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Introduction

The theory of mean field games (MFG), introduced simultaneously and independently by Lasry and Lions [START_REF] Lasry | Jeux à champ moyen. i-le cas stationnaire[END_REF][START_REF]Jeux à champ moyen. ii-horizon fini et contrôle optimal[END_REF] and Huang, Caines and Malhamé [START_REF] Huang | Large population stochastic dynamic games: closed-loop mckean-vlasov systems and the nash certainty equivalence principle[END_REF], is devoted to the analysis of models where a large number of players interact strategically with each other. Under suitable assumptions, the Nash equilibria of those games can be analyzed through the solutions of the, so-called, MFG system $ ' & ' % ´Bt u ´∆u `Hpx, Duq " F px, mq in T d ˆr0, T s ´Bt m `∆m `divpmD p Hpx, Duqq " 0 in T d ˆr0, T s mp0q " m 0 , upT, xq " Gpx, mpT qq in T d .

(0.1)

The first unknown upt, xq is the value function of an infinitesimal player starting from x at time t while the second one, mptq, describes the distribution of players at time t. The maps F, G : PpT d q Ñ R (where PpT d q is the set of Borel probability measures on the torus T d ) describe the interactions between players.

In this paper we investigate the limit behavior, as the horizon T tends to infinity, of this system. This is a very natural question, especially when one looks at those models as dynamical systems.

One natural guess is that the system simplifies in large times and converges to a time independent model, called the ergodic MFG system:

# ´λ ´∆u `Hpx, Duq " F px, mq in T d , ∆m `divpmD p Hpx, Duqq " 0 in T d . (0.2)
There is a relatively wide evidence of this phenomenon, starting from [START_REF] Lions | Mean-field games[END_REF] and the Mexican wave model in [START_REF] Guéant | Mean field games and applications[END_REF] to more recent contributions in [START_REF] Cardaliaguet | Long time average of first order mean field games and weak kam theory[END_REF][START_REF] Cardaliaguet | Long time average of mean field games with a nonlocal coupling[END_REF][START_REF] Cardaliaguet | Long time average of mean field games[END_REF][START_REF] Diogo A Gomes | Discrete time, finite state space mean field games[END_REF].

All these papers, however, rely on a structure property, the so-called monotonicity assumption, which is seldom met in practice. More recently, the problem of understanding what happens in the non-monotone setting has been addressed in several papers. Gomes and Sedjro [START_REF] Gomes | One-dimensional, forward-forward mean-field games with congestion[END_REF] found the first example of periodic solutions in the context of one-dimensional first order system with congestion. Cirant in [START_REF] Cirant | On the existence of oscillating solutions in non-monotone mean-field games[END_REF] and Cirant and Nurbekyan in [START_REF] Cirant | The variational structure and time-periodic solutions for meanfield games systems[END_REF] forecast and then proved the existence of periodic solutions for a specific class of second order MFG systems (with quadratic Hamiltonian). These periodic trajectories were built through a bifurcation method in a neighborhood of a simple solution. Note that these examples show that the ergodic MFG system is not always the limit of the time-dependent ones. In [START_REF] Masoero | On the long time convergence of potential mfg[END_REF] the second authors gave additional evidence of this phenomena using ideas from weak KAM theory [START_REF] Fathi | Solutions kam faibles conjuguées et barrieres de peierls[END_REF][START_REF]Théoreme kam faible et théorie de mather sur les systemes lagrangiens[END_REF][START_REF]Sur la convergence du semi-groupe de lax-oleinik[END_REF]. The main interest of the approach is that it allows to study the question for a large class of MFG systems, potential MFG systems.

We say that a MFG system like (0.1) is of potential type if it can be derived as optimality condition of the following optimal control problem on the Fokker-Plank equation U T pt, m 0 q " inf pm,αq ˆT 0 ˆTd H ˚px, αps, xqq dmpsq `Fpmpsqqdt `GpmpT qq, (

where pm, αq verifies the Fokker Plank equation ´Bt m `∆m `divpαmq " 0 with mptq " m 0 and F and G are respectively the potentials of the functions F and G that appear in (0.1). Since the very beginning, this class of models has drawn a lot of attention. [START_REF]Jeux à champ moyen. ii-horizon fini et contrôle optimal[END_REF] first explained the mechanism behind the minimizing problem (0.3) and the MFG system (0.1) and, since then, the literature on potential MFG thrived. See for instance [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF][START_REF] Cardaliaguet | Second order mean field games with degenerate diffusion and local coupling[END_REF][START_REF] Ferreira | On the convergence of finite state mean-field games through γ-convergence[END_REF][START_REF] Mészáros | On the variational formulation of some stationary secondorder mean field games systems[END_REF] for the use of theses techniques to build solutions and analyse their long-time behavior under a monotonicity assumption.

In the present paper, we investigate the behavior, as T Ñ `8, of the solutions to the mean field games system (0.1) which are minimizers of (0.3). It is a continuation of [START_REF] Masoero | On the long time convergence of potential mfg[END_REF], which started the analysis of the convergence of the time-dependent, non-monotone, potential MFG systems through weak KAM techniques. We believe that these techniques lead to a more fundamental understanding of long time behavior for potential MFG. When the powerful tools of the weak KAM theory can be deployed, one can look at this problem in a more systematic way. Unlike the PDEs techniques that were so far used, this approach does not depend on the monotonicity of the system. A key point is that the weak KAM theory, exploiting the Hamiltonian structure of potential MFG, gives us a clear understanding of the limit object that the trajectories minimize when the time goes to infinity. We draw fully from both Fathi's seminal papers [START_REF] Fathi | Solutions kam faibles conjuguées et barrieres de peierls[END_REF][START_REF]Théoreme kam faible et théorie de mather sur les systemes lagrangiens[END_REF][START_REF]Sur la convergence du semi-groupe de lax-oleinik[END_REF] and his book [START_REF]Weak kam theorem in lagrangian dynamics preliminary version number[END_REF]. Several objects defined along the paper and the very structure of many proofs will sound familiar for who is acquainted with weak KAM theory. Nonetheless, it is not always straightforward to transpose these techniques into the framework of MFG and it often requires more effort than in the standard case. It is worthwhile to mention that infinite dimensional weak KAM theorems are not new, especially in the context of Wasserstein spaces: see for instance [START_REF] Gangbo | Lagrangian dynamics on an infinite-dimensional torus; a weak kam theorem[END_REF][START_REF]Weak kam theory on the wasserstein torus with multidimensional underlying space[END_REF][START_REF] Gomes | On the minimizers of calculus of variations problems in hilbert spaces[END_REF][START_REF]An infinite-dimensional weak kam theory via random variables[END_REF]. These papers do not address the MFG problem but they surely share the same inspiration.

Let us now present our main results and discuss the strategy of proofs. As we have anticipated, the starting point of this paper are some results proved in [START_REF] Masoero | On the long time convergence of potential mfg[END_REF]. The first one is the existence of the ergodic constant λ, such that

U T p0, ¨q T ÝÑ ´λ,
where U T is defined in (0.3). The second one is the existence of corrector functions. We say that a continuous function χ on PpT d q is a corrector function if it verifies the following dynamic programming principle

χpm 0 q " inf pm,αq ˆˆt 0 H ˚px, αqdmpsq `Fpmpsqqds `χpmptqq ˙`λt (0.4)
where pm, αq solves in the sense of distributions ´Bt m`∆m`divpmαq " 0 with initial condition mp0q " m 0 . At the heuristic level, this amounts to say that χ solves the ergodic problem ˆTd pHpy, D m χpm, yqq ´div y D m χpm, yqqmpdyq " Fpmq `λ in PpT d q.

(0.5) (the notion of derivative D m χ is described in Section 1 below).

The main results of this paper are Theorem 5.7 and Theorem 5.9. The first one states that U T p0, ¨q `λT uniformly converges to a corrector function while the second one ensures that this convergence does not hold only at the level of minimization problems but also when it comes to optimal trajectories. In particular, Theorem 5.9 says that optimal trajectories for U T p0, ¨q `λT converge to calibrated curves (i.e., roughly speaking, to global minimizers of (0.4)). Let us recall that, in [START_REF] Masoero | On the long time convergence of potential mfg[END_REF], the second author provides examples in which the calibrated curves stay away from the solutions of the MFG ergodic system (0.2). In that framework, our result implies that no solution to the MFG system (0.1) obtained as minimizers of (0.3) converges to a solution of the MFG ergodic system.

The convergence of U T p0, ¨q `λT to a corrector is of course the transposition, in our setting, of Fathi's famous convergence result for Hamilton-Jacobi equations [START_REF]Sur la convergence du semi-groupe de lax-oleinik[END_REF]. The basic strategy of proof is roughly the same. Here, the additional difficulty lies in the fact that, in our infinitely dimensional framework, the Hamiltonian in (0.5) is neither first order nor "uniformly elliptic" (cf. the term in divergence in (0.5)).

We overcome this difficulty by introducing two main ideas, that we describe now. As in [START_REF]Sur la convergence du semi-groupe de lax-oleinik[END_REF], we start with further characterizations of the limit value λ. Let us set

I :" inf ΦPC 1,1 pPpT d qq sup mPPpT d q ˆTd pHpy, D m Φpm, yqq ´Fpmq ´div y D m Φpm, yqqmpdyq.
Then, by duality techniques, one can check the following equality (Proposition 2.2) ´I " min pµ,p 1 q ˆPpT d q ˆTd ˆH˚´y , dp 1 dm b µ ¯`Fpmq ˙mpdyqµpdmq, (0.6) where pµ, p 1 q are closed measures, in the sense that, for any Φ P C We call Mather measure any couple pµ, p 1 q which minimizes the dual problem (on this terminology, see Remark 5.1).

