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author die.ravell88@gmail.com

ARTICLE HISTORY
Compiled October 1, 2018

ABSTRACT
Conception and development of an Unmanned Aerial Vehicle (UAV) able to detect, track and
follow a moving object with unknown dynamics, is presented in this work, considering a hu-
man face as a case of study. Object detection is accomplished by a Haar cascade classifier.
Once an object is detected, it is tracked with the help of a Kalman Filter (KF), and an esti-
mation of the relative position with respect to the target is obtained at a high rate. A linear
controller is used to validate the proposed vision scheme and for regulating the aerial robot’s
position in order to keep a constant distance with respect to the mobile target, employing as
well the extra available information from the embedded sensors. The proposed system was
extensively tested in real-time experiments, trough different conditions, using a commercial
quadcopter connected via wireless to a ground station running under the Robot Operative Sys-
tem (ROS). The proposed overall strategy shows a good performance even under disadvanta-
geous conditions as outdoor flight, being robust against illumination changes, image noise and
the presence of other people in the scene.
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1. Introduction

The astonishing fast developments on the fields of computer science, electronics, mechanics,
and more particularly on robotics, over the last recent years, allows us to believe that the
science fiction vision of a world surrounded by all kind of robots interacting with humans in
all sort of tasks is no longer a fairy dream, but a real possibility in the near future.

Until now, this high risk of injure humans has prevented the use of robots for several appli-
cations, constraining them to industrial tasks where the environment is controlled and security
can be maximized, or in dangerous scenarios were humans can hardly operate. Otherwise,
small size robots that are harmless for humans have to be employed, mainly for entertain-
ment and research. With respect to aerial robots, better known as Unmanned Aerial Vehicles
(UAVs), some interesting applications have popped out from new emerged technologies [23],
for example, by using the Myo bracelet produced by Thalmic Labs we are able to control
UAVs just with the movements of the arm [2]. This is a devise equipped with Electromyogra-
phy (EMG) sensors along with a 9-axis Inertial Measurement Unit (IMU) to observe activity

*This work was sponsored by the French National Networks of Robotics Platforms ROBOTEX-(ANR-10-EQPX-44)



Figure 1. Detection and tracking of a mibile object using an UAV, application to following a human user. The UAV is able to
autonomously follow the target of interest, keeping a constant distance with it.

from your muscles to detect hand gestures and orientation. Another interesting tool is the
Microsoft Kinect sensor. It has been conceived to recognize gestures and body postures to
friendly control the navigation of UAVs through a Natural User Interface (NUI) [29], [24].
Additionally, haptic devices offer a different way of interaction with human operators by
providing force feedback, allowing to improve the piloting experience and assist the user in
complicated tasks such as simultaneously controlling multiple UAVs [19]. A study on the in-
tegration of speech, touch and gesture for the control of UAVs from a ground control station
is also presented in [27].

The use of computer vision for human-drones interaction appears as a powerful alternative,
and some examples can be found in the literature, as in [10] where a study on how to naturally
interact with drones using hand gestures is presented. More examples can be found in [18],
where a survey on computer vision for UAVs is presented. Target tracking using monocular
vision for aerial vehicles has also been studied as in [11] where a nonlinear adaptive observer
and a guidance law for object tracking are proposed and validated in simulations. Another
key related problem is the detection of people in the imagery provided by drones. This is
of particular interest in search and rescue missions using UAVs. For instance, [5] propose a
detection algorithm using information from visual and infrared spectrum cameras.

As for the present work, it is intended to offer a solution to the problem of an UAV capable
of following a moving target, in this case a human face, using a camera as main sensor. As a
first approximation to the problem, the simplest solution was preferred over the sophisticated
one, as long as it was effective in accomplishing its objective and always keeping in mind the
users security as the design priority. To do so, a wide variety of problems, all of great interest
in the robotics field, were successfully solved and the resulting system can be safely used.
They go from perception using monocular computer vision, to automatic control and state
estimation, passing through signal filtering.

