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We present an adjoint-based method for the calculation of eigenvalue perturbations in nonlinear, degenerate and non-self-adjoint eigenproblems. This method is applied to a thermo-acoustic annular combustor network, the stability of which is governed by a nonlinear eigenproblem. We calculate the first-and second-order sensitivities of the growth rate and frequency to geometric, flow and flame parameters. Three different configurations are analysed. The benchmark sensitivities are obtained by finite difference, which involves solving the nonlinear eigenproblem at least as many times as the number of parameters. By solving only one adjoint eigenproblem, we obtain the sensitivities to any thermo-acoustic parameter, which match the finite-difference solutions at much lower computational cost.

Introduction

Thermo-acoustic oscillations involve the interaction of heat release and sound. In rocket and aircraft engines, heat release fluctuations can synchronize with the natural acoustic modes in the combustion chamber. This can cause loud vibrations that sometimes lead to catastrophic failure. It is one of the biggest and most persistent problems facing rocket and aircraft engine manufacturers [START_REF] Lieuwen | Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling[END_REF].

Many studies have demonstrated the ability of Large-Eddy Simulation (LES) to represent the flame dynamics [START_REF] Poinsot | Simulation methodologies and open questions for acoustic combustion instability studies[END_REF]. However, even when LES simulations confirm that a combustor is unstable, they do not suggest how to control the instability. Moreover, LES is computationally expensive. Simpler frequency-based models are therefore often used in academia and industry for pre-design, optimization, control and uncertainty quantification.

There exist two main different classes of frequency-based low-order methods in thermo-acoustics.

1. Network-based methods model the geometry of the combustor as a network of acoustic elements where the acoustic problem can be solved analytically [START_REF] Polifke | Reconstruction of acoustic transfer matrices by instationary computational fluid dynamics[END_REF][START_REF] Stow | Thermoacoustic oscillations in an annular combustor[END_REF][START_REF] Dowling | Acoustic analysis of gas turbine combustors[END_REF][START_REF] Dowling | Feedback control of combustion oscillations[END_REF]. Jump relations connect these elements, enforcing pressure continuity and mass or volume conservation [START_REF] Bauerheim | Theoretical analysis of the mass balance equation through a flame at zero and non-zero Mach numbers[END_REF][START_REF] Strobio Chen | Propagation and generation of acoustic and entropy waves across a moving flame front[END_REF] while accounting for the dilatation caused by flames. The acoustic quantities in each segment are related to the amplitudes of the forward and backward acoustic waves, which are determined such that the case of the Helmholtz approach, typically of order ten/hundred thousand for industrial geometries. If N represents the Helmholtz problem, then the eigenfunction consists only of the discretized acoustic pressure. An important source of nonlinearity lies in the flame model, which introduces a time delay appearing as an exponential function in the frequency space [START_REF] Crocco | Research on combustion instability in liquid propellant rockets[END_REF]. Other nonlinearities in the eigenvalue may appear because of the boundary impedances [START_REF] Nicoud | Acoustic modes in combustors with complex impedances and multidimensional active flames[END_REF]. The solution of these nonlinear eigenproblems and the calculation of the thermo-acoustic growth rates and frequency is the objective of stability analysis. For design purposes, it is also important to predict how the thermo-acoustic stability changes due to variations of the system. This is the objective of sensitivity analysis.

Sensitivity analysis of eigenproblems

In situations that are susceptible to thermo-acoustic oscillations, often only a handful of oscillation modes are unstable. Existing techniques examine how a change in one parameter affects all oscillation modes, whether unstable or not. Adjoint techniques turn this around. In a single calculation, they examine how each oscillation mode is affected by changes in all parameters. In other words, they provide gradient information about the variation of an eigenvalue with respect to all the parameters in the model. For example, in a system with a thousand parameters, they calculate gradients a thousand times faster than finite-difference methods.

Fig. 1b is an illustration of the eigenvalues of a thermo-acoustic system. Two eigenmodes are unstable (they have positive growth rate and lie in the grey region). There are two approaches to determine how these two eigenvalues are affected by each system parameter. On the one hand, we could change each parameter independently and recalculate all the eigenvalues, retaining only the information about the eigenvalues of interest. This is called the finite-difference approach in this paper and requires as many calculations as there are parameters. On the other hand, we could use adjoint methods to calculate how each eigenvalue is affected by every parameter, in a single calculation. This requires as many calculations as there are eigenvalues of interest, which is many times smaller than the number of parameters.