One key step is to show that I " λ. While it is easy to prove that I ě λ (Proposition 2.1), the opposite inequality is trickier. One has to construct a smooth subsolution of the ergodic problem (0.5) in a context where there is no "classical" convolution. The idea is to look at a finite particle system on pT d q N . A similar idea was used in [START_REF]Weak kam theory on the wasserstein torus with multidimensional underlying space[END_REF] for first order problems on the L 2 p0, 1q´torus. The main difference with [START_REF]Weak kam theory on the wasserstein torus with multidimensional underlying space[END_REF] is that, for first order problems, the particle system is embedded into the continuous one, which is not the case for problems with diffusion. The argument of proof is therefore completely different. We set pv N , λ N q P C 2 ppT d q N q ˆR solution of

´N ÿ i"1 ∆ x i v N pxq `1 N N ÿ i"1 Hpx i , N D x i v N pxqq " Fpm N x q `λN .
Note that, in contrast with [START_REF]Weak kam theory on the wasserstein torus with multidimensional underlying space[END_REF], the constant λ N , here, depends on N . Our first main idea is to introduce the smooth function on PpT d q W N pmq :"

ˆpT d q N v N px 1 , . . . , x N q N ź i"1 mpdx i q
and to show that it satisfies in PpT d q

´ˆT d div y D m W N pm, yqmpdyq `ˆT d
Hpy, D m W N pm, yq, mqmpdyq ď Fpmq `λN `opN q, which implies that I ď lim inf N λ N . By comparing W N with true correctors, through viscosity type arguments, we also prove that lim sup N λ N ď λ. This shows the equality I " λ and the convergence of the constant λ N associated to the particle system to the ergodic constant λ (Proposition 3.1). The next difficulty is that the Hamiltonian appearing in (0.5) is singular (because of the divergence term). This prevents us to say, as in the classical setting, that Mather measures are supported by graphs on which the Hamilton-Jacobi is somehow satisfied. To overcome this issue, we introduce our second main idea, the notion of "smooth" Mather measures (measures supported by "smooth" probability measures). We prove that limits of minimizers for U T provide indeed "smooth" Mather measures and that, if pµ, p 1 q is a "smooth" Mather measure then, if we set

q 1 px, mq :" D a H ˚ˆy, dp 1 dm b µ py, mq ˙,
we have, for µ´a.e. m P PpT d q, ˆTd q 1 py, mq ¨Dmpyqdy `ˆT d Hpy, q 1 py, mqqmpdyq " Fpmq `λ. (0.7) (see Proposition 4.2). Note that (0.7) is a kind of reformulation of the ergodic equation (0.5), in which q 1 " D m χ and where the divergence term is integrated by parts. The rest of the proof is more standard and does not bring new difficulties compared to [START_REF]Sur la convergence du semi-groupe de lax-oleinik[END_REF].

Let us briefly describe the organization of the paper. In Section 1, we fix the main notation and assumption and collect the results of [START_REF] Masoero | On the long time convergence of potential mfg[END_REF] that we sketched above. Section 2 and 3 focus on further characterizations of the limit value λ. In particular, in Section 2, we prove that (0.6) and I ě λ hold, while Section 3 is devoted to the analysis of the particle system and the proof that I " λ. Section 4 gives a closer look to Mather measures and explains (0.7). Section 5 contains Theorem 5.7 and Theorem 5.9 and their proofs.
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Assumptions and preliminary results

The aim of this preliminary section is twofold. Firstly, we introduce the notation and the assumptions that we will use throughout the paper. Then, we collect some results from [START_REF] Masoero | On the long time convergence of potential mfg[END_REF] which are the starting point of this work.

Notation and assumptions

We work on the d´dimensional flat torus T d " R d {Z d to avoid boundary conditions and to set the problem on a compact domain. We denote by PpT d q the set of Borel probability measures on T d . This is a compact, complete and separable set when endowed with the 1-Wasserstein distance dp¨, ¨q. Let m be a Borel measure over rt, T s ˆTd , with first marginal the Lebesgue measure ds over rt, T s, then with tmpsqu sPrt,T s we denote the disintegration of m with respect to dt. We will always consider measures m such that mpsq is a probability measure on T d for any s P rt, T s.

If m is such a measure, then L 2 m prt, T s ˆTd q is the set of m-measurable functions f such that the integral of |f | 2 dmpsq over rt, T s ˆTd is finite.

We use throughout the paper the notion of derivative for functions defined on PpT d q introduced in [START_REF] Cardaliaguet | The master equation and the convergence problem in mean field games[END_REF]. We say that Φ :

PpT d q Ñ R is C 1 if there exists a continuous function δΦ δm : PpT d q ˆTd Ñ R such that Φpm 1 q ´Φpm 2 q " ˆ1 0 ˆTd δΦ δm pp1 ´tqm 1 `tm 2 , xqpm 2 ´m1 qpdxqdt, @m 1 , m 2 P PpT d q.
As this derivative is defined up to an additive constant, we use the standard normalization ˆTd δΦ δm pm, xqmpdxq " 0.

(1.8)

We recall that, if µ, ν P PpT d q, the 1-Wasserstein distance is defined by dpµ, νq " sup " ˆTd φpxq dpµ ´νqpxq ˇˇˇc ontinuous φ :

T d Ñ R, Lippφq ď 1 * .
Assumptions: Throughout the paper the following conditions will be in place.

1. 2. F :

H : T d ˆRd Ñ R is of class C 2 , p Þ Ñ D
PpT d q Ñ R is of class C 2 . Its derivative F : T d ˆPpT d q Ñ R is twice differentiable in x and D 2 xx F is bounded.
Examples of non monotone coupling functions which verify such conditions can be found in [START_REF] Masoero | On the long time convergence of potential mfg[END_REF].

Note that some of the above assumptions will not be used explicitly in this paper but have been used in [START_REF] Masoero | On the long time convergence of potential mfg[END_REF] to prove results that we will assume to hold true. (The only difference is that here we need F to be of class C 2 while in [START_REF] Masoero | On the long time convergence of potential mfg[END_REF] F was required only to be C 1 ).

Very often in the text, we do not need to work explicitly on F, so, in order to have a lighter notation, we incorporate F in the Hamiltonian defining, for any px, p, mq P T d ˆRd ˆPpT d q, Hpx, p, mq :" Hpx, pq ´Fpmq.

(1.9)

We denote with H ˚the Fenchel conjugate of H with respect to the second variable. Then, H ˚px, p, mq " H ˚px, pq `Fpmq.

We can now introduce the standard minimization problem in potential MFG:

U T pt, m 0 q " inf pm,αq ˆT t ˆTd H ˚px, αqdmpsq `Fpmpsqqdt, m 0 P PpT d q where m P C 0 prt, T s, PpT d qq, α P L 2 m prt, T s ˆTd , R d q and the following equation is verified in the sense of distributions

# ´Bt m `∆m `divpmαq " 0 in rt, T s ˆTd mptq " m 0 in T d . (1.10)
1.2 Corrector functions and the limit value λ

Here we collect the results already proved in [START_REF] Masoero | On the long time convergence of potential mfg[END_REF] that we will use. A most important one is the following.

Theorem 1.1. The function 1 T U T pt, ¨q uniformly converges to a limit value ´λ when T goes to `8.

The second result that we will use is the existence of corrector functions. Definition 1.2. We say that χ : PpT d q Ñ R is a corrector function if, for any m 0 P PpT d q and any t ą 0,

χpm 0 q " inf pm,αq ˆˆt 0 H ˚px, αqdmpsq `Fpmpsqqds `χpmptqq ˙`λt,
where m P C 0 pr0, ts, PpT d qq, α P L 2 m pr0, ts ˆTd , R d q and the pair pm, αq solves in the sense of distributions ´Bt m `∆m `divpmαq " 0 with initial condition m 0 .

Proposition 1.3. The set of corrector functions is not empty and uniformly Lipschitz continuous.

A last notion that will come at hand is the one of calibrated curve: Definition 1.4. We say that p m, ᾱq, which satisfies (1.10) for any t P R, is a calibrated curve if there exists a corrector function χ : PpT d q Ñ R such that p m, ᾱq is optimal for χ: for any

t 1 ă t 2 P R χp mpt 1 qq " λpt 2 ´t1 q `ˆt 2 t 1 ˆTd H ˚px, ᾱpsqq d mpsq `Fp mpsqqds `χp mpt 2 qq.
The set of calibrated curves verifies the following property.

Proposition 1.5. The set of calibrated curves is not empty. Moreover, if pm, αq is a calibrated curve, then m P C 1,2 pR ˆTd q and there exists a function u P C 1,2 pR ˆTd q such that α " D p Hpx, Duq where pu, mq solves

# ´Bt u ´∆u `Hpx, Duq " F px, mq in R ˆTd , ´Bt m `∆m `divpmD p Hpx, Duqq " 0 in R ˆTd .

A dual problem

In this section we introduce the two usual characterizations of the constant λ: λ is expected to be the smallest constant for which there exists a smooth sub-corrector and ´λ is the smallest value of the Lagrangian when integrated against suitable "closed" measures. The goal of this section is to show that both problems are in duality and have the same value I. We postpone the analysis of the equality I " λ to the next section.

We start with the HJ equation, that we write in variational form.

I :" inf ΦPC 1,1 pPpT d qq sup mPPpT d q ˆTd pHpy, D m Φpm, yq, mq ´div y D m Φpm, yqqmpdyq, (2.11) 
where by C 1,1 pPpT d qq we mean the set of maps Φ :

PpT d q Ñ R such that D m Φ and D y D m Φ are continuous. Recall that H is defined in (1.9).
Let us start with a comparison between I and λ.

Proposition 2.1. We have I ě λ.

Proof. Let ε ą 0 and Φ be such that ˆTd pHpy, D m Φpm, yq, mq ´div y D m Φpm, yqqmpdyq ď I `ε @m P PpT d q.

Let p m, ᾱq be a calibrated curve and χ be a corrector function associated with p m, ᾱq. Using the fact that χ and Φ are bounded, we divide both sides by T and we conclude that λ ď I by letting T Ñ `8 and ε Ñ 0 .

Next we reformulate I in terms of "closed measures".

