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Abstract

Background: The study of P transposable element repression in Drosophila melanogaster led to the discovery of the Trans-
Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric
heterochromatin (Telomeric Associated Sequences, ‘‘TAS’’) has the capacity to repress in trans, in the female germline, a
homologous P-lacZ transgene located in euchromatin. Phenotypic and genetic analysis have shown that TSE exhibits
variegation in ovaries, displays a maternal effect as well as epigenetic transmission through meiosis and involves
heterochromatin (including HP1) and RNA silencing.

Principal Findings: Here, we show that mutations in squash and zucchini, which are involved in the piwi-interacting RNA
(piRNA) silencing pathway, strongly affect TSE. In addition, we carried out a molecular analysis of TSE and show that
silencing is correlated to the accumulation of lacZ small RNAs in ovaries. Finally, we show that the production of these small
RNAs is sensitive to mutations affecting squash and zucchini, as well as to the dose of HP1.

Conclusions and Significance: Thus, our results indicate that the TSE represents a bona fide piRNA-based repression. In
addition, the sensitivity of TSE to HP1 dose suggests that in Drosophila, as previously shown in Schizosaccharomyces pombe,
a RNA silencing pathway can depend on heterochromatin components.
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Introduction

Mobilization of transposable elements (TEs) is regulated by

complex mechanisms involving proteins encoded by the TEs

themselves, as well as heterochromatin formation and small RNA

silencing mechanisms [1–11]. Genomic sites containing full-length

or defective copies of TEs have been identified which are sufficient

to establish complete repression of the other copies of the same

family scattered throughout the genome. For example in

Drosophila, the flam/COM locus, located in pericentromeric

heterochromatin, represses various families of ‘‘Type I’’ TEs

(retrotransposons which transpose via an RNA intermediate)

[12–15] and the TAS (Telomeric Associated Sequence) region of

sub-telomeric heterochromatin houses strong regulatory P ele-

ments (‘‘Type II’’ TEs whose transposition occurs via a DNA

intermediate) [2,16–18]. The flam/COM locus represses expression

of gypsy, Zam, and Idefix in somatic follicle cells, thereby preventing

transfer of these retrotransposons to the oocyte [19,20]. By

contrast, P element repression by telomeric P copies takes place in

the germline of both sexes [17,18,21,22] and it is in this tissue that

all P element transposition steps take place [3,23,24]. It has been

shown recently that the RNA silencing pathways implicated in

both the germline and somatic follicle cells of the ovary rely on the

piwi-interacting RNA (piRNAs) silencing pathway [8], although

the mechanisms at work in these two tissues differ since some

actors of the piRNA machinery are present only in the germline

[25–28].

The study of the mechanism of P element repression in the

germline, elicited by telomeric P copies, has been facilitated by the

use of P-transgenes instead of natural P transposons. The P-lacZ

transgene carries an in-frame fusion of the N-terminal region of

the transposase with the E. coli lacZ gene and can be used as an

enhancer-trap [29]. It has been shown that the presence of one or

two copies of P-lacZ in TAS, can repress another P-lacZ copy in

trans, irrespective of the genomic location of the latter copy

[30–32]. This repression occurs in the female germline (nurse cells

and oocytes), but not in the somatic follicle cells [32]. This

phenomenon, termed ‘‘Trans-Silencing Effect’’ (TSE) [30], thus

allows the precise study of the genetic and phenotypic properties of

piRNA-based repression in the context of the germline. It has been
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shown that TSE displays a maternal effect, epigenetic transmission

through meiosis and variegation between egg chambers when

repression is incomplete [31,33]. TSE was also shown to be

affected by mutations in genes involved in heterochromatin

formation (including HP1) and the piRNA silencing pathway

[33]. In particular, TSE was shown to be completely abolished by

mutations affecting aubergine, armitage, homeless (spindle-E) and a

partial dose effect of piwi was also found [33]. All these genes have

been shown to be necessary for the production of piRNAs in the

germline [25].