Such a face follower drone is envisioned for several interesting applications, such as to
follow a suspect or a fugitive in a persecution. Other possible use is to video record someone
in hazardous situations, like while practicing extreme sports. This idea was already conceived
by the commercial quadcopter LILY [1], but in that case the system depends on a external
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tracking device to localize the human user, while our proposed algorithm depends only on an
already integrated frontal camera. Also, the face-follower can be employed for entertainment,
for example, trying to hide and run away from the drone, or even to play with it some populars
games like tag, or the hot-potato. Furthermore, the classifier can be trained to detect any other
mostly rigid object to be followed by the drone.

Recent efforts towards people following using computer vision can be found in the liter-
ature, as is the early case of the joggobot [13], an UAV designed to assist a person while
jogging, improving the jogging experience. This was accomplished by using special mark-
ers on the jogger’s T-shirts. Later on, in [22] the person following problem is tacked using a
depth camera, stabilizing the depth image by warping it to a virtual-static camera and feeding
the stabilized video to the OpenNI tracker, but a second camera looking upwards is needed
to detect special markers and determine the absolute position of the UAV. Simple commands
are provided through hand gestures as well. [12] proposes a detection algorithm combining
color and shape information. Detected objects are then used to initialize an Adaptive Color
Tracker (ACT) to keep track of multiple objects. The tracking results are verified using the
detector, and filtered using a Probability Hypothesis Density (PHD) filter. Distance to the
target is estimated assuming a horizontal ground plane and a fixed person height. Position
control is performed by means of a Proportional controller. In [16] a general object following
strategy using a commercial AR Drone 2.0 and OpenTLD tracker is presented. An Image
Based Visual Servoing (IBVS) is then applied to follow the target. This approach was tested
to follow people using the logos on the target cloths. The advantage relies in the capability
to follow different objects, but a human operator must initialize the object to be tracked, and
this architecture is not able to estimate the depth to the target. Meanwhile, in [15] a study on
multiple object trackers is presented to detect and follow a person using the AR Drone 2.0. In
particular, they extended the Discriminative Scale Space Tracker (DSST) and the Kernelized
Correlation Filter (KFC) based tracker in order to detect target lost and redetect targets. They
employ the same IBVS by [16]. More recently, in [21] an end-to-end human-robot interaction
with an uninstrumented human is presented. First, the drone, a commercial Parrot Bebop, de-
tects from far away potential humans waving hands to interact with. Then, it approaches the
selected target and obeys simple hand-gesture commands such as taking pictures and landing.
Hand gestures are detected using optical flow. During the approaching phase, the same long
term visual tracker from [15] is used. Depth estimation is performed similar to [12]. IBVS is
used along with a predictive controller to position the drone, but the lateral movements are
not controlled. Finally, [28] presents a visual based human following UAV, but using a blimp
instead of a multirotor.

In contrast to other works, our approach does not requires special markers or logos on the
human cloths [13], [22], [16]. Also, a simple depth estimation is provided removing the hor-
izontal ground plane assumption [12], [21]. Finally, unlike [16], [15] and [21] where IBVS
is used, we propose a relative position controller after estimation of the relative position be-
tween the drone and the human target in the world frame, where the drone is commanded
as an omnidirectional robot, controlling lateral movements instead of yaw. The proposed ar-
chitecture has proved to be effective in real-time experiments, while using computer efficient
algorithms well suited for embedded applications on UAVs.

The contribution of the present work can be summarized in the following points:

• Several powerful tools and techniques are merged together to offer a full-working so-
lution for a mobile-target tracking drone.
• A complete computer vision algorithm is developed to detect and track a face in 3D,

despite the presence of false positives or other faces on the image. This includes esti-
mating the distance from the image plane to the face, using the size of the detected face
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on the image.
• A real time relative position control algorithm is proposed for an UAV following a

moving object with unknown dynamics, including the observation of the missing state.