Proposition 2.2. We have

´I " min pµ,p 1 q ˆPpT d q ˆTd H ˚´y, dp 1 dm b µ , m ¯mpdyqµpdmq, (2.13)
where the minimum is taken over µ P PpPpT d qq and p 1 , Borel vector measure on PpT d q ˆTd , such that p 1 is absolutely continuous with respect to the measure dm b µ :" mpdyqµpdmq and such that pµ, p 1 q is closed, in the sense that, for any Φ P C 1,1 pPpT d qq,

´ˆPpT d qˆT d D m Φpm, yq ¨p1 pdm, dyq `ˆPpT d qˆT d div y D m Φpm, yqmpdyqµpdmq " 0. (2.14)
In analogy with weak KAM theory, we call a measure pµ, p 1 q satisfying (2.14) a closed measure and a minimum of (2.13) a Mather measure.

Proof. As usual we can rewrite I as

I " inf ΦPC 1,1 pPpT d qq sup µPPpPpT d qq ˆPpT d q ˆˆT d pHpy, D m Φpm, yq, mq ´div y D m Φpm, yqqmpdyq ˙µpdmq.
We claim that

I " max µPPpPpT d qq inf ΦPC 1,1 pPq ˆPpT d q ˆˆT d
pHpy, D m Φpm, yq, mq ´div y D m Φpm, yqqmpdyq ˙µpdmq. We now define the continuous linear map Λ :

C 1,1 pPpT d qq Ñ pC 0 pPpT d qˆT d qq d ˆC0 pPpT d qT d q by
ΛpΦq " pD m Φ, div y D m Φq.

From now on we fix a maximizer µ for (2.15) and we define E :" C 1,1 pPpT d qq, F :" pC 0 pPpT d q Td qq d ˆC0 pPpT d q ˆTd q and f pΦq " 0, gpa, bq " ˆPpT d q p ˆTd pHpy, apm, yq, mq ´bpm, yqqmpdyqqµpdmq, @pa, bq P F.

We note that

I " inf ΦPC 1,1 pPpT d qq
tf pΦq `gpΛΦqu.

To use the Fenchel-Rockafellar theorem we need to check the transversality conditions. These hypothesis are easily verified, indeed, both f and g are continuous and, therefore, proper functions. The function f is convex because it is linear and so is g, due to the convexity of Hamiltonian H. Moreover, it comes directly from its definition that Λ is a bounded linear functional on E. Then, the Fenchel-Rockafellar Theorem states that

I " ´min pp 1 ,p 2 qPF 1 tf ˚p´Λ ˚pp 1 , p 2 qq `g˚p p 1 , p 2 qu.
Note that F 1 " pMpPpT d q ˆTd qq d ˆMpPpT d q ˆTd q, that f ˚pqq " 0 if q " 0, f ˚pqq " `8 otherwise. So, for any pp 1 , p 2 q P F 1 ,

f ˚p´Λpp 1 , p 2 qq " sup ΦPC 1,1 pPpT d qq
´xΛ ˚pp 1 , p 2 q, Φy ´f pΦq " sup ΦPC So, if g ˚pp 1 , p 2 q is finite, one must have that p 2 pdm, dyq " ´mpdyqµpdmq and that p 1 is absolutely continuous with respect to the measure dmbµ :" mpdyqµpdmq. Indeed, if p 1 were not absolutely continuous with respect to dm b µ, we could find a sequence of continuous functions a n P pC 0 pPpT d q ˆTd qq d such that, a n is uniformly bounded on the support of dm b µ and ˆPpT d qˆT d a n pm, yq ¨p1 pdm, dyq Ñ `8.

But then we would have g ˚pp 1 , p 2 q " `8. So, For the opposite inequality we use a density argument. The function a ˚could be not continuous but yet it must be measurable. Moreover, the growth of H ensures that a ˚P L 2 µ pPpT d q Td ; R d q. As PpT d q ˆTd is a compact Hausdorff space, the set of continuous functions is dense in L 2 µ pPpT d q ˆTd q. Let a n P C 0 PpT d q ˆTd ; R d q be such that a n Ñ a ˚in L 2 µ . Then, Therefore, we can conclude that I " ´min pµ,p 1 q ˆPpT d q ˆTd

g
sup
H ˚´y, dp 1 dm b µ , m ¯mpdyqµpdmq,
where the minimum is taken over pµ, p 1 q satisfying condition (2.14).

3 The N ´particule problem.

In the previous section, we introduced two problems in duality. These problems have a common value called I and we have checked that λ ď I. The aim of this section is to show that there is actually an equality: λ " I. In the standard setting, this equality is proved by smoothing correctors by a convolution; by the convexity of the Hamiltonian, the smoothened corrector is a subsolution to the corrector equation (up to a small error term), thus providing a competitor for problem (2.11). In our framework, there is no exact equivalent of the convolution. We overcome this difficulty by considering the projection of the problem onto the set of empirical measures of size N (thus on pT d q N ). For the N ´particle problem, the corrector is smooth. We explain here that a suitable extension of this finite dimensional corrector to the set PpT d q provides a smooth sub-corrector for the problem in PpT d q when N is large. This shows the claimed equality and, in addition, the fact that the ergodic constant associated with the N ´particle problem converges to λ.

More precisely, we consider v N : pT d q N Ñ R the solution of:

´N ÿ i"1 ∆ x i v N pxq `1 N N ÿ i"1 Hpx i , N D x i v N pxq, m N x q " λ N ,
where x " px 1 , . . . , x N q P pT d q N and m N x " N ´1 ř N i"1 δ x i and where H is defined in (1.9). Let us recall that such a corrector exists (it is unique a to additive constants) and is smooth.

Proposition 3.1. We have λ " I " lim N Ñ`8 λ N .
Proof. We define

W N pmq :" ˆpT d q N v N px 1 , . . . , x N q N ź i"1 mpdx i q.
As v N is smooth, it is clear that W N is also smooth on PpT d q and we have

D m W N pm, yq " N ÿ k"1 ˆpT d q N ´1 D x k v N px 1 , . . . , x k´1 , y, x k`1 , . . . , x N q ź i‰k mpdx i q and div y D m W N pm, yq " N ÿ k"1 ˆpT d q N ´1 ∆ x k v N px 1 , . . . , x k´1 , y, x k`1 , . . . , x N q ź i‰k mpdx i q.
In view of the convexity of H with respect to p, we obtain, for any m P PpT d q,

´ˆT d div y D m W N pm, yqmpdyq `ˆT d Hpy, D m W N pm, yq, mqmpdyq " ´N ÿ k"1 ˆTd ˆpT d q N ´1 ∆ x k v N px 1 , . . . , x k´1 , y, x k`1 , . . . , x N q ź i‰k mpdx i qmpdyq `ˆT d H ´y, N ÿ k"1 ˆpT d q N ´1 D x k v N px 1 , . . . , x k´1 , y, x k`1 , . . . , x N q ź i‰k mpdx i q, m ¯mpdyq ď ˆpT d q N ´´N ÿ k"1 ∆ x k v N px 1 , . . . , x N q `1 N N ÿ k"1 H ´xk , N D x k v N px 1 , . . . , x N q, m ¯¯ź i mpdx i q.
Following [START_REF] Carmona | Probabilistic theory of mean field games with applications i-ii[END_REF], the Glivenko-Cantelli Theorem states that

ˆpT d q N d 2 pµ N x , mq ź i mpdx i q ď ε N :" $ & % N ´1{2 if d ă 4, N ´1{2 lnpN q if d " 4, N ´2{d
otherwise.

As H has a separate form: Hpx, p, mq " Hpx, pq ´Fpmq where F is Lipschitz continuous with respect to m, we infer that

ˆpT d q N 1 N N ÿ k"1 H ´xk , N D x k v N px 1 , . . . , x N q, m ¯ź i mpdx i q ď ˆpT d q N 1 N N ÿ k"1 H ´xk , N D x k v N px 1 , . . . , x N q, m N x ¯ź i mpdx i q `Cε N .
Recalling the equation satisfied by v N , we conclude that

´ˆT d div y D m W N pm, yqmpdyq `ˆT d Hpy, D m W N pm, yq, mqmpdyq ď ˆpT d q N ´´N ÿ k"1 ∆ x k v N px 1 , . . . , x N q `1 N N ÿ k"1 H ´xk , N D x k v N px 1 , . . . , x N q, m N x q ¯ź i mpdx i q `Cε N ď λ N `Cε N .
As W N is smooth, this shows that I ď lim inf N λ N .

Let λ ˚" lim sup N λ N . From now on we work up to a subsequence N (still denoted in the same way) such that lim N λ N " λ ˚. We claim that λ ˚ď λ. Indeed, let χ be a corrector and, for N large, x N " px N 1 , . . . , x N N q be a minimum point of y Ñ χpm N y q´v N pyq. We know from Lemma 6.3 that there exists a map Φ N : PpT d q Ñ R of class C 2 pPpT d qq (and bounded in C 2 pPpT d qq independently of N ) such that Φ N ą χ on PpT d qztm N

x N u and Φ N pm N x N q " χpm N x N q. Moreover,

´ˆT d div y D m Φ N pm N x N , yqm N x N pdyq `ˆT d Hpy, D m Φ N pm N x N , yq, m N x N qm N x N pdyq ď λ.
As x N is also a minimum point of y Ñ Φ N pm N y q ´vN pyq, we have, following [START_REF] Carmona | Probabilistic theory of mean field games with applications i-ii[END_REF] Section 5.4.4,

D x i v N px N q " 1 N D m Φ N pm N x N , x N i q, D 2 x i x i v N px N q ě 1 N D 2 ym Φ N pm N x N , x N i q `1 N 2 D 2 mm Φ N pm N x N , x N i , x N i q. Hence λ N " ´N ÿ i"1 ∆ x i v N px N q `1 N N ÿ i"1 Hpx N i , N D x i v N px N q, m N x N q ď ´N ÿ i"1 ˆ1 N div y D m Φ N pm N x N , x N i q `1 N 2 TrD 2 mm Φ N pm N x N , x N i , x N i q 1 N N ÿ i"1 Hpx N i , D m Φ N pm N x N , x N i q, m N x N q ď ´ˆT d div y D m Φ N pm N x N , yqm N x N pdyq `CN ´1 `ˆT d Hpy, D m Φ N pm N x N , yq, m N x N qm N x N pdyq ď λ `CN ´1,
where, in the last lines, we used the bound on D 2 mm Φ N . Letting N Ñ `8, we find therefore λ ˚ď λ. As λ ď I ď lim inf N λ N ď λ ˚ď λ, this shows that λ " lim N λ N " I.

