 5 m−1; this gives an
angular frequency of ωd = c kd = 0.02 rad s−1. The wavelength of the ripples, λ,
aligned at roughly 45◦ with respect to the horizontal direction, is approximately
0.005 m, implying k = m ≈ 103 m−1, where l = 0, as mentioned above. This gives
a frequency of ωg = c k ≈ 4 rad s−1 for the ripples. Using the numerical data, we
find in the region of the ripples N ≈ 0.5 rad s−1. Taking Ω = 0.635 rad s−1, i.e.
f = 1.27 rad s−1, and inserting these values into the dispersion relation, we find for
the intrinsic frequency of the ripples ω̃ ≈ +1 rad s−1. For the Doppler frequency,
by taking Uφ ≈ 0.001 m s−1 from EULAG, we obtain U k ≈ 1 rad s−1, implying
ω= ω̃+U k≈ 2 rad s−1. Using the Doppler shift, the IGW range reads as (prograde
phase speed)

N +U k<ω< f +U k, (5.9)

i.e. 1.5< 2< 2.27 rad s−1, using the values from the dispersion relation. In contrast,
using the value from the EULAG simulation, ωg ≈ 4 rad s−1, one of the inequalities
is violated since ωg > 2.27 rad s−1. Hence, the ripples, trapped at the outer wall and

with Uφ as the azimuthal, Ur as the radial and Uz as the axial velocity component,
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moving rather passively with the baroclinic waves, have intrinsic frequencies outside
the possible IGW frequency range.

In summary, we can tentatively say that only the thermal boundary layer instability
at the inner wall induces IGWs. However, the even more important difference is
that, at the inner wall, the waves are emitted towards the bulk of the flow. At
the outer wall, the ripples are trapped at the boundary layer without any IGW
excitation. This is an important observation with respect to the study of gravity
waves triggered by imbalance of the baroclinic fronts in rotating annulus experiments
(Borchert et al. 2014). In contrast to the inner wall, where instability can lead to
additional waves in the frontal jet, the instability at the outer wall does not interact
with the large-scale flow. This difference might be related to the different instability
mechanisms responsible for the perturbations at the inner and outer sidewalls.

6. Conclusion

In this paper, we have studied the properties of sidewall instabilities that result in
small-scale flow patterns. We concentrated the analysis on two distinct flow regimes,
that is, a steady large-scale flow at a moderate rotation rate and a structural vacillating
flow at a significant higher rotation rate. For the analysis, we used data gained from
numerical simulations computed independently with two different flow solvers as well
as data from laboratory experiments. We have investigated different mechanisms that
might be able to drive the instabilities responsible for the occurrence of these features.
The small-scale features at the inner sidewall have been identified as IGWs from the
dispersion relation.

Our analysis supports the fact that the boundary layer instabilities result from
different mechanisms. At the inner sidewall, a thermal instability is prominent. At the
outer sidewall, an inertial instability is the dominant mechanism. Jacoby et al. (2011)
suggested that the instability of the boundary layer flow along the inner cylindrical
wall is the origin of IGWs. On the other hand, Randriamampianina & Crespo del
Arco (2015) proposed a KHI to be the generation mechanism. Our analysis revealed
that the driving mechanism of the outer ripples is not a KHI but inertial instability,
even though we have observed the presence of a small overturn on the azimuthal
velocity located at the meeting of the cyclonic and anticyclonic cells where the
outbound jet impinges at the outer sidewall.

Plougonven & Snyder (2007), from simulations of idealized baroclinic life cycles,
obtained IGWs developing at the exit of the jet generated by the shear between
the cyclonic and anticyclonic parts. The latter flow is characterized by a higher
stratification level compared with the inertial frequency, N � f , and associated with
an aspect ratio (horizontal extent/vertical distance) �1. Borchert et al. (2014) reported
the occurrence of similar IGWs in the atmosphere-like configuration, with an open
upper free surface, similar to the present study.

We found that the outer sidewall fluctuations originate from a hydrodynamic
(inertial) instability. Moreover, we have observed that the corresponding wavenumber
in the radial direction tends towards zero, and therefore these waves appear as planar
waves in the (φ, z) plane along the outer wall. Similar instabilities have been reported
by Hart & Kittelman (1996) from experimental observations in the sidewall boundary
layer developing inside a differentially driven rotating cylinder. That was confirmed by
direct numerical simulations (Lopez & Marques 2010). These authors attributed the
Coriolis shear mechanism as being responsible for the occurrence of this instability.
They mentioned that it only happens when the upper lid rotates in the same direction

https://doi.org/10.1017/jfm.2018.10
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


as the cylinder. In the present configuration, the differential rotation results from
the difference of angular velocity between the drift of the baroclinic waves and the
rotating cavity, and the inclination of the present wave packets is inferred from the
shift of the azimuthal location of the outbound jet when moving upward inside the
cavity.

The inner boundary layer can radiate gravity waves into the fluid interior but
the outer boundary layer cannot. This has important implications for the search for
spontaneous emitted IGWs (Borchert et al. 2014) at baroclinic fronts, which is a very
active research area. We know that a part of the waves is not due to spontaneous
emission but also due to the radiating instability at the inner wall. The good news is
that the larger outer sidewall shows indeed also local instability in the form of wave
packets, but this instability does not radiate IGWs into the fluid interior and hence
cannot further pollute the frontal wave signal. Recently, Vincze et al. (2016) found
signatures of IGWs along the baroclinic fronts in a thermohaline driven rotating
annulus experiment. The wave trains are similar to the ones described by O’Sullivan
& Dunkerton (1995) and are mainly advected with the mean flow. It seems that an
N/f > 1 is more favourable for spontaneous IGW emission. In the classic annulus
configuration, N/f is usually smaller than one. Further experiments will therefore be
performed at the Cottbus Institute with a large system and a shallow fluid, a set-up
that guarantees larger N/f ratios.

The treatment of the boundary conditions with the EULAG solver is based on the
Cartesian immersed boundary method, which may lead to quantitative differences near
the boundaries in comparison with the HOC solver. This probably explains why the
small-scale patterns on both the inner and the outer sidewalls are more pronounced
with the EULAG model.

We finally point out that, in addition to the fact that not all aspects of the
complicated nonlinear coupling between baroclinic waves are understood, it is realized
that there is also a rich dynamics and coupling between the small-scale flow patterns
close to the sidewalls and the large-scale and balanced wave modes in the fluid
interior, which makes the thermally driven rotating annulus a proper experiment to
study this multiscale aspect, too. It would be of particular interest to better understand
the interactions between these small-scale features and the large-scale baroclinic waves
during the transition to geostrophic turbulence.
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