The outline of this paper is the following: the general operation of the overall system is de-
scribed in section 2. In section 3 the computer vision algorithm for face detection and tracking,
as well as the necessary transformation from the image to the real world are presented. The
relative position control is introduced in section 4, along with some techniques for estimating
the altitude speed, needed for the state feedback. Section 5 contains the experimental results
of the proposed algorithms, and last but not least, section 6 concludes with the perspectives
and conclusions of this work.

2. Overall System Description

A commercial inexpensive quadcopter (price≈ $300), the AR.Drone Parrot showed in Fig. 1 is
selected for this work. This quadcopter offers a good solution for use close to people without
major danger, thanks to its small size and weight of 53×52cm respectively, 42Kg, and overall
because it is protected with a soft hull which also increases its robustness against crashes.
It is equipped with three-axis gyroscopes and accelerometers, an ultrasound altimeter, an air
pressure sensor and a magnetic compass. Furthermore, it is equipped with two video cameras,
one looking downwards and one forward, the former, with a resolution of 320×240 pixels at
a rate of 60fps, is used to estimate the horizontal velocities using optic flow, while the latter,
with a resolution of 1280×720 at 30fps, is normally intended for real-time video streaming
and image recording, but in this case it is further used for the vision algorithm to detect a
moving object of interest.

The drawback of this kind of commercial UAVs resides in its lack of flexibility to be mod-
ified, since both software and hardware come in closed architectures and it is not straight-
forward to customize them. This is solved by designing position control laws that employ
reference roll and pitch angles along with altitude and yaw speeds as virtual control inputs
(φd , θd , żd , ψ̇d). Such virtual control signals are then fed to the inner autopilot as desired
references. In this case a linear PD controller is proposed. All sensor measurements are sent
to a ground station at a frequency of 200 Hz. The image processing and the control algorithms
are computed in real time on ROS at a rate of 30 Hz.

Three main nodes running in ROS on a ground station computer are employed to achieve
object detection and tracking with an UAV. Communication with the drone is performed by
means of the AR.Drone driver node, already available as open source, which allows to recover
information from the embedded sensors on the drone, along with the video streams from both
cameras, and to send control inputs. A second node is in charge of the image processing from
the frontal camera to detect and track the target. Object detection is accomplished using a Haar
feature-based classifier in cascade. Once a target is detected, a Kalman Filter (KF) is used to
track it along time, adding robustness against the presence of other target-like objects and
false-positive detection. The visual object detection node provides the tracked target position
and size in the image at 6Hz. A third node was implemented for relative position control. First,
the estimated relative position of the tracked object with respect to the drone is transformed
from the image space to the real world, by a suitable coordinates change, where the image
depth is estimated using the a-priori knowledge of the object size. A PD controller is used to
keep a constant distance between the UAV and the target, where the horizontal velocities (ẋ, ẏ)
are obtained from the embedded optical flow sensor, and the altitude speed (ż) is estimated
by means of a Luenberger observer and the ultrasound altitude sensor. Both the visual object
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Figure 2. Overall system description. The drone communicates wirelessly with a ground station composed by a computer
running ROS. Three main ROS nodes are executed in the ground station; the drone’s driver, the face detection using OpenCV
and the control node.

detection and tracking node and the relative position control node were developed for this
work.

Moreover, a Graphical User Interface (GUI) node is available for online parameter tuning,
switching between operation modes and real-time monitoring. Also, in case any problem
arises, and taking the user security as the design priority, manual recovery is possible at any
time using a sixaxis wireless joystick. The overall system architecture is presented in Fig. 2.