On the support of the Mather measures

In this section we take a closer look at Mather measures and the properties of their support points.

Definition 4.1. We say that the closed measure pµ, p 1 q is smooth if there exists a constant C ą 0 such that, for µ´a.e. m P PpT d q, m has a positive density and

}D lnpmq} L 2 m pT d q ď C.
The aim of this section is to prove the following property of smooth Mather measures.

Proposition 4.2. Let pµ, p 1 q be a smooth Mather measure. Let us set q 1 px, mq :" D a H ˚ˆy, dp 1 dm b µ py, mq, m ˙.

Then we have, for µ´a.e. m P PpT d q, ˆTd q 1 py, mq ¨Dmpyqdy `ˆT d Hpy, q 1 py, mq, mqmpdyq " λ.

In order to prove the proposition, let us start with a preliminary step. Let pµ, p 1 q be optimal in problem (2.13) (where we recall that I " λ) and let Φ N be any minimizing sequence in (2.11). We integrate equation (4.17) against µ and add the problem for pµ, p 1 q to find:

´ˆPpT d qˆT d div y D m Φ N pm, yqmpdyqµpdmq `ˆPpT d qˆT d Hpy, D m Φ N pm, yq, mqmpdyqµpdmq `ˆPpT d qˆT d H ˚´y, dp 1 dm b µ , m ¯mpdyqµpdmq ď o N p1q.
Using the uniform convexity of H, this implies that

´ˆPpT d qˆT d div y D m Φ N pm, yqmpdyqµpdmq `ˆPpT d qˆT d dp 1 dm b µ ¨Dm Φ N pm, yqmpdyqµpdmq `C´1 ˆPpT d qˆT d ˇˇˇd p 1 dm b µ ´Dp Hpy, D m Φ N pm, yq, mq ˇˇˇ2 mpdyqµpdmq ď o N p1q.
Then, (2.14) implies that the first line vanishes and so

ˆPpT d qˆT d ˇˇˇd p 1 dm b µ ´Dp Hpy, D m Φ N pm, yq, mq ˇˇˇ2 mpdyqµpdmq ď o N p1q,
which proves the first statement of the lemma. We now turn to (4.16). First of all, as Φ N is a minimizing sequence for (2.11), we have that

lim sup N Ñ`8 ´ˆPpT d qˆT d div y D m Φ N pm, yqmpdyqµpdmq `ˆPpT d qˆT d Hpy, D m Φ N pm, yq, mqmpdyqµpdmq ď λ.
To prove the other inequality we start with

´ˆPpT d qˆT d div y D m Φ N pm, yqmpdyqµpdmq `ˆPpT d qˆT d
Hpy, D m Φ N pm, yq, mqmpdyqµpdmq.

We add and subtract the same quantity to get

´ˆPpT d qˆT d div y D m Φ N pm, yqmpdyqµpdmq `ˆPpT d qˆT d dp 1 dm b µ ¨Dm Φ N pm, yqmpdyqµpdmqP pT d qˆT d
Hpy, D m Φ N pm, yq, mqmpdyqµpdmq

´ˆPpT d qˆT d dp 1 dm b µ ¨Dm Φ N pm, yqmpdyqµpdmq.
As pµ, p 1 q verifies (2.14), the first line above vanishes. Then, using the Fenchel's inequality, we find that

´ˆPpT d qˆT d div y D m Φ N pm, yqmpdyqµpdmq `ˆPpT d qˆT d Hpy, D m Φ N pm, yq, mqmpdyqµpdmq ě ´ˆPpT d q ˆTd H ˚´y, dp 1 dm b µ , m ¯mpdyqµpdmq.
By hypothesis, pµ, p 1 q is a minimizer for (2.13), so, for any N P N,

´ˆPpT d qˆT d div y D m Φ N pm, yqmpdyqµpdmq `ˆPpT d qˆT d
Hpy, D m Φ N pm, yq, mqmpdyqµpdmq ě λ.

Therefore,

lim inf N Ñ`8 ´ˆPpT d qˆT d div y D m Φ N pm, yqmpdyqµpdmq `ˆPpT d qˆT d Hpy, D m Φ N pm, yq, mqmpdyqµpdmq ě λ.
and the result follows.

Proof of Proposition 4.2. From our assumption on pµ, p 1 q, we have

ˆPpT d qˆT d div y D m Φ N pm, yqmpdyqµpdmq " ´ˆPpT d qˆT d D m Φ N pm, yq ¨Dmpyqdyµpdmq.
As, by Lemma 4.3, the sequence pD p Hpy, D m Φ N pm, yqq, mq converges to dp 1 dmbµ in L 2 pPpT d q Td , dm b µq, we also have that pD m Φ N pm, yqq converges to q 1 in L 2 pPpT d q ˆTd , dm b µq by regularity and invertibility of D p H and D a H ˚. On the other hand, Dmpyq mpyq is bounded in L 2 m pT d q for µ´a.e. m P PpT d q. Therefore lim N Ñ`8 ˆPpT d qˆT d div y D m Φ N pm, yqmpdyqµpdmq " ´ˆPpT d qˆT d q 1 pm, yq ¨Dmpyqdyµpdmq.

We conclude thanks to (4.16) that ˆPpT d qˆT d q 1 pm, yq ¨Dmpyqdyµpdmq `ˆPpT d qˆT d Hpy, q 1 pm, yq, mqmpdyqµpdmq " λ.

On the other hand, extracting a subsequence if necessary, the sequence pD m Φ N pm, yqq converges µ´a.e. to q 1 . So, by (4.17), we have, for µ´a.e. m P PpT d q, ˆTd q 1 py, mq ¨Dmpyqdy `ˆT d Hpy, q 1 py, mq, mqmpdyq ď λ.

Putting together the previous inequality with the previous equality gives the result.

The long time behavior of potential MFG

In this section, we prove the two main results of the paper: the first one is the convergence, as T Ñ `8, of U T p0, ¨q `λT . The second one states that limits of time-dependent minimizing mean field games equilibria, as the horizon tends to infinity, are calibrated curves.

Convergence of U T p0, ¨q `λT

We recall that U T pt, m 0 q is defined by

U T pt, m 0 q " inf pm,αq ˆT t ˆˆT d
H ˚py, αps, yqq mps, yqdy `Fpmpsqq ˙ds, where pm, αq verifies the usual constraint B t m ´∆m ´divpmαq " 0 in pt, T q ˆTd , mptq " m 0 .

Let pm T , α T q be a minimizer of the problem, then, α T ps, xq " D p Hpx, Du T ps, xqq, where pu T , m T q solves

$ ' & ' % ´Bt u ´∆u `Hpx, Duq " F px, mq in T d ˆrt, T s ´Bt m `∆m `divpmD p Hpx, Duqq " 0 in T d ˆrt, T s mptq " m 0 , upT, xq " 0 in T d , (5.18) 
(see for instance [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF] for details). We also take from [30, Lemma 1.3] some uniform estimates on the solutions of (5.18) which will be useful in the next propositions. Lemma 5.1. There exists C ą 0 independent of m 0 and T such that, if pu, mq is a classical solution of (5.18), then

• }Du} L 8 pr0,T sˆT d q `}D 2 u} L 8 pr0,T sˆT d q ď C
• dpmpsq, mplqq ď C|l ´s| 1{2 for any l, s P r0, T s Consequently, we also have that |B t ups, ¨q| ď C for any s P r0, T s. Integrating by parts the term Du T pt, xq ¨Dm T pt, xq and using the continuity of t Ñ upt, ¨q in C 2 pT d q and the continuity of t Ñ mptq in PpT d q we conclude that the result holds.

Proposition 5.3. Let pm T , α T q be optimal for UpT, m 0 q and pu T , m T q be a solution of (5.18) associated to pm T , α T q. Then, cpu T , m T q Ñ λ as T Ñ `8. Moreover, this limit is uniform with respect to the initial condition m 0 and the choice of the minimizer pm T , α T q.

Proof. We prove it by contradiction. Let us suppose that there exist a sequence T i Ñ `8 and a sequence pm i , α i q, minimizing U T i p0, m i 0 q, such that, for any i P N and a some ε ą 0,

|cpu i , m i q ´λ| ě ε, (5.19) 
where, as usual, α i ps, xq " D p Hpx, Du i ps, xqq and pu i , m i q solves (5.18). Thanks to Lemma 5.1 we know that there exists C ą 0, independent of i such that sup

T i ą0 sup tPr0,T i s }α i ptq} 8 `}Dα i ptq} 8 ď C.
Let E be the set E :" tα P W 1,8 pT d , R d q, }α} 8 `}Dα} 8 ď Cu.

Then E, endowed with the topology of the uniform convergence, is compact. Moreover, α i ptq P E for any t P r0, T i s. Let us introduce the probability measure ν i on PpT d q ˆE by ˆPpT d qˆE f pm, αqν i pdm, dαq "

1 T i ´1 ˆTi 1 f pm i ptq, α i ptqqdt.
Then ν i converges, up to a subsequence denoted in the same way, to some probability measure ν on PpT d q ˆE. Note that

1 T i Up0, m i 0 q " 1 T i ˆ1 0 ˆˆT d H ˚py, α i ps, yqqm i ps, yqdy ˙`Fpm i psqqq ds `Ti ´1 T i ˆPpT d qˆE ˆˆT d H ˚py, αpyqqmpdyq `Fpmq ˙νi pdm, dαq
Hence, as the left-hand side converges, uniformly with respect to m i 0 , to ´λ (see [START_REF] Masoero | On the long time convergence of potential mfg[END_REF]), we obtain ˆPpT d qˆE ˆˆT d H ˚py, αpyqqmpdyq `Fpmq ˙νpdm, dαq " ´λ.