Eigenvalue sensitivity methods originate from spectral perturbation theory [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] and quantum mechanics [START_REF] Messiah | Quantum Mechanics[END_REF]. In structural mechanics, the calculation of first-and second-order derivatives of non-degenerate eigensolutions of self-adjoint nonlinear eigenproblems was proposed in aeroelasticity by Mantegazza and Bindolino [START_REF] Mantegazza | Aeroelastic derivatives as a sensitivity analysis of nonlinear equations[END_REF] and only theoretically by Liu and Chen [START_REF] Liu | Eigenvalue and eigenvector derivatives of nonlinear eigenproblems[END_REF]. Later, [START_REF] Jankovic | Analytical solutions for the nth derivatives of eigenvalues and eigenvectors for a nonlinear eigenvalue problem[END_REF][START_REF] Andrew | Comment on "Analytical solutions for the nth derivatives of eigenvalues and eigenvectors for a nonlinear eigenvalue problem[END_REF] found the analytical expressions for the sensitivities up to n-th order of a general self-adjoint non-degenerate eigenproblem with application to vibrational mechanics. More recently, Li et al. [START_REF] Li | A study on design sensitivity analysis for general nonlinear eigenproblems[END_REF] derived eigensolution sensitivities for self-adjoint problems with relevance both to degenerate and non-degenerate simplified structural mechanical problems. Eigenvalue sensitivity is also commonly used in hydrodynamic stability [START_REF] Tumin | Instability wave excitation by a localized vibrator in the boundary layer[END_REF][START_REF] Hill | A theoretical approach for analyzing the restabilization of wakes[END_REF][START_REF] Giannetti | Structural sensitivity of the first instability of the cylinder wake[END_REF][START_REF] Sipp | Dynamics and control of global instabilities in open-flows: a linearized approach[END_REF][START_REF] Schmid | Analysis of fluid systems: stability, receptivity, sensitivity[END_REF][START_REF] Tammisola | Second-order perturbation of global modes and implications for spanwise wavy actuation[END_REF][START_REF] Camarri | Flow control design inspired by linear stability analysis[END_REF], where the eigenvalue problems are typically linear, or with quadratic nonlinearities, and non-degenerate. The review by Luchini and Bottaro [START_REF] Luchini | Adjoint equations in stability analysis[END_REF] provides a thorough overview of the state-of-the-art of adjoint methods in hydrodynamic stability.

Adjoint eigenvalue sensitivity analysis of thermo-acoustic systems was proposed by Magri and Juniper [START_REF] Magri | Sensitivity analysis of a time-delayed thermo-acoustic system via an adjoint-based approach[END_REF]. The analysis was applied to simplified models of combustors to find optimal passive mechanisms and sensitivity to base-state changes in a Rijke tube [START_REF] Magri | Sensitivity analysis of a time-delayed thermo-acoustic system via an adjoint-based approach[END_REF][START_REF] Magri | A theoretical approach for passive control of thermoacoustic oscillations: application to ducted flames[END_REF][START_REF] Magri | Adjoint-based linear analysis in reduced-order thermo-acoustic models[END_REF][START_REF] Rigas | Experimental sensitivity analysis and control of thermoacoustic systems[END_REF], a ducted diffusion flame [START_REF] Magri | Global modes, receptivity, and sensitivity analysis of diffusion flames coupled with duct acoustics[END_REF] and, more recently, to a ducted premixed-flame [START_REF] Orchini | Linear stability and adjoint sensitivity analysis of thermoacoustic networks with premixed flames[END_REF]. However, these studies dealt with linear eigenvalue problems in which the eigenvalue appears under a linear term.