3. Visuaal Object Detection and Tracking

3.1. Computer Vision Algorithm for Object Detection

Object detection and tracking is performed using computer vision, with the help of the
OpenCV libraries on ROS, using the cv bridge node. In brief, the Uav’s frontal camera
streams a video at 30Hz in BGR format, which is transformed to grayscale. Then, the im-
age is smoothed by means of a blur filter witha a kernel of 5×5, to eliminate white noise on
the image, helping to diminish the number of false positive detections due to high frequency
noise. Afterwards, a histogram equalization is applied to improve the constrast on the image.
Finally, the pre-trained object detector is used, and the selected target is tracked with the help
of a KF. Outliers are disregarded before the KF. A flow chart describing the complete visual
object detection and tracking algorithm is depicted in Fig. 3.

falta parafrasear **************************************************************
Object detection is accomplished through the Haar classifier on OpenCV [6]. It consists in a
Machine Learning technique first developed in [26] which uses Haar-like features in cascade
through different levels of the image to determine whether or not a pre-specified rigid object,
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Figure 3. Flowchart of the image processing algorithm.

for which it was trained a priori, is present on the image. The Haar classifier is a supervised
classifier that uses a form of AdaBoost organized as a rejection cascade and designed to
have high detection rate at the cost of low rejection rate, producing many false positives.
One of the main advantages of this method is the computational speed achieved in real time
detection, once the classifier was trained off-line for the desired object, in this case a face. It
is important to notice that this method can be trained for almost any mostly rigid object with
distinguishing views.

In this case, the classifier is trained to detect human faces. The idea is to create an applica-
tion to interact with the user by keeping a constant distance. Only frontal faces are considered
by now. In order to detect different face’s poses, a classifier for each pose can be trained and
run sequentially.

3.2. Kalman Filter for Object Tracking

One of the main drawbacks of the object detection algorithm is its low rejection rate, resulting
in a high number of false positive detections. To overcome this issue and in order to add
robustness to the algorithm against missed detections and the presence of other objects similar
to the target one on the scene, one solution is to track along time the detected object. To do
so, let us consider the use of the Kalman Filter (KF), a powerful technique for optimal state
estimation and filtering of linear systems perturbed with Gaussian noise [17].

In this case, the discrete-time version of the KF [14], [8] is applied to the kinematic model
of the detected target (see Fig. 4), i. e.
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[
χk
Vk

]
=

[
1 Ts
0 1

][
χk−1
Vk−1

]
+

[
0

ak−1

]
(1)

where χ = [x̄ ȳ d̄]T represents the position of the center of the circle enclosing the object of
interest, directly on the image and its diameter d, while V = [ ˙̄x ˙̄y ˙̄d]T is its time derivative. k is
the discrete time index and Ts defines the sampling period. Finally, the process noise a ∈ℜ3

is used as a tuning parameter, analogous to the acceleration, which determines how fast the
variables can move.

The measurement in the KF is updated according to four different cases, depending on the
state of the vision algorithm:

• At least one object is detected.
• No objects are detected.

◦ Iterations since last detection ≤ n.
◦ Iterations since last detection > n.

for certain constant n ∈ ℜ+ denoting the maximum number of iterations without detection
before the object is considered lost. For the first case, if more than one object is detected on
the same scene, either due to a false positive detection or to the presence of other similar
objects on the image, the detection closest to the previous estimation is chosen. If no object is
detected for a few iterations, a missed detection is assumed and the measurement is updated
with the last estimation, allowing to continue with the same motion for a while, and avoiding
sharp displacements in the closed loop system. However, if the target is not detected for
several iterations, the object of interest is assumed lost, consequently, a the measurement
vector is updated with its initialization value χinit , and the quadcopter would hold its position.
Therefore, the update equation for the measurement vector ζ takes the form

ζk =

 χmink
χk−1
χinit

∣∣∣∣∣∣
N f aces > 0
(N f aces = 0)&(ιlost ≤ n)
(N f aces = 0)&(ιlost > n)

(2)

with

χmin = min
χδi
∈Ω

√
(x̄− xδi)

2 +(ȳ− yδi)
2 (3)

where N f aces is the number of objects detected at the present frame, ιlost defines the number
of iterations since the last valid detection. Ω represents the set of all the objects detected on
the image, described by χδ = [xδ yδ dδ ]

T . χmin denotes the closest detection to the previous
estimation.