(5.20)

Now we make the link between ν and the measure pµ, p 1 q of Section 4. Let µ be the first marginal of ν and let us define the vector measure p 1 on PpT d q ˆTd as ˆPpT d qˆT d φpm, yq ¨p1 pdm, dyq " ˆPpT d qˆE ˆTd φpm, yq ¨αpyqmpdyqνpdm, dαq for any test function φ P C 0 pPpT d q ˆTd , R d q. We note that p 1 is absolutely continuous with respect to µ, since, if we disintegrate ν with respect to µ: ν " ν m pdαqµpdmq, then p 1 pdm, dyq " ˆE αpyqmpdyqν m pdαqµpdmq.

Therefore, dp 1 dm b µ pm, yq " ˆE αpyqν m pdαq.

Let us check that pµ, p 1 q is closed. Indeed, for any map Φ P C Therefore,

ˆPpT d q "ˆT d H ˚ˆy, dp 1 dm b µ pm, yq ˙mpdyq `Fpmq  µpdmq ď ´λ, (5.21) 
which proves the minimality of pµ, p 1 q. By the uniform convexity of H, relation (5.21) shows also that, for µ´a.e. m P PpT d q and for ν m ´a.e. α, one has dp 1 dm b µ pm, yq " αpyq.

(5.22) Note also that, m i ptq has a positive density for any t P r1, T i s and there exists a constant C ą 0 independent of i such that sup tPr1,T i s }1{m i pt, ¨q} 8 `}Dm i pt, ¨q} 8 ď C.

(5.23)

The bounds on Dm i are standard and we refer to [26, Ch4, Theorem 5.1]. While, for the estimates on 1{m i , we used the Harnack's inequality in [START_REF] Bogachev | Fokker-planckkolmogorov equations[END_REF]Theorem 8.1.3]. In our setting, this theorem states that, for any x, y P T d and for any 0 ă s ă t ă T i , there exists a constant C t´s , depending only on |t ´s|, such that

m i pt, xq ě C t´s m i ps, yq.
As we work on the torus, for any s ą 0, there exists a point y s P T d such that m i ps, y s q ě 1.

Then, we can chose s " t ´1 and we get that for any t ą 1

m i pt, xq ě C 1 m i pt ´1, y t´1 q ě C 1 ,
which proves (5.23).

The estimates in (5.23) ensure that the pair pµ, p 1 q is smooth in the sense of Definition 4.1. In particular, we know by Proposition 4.2 that, for µ´a.e. m P PpT d q, ´ˆT d q 1 py, mq ¨Dmpyqdy `ˆT d Hpy, q 1 py, mqqmpdyq ´Fpmq " λ, where q 1 px, mq :" D a H ˚ˆy, dp 1 dm b µ py, mq ˙.

By the convergence of ν i to ν, there exists (up to a subsequence again) t i P r1, T i s such that pm i pt i q, α i pt i qq converges to an element pm, αq P PpT d q ˆE which belongs to the support of µ.

Then by (5.22), α " dp 1 dmbµ . Thus Du i pt i q " D a H ˚py, α i pt i qq converges uniformly to q 1 p¨, mq. This shows that lim iÑ`8 cpu i , m i q " lim iÑ`8 ´ˆT d Du i pt i , yq ¨Dm i pt i , yqdy `ˆT d Hpy, Du i pt i , yqqm T pt i , dyq ´Fpm i pt i qq " ´ˆT d q 1 py, mq ¨Dmpyqdy `ˆT d Hpy, q 1 py, mqqmpdyq ´Fpmq " λ, which is in contradiction with (5.19).

The next step towards Theorem 5.7 is to prove that the map ps, mq Ñ U T ps, mq `λpT ´sq has a limit. In the next proposition we prove that ps, mq Ñ U T ps, mq `λpT ´sq is bounded and equicontinuous on r0, T s ˆPpT d q and so that there exists a subsequence pU Tn `λpT n ´¨qq which, locally in time, converges uniformly to a continuous function ξ.

Proposition 5.4. The maps ps, mq Ñ U T ps, mq `λpT ´sq are uniformly bounded and uniformly continuous.

Proof. We first prove that ps, mq Ñ U T ps, mq `λpT ´sq is bounded, uniformly in T . Let χ be a corrector function. As χ is a continuous function on the compact set PpT d q, there exists a constant C ą 0 such that 0 ď χpmq `C for any m P PpT d q. If pmptq, wptqq is an admissible trajectory for the minimization problem of U T ps, mq, then ˆT s ˆTd H ˚px, αpt, xqq dmptq `Fpmptqqdt `λpT ´sq ď ˆT s ˆTd H ˚px, αpt, xqq dmptq `Fpmptqqdt `χpmpT qq `λpT ´sq `C.

Taking the infimum over all the possible pm, αq, the definition of U T ps, mq and the dynamic programming principle verified by χ lead to

U T ps, mq `λpT ´sq ď χpmq `C.
As χ is bounded, we get an upper bound independent of T , m and s. The lower bound is analogous.

We turn to the equicontinuity. For what concern the continuity in the m variable, one can adapt the proof of [START_REF] Masoero | On the long time convergence of potential mfg[END_REF]Theorem 1.5] with minor adjustments, to show that, if T ´s ě ε ą 0 for given ε ą 0, then there exits a constant K independent of T and s such that U T ps, ¨q is K-Lipschitz continuous.

We now need to estimate |U T pt 2 , m 0 q´U T pt 1 , m 0 q|. We suppose t 2 ą t 1 and we fix p mpsq, ᾱpsqq an optimal trajectory for U T pt 1 , m 0 q, then |U T pt 2 , m 0 q ´UT pt 1 , m 0 q| ď |U T pt 2 , m 0 q ´UT pt 2 , mpt 2 qq| `|U T pt 2 , mpt 2 qq ´UT pt 1 , m 0 q|. (5.24) We can estimate the first term on the right hand-side using at first the uniform Lipschitz continuity we discussed before and then the estimates on the solution of the MFG system in Lemma 5.1. So,

|U T pt 2 , m 0 q ´UT pt 2 , mpt 2 qq| ď Kdpm 0 , mpt 2 qq ď KC|t 1 ´t2 | 1 2 .
(5.25)

To estimate the second term in the right hand-side of (5.24), we just need to use that

U T pt 1 , m 1 q " inf pm,αq "ˆt 2 t 1 ˆTd H ˚px, αpt, xqq dmptq `Fpmptqqdt `UT pt 2 , mpt 2 qq * .
As p m, ᾱq is optimal for U T pt 1 , m 1 q, we get

U T pt 1 , m 1 q ´UT pt 2 , mpt 2 qq " ˆt2 t 1 ˆTd H ˚px, ᾱpt, xqq d mptq `Fp mptqqdt.
Note that, ᾱpt, xq " D p Hpx, Dūpx, tqq where p m, ūq solves the MFG system (5.18) and, according to Lemma 5.1, we have uniform estimates on ū. Therefore,

|U T pt 2 , mpt 2 qq ´UT pt 1 , m 0 q| ď ˆt2 t 1 ˇˇˇˆT d H ˚px, ᾱpt, xqq d mptq `Fp mptqq ˇˇˇd t ď Cpt 2 ´t1 q.
Putting together the last inequality with (5.25) we have that, for a possibly different constant C ą 0, independent of T , m 0 and m 1 ,

|U T pt 2 , m 0 q ´UT pt 1 , m 0 q| ď Cp|t 1 ´t2 | 1 2 `|t 1 ´t2 |q,
which, in turn, implies the uniform continuity in time.

From now on we fix a continuous map ξ : r0, `8q ˆPpT d q Ñ R, limit of a subsequence (denoted in the same way) of the sequence pU T `λpT ´¨qq as T Ñ `8. Proof. We first claim that ξ is a viscosity solution to ´Bt ξ ě 0 in r0, `8q ˆPpT d q.

(5.26)

Let Φ " Φpt, mq be a smooth test function such that ξ ě Φ with an equality only at pt 0 , m 0 q. Then there exists a subsequence pt n , mn q converging to pt 0 , m 0 q and such that U Tn `λpT n śq ´Φ has a minimum at pt n , mn q. Let pm n , α n q be a minimizer for U Tn pt n , mn q. We consider u n P C 1,2 prt n , T n s ˆTd q such that pu n , m n q is a solution to the MFG system (5.18) and α n " D p Hpx, Du n q. Then, by Lemma 6.1, we have ´Bt Φpt n , mn q ´λ `ˆT d pHpy, Du n pt n , yqq ´∆u n pt n , yqq mn pdyq ´Fp mn q ě 0.

By Lemma 5.2 and Proposition 5.3, we have, given ε ą 0, ˆTd pHpy, Du n pt n , yqq ´∆u n pt n , yqq mn pdyq ´Fp mn q ď λ `ε,

for n large enough. So ´Bt Φpt n , mn q ě ´ε.

We obtain therefore, after letting n Ñ `8 and then ε Ñ 0, ´Bt Φpt 0 , m 0 q ě 0.