The extension of the adjoint analysis to nonlinear thermo-acoustic eigenproblems was proposed by Magri [START_REF] Magri | Adjoint methods in thermo-acoustic and combustion instability[END_REF] and Juniper et al. [START_REF] Juniper | Sensitivity analysis of thermo-acoustic eigenproblems with adjoint methods[END_REF] based on ideas of spectral perturbation theory of nonlinear eigenproblems [START_REF] Hinch | Perturbation Methods[END_REF]. They proposed two different adjoint methods for the prediction of eigenvalue sensitivities to perturbations to generic system's parameters. The first method was based on the Discrete Adjoint approach, in which the eigenvalue drift is obtained by recursive application of the linear adjoint formula at each iteration step of the nonlinear solver. The second approach was based on the linearization of the nonlinear operator around the unperturbed eigenvalue, which needs fewer operations than the first approach. In this paper we use the second approach of Juniper et al. [START_REF] Juniper | Sensitivity analysis of thermo-acoustic eigenproblems with adjoint methods[END_REF] and apply it to an elaborate annular combustor. Such first-order adjoint analysis was applied recently to predict symmetry breaking in annular combustors [START_REF] Mensah | Efficient computation of thermoacoustic modes in annular combustion chambers based on Bloch-wave theory[END_REF].

Objective and structure of the paper

The aim of this paper is to provide a method for the calculation of first-and second-order eigenvalue sensitivities of non-self-adjoint nonlinear eigenproblems with degeneracy. This framework is applied to the elaborate annular combustor of [START_REF] Bauerheim | An analytical model for azimuthal thermoacoustic modes in an annular chamber fed by an annular plenum[END_REF] to calculate design-parameter sensitivities.

In Section 2 we present the theory for adjoint sensitivity analysis of nonlinear eigenproblems. We derive first-and second-order eigenvalue sensitivity relations both for non-degenerate and degenerate eigenproblems. In Section 3 the mathematical model of the annular combustor thermo-acoustic network is briefly described. For further background in annular combustors, the reader may refer to the review by O'Connor et al. [START_REF] O'connor | Transverse combustion instabilities: acoustic, fluid mechanic, and flame processes[END_REF]. In Section 4.1 we validate the adjoint formulae against finite differences, the latter of which provide the benchmark solution because they do not rely on any assumption on the perturbation size. Three configurations are considered: a weakly coupled rotationally symmetric combustor (Case A), a strongly coupled rotationally symmetric combustor (Case B) and a strongly coupled non-rotationally symmetric combustor (Case C). The eigenvalue sensitivities to perturbations to both geometric, flow and flames parameters are calculated in Section 4.2. A concluding discussion ends the paper.

All of these studies are based on deterministic analysis, which assumes perfect knowledge of the thermo-acoustic parameters. Including uncertainties in the flame parameters in the stability calculations is the objective of the second part of this paper [START_REF] Magri | Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part II. Uncertainty quantification[END_REF].

Eigenvalue sensitivity of nonlinear eigenproblems

We show how to compute the eigenvalue sensitivity via equations involving the adjoint eigenfunctions. This approach combines a derivation with the Continuous Adjoint (CA) formulation, in which the problems are governed by continuous operators, without explicitly deriving the CA equations. The final sensitivity equations can be applied by using a Discrete Adjoint (DA) philosophy, which is more accurate and easier to implement (e.g., for thermo-acoustic problems, [START_REF] Magri | Sensitivity analysis of a time-delayed thermo-acoustic system via an adjoint-based approach[END_REF][START_REF] Magri | Adjoint-based linear analysis in reduced-order thermo-acoustic models[END_REF][START_REF] Magri | Global modes, receptivity, and sensitivity analysis of diffusion flames coupled with duct acoustics[END_REF]).

First, we solve for the nonlinear direct eigenproblem [START_REF] Lieuwen | Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling[END_REF], in which the eigenvalue appears under exponential, polynomial and rational terms. Starting from an initial guess for the eigenvalue, we assume that the converged eigenvalue ω 0 is a numerical root of the dispersion relation

|det (N {ω 0 , p 0 }) |< tol, (2) 
where 'det' is the determinant and 'tol' is a desired tolerance. In large systems we ensure condition (2) through relaxation methods [START_REF] Nicoud | Acoustic modes in combustors with complex impedances and multidimensional active flames[END_REF] instead of solving for the characteristic equation. Equation ( 2) defines an implicit function between ω and p, i.e., ω = ω(p). The corresponding eigenfunction q0 is calculated from the linear system N {ω 0 , p 0 } q0 = 0.

(

) 3 
The operator N depends only on the final converged eigenvalue, ω 0 . The kernel of equation ( 3) can be found by computing the singular vector(s) associated with the trivial singular value(s).