Figure 4 illustrates a possible scenario, where the UAV captures a scene with multiple
object detections. Positive detections obtained by the classifier are identified by the dotted red
circles, including false positive detections where there are no objects of interest. Then, the KF
is employed to track the chosen target along time, and its result is displayed by a unique solid
yellow circle with center at (x̄, ȳ) and diameter d̄. Only the closest detection to the previous
estimation is used to update the measurement vector of the KF, and the rest are discarded.
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Figure 4. Visual object detection and tracking with a flying quadcopter. The algorithm is robust against false positive detections
and the presence of other similar objects in the scene.

3.3. Relative Position Estimation: From Image to Real World

Let us consider for simplicity the idealized pinhole camera model to describe the relationship
between coordinates in the real world pw = (xw,yw,zw) to their projection on the image pim =
(xim,yim), see Figure 5, according to the following expressions [7]

xim = fx[
xw
yw
]+ cx; yim = fy[

zw
yw
]+ cy; (4)

where the constant parameters for the focal lengths fx =Fsx, fy =Fsy are actually the product
of the physical focal length F and the number of pixels per meter sx, sy, along each image
axis. These constants, together with the principal point position cx, cy determine the intrinsic
parameter of the camera and are known from calibration. Note that, in contrast to the standard
notation used in computer vision, here z stands for the altitude and y for the depth between the

Image plane

F

pw=(xw,yw,zw)

pim=(xim,yim,F)
dim

df
Z

X

Y
Xim

Yim

O
oim

Figure 5. From real world to image coordinates transformation. The scale is estimated using the a priori knowledge of the
average size of the object.
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camera and the point, this is done just for consistency with the rest of the coordinate frames
frames.

From the previous equation, it is straightforward to recover from the image projection, the
real world position of a point in the xw and zw axis, normalized by the depth yw. However,
this depth yw remains unknown and can not normally be obtained from the information given
by a single camera. The use of several cameras for stereo-vision is precluded due to the
inflexibility of the selected hardware. Another option is to obtain extra information from the
already available sensors, such as altitude and inertial measurements, to fusion it with the
vision data to estimate this depth, similar to the work developed in [3]. Nevertheless, in our
considered scenario, it can be estimated from the a priori knowledge of the average size of
the object of interest. Even though every person’s face is different in size and shape, let us
assume the face of an adult having an average size whose enclosing circle has a diameter of
d f (≈ 0.241m). Also, consider a diameter d of the enclosing circle for the face projected in
the image, see Fig. 4. Then, it is easy to show that

yw ≈
Fd f

d
(5)

Finally, substituting in (4) the position of the object in the physical world can be obtained
with

xw =
(xim− cx)sxd f

d
; (6)

zw =
(yim− cy)syd f

d
. (7)

4. Relative Position Control

Provided that a full state feedback is available, the mission is to control the drone to au-
tonomously keep a constant distance with respect the a moving target with unknown dynam-
ics. This is equivalent to a three dimensional position control with a time varying reference.
A hierarchical control is proposed to deal with this problem, where a PD position controller
is added in cascade with the inner orientation control loop, available with the autopilot on the
selected experimental platform. This strategy is compatible with most commercial autopilots
and allows for easy implementation with other drones.

To deal with this control problem, a linear PD controller is designed in cascade with the
inner control loop for the attitude autopilot already included on the UAV under consideration.