This shows that ξ satisfies (5.26) holds in the viscosity solution sense. We now prove that (5.26) implies that ξ is nonincreasing in time. Fix m 0 P PpT d q and assume on the contrary that there exists 0 ď t 1 ă t 2 such that ξpt 1 , m 0 q ă ξpt 2 , m 0 q. Let Ψ " Φpmq be a smooth test function such that Ψ ą 0 on PpT d qztm 0 u with Φpm 0 q " 0. Then, we can find η ą 0 small such that, if m 1 and m 2 are such that ξpt 1 , ¨q `η´1 Ψ has a minimum at m 1 and ξpt 2 , ¨q `η´1 Ψ has a minimum at m 2 , then ξpt 1 , m 1 q ă ξpt 2 , m 2 q. Note that this implies that

min mPPpT d q ξpt 1 , mq `η´1 Ψpmq " ξpt 1 , m 1 q `η´1 Ψpm 1 q ă ξpt 2 , m 2 q `η´1 Ψpm 2 q " min mPPpT d q ξpt 2 , mq `η´1 Ψpmq.
Recalling that ξ is bounded, this implies that we can find ε ą 0 small such that the map pt, mq Ñ ξpt, mq `η´1 Ψpmq `εt has an interior minimum on rt 1 , `8q ˆPpT d q at some point pt 3 , m 3 q P pt 1 , `8q ˆPpT d q. This contradicts (5.26). Now that we have proved the monotonicity in time of ξ we can finally show the statement of the proposition. We have that U T verifies the following dynamic programming principle

U T p0, m 0 q " inf pm,αq "ˆt 0 ˆTd H ˚px, αpt, xqq dmptq `Fpmptqqdt `UT pt, mptqq * . (5.27) 
Then, adding on both sides λT and passing to the limit T Ñ `8, one easily checks that ξ satisfies ξp0, mq " inf Using the fact that ξ is nonincreasing in time we get the desired result.

Before we can prove that ξ 0 is a corrector function we need to state some standard properties of τ h : C 0 pPpT d qq Ñ C 0 pPpT d qq which is defined as follows. For h ą 0 and Φ P C 0 T d q we set τ h Φpm 0 q " inf pm,αq 

3.

For any h ą 0, τ h is order preserving, i.e. for any Φ, Ψ P C 0 PpT d qq such that Φ ď Ψ,

τ h Φ ď τ h Ψ.
4. Let Φ P C 0 PpT d qq be such that, for any h ą 0, Φ ď τ h Φ. Then, for any

0 ă h 1 ă h 2 , Φ ď τ h 1 Φ ď τ h 2 Φ.
Proof. The proof is standard, see for instance, in a closely related context, [START_REF]Weak kam theorem in lagrangian dynamics preliminary version number[END_REF].

Theorem 5.7. ξ 0 is a corrector and U T p0q `λT converges uniformly to ξ 0 on PpT d q.

Proof. The proof follows closely the one of [START_REF]Weak kam theorem in lagrangian dynamics preliminary version number[END_REF]Theorem 6.3.1]. We define r U T pt, mq " U T pt, mqλ pT ´tq. Let T n Ñ `8 be a sequence such that r U Tn converges locally uniformly to ξ on r0, `8q ˆPpT d q. We can suppose that, if we define s n " T n`1 ´Tn , then s n Ñ `8. Note that r U T n`1 ps n , mq " r U Tn p0, mq. Then, using (5.27), we get r U T n`1 p0, mq " τ sn r U T n`1 ps n , mq " τ sn r U Tn p0, mq.

We also know from Lemma 5.6 that τ h is a contraction and that it verifies the semigroup property. Therefore, }τ sn ξ 0 ´ξ0 } 8 ď }τ sn ξ 0 ´τsn r U Tn p0q} 8 `}τ sn r U Tn p0q ´ξ0 } 8 ď }ξ 0 ´r U Tn p0q} 8 `} r U T n`1 p0q ´ξ0 } 8 Ñ 0, Moreover, Proposition 5.5 and Lemma 5.6 prove that τ s ξ 0 is monotone in s. Then, for any s ą 0, we have that, for a sufficiently large n P N, ξ 0 ď τ s ξ 0 ď τ sn ξ 0 Ñ ξ 0 , which proves that τ t ξ 0 is constant in t and so ξ 0 is corrector function. It remains to check that the whole sequence r U T p0q converges to ξ 0 . Let T ą T n , then } r U T p0q ´ξ0 } 8 " }τ T ´Tn r U Tn p0q ´τT ´Tn ξ 0 } 8 ď } r U Tn p0q ´ξ0 } 8 Ñ 0 and the result follows.

Convergence of optimal trajectories

Now that we have proved the convergence of U T p0, ¨q `λT to a corrector function χ, we can properly define the limit trajectories for time dependent MFG and the set where these trajectories lay. We will show that this set is a subset of the projected Mather set M as was suggested in [START_REF] Masoero | On the long time convergence of potential mfg[END_REF]. We recall the definition of M.

Definition 5.8. We say that m 0 P PpT d q belongs to the projected Mather set M Ă PpT d q if there exists a calibrated curve pmptq, αptqq such that mp0q " m 0 .

Remark 5.1. Note that the notion of projected Mather set that we use here is consistent with the one that was already introduced in [START_REF] Masoero | On the long time convergence of potential mfg[END_REF]. On the other hand, Definition 5.8 is not the transposition of the definition of projected Mather set that is generally used in standard Weak KAM theory. In this latter case the projected Mather set is the union of the projection of the supports of Mather measures on the torus. What we call here projected Mather set would be rather the projected Aubry set or the projected Mané set (we refer to [START_REF] Fathi | Weak kam theory: the connection between aubry-mather theory and viscosity solutions of the hamilton-jacobi equation[END_REF] and [START_REF]Weak kam theorem in lagrangian dynamics preliminary version number[END_REF] for these definitions). We decided to use Definition 5.8 mostly to be consistent with the terminology in [START_REF] Masoero | On the long time convergence of potential mfg[END_REF]. Moreover, it is worthwhile to mention that in the standard theory the Mather set and the Aubry set are deeply connected while in this framework such a relation is no longer clear. In particular, in standard Weak KAM theory the Mather set is contained in the Aubry set (where the latter is defined as the intersection of graphs of calibrated curves). One can check this inclusion defining a calibrated curve, starting from any point of the Mather set, through the Lagrangian flow. In the MFG setting, the lack of uniqueness of solutions and the forward/backward structure of the system prevent from defining any sensible notion of flow. Moreover, an other important difference, that highlights how the connection between Mather set and Aubry set is not clear in the MFG framework, is that, on the one hand, we know that calibrated curves lay on smooth probability measure but, on the other, we know nothing about the regularity of Mather measures' support points (reason why we introduced the notion of "smooth" Mather measure).

We recall also that a couple p m, ᾱq, which satisfies ´Bt mptq `∆ mptq `divpᾱptq mptq " 0 for any t P R, is a calibrated curve, if there exists a corrector function χ : PpT d q Ñ R such that, for any t 1 ă t 2 P R, χp mpt 1 qq " λpt 2 ´t1 q `ˆt 2 t 1 ˆTd H ˚px, ᾱpsqq d mpsq `Fp mpsqqds `χp mpt 2 qq.

We fix pm T , α T q a minimizer for U T p´T, m 0 q. As usual α T " D p Hpx, Dū T q where pū T , m T q solves (5.18) on r´T, T s ˆTd . We define u T pt, xq " ūT pt, xq ´uT p0, xq, for a fixed x P T d . We know from Lemma 5.1 that D 2 ūT and B t ūT are uniformly bounded. This means that u T and Du T are uniformly bounded and uniformly continuous on any compact set of R ˆTd . Therefore, we have that up to subsequence u T converges to a function u P C 1,2 pR ˆTd q. The convergence, up to subsequence, of m T to a function m P C 0 pR, PpT d qq is ensured again by Lemma 5.1 and the uniform C As by product we have that pm T , α T q uniformly converges on compact sets to the couple pm, D p Hpx, Duqq. Moreover, if we define α " D p Hpx, Duq, then pm, αq solves ´Bt m `∆m divpmαq " 0. We can now prove that pm, αq is a calibrated curve and therefore that M contains the uniform limits of optimal trajectories. Theorem 5.9. Let pm T , α T q be an optimal trajectory for U T p´T, m 0 q. Then, pm T , α T q converges, up to subsequence, to a calibrated curve pm, αq. Consequently, mptq P M for any t P R.

Proof. As we have already discussed the convergence of pm T , α T q to pm, αq we just need to check that pm, αq is a calibrated curve. We fix t 1 ă t 2 P R, then, by dynamic programming principle, U T pt 1 , m 0 q`λpT ´t1 q " ˆt2 t 1 ˆTd H ˚`x, α T psq ˘dm T psq`Fpm T psqqds`U T pt 2 , m T pt 2 qq`λpT ´t1 q.

We recall that U T pt, m 0 q " U T ´tp0, m 0 q. Given the continuity of U T p0, ¨q, the uniform convergence of pm T , α T q on compact subsets and the uniform convergence of U T p0, ¨q `λT to χp¨q, we can pass to the limit in T and we get that, for any interval rt 1 , t 2 s, the couple pm, αq verifies χpmpt 1 qq " ˆt2 t 1 ˆTd H ˚px, αpsqq dmpsq `Fpmpsqqds `χpmpt 2 qq `λpt 2 ´t1 q.

So pm, αq is a calibrated curve.

Appendix

A viscosity solution property

Lemma 6.1. Let Φ " Φpt, mq be a smooth test function such that U T ´Φ has a minimum at a point pt 0 , m 0 q P r0, T q ˆPpT d q. Let pu, mq be a solution of the MFG system (5.18) starting from pt 0 , m 0 q and such that pm, D p Hpx, Dupt, xqq is optimal for Upt 0 , m 0 q. Then D m Φpt 0 , m 0 , xq " Dupt 0 , xq for m 0 ´a.e. x P T d (6.28) and ´Bt Φpt 0 , m 0 q `ˆT d pHpx, Dupt 0 , xq ´∆upt 0 , xqqm 0 pdxq ´Fpm 0 q ě 0. (6.29)

Proof. Without loss of generality we assume that Φpt 0 , m 0 q " U T pt 0 , m 0 q. Let m 1 pt 0 q P PpT d q and m 1 " m 1 ptq be the solution to B t m 1 ´∆m 1 ´divpm 1 D p Hpx, Dupt, xqq " 0.