Second, by defining the adjoint eigenfunction, q+ 0 , and operator, N + , through a Hermitian inner product in an appropriate Hilbert space

q+ 0 , N {ω 0 , p 0 } q0 = N {ω 0 , p 0 } + q+ 0 , q0 , (4) 
we solve for the adjoint eigenfunction associated with the converged eigenvalue ω 0

N {ω 0 , p 0 } H q+ 0 = 0. (5) 
If we followed a purely Continuous Adjoint (CA) approach [START_REF] Magri | Sensitivity analysis of a time-delayed thermo-acoustic system via an adjoint-based approach[END_REF][START_REF] Magri | Adjoint-based linear analysis in reduced-order thermo-acoustic models[END_REF][START_REF] Magri | A theoretical approach for passive control of thermoacoustic oscillations: application to ducted flames[END_REF], we would need to derive explicitly the Hermitian operator N H and the continuous adjoint equations. However, we do not derive these equations explicitly and we proceed on only with the abstract expression of the Hermitian operator, in order to apply the Discrete Adjoint (DA) method directly to the final sensitivity relations, as explained subsequently. In equation ( 5), the adjoint eigenfunction can be found with the same procedure as [START_REF] Polifke | Reconstruction of acoustic transfer matrices by instationary computational fluid dynamics[END_REF]. Third, we perturb a system's parameter and calculate the perturbation operator, which we can evaluate numerically by finite difference

p = p 0 + p 1 =⇒ δ p N {ω 0 , p 1 } = N {ω 0 , p} -N {ω 0 , p 0 }, (6) 
where 1. This perturbation operator is the input of the problem and, therefore, is constant, i.e., it does not depend on ω. Hence, δ p N {ω 0 , p 1 } represents exactly all the orders of its Taylor series (providing that p 1 is sufficiently small)

δ p N {ω 0 , p 1 } = ∂N ∂p p 1 + 1 2 ∂ 2 N ∂p 2 ( p 1 ) 2 + o( 2 ). ( 7 
)
We assume that the eigenvalues and eigenfunctions are analytical in the complex plane around = 0 and

ω = ω 0 + ( p 1 )ω 1 + 1 2 ( p 1 ) 2 ω 2 and q = q0 + ( p 1 ) q1 + 1 2 ( p 1 ) 2 q2 , ( 8 
)
where

ω 1 = dω dp , ω 2 = d 2 ω dp 2 and q1 = d q dp , q2 = d 2 q dp 2 . ( 9 
)
The perturbed eigenproblem must satisfy equation ( 1) and is Taylor-expanded up to the second-order total derivative of p around the unperturbed eigenvalue ω 0 , yielding

N ω 0 + ( p 1 )ω 1 + 1 2 ( p 1 ) 2 ω 2 , p 0 + p 1 q0 + ( p 1 ) q1 + 1 2 ( p 1 ) 2 q2 = 0, =⇒ N {ω 0 , p 0 } q0 + dN {ω, p} q dp ( p 1 ) + 1 2 d 2 N {ω, p} q dp 2 ( p 1 ) 2 + o( 2 ) = 0. ( 10 
)
By taking the total derivatives and using definitions ( 7) and ( 9), we obtain the order-by-order expansion

N {ω 0 , p 0 } q0 + + ( p 1 ) N {ω 0 , p 0 } q1 + ∂N {ω, p 0 } ∂ω ω 0 ω 1 q0 + δ p N {ω 0 , p 1 } q0 + + ( p 1 ) 2 1 2 N {ω 0 , p 0 } q2 + ∂N {ω, p 0 } ∂ω ω 0 ω 1 q1 + δ p N {ω 0 , p 1 } q1 + + ( p 1 ) 2 1 2 ∂ 2 N {ω, p 0 } ∂ω 2 ω 0 ω 2 1 + 1 2 ∂N {ω, p 0 } ∂ω ω 0 ω 2 + ∂δ p N {ω 0 , p 1 } ∂ω ω 0 ω 1 q0 + o( 2 ) = 0. (11) 
Importantly, the cross derivative ∂δ p N {ω 0 , p 1 } /∂ω is zero because the perturbation operator δ p N {ω 0 , p 1 } is constant.

The unperturbed term ∼ O