Let us consider a simplified version of the well-known dynamic model of a quadcopter [9]: ẍ
ÿ
z̈

 ≈ T
m

 sψsφ + cψsθcφ

−cψsφ + sψsθcφ

cθcφ

−
 0

0
g

 (8)

 φ̈

θ̈

ψ̈

 ≈

 τφ

τθ

τψ

 (9)

where x, y, z are the position of the quadcopter with respect to an inertial frame, T ∈ ℜ+

defines the total thrust produced by the motors, m and g represent the mass and gravity con-
stant, respectively. φ , θ and ψ stand for the Euler angles roll, pitch and yaw, and τφ , τθ and

9



τψ describe the control torques produced by the differential velocities of the rotors. The short
notation sα = sin(α) and cα = cos(α) is used. Remember that the AR.Drone includes an
internal autopilot to deal with the attitude (φ , θ and ψ) and the altitude (z) controllers, to fol-
low some desired reference. Therefore, our control input vector is u = [φd θd żd ψ̇d ]

T , i.e., the
desired roll, pitch angles and altitude and yaw velocities. Given that the rotational dynamics
are much faster than the translational one [4], a time scale separation of the translational and
rotational dynamics permits to use the roll and pitch desired references (φd and θd) as virtual
control inputs for the unactuated states (x and y).

4.1. Control law

Since the available autopilot already provides a suitable attitude controller, the study herein
will focus on the horizontal position dynamics x and y. Assuming small variations in the roll
and pitch angles, i.e. only non-aggressive maneuvers are considered, in compliance with the
security demands while working close to humans, a linearization around the equilibrium point
φd ≈ θd ≈ 0 yields:

m
[

ẍ
ÿ

]
≈ T

[
sψ cψ

−cψ sψ

][
φd
θd

]
(10)

Note the introduction of the desired angles instead of the real ones, this is possible since
φd ≈ φ and θd ≈ θ due to the action of the autopilot attitude control loop. Denote now[

φ̂

θ̂

]
=

[
sψ cψ

−cψ sψ

][
φd
θd

]
(11)

then [
ẍ
ÿ

]
=

T
m

[
φ̂

θ̂

]
(12)

where φ̂ and θ̂ are used as the new virtual control inputs for the position, and are chosen such
that they follow certain references xd , yd . Thus, a PD control can be proposed as follows[

φ̂

θ̂

]
=

m
T

[
−kpx(x− xd)− kdx(ẋ− ẋd)
−kpy(y− yd)− kdy(ẏ− ẏd)

]
(13)

with the control gains kpx, kpy, kdx, kdy ∈ℜ+. Transforming to the original coordinates[
φ

θ

]
= m

T

[
sψ −cψ

cψ sψ

][
−kpx(x− xd)− kdx(ẋ− ẋd)
−kpy(y− yd)− kdy(ẏ− ẏd)

]
(14)

In this work, the interest relies in the vehicle position relative to the mobile target, rather
than global localization. Also, it is supposed that the objective pose is aligned with the drone’s
yaw (the objective is in view from the frontal camera on the vehicle), hence the relative yaw
rotation always remains small.

As for the yaw ψ and altitude z controllers, the following control laws are proposed
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ψ̇d = −kpψ(ψ−ψd)− kdψ ψ̇ (15)
żd = −kpz(z− zd)− kdzż (16)

for some desired ψd , zd . kpψ , kpz, kdψ and kdz ∈ℜ+ are suitable control gains. For the follow-
ing problem of a mobile object, the desired position [xd yd zd ]

T is obtained from the relative
position between the drone and the object (Eq. 6), which is estimated by the vision algorithm
presented in Section 3, i.e. [

xd
yd

]
=

[
xw

yw + yo f f

]
(17)

where yo f f is a predefined safe distance to the objective.

4.2. Altitude velocity estimation

It is important to notice that the previous feedback control strategy relies on a good measure-
ment of the system states and their derivatives. Relative position is used directly from the
vision algorithm. However, velocities from the vision algorithm result to be imprecise and
noisy, and not to trust for control feedback. This is not a problem for the x and y coordinates
since the used platform is equipped with a down looking camera from which the optic flow is
calculated to estimate the horizontal velocities ẋ and ẏ. Nevertheless, problems arise because
no measurement is available for the altitude velocity ż.