We set µptq " m 1 ptq ´mptq and, for h P p0, 1s and note that the pair pm `hµ, D p Hpx, Dupt, xqq is a solution to ´Bt m `∆m `divpmαq " 0 with initial condition m h 0 :" p1 ´hqm 0 `hm 1 pt 0 q. Hence, by the definition of Φ and U T we have Φpt 0 , m h 0 q ď U T pt 0 , m Plugging this into the estimate of Φpt 0 , m h 0 q above, we obtain, dividing by h and letting h Ñ 0, ˆTd δΦpt 0 , m 0 , xq δm pm 1 pt 0 q ´m0 qpdxq ď ˆTd upt 0 , xqpm 1 pt 0 q ´m0 qpdxq.

Recalling the convention (1.8) on the derivative and the arbitrariness of m 1 pt 0 q, we infer, by choosing Dirac masses for m 1 pt 0 q, that δΦpt 0 , m This shows that the map x Ñ δΦpt 0 ,m 0 ,xq δm ´upt 0 , xq has a maximum on T d at m 0 ´a.e. x P T d and thus (6.28) holds.

As U T satisfies a dynamic programming principle and U T ´Φ has a minimum at pt 0 , m 0 q, it is standard that Φ also satisfies ´Bt Φpt 0 , m 0 q `ˆT d Hpx, D m Φpt 0 , m 0 , xqqm 0 pdxq ´ˆT d div y D m Φpt 0 , m 0 , xqm 0 pdxq ´Fpm 0 q ě 0.

Using (6.28) one then infers that (6.29) holds.

Smooth test functions

Here we fix a corrector χ and construct a smooth function that touches χ from above. We fix m 0 P PpT d q and τ ą 0. We know from [START_REF] Masoero | On the long time convergence of potential mfg[END_REF]Appendix] We define the function Ψpm 1 q as Ψpm 1 q " ˆ2τ 0 ˆTd H ˚px, αptqqdmptq `Fpmptqqdt `2λτ `χp mp2τ qq. (6.33) Proposition 6.2. The function Ψ : PpT d q Ñ R defined in (6.33) is twice differentiable with respect to m with C 2 continuous derivatives in space and with derivatives bounded independently of χ.

Proof. We first introduce Γ : R `ˆT d ˆR`ˆTd Ñ R, the fundamental solution of (6.32), i.e. Γp¨, ¨; s, xq is the solution of (6.32) starting at time s with initial condition Γps, y; s, xq " δ x pyq.

Then, by superposition, the solution mptq of (6.32) is given by mpt, xq " ´Td Γpt, x; 0, yqm 1 pdyq (for t ą 0). We consider separately the following two integrals: I 1 pm 1 q " ˆτ 0 ˆTd H ˚px, ᾱptqqd mptq `Fp mptqqdt (6.34) and I 2 pm 1 q " ˆ2τ τ ˆTd H ˚px, αptqqdmptq `Fpmptqqdt.

Note that Ψ " I 1 `I2 `2λτ `χp mp2τ qq.

If we plug Γ into (6.34), then I 1 pm 1 q " ˆτ 0 ˆTd ˆTd H ˚px, ᾱptqqΓpt, x, 0, yqm 1 pdyqdxdt `F ˆˆT d Γpt, ¨, 0, yqm 1 pdyq ˙dt

We can now derive I 1 with respect to m 1 andwe get δI 1 δm pm 1 , yq " ˆτ 0 ˆTd H ˚px, ᾱptqqΓpt, x, 0, yqdxdt `ˆτ 0 ˆTd F px, mptqqΓpt, x, 0, yqdxdt.

As the functions ᾱ and m are smooth, standar results in parabolic equation ensures that δI 1 {δmpm 1 , ¨q is smooth (see for instance Chapter 4 §14 in [START_REF] Ladyzhenskaia | Linear and quasi-linear equations of parabolic type[END_REF]). We now focus on I 2 . We fix G : T d Ñ R the kernel associated to the integral representation of the solution of the Poisson equation (see for instance [START_REF] Aubin | Some nonlinear problems in riemannian geometry[END_REF]Theorem 4.13] Note that, as in the above expression we are looking at a time interval bounded away from zero, the parabolic regularity ensures that all the functions therein are smooth with respect to the state variable. This implies that also D m Ψ is well defined.

We omit the proof for second order derivatives. It does not present any further difficulties. Indeed, the parabolic regularity, enjoyed by the solutions of the MFG system at any time t ą 0, ensures that we can deploy the same kind of computations that we used in (6.35) and so that both D 2 mm Ψ and D 2 my Ψ are well defined and bounded.

Lemma 6.3. For any m 0 P PpT d q, there exists a function Ψ P C 2 pPpT d qq such that Ψpmq ą χpmq for any m ‰ m 0 and Ψpm 0 q " χpm 0 q. Moreover, we can choose Ψ such that D 2 mm Ψ and D 2 ym Ψ are bounded independently of χ and with D m Ψpm 0 , xq " Dūp0, xq where ū is defined in (6.30) and (6.31).

Proof. Let tφ n u n be a countable collection of C 8 pT d q maps such that tφ n u n is dense in the set of Lip 1 pT d q, which is the set 1-Lipschitz function on T d . Then, dpm, m 0 q " sup f PLip 1 pT d q ˆTd f pxqpm ´m0 qpdxq " sup nPN ˆTd φ n pxqpm ´m0 qpdxq.

We define Q : PpT d q Ñ R as follows

Qpmq " ÿ nPN `´T d φ n pxqpm ´m0 qpdxq ˘2 pn `1q 2 p}φ n } 8 `}D 2 φ n } 8 `1q .

The denominator in the above fraction ensures that Q is well defined for any m P PpT d q.

Note that Qpmq " 0 if and only if, for any n P N, ´Td φ n pxqpm ´m0 qpdxq " 0. In this case, dpm, m 0 q " 0 and so m " m 0 . One easily checks that Q is smooth and that its derivatives are bounded. Note also that D m Qpm 0 , yq " 0 for any y P PpT d q. We can now define Ψpmq " Ψpmq `Qpmq, where Ψ is the function defined in (6.33). By construction, Ψ is such that Ψpmq ą χpmq for any m ‰ m 0 and Ψpm 0 q " χpm 0 q. Moreover, D m Ψpm 0 , yq " D m Ψpm 0 , yq `Dm Qpm 0 , yq " D m Ψpm 0 , yq " Dūp0, yq.

D
The boundedness of the derivatives comes from Proposition 6.2 and the properties of Q that we discussed above.

(2. 15 )

 15 Indeed, PpPpT d qq is a compact subspace of MpPpT d qq and, for any fixed Φ P C 1,1 pPpT d qq the function on MpPpT d qq defined by µ Þ Ñ ˆPpT d q ˆˆT d pHpy, D m Φpm, yq, mq ´div y D m Φpm, yqqmpdyq ˙µpdmq is continuous and concave (as it is linear). On the other hand, when we fix µ P PpPpT d qq, the function on C 1,1 pPpT d qq, defined by Φ Þ Ñ ˆPpT d q ˆˆT d pHpy, D m Φpm, yq, mq ´div y D m Φpm, yqqmpdyq ˙µpdmq, is continuous with respect to the uniform convergence in C 1,1 pPpT d qq and convex due to the convexity of H. Therefore, the hypothesis of Sion's min-max Theorem are fulfilled and (2.15) holds true.

Lemma 4 . 3 .

 43 The sequence pD p Hpy, D m Φ N pm, yqqq converges to dp 1 dmbµ in L 2 pPpT d q ˆTd , dm b µq. Moreover,lim N Ñ`8 ´ˆPpT d qˆT d div y D m Φ N pm, yqmpdyqµpdmq `ˆPpT d qˆT d Hpy, D m Φ N pm, yq, mqmpdyqµpdmq " λ. (4.16) Proof. Recall that Φ N satisfies ´ˆT d div y D m Φ N pm, yqmpdyq `ˆT d Hpy, D m Φ N pm, yq, mqmpdyq ď λ `oN p1q. (4.17)

Proposition 5 . 5 .

 55 The map ξ 0 p¨q :" ξp0, ¨q satisfies ξ 0 pmq ď inf pm,αq "ˆt 0 ˆˆT d H ˚py, αps, yqq mps, yqdy `Fpmpsqq ˙ds `ξ0 pmptqq * `λt.

H

  ˚py, αps, yqq mps, yqdy `Fpmpsqq ˙ds `ξpt, mptqq * `λt.

1 2

 1 pr0, T s, PpT d qq bounds on m T therein. It is standard that the couple pu, mq solves in classical sense # ´Bt u ´∆u `Hpx, Duq " F px, mq in R ˆTd , ´Bt m `∆m `divpmD p Hpx, Duqq " 0 in R ˆTd .

  pp Hpx, pq is Lipschitz continuous, uniformly with respect to x. Moreover, there exists C ą 0 that verifies C´1 I d ď D pp Hpx, pq ď CI d , @px, pq P T d ˆRd and θ P p0, 1q, C ą 0 such that the following conditions hold true |D xx Hpx, pq| ď Cp1 `|p|q 1`θ , |D x,p Hpx, pq| ď Cp1 `|p|q θ , @px, pq P T d ˆRd .

  1,1 pPpT d qq ´xpp 1 , p 2 q, ΛpΦqy " sup ΦPC 1,1 pPpT d qq ´ˆpPpT d qˆT d D m Φpm, yq ¨p1 pdm, dyq ´ˆpPpT d qˆT d div

y D m Φpm, yqp 2 pdm, dyq which is 0 if, for any Φ P C 1,1 pPpT d qq, ˆPpT d qˆT d D m Φpm, yq ¨p1 pdm, dyq `ˆPpT d qˆT d div y D m Φpm, yqp 2 pdm, dyq " 0, and `8 otherwise. On the other hand, g ˚pp 1 , p 2 q " sup pa,bqPF ˆPpT d qˆT d apm, yq ¨p1 pdm, dyq `ˆPpT d qˆT d bpm, yqp 2 pdm, dyq ´ˆPpT d q ˆˆT d pHpy, apm, yq, mq ´bpm, yqqmpdyq ˙µpdmq.