In the present study, we explore further the genetic and

molecular properties of TSE with regard to the piRNA-based

mechanism of repression. We first tested the effect on TSE of

mutations in squash (squ) and zucchini (zuc), encoding two putative

nucleases which have been shown recently to be involved in the

piRNA pathway [25,34]. SQUASH and ZUCCHINI both

interact with AUBERGINE and mutants exhibit dorso-ventral

patterning defects similar to those associated with aub mutations.

Mutations in squ and zuc induce the transcription upregulation of

Het-A and TART telomeric retrotransposons and result in the loss

of piRNAs in the germline [25,34]. We first show that the loss of

function of squ and zuc has a very strong negative effect on TSE.

Second, we provide the first molecular support of the mechanism

of TSE showing that trans-silencing is correlated to the presence of

lacZ small RNAs in ovaries, the levels of these small RNAs being

strongly affected by mutations in squ and zuc. Third, we show that

accumulation of these small RNAs in ovaries is also sensitive to a

mutation affecting HP1 levels. These results open the possibility of

a functional reciprocal dependence between heterochromatin

formation and RNA silencing in Drosophila. Thus TSE in the fly

could parallel the ‘‘self-reinforcing loop’’ of RNA silencing and

heterochromatin previously shown to occur in Schizosaccharomyces

pombe [35–37].

Materials and Methods

Experimental conditions
All crosses were performed at 25uC and involved 3–5 couples in

most of the cases. All ovary lacZ expression assays were carried out

using X-gal overnight staining as described in Lemaitre et al. 1993

[21], except that ovaries were fixed for 6 min [33].

Transgenes and strains
P-lacZ fusion enhancer trap transgenes (P-1152, BQ16) contain

an in-frame translational fusion of the E. coli lacZ gene to the

second exon of the P transposase gene and contain rosy+ as a

transformation marker [38]. The P-1152 insertion (FBti0005700)

comes from stock #11152 in the Bloomington Stock Center and

was mapped at the telomere of the X chromosome (site 1A); this

stock was previously described to carry a single P-lacZ insertion in

TAS [30]. However, in our #11152 stock, we have mapped two

P-lacZ insertions in the same TAS unit and in the same orientation

which might have resulted from an unequal recombination event

duplicating the P-lacZ transgene [33]. P-1152 is homozygous

viable and fertile. BQ16 is located at 64C in euchromatin of the

third chromosome [32] and is homozygous viable and fertile. P-

1152 shows no lacZ expression in the ovary, whereas BQ16 is

strongly expressed in the nurse cells and in the oocyte.

Lines carrying transgenes have M genetic backgrounds (devoid

of P transposable elements), as do the multi-marked balancer

stocks used in genetic experiments and the strains carrying

mutations used for the candidate gene analysis. The Cantony line

was used as a control line, completely devoid of any P element or

transgene (true ‘‘M’’ line).

Mutations used for the candidate gene analysis
Su(var)205, squash (squ) and zucchini (zuc) are located on

chromosome 2. Loss of function is lethal in the case of Su(var)205,

female sterile in the case of squash and zucchini.

Su(var)2–505 (or Su(var)20505) was X-ray induced and corre-

sponds to a null allele of Su(var)205 since it only encodes the first

ten amino acids of the HP1 protein [39]. zuc and squ alleles were

isolated from an EMS screen [40]. zucHM27 contains a stop codon

at residue 5, zucSG63 a substitution of Histidine 169 with a Tyrosine

in the conserved HKD domain presumably involved in nuclease

activity. squHE47 and squPP32 are generated by insertion of stop

codons at residues 100 and 111, respectively [34]. Lines carrying

mutations of squash and zucchini were kindly provided by Attilio

Pane and Trudi Schüpbach and the line carrying the Su(var)2–505

allele was kindly provided by Gunter Reuter. All the alleles

described above are maintained over a Cy balancer chromosome.

Cy balancer chromosomes have been shown not to affect TSE

(unpublished results). Additional information about mutants and

stocks are available at flybase: http://flybase.bio.indiana.edu/.

Quantification of TSE
When TSE is incomplete, variegation is observed since ‘‘on/off’’

lacZ expression is seen between egg chambers: that is, egg chambers

can show strong expression (dark blue) or no expression, but

intermediate expression levels are rarely found. TSE was quantified

as previously described [33] by determining the percentage of egg

chambers with no expression. We scored the number of these

repressed chambers among the first five egg chambers of a given

ovariole for ten ovarioles chosen at random per ovary. For a given

genotype more than 1000 egg chambers were counted.

Statistical analysis
The levels of TSE produced in flies of different genotypes were

compared using the non-parametric Mann-Whitney test, conducted

on TSE percentages per ovary.

RNase protection assays (RPA)
Small RNAs from adult flies were extracted using the Ambion

mirVanaTM miRNA isolation kit. Per each condition, 400 ovaries

were used for RNA extraction. Aliquots of 4 mg of small RNAs

were used in RPA experiments. The radiolabelled RNA probe

homologous to the 59 region of P-lacZ was 150 nt long (position

600 to 750 of the P{1ArB} transgene (FBtp0000160)). After

purification, probes with a specific activity of 56104 cpm were

used. We used the Ambion mirVanaTM miRNA detection kit for

RPA experiments. Hybridization was performed overnight at

42uC and digestion of single-stranded RNA was carried out for 45

minutes at 37uC with RNase A/RNase T1. After RNase

inactivation, protected fragments were precipitated and separated

on a 15% acrylamide/polyacrylamide (19:1) gel running in

0.56TBE. Protected fragments were detected by autoradiography

after 4 weeks of exposure.

Results

Functional assay for the Trans-Silencing Effect in zuc and
squ mutants
Given the role of squash and zucchini in the piRNA pathway

[25,34], the effect of mutant alleles of these genes on TSE was tested

(Figure 1). For a given assay, a P-1152 telomeric silencer was

combined with a P-lacZ target expressed in the female germline, in

the absence (TSE positive control), or presence of mutant alleles of

the candidate gene. The P-1152 silencer was inherited, in each case

Epigenetic Trans-Silencing
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from a homozygous P-1152 female. The first gene tested was zucchini

(Figure 1C). The TSE positive control produced a strong repression

(Fig. 1B, TSE=86.1%, n= 1650), whereas females having a

heteroallelic zucSG63/zucHM27 genotype showed a complete loss of

repression (Fig. 1C, TSE=0.0%, n= 2650). The same result was

found for females having the reciprocally inherited heteroallelic

zucHM27/zucSG63 combination (i.e. the mutant alleles were inherited

by the reciprocal parent: TSE=0.0%, n= 1600, data not shown).

The same analysis was performed for squash and the heteroallelic

squHE47/squPP32 genotype showed reduced TSE (Fig. 1D,

TSE=56.2%, n= 1000). The reciprocally-inherited heteroallelic

genotype, squPP32/squHE47, showed a very similar result

(TSE=56.6%, n= 2200, data not shown). The percentage of

TSE observed for each of the two kinds of heteroallelic squash

mutant females (squHE47/squPP32 and squPP32/squHE47) was com-

pared to that observed for the TSE positive control (Fig. 1B), using

the non-parametricMann-Whitney test: in both cases the difference is

highly significant (P,0.001). By contrast, for both zuc and squ, no

significant effect on TSE was detected for the heterozygous mutants

(zuc: TSE=79.4%, n= 1850; squ: TSE=86.8%, n= 2600, data not

shown). These levels do not differ from the TSE positive control

level (Fig. 1B), as tested with the non-parametric Mann-Whitney test.

In conclusion, the loss of function of either of these two genes affects

TSE, zuc having a more severe effect than squ, a result consistent

with data reported by Pane et al. [34] and Malone et al. [25] showing

that the zuc mutant context has a more severe effect than the squ

mutant context on the production of piRNAs.

Silencing is correlated to the accumulation of lacZ small
RNAs in ovaries whose production is sensitive to squash

and zucchini mutations
Since TSE is highly sensitive to mutations in genes involved in the

piRNA silencing pathway, we tested whether lacZ small RNAs were

present in ovaries of females which carry the P-1152 telomeric

silencer locus and, if so, whether the production of these small RNAs

requires the squ and zuc functions. We used an RNAse protection

assay to detect lacZ small RNAs in ovaries from females carrying two

copies of P-1152 and otherwise wild-type, heterozygous or

heteroallelic mutants for squ and zuc. Ovaries from the M line

Cantony were also analyzed as a negative control. RNAse

protection analysis allowed detection of two abundant small RNAs

in ovaries from homozygous P-1152 females (Fig. 2A, lane 5 and

Fig. 2B, lane 1 – arrows to the right of the autoradiography), which

were not detected in M females (Fig. 2A, lane 6 and Fig. 2B, lane 2).

Females heterozygous for squ or zuc mutant alleles, also exhibited

abundant accumulation of the lacZ small RNAs of the same size in

ovaries (Fig. 2A, lanes 2 and 4, respectively). By contrast, these

RNAs were almost undetectable for females heteroallelic for mutant

alleles of squ or zuc (Fig. 2A, lanes 1 and 3, respectively). This analysis

shows that telomeric P-lacZ silencer transgenes produce lacZ small

RNAs in the ovary and that loss of function of squ and zuc has a

strong negative effect on the accumulation of these lacZ small RNAs.

In addition, as for the TSE assay, no dose effects for squ or zuc were

observed on lacZ small RNAs accumulation.

Accumulation of lacZ small RNAs in ovaries is correlated
with the maternal effect of TSE
TSE was shown to exhibit a maternal effect: crossing females

carrying a telomeric transgene with males carrying a target

transgene produces G1 females which show strong TSE, whereas

the reciprocal cross produces G1 females showing only weak TSE

[31–33]. TSE also shows maternal inheritance since this maternal

effect presents a remanence which can extend through six

generations following the reciprocal G0 crosses [33]. TSE is

therefore, at least in part, epigenetically transmitted through

meiosis. TSE maternal inheritance can also be observed in the

Figure 1. TSE is sensitive to mutations affecting squash and zucchini. (A) Expression control in ovaries of the P-lacZ transgene used as a TSE
target (BQ16, located on chromosome 3). (B) G1 females produced from the cross between P-1152 females and BQ16 males. (C–D) Heteroallelic
females for mutant alleles of zuc or squ: these females have inherited the BQ16 target paternally and the P-1152 telomeric silencer from a
homozygous P-1152 female. The maternally-introduced zuc or squ mutant allele is written first. In each case, the percentage of TSE is given with the
total number of egg chambers assayed in parenthesis.
doi:10.1371/journal.pone.0011032.g001
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presence of a telomeric silencer alone, i.e. in the absence of the

target transgene [32]. We thus tested if lacZ small RNA detection

in ovaries parallels the maternal effect of TSE. RNAse protection

analysis allowed detection of the two abundant small RNAs in G1

females produced by the two (P-1152 x M) reciprocal crosses, but

the intensity of the signal obtained with the progeny of the (female

P-1152 x male M) cross (cross TSE+) was higher than that of the

progeny of the reciprocal cross which induces only a weak level of

TSE (cross TSE-) (Fig. 2B, lanes 3 and 4). This difference becomes

particularly clear, when a comparison is made between the signal

intensities of the aspecific bands shown below the lacZ small RNAs.

However, the signal from TSE- females is not null, a result which

is consistent with the weak but non null level of TSE (around 10%)

which can be induced in this cross [32,33]. In conclusion, the

presence of lacZ small RNAs in ovaries is detected in a manner

which is correlated to the maternal effect of TSE.

Accumulation of lacZ small RNAs is sensitive to HP1 dose
TSE was shown previously to be sensitive not only to

mutations in genes involved in the piRNA pathway, but also

to mutations in genes involved in heterochromatin formation,

such as Su(var)205 which encodes HP1 [33]. For Su(var)205, a

particularly clear dose effect on TSE was observed. We thus

tested if the presence of lacZ small RNAs in ovaries is affected in

P-1152 females having only one dose of the Su(var)205 gene

compared to wild-type. RNAse protection was performed as

previously on females carrying two copies of P-1152 and

heterozygous for Su(var)2–505, an amorphic allele of Su(var)205.

Figure 2B (lane 5) shows that the level of small RNAs detected

for females having two copies of P-1152 and only one dose of

Su(var)205 is strongly reduced when compared to P-1152 wild-

type females (Fig. 2B, lane 1). Indeed, with one dose of HP1, the

level of these small RNAs is comparable to that of females

carrying a single paternally-inherited P-1152 copy (Fig. 2B, lane

4). Under these two latter conditions, comparable low levels of

TSE were also found [33]. Therefore, the effect of mutations

affecting HP1 on TSE [33], as for squ and zuc mutations, can be

correlated to a significant reduction in the accumulation of small

RNAs in ovaries produced by the telomeric P-1152 silencer

locus.

Figure 2. TSE is correlated with the presence of small RNAs whose production depends on the piRNA pathway and HP1. (A–B) RNAse
protection was carried out using a lacZ sense riboprobe (150 nt) hybridized to RNAs extracted from ovaries from 3–6 day-old females. Data concerning
the 20–30 nt region are shown together with aspecific bands used as a loading control (shown below). Cantonywas used as an M strain, (devoid of any P
element or P transgene). (A) Small RNA detection and effect of mutations in squash and zucchini. WT corresponds to P-1152 females which are wild-type
for both squ and zuc. Two small RNAs (arrows) are highly abundant in females carrying the P-1152 telomeric TSE silencer at the homozygous state (WT),
but are not detected in ovaries of females devoid of the P-1152 transgene (M). Females carrying the P-1152 telomeric silencer at the homozygous state
and mutant for squash and zucchini were analyzed. The same two abundant small RNAs found in P-1152 (WT) can be detected in females carrying one
functional allele of squ and zuc, but are undetectable in squ or zuc heteroallelic mutant females. Thus, accumulation of lacZ small RNAs occurring in P-
1152 ovaries requires squ and zuc functions. (B) TSE maternal effect and effect of mutations affecting HP1. TSE+ indicates that this cross allows a strong
TSE in G1 females due to the maternal transmission of the telomeric P-1152 silencer, whereas TSE- means that only a weak TSE is recovered from this
cross in which P-1152 is inherited paternally. P-1152 homozygous females and M females were analyzed as positive and negative controls, respectively.
The two most abundant small RNAs are indicated by arrows. A strong signal for these small RNAs is obtained for P-1152 homozygous females and for
females having inherited a P-1152 transgene maternally (TSE+), but is undetectable in negative control M females. The signal for the small RNAs is
significantly reduced for females having inherited P-1152 paternally (TSE-), as well as for P-1152 homozygous females carrying one null allele of
Su(var)205 which encodes HP1. Therefore, accumulation of lacZ small RNAs is correlated to the maternal effect of TSE and depends on HP1 dose.
doi:10.1371/journal.pone.0011032.g002
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Discussion

Trans-Silencing Effect, a typical piRNA germline
repression mechanism
Trans-silencing was previously shown to be strongly impaired by

mutations affecting several components of the piRNA silencing

pathway (AUBERGINE, ARMITAGE, HOMELESS, PIWI)

[8,33]. By contrast, TSE was not impaired by mutations affecting

R2D2, a component of the siRNA pathway [33,41], or

LOQUACIOUS, a component of both the miRNA and endo-

siRNA pathways [33,42–44]. This indicates that TSE likely

involves the piRNA silencing pathway, a hypothesis which is

consistent with the fact that TSE is restricted to the germline [32],

the tissue in which the ‘‘canonical’’ piRNA pathway functions

[25,26]. Further, SQUASH and ZUCCHINI were found to

interact with AUBERGINE and to localize to the nuage, a

cytoplasmic organelle surrounding the nurse cell nuclei, which also

contains AUBERGINE and ARMITAGE and appears to be

involved in RNA silencing [34]. squ and zuc mutations were also

shown to affect piRNA production in ovaries at the cytological

42AB repetitive sequence cluster, a typical piRNA-producing

genomic region [25]. Regarding TE repression in the germline, squ

and zuc mutants were found to derepress transcription of the

telomeric retrotransposons Het-A and TART [34] and of the I

factor, a retrotransposon involved in a Drosophila system of hybrid

dysgenesis [45,46]. It is noteworthy that the I factor and the Het-A

retrotransposons have also been found to be sensitive to aub, armi

and hls (spn-E) [5,45,47]. The genetic analysis reported here shows

that TSE is also highly sensitive to zuc and squ mutations (Figure 1).

TSE is therefore sensitive to mutations affecting all the genes of the

germline piRNA pathway tested and thus appears to represents a

bona fide piRNA-based repression.

The presence of lacZ small RNAs in ovaries of females carrying

a TSE silencer was therefore investigated using RNase protection

analysis. In addition, paternal vs maternal transmission of the

telomeric silencer was compared. Indeed, TSE was previously

shown to have a maternal effect, i.e. strong repression occurs only

when the telomeric silencer is maternally inherited, whereas a

paternally-inherited telomeric silencer has weak or null repression

capacities [32,33,48]. More precisely, it was shown genetically that

TSE requires inheritance of two components, a maternal

cytoplasmic component plus a chromosomal copy of the

transgene, but these two components can be transmitted

separately [33]. Indeed, a paternally-inherited telomeric transgene

can be ‘‘potentiated’’ by a maternally-inherited cytoplasm from a

female bearing a silencer. This interaction also functions between

telomeric silencers located on different chromosomal arms [32].

The RNase protection analysis reported here shows that: 1-

P-1152, a telomeric P-lacZ silencer produces small lacZ RNAs in

ovaries (Figure 2A–B); 2- P-1152 lacZ small RNA accumulation is

negatively affected in squ and zuc mutants (Figure 2A); 3- maternal

transmission of P-1152 leads to accumulation of higher levels of

these small RNAs than that observed upon paternal P-1152

transmission (Figure 2B). We have reproduced these results with

independent RNAse protection assays (two experiments for the

effect of each mutant and three experiments for the maternal

effect). The size of the small RNAs detected here appears smaller

(around 22–23 nt) than that corresponding to piRNAs as

characterized by deep sequencing (23–28 nt, [8]), but they are

consistent with piRNAs as detected by RNAse protection assays in

other studies [49]: this can result from the RNAse protection

protocol which tends to reduce the size of the RNAs detected. In

conclusion, our results strongly suggest that the lacZ small RNAs in

P-1152 oocytes may correspond to cytoplasmically-transmitted

piRNAs mediating the maternal effect of TSE, as well potentiating

a paternally-inherited telomeric silencer [33].

Towards a mutual dependence between RNA silencing
and heterochromatin formation
TSE was previously shown to be sensitive to mutations affecting

HP1 since a negative, dose-dependent, effect on TSE was found

with two loss of function alleles of Su(var)205 (including Su(var)2–505)
[33]. RNase protection analysis shows here that lacZ small RNA

accumulation is also negatively affected by the dose of HP1

(Figure 2B). Although we cannot exclude that this effect may be

indirect, this opens the possibility that some piRNA-producing loci

depend on the presence of HP1 itself at the locus to produce

piRNAs. A similar model was recently proposed for rhino, a HP1

homolog, mutations of which strongly reduce the production of

piRNAs by dual strand piRNA- producing loci [28]. The authors

propose that rhino is required for the production of the long

precursor RNAs which are further processed to produce primary

piRNAs. Note that in their study, rhinomutants were shown to have

a drastic effect on the production of piRNAs by the X-chromosome

TAS locus [28]. A similar situation may therefore exist for HP1 at

this locus and, if so, it would be interesting to characterize more

precisely the function of HP1 in the production of piRNAs at the

TAS locus.

HP1 was shown to be present at TAS [50,51]. A first possibility

would be that HP1 stimulates transcription of the TAS locus as a

classical transcription factor, independent of any heterochromatic

role at this locus. Consistent with this, it was shown that PIWI, a

partner of HP1 [52], promotes euchromatin histone modification

and piRNA transcription at the third chromosome TAS [49]. The

precise status of TAS, however, remains complex since some

studies have shown that TAS exhibit some of the properties

attributed to heterochromatin [53–55] and carry primarily

heterochromatic histone tags [56]. Therefore, a second possibility

would be that HP1 enhances the heterochromatic status of TAS in

the germline, such that production of aberrant transcripts being

processed into piRNAs is enhanced. This would result in a

‘‘heterochromatin-dependent RNA silencing pathway’’. Examples

of heterochromatin formation that depends on RNA silencing

(‘‘RNA-dependent heterochromatin formation’’) have been de-

scribed in numerous species including yeast [37], ciliates [57] and

plants [58]. In Drosophila, this type of interaction has been

described for variegation of pigment production in the eye linked

to the insertion of the white gene in different types of

heterochromatin structures [59,60], as well as for heterochromatin

formation at telomeres in the germline [51]. Therefore, telomeric

regions in fly may be submitted to both RNA-dependent

heterochromatin formation [47,51] and heterochromatin-depen-

dent RNA silencing. RNA silencing may favor heterochromatin

formation that in turn potentiates RNA silencing, resulting in a

functional positive loop between transcriptional gene silencing and

post-transcriptional gene silencing. In such cases, RNA silencing

and heterochromatin may not only reinforce each other but may

also be functionally interdependent. Such bidirectional reinforce-

ment between RNA silencing and heterochromatin formation was

demonstrated in S. pombe since: 1- deletion of genes involved in

RNA silencing were shown to derepress transcriptional silencing

from centromeric heterochromatic repeats and was accompanied

by loss of Histone 3 Lysine 9 methylation and Swi6 (a HP1

homolog) delocalization [37]; 2 - Swi6 was found to be required for

the propagation and the maintenance of the RNA Induced

Transcriptional Silencing (RITS) complex at the mat locus, a

complex involved in amplification of RNA silencing [35,61]. A

positive loop between RNA silencing and heterochromatin
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formation may therefore also be at play in the Drosophila germline.

According to this model, the epigenetic transmission of TSE

through meiosis, (i.e. six generations of maternal transmission of

the silencer are required to elicit a strong TSE following maternal

inheritance of a cytoplasm devoid of lacZ piRNAs [33]) would

underlie progressive establishment of this loop. Note that RNAi-

dependent DNA methylation in Arabidopsis thaliana was shown to

occur progressively over several consecutive generations [62].

Since TSE can be considered as a sub-phenomenon within P

regulation, it may underlie epigenetic transmission of the P
element repression. P element mobilization is responsible for a

syndrome of germline abnormalities, known as the ‘‘P-M’’ system

of hybrid dysgenesis which includes a high mutation rate,

chromosomal rearrangements, male recombination and an

agametic temperature-sensitive sterility called GD sterility (Go-

nadal Dysgenesis) [63]. P-induced hybrid dysgenesis is repressed

by a maternally inherited cellular state called the‘‘ P cytotype’’

[3,23,64,65]. The absence of P-repression is called M cytotype. G1

females produced from the cross (P cytotype females6M cytotype

males) present a strong capacity for repression, whereas females

produced from the reciprocal cross present a weak capacity for

repression [64]. In the subsequent generations, cytotype is

progressively determined by the chromosomal P elements but

the influence of the initial maternal inheritance can be detected for

up to five generations [64,66]. Therefore, P cytotype exhibits

partial epigenetic transmission through meiosis. Furthermore, the

identification and use of telomeric P elements as P cytotype

determinants [2,16–18], has made it possible to show that P

cytotype (like TSE) involves a strictly-maternally inherited

component (called the pre-P cytotype) [67], is sensitive to

mutations affecting HP1 [2,68] and aubergine [1,69] and is

correlated to maternal deposition of piRNAs [70]. Some of these

properties are also found for the I factor which is responsible for

the occurrence of another system of hybrid dysgenesis (‘‘I-R’’

system) [45,46,71–73]. TSE therefore parallels germline regulation

of TEs (P, I), and does not resemble regulation of TEs in the

somatic follicle cells (gypsy, ZAM, Idefix [19,20]) for which no

epigenetic transmission of repression capacities through meiosis

has been described so far. It will be interesting to test if previously

described cases of RNA-dependent heterochromatin formation

show the reciprocal dependence, thus being able to form a positive

loop.
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