To overcome this issue, two estimation techniques were implemented and tested for the
altitude velocity, based on the altitude measurements zm from the ultrasound sensor integrated
on the bottom of the helicopter. The first method consists on the classical Euler derivative of
the measurement zm, i.e.

żm(k) =
zm(k)− zm(k−∆t)

∆t
(18)

where k and ∆t stand for the discrete time variable and its increment. Although it offers a
simple solution, this derivative is known to amplify the noise from the measurements, and
can not be directly used for control feedback. For this reason, it was decided to implement a
fourth order low-pass filter type Chebyshev I, at a cutoff frequency of 8Hz. This is a kind of
recursive filter, and as such, it offers a fast response [25]. The following equation presents the
filter algorithm with input żm and output ˙̄zm

˙̄zm(k) =
4

∑
i=0

aiżm(k− i∆t)+bi ˙̄zm(k− i∆t) (19)

where the constant coefficients ai and bi are obtained with the help of MATLAB/fdatool.
The result is a smooth and acceptable estimation of the speed, except for a little delay

of about 4 steps produced by the filter. This response is good enough for several applica-
tions where dynamics are slow or sampling frequency is large enough to neglect this delay.
However, for UAV control feedback this can cause instability or poor performance in the
closed-loop system.
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Figure 6. Altitude speed estimation comparison. The Luenberger estimator shows a faster response and smaller attenuations
compared to the filtered Euler derivative.

The second explored method consists of a Luenberger state observer [20]. A state observer
provides estimates of the internal states of the system from the inputs and output measure-
ments. Let us consider the discrete-time kinematic model of the altitude at instant k

[
zk
żk

]
=

[
1 ∆t
0 1

][
zk−1
żk−1

]
+

[
0
uz

]
; (20)

γ = [1 0]
[

zk−1
żk−1

]
(21)

where γ is the output and the input is uz = z̈k∆t. Then, a Luenberger observer is proposed,
according to the following equations

[
ẑk
˙̂zk

]
=

[
1 ∆t
0 1

][
ẑk−1
˙̂zk−1

]
+

[
L1
L2

]
[γ− γ̂]+

[
0
uz

]
; (22)

γ̂ = [1 0]
[

ẑk−1
˙̂zk−1

]
(23)

Note the use of a hat on the variables to indicate that they are state estimates rather than the
real ones. In order to guarantee that the estimated states [ẑ ˙̂z]T converge asymptotically to the
real ones, the observer gains L1, L2 are chosen such that the matrix[

1−L1 ∆t
−L2 1

]
has all its eigenvalues inside the unit circle.

Figure 6 allows us to compare both estimation techniques, where it is clear that the two of
them obey in general the same behavior, however, the estimation given by the Euler derivative
combined with the Chebyshev filter (dashed blue line) attenuates a little bit the signal ampli-
tude and introduces a small undesired delay. This is corrected by using only a Luenberger
observer instead (solid red line), which proves to be an excellent option for this case.

12



5. Real-Time Experimental Results

The performance of the full strategy was vastly studied under different conditions, in indoor
and outdoor trials. Figures 7-12 depict some of the results, where the mission consisted in
detecting a human face and keep a constant distance of 2m in front of it, while the human user
moves in a rectangular position, as can be appreciated in Fig. 7. Once the second trajectory is
completed, the interacting user descends and rises a few times in order to test the altitude re-
sponse. An OptiTrack motion capture system, composed of twelve infrared cameras, was used
only as a ground truth, providing millimeter precision. For a better understanding, a similar
experiment is available in video at https://www.youtube.com/watch?v=xbpMx4o6gY0&
feature=youtu.be.

Two results are of particular interest in this study, on the one hand, the computer vision
detection plus the KF tracking performance to estimate the relative position of the moving
object with respect to the camera can be studied from Figures 8-10. Fig. 8 illustrates the effect
of the KF for tracking the moving target, mainly to add robustness to false positives and the
presence of other target-like objects in the scene (other humans in this case). The result is a
smoother estimation, where the KF is able to handle wrong detections (see for example the
peak on second 13 in the x coordinate). Please note that this figure is the only one that does
not correspond to the same experiment, but to a separate one where harder conditions were
impose in order to highlight the action of the KF, by increasing the number of false positive
detections
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Figure 7. 3D trajectory. The human user (solid red line) walks describing a rectangular trajectory and the aerial vehicle (dashed
blue line) is able to follow the target with good performance.

The relative position estimation is illustrated in Figure 9, where the visual detection and
tracking algorithm is compared against the ground truth measurement for the three axis.
There, it can be observed that the estimated relative position is consistent with the reality,
but small error are presented, mainly for the x coordinate. It can also be noted the good per-
formance of the depth estimation using the a priori knowledge of the average target size.
Fig. 10 complete the study showing the relative position estimation errors with a Root Mean
Square Error (RMSE) of 0.1294m in x, 0.2392m in y and 0.1802m in z, which are accept-
able for this kind of application, taking into account the use of a low-cost camera subject to
relatively fast motions,

On the other hand, the performance of the relative position control strategy can be observed
from Figures 11 and 12. Figure 11 shows the position of the tracked object along with the
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Figure 8. Kalman filter tracking. The use of a KF to track the detected object helps to filter out false detections and adds
robustness against other similar objects in the scene.
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Figure 9. Relative position estimated by the computer vision algorithm (dashed line) vs ground truth (solid line). The proposed
algorithm proves to be consistent with respect to the ground truth, but presents a small error.
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Figure 10. Computer vision estimation error. The Root Mean Square Error (RMSE) is 0.1294m in x, 0.2392m in y and 0.1802m
in z.

position of the UAV. Please note that the objective is to keep a constant distance of two
meters in front of the target, which explains the offset in the y coordinate. Finally, the relative
position between the drone and the moving object is presented in Fig. 12, were the validity of
the proposed algorithms is confirmed to detect, track and control an UAV to follow a moving
object, with unknown dynamics.
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Figure 11. Relative position control performance. The offset in the y coordinate corresponds to a predefined desired distance
of 2m between the tracked object and the drone.
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in front of it.

6. Conclusion & Future work

An implementation for an UAV able to detect, track and follow a moving object with unknown
dynamics was conceived and successfully developed in this work, using a human face as a
case of study. In order to do so, several tools and techniques were merged together to offer a
full-working solution.

Relative position from the mobile target to the quadcopter was estimated by a computer
vision algorithm. Object detection was accomplished by means of a Haar cascade classifier,
while a Kalman filter was implemented to keep track of the object of interest, adding robust-
ness against false positive detections and other faces on the image. Then a suitable transfor-
mation was proposed, by using the size of the detected face to compute the depth to the target,
normally unknown for monocular vision algorithms.

A PD control strategy was implemented to deal in real-time with the relative position reg-
ulation to a desired value. To complete the state feedback for the controller, a Luenberger
observer was employed to estimate the missing altitude speed. The overall system perfor-
mance was extensively tested in real-time experiments under different conditions, and proved
to be a good solution for the studied problem, despite the use of a low-cost quadcopter and
the simplicity of the algorithms.

It would be interesting to implement the proposed algorithms in a fully embedded UAV.
Also, a wide angle lens would help to increase the field of view, allowing faster motions.

This application presents an interesting problem that can be used as a base for future ap-
plications and developments, looking to improve the human-robot interaction experience. To
cite some examples:

• The detection algorithm can be trained to track almost any other kind of mostly rigid
object that have distinguishing views. Then, the proposed system can be used as it is to
follow the desired object.
• Detecting face gestures and body movements could be used to give further commands

to the quadcopter, improving the user experience.
• A powerful and interesting applications would be to detect other quadcopters and use
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the developed system for formation flight applications.
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