  ˚pp 1 , p 2 q " sup aPC 0 pPpT d qˆT d qq d ˆPpT d qˆT d pPpT d qˆT d qq d ˆPpT d qˆT d We have one inequality by definition of Fenchel's conjugate. Indeed, sup aPC 0 pPpT d qˆT d qq d ˆPpT d qˆT d

	ď "	ˆPpT d qˆT d ˆPpT d q ˆTd	ˆapm, yq ¨dp 1 pm, yq ´Hpy, a ˚pm, yq, mqmpdyqµpdmq ¨dp 1 pm, yq ´Hpy, apm, yq, mq ˙mpdyqµpdmq dm b µ dm b µ dp 1 dm b µ a ˚pm, yq H ˚´y, pm, yq, m ¯mpdyqµpdmq,
	where		a ˚pm, yq " D a H ˚ˆy,	dm b µ dp 1	pm, yq, m ˙.
			ˆapm, yq	¨dp 1 dm b µ	pm, yq ´Hpy, apm, yq, mq ˙mpdyqµpdmq
	We now want to prove that	
	sup aPC 0 ˆapm, yq " ˆPpT d q ˆTd H ˚´y, dp 1 dm b µ pm, yq, m ¯mpdyqµpdmq. ¨dp 1 pm, yq ´Hpy, apm, yq, mq ˙mpdyqµpdmq dm b µ

  aPC 0 pPpT d qˆT d qq d ˆPpT d qˆT d

apm, yq ¨dp 1 dm b µ pm, yq ´Hpy, apm, yq, mqmpdyqµpdmq ě lim nÑ`8 ˆPpT d qˆT d a n pm, yq ¨dp 1 dm b µ pm, yq ´Hpy, a n pm, yq, mqmpdyqµpdmq " ˆPpT d qˆT d a ˚pm, yq ¨dp 1 dm b µ pm, yq ´Hpy, a ˚pm, yq, mqmpdyqµpdmq " ˆPpT d q ˆTd H ˚´y, dp 1 dm b µ pm, yq, m ¯mpdyqµpdmq.

  Lemma 5.2. For any pu, mq solution of the MFG system (5.18), there exists cpu, mq P R such that, for any t P r0, T s, ˆTd ´Hpx, Du T pt, xqq ´∆u T pt, xq ¯mT pt, dxq ´Fpm T ptqq " cpm, uq. Proof. As for any t ą 0 both m T and u T are smooth in time and space, the integral ˆTd Hpx, Dupt, xqqm T pt, xq `Dupt, xq ¨Dmpt, xqdx ´Fpmptqq is well defined and we can derive it in time. Then, ˆTd D p Hpx, Dupt, xqqB t Dupt, xqmpt, xq `Hpx, Dupt, xqqB t mpt, xqT

d B t Dupt, xq ¨Dmpt, xqdx `Dupt, xq ¨Bt Dmpt, xq ´F px, mptqqB t mpt, xq. Integrating by parts and rearranging the terms we get that the above expression is equal to ˆTd p´∆mpt, xq ´divpmpt, xqD p Hpx, Du T pt, xqqqB t u T pt, xqdxp ´∆u T pt, xq `Hpx, Du T pt, xq ´F px, m T pt, xqqqB t m T pt, xqdx. If we plug into the last equality the equations verified by u T and m T , we get d dt ˆˆT d Hpx, Du T pt, xqqm T pt, xq `Du T pt, xq ¨Dm T pt, xqdx ´Fpm T ptqq ˙" ˆTd ´Bt m T pt, xqB t u T pt, xq `Bt m T pt, xqB t u T pt, xq " 0.

  Φpm i ptq, yqqm i pt, dyq `ˆT d D m Φpm i ptq, yq ¨αi pt, yqm i pdyq. Φpm i ptq, yqqm i pt, dyq `ˆT d D m Φpm i ptq, yq ¨αi pt, yqm i pdyqdt Letting i Ñ `8 gives ˆPpT d qˆE ˆTd divpD m Φpm, yqq `Dm Φpm, yq ¨αpyqmpdyq νpdm, dαq " 0, which can be rewritten, in view of the definition of p 1 , as ˆPpT d q ˆTd divpD m Φpm, yqqmpdyqµpdmq `ˆPpT d qˆT d D m Φpm, yq ¨p1 pdm, dyq " 0.

	So, also have ˆPpT d qˆE ˆTd " 1 T i ´1 ˆTi divpD m Φpm, yqq `Dm Φpm, yq ¨αpyqmpdyq ν i pdm, dαq 1 ˆTd divpD m " 1 T i ´1 " Φpm This proves that pµ, p 1 q is closed. Next we come back to (5.20): using the convexity of H ˚, we ´λ " "ˆT H ˚py, αpyqqmpdyq `Fpmq  νpdm, dαq " ˆPpT d qˆE d ˆE "ˆT H ˚py, αpyqqmpdyq `Fpmq  ν m pdαqµpdmq ě ˆPpT d q d "ˆT  µpdmq " ˆPpT d q ˆPpT d q "ˆT d H ˚ˆy, dp 1 dm b µ  pm, yq ˙mpdyq `Fpmq µpdmq.

1,1 pPpT d qq, we have d dt Φpm i ptqq " ˆTd divpD m Φpm i ptq, yqqm i pt, dyq ´ˆT d D m Φpm i ptq, yq ¨Hp py, Du i pt, yqqm i pdyq " ˆTd divpD m i pT i qq ´Φpm i p1qq ‰ . d H ˚ˆy, ˆE αpyqν m pdαq ˙mpdyq `Fpmq

  Lemma 5.6. The function τ h verifies the following properties 1. For any h 1 , h 2 ą 0, τ h 1 ˝τh 2 " τ h 1 `h2 2. For any h ą 0, τ h is not expansive, i.e. for any Φ, Ψ P C 0 PpT d qq }τ h Φ ´τh Ψ} 8 ď }Φ ´Ψ} 8 .

	"ˆh 0 ˆˆT d	H ˚py, αps, yqq mps, yqdy `Fpmpsqq ˙ds `Φpmptqq	*	`λh,
	where pm, αq solves in the sense of distribution		
	#			
	´Bt m `∆m `divpmαq " 0 in r0, hs ˆTd		
	mp0q " m 0 .		

  Hpx, Dūq. For any m 1 P PpT d q we define mptq and αptq as follows. We first consider m solution of Let ζ : r0, 2τ s ˆTd Ñ R be the solution to ∆ζptq " mptq ´mptq so that ´Td ζps, xq " 0. Then, the drift α will be αpt, xq " D p Hpx, Dūpt, xqq `Dζpt,xq τ mpt,xq in rτ, 2τ s and αpt, xq " D p Hpx, Dūpt, xqq elsewhere.

				that, if p m, ᾱq verifies
	χpm 0 q "	ˆ2τ 0 ˆTd	H ˚px, ᾱqd mpsq `Fp mpsqqds `2λτ `χp m2τ q,	(6.30)
	then there exists a couple pū, mq which solves the MFG system
	$ ' ´Bt u ´∆u `Hpx, Duq " F px, mq	in T d ˆr0, 2τ s,
	&			
		´Bt m `∆m `divpmD p Hpx, Duqq " 0 in T d ˆr0, 2τ s,	(6.31)
	' %	mp0q " m 0 ,	
	such that ᾱ " D p #		
		´Bt m `∆ m `divp mD p Hpx, Dūqq " 0 in r0, τ s ˆTd mp0q " m 1	(6.32)
	and then we set		#	
		mps, xq "	mps, xq, 2τ ´s	if s P p0, τ s

τ mps, xq `s´τ τ mps, xq, if s P rτ, 2τ s.

  ). Explicitly, if ∆ζ " f , then ζpxq " ˆTd Gpx ´yqf pyqdy We first analyse the integral ´2τ τ ´Td H ˚px, αptqqdmptq, which explicitly becomes ˆ2τ Gpx ´zqD z Γ 0 pt, z; yqmpt, xq `pτ ´sqΓ 0 pt, x; yqDζpt, xq

	Therefore, δI 2 δm pm 1 , yq is equal to	
	1 τ	ˆ2τ τ ˆ2τ	ˆTd ˆTd ˆTd ˆTd	´Dp H ˚pαq			mpt, xq ˆ2τ ˆTd	dxdzdt1
	τ		τ				H ˚px, αqp2τ ´sqΓ 0 pt, x; yqdxdz	`1 τ	τ	p2τ ´sqF px, mps, xqqΓ 0 pt, x; yqdxdt
	and							δΨ δm	pm 1 , yq "	δI 1 δm	pm 1 , yq	`δI 2 δm	pm 1 , yq
			τ	ˆTd	H ˚ˆx, D p Hpx, Dūq	`Dζ p2τ ´sq m `ps ´τ q	m ˙ˆ2τ	´s τ	mps, xq	`s	´τ τ	mps, xq ˙.
		If we derive the above expresion we get
	1 τ	ˆ2τ τ	ˆTd ˆTd	´Dp H ˚pαq	Gpx ´zqD z Γ 0 pt, z; yqmpt, xq `pτ ´sqΓ 0 pt, x; yqDζpt, xq mpt, xq ˆ2τ ˆTd ˆTd	dxdz	(6.35)
											`1 τ	τ	H ˚pαqp2τ ´sqΓ 0 pt, x; yqdxdz.

  φ n pxqpm ´m0 qpdxq ˘Dφ n pyq pn `1q 2 p}φ n } 8 `}D 2 φ n } 8 `1q , D 2 my Qpm, yq " 2 ÿ nPN `´T d φ n pxqpm ´m0 qpdxq ˘D2 φ n pyq pn `1q 2 p}φ n } 8 `}D 2 φ n } 8 `1q , Dφ n pzq pn `1q 2 p}φ n } 8 `}D 2 φ n } 8 `1q

	and	
	mm Qpm, y, zq " D 2	ÿ

m Qpm, yq " 2 ÿ nPN `´T d nPN Dφ n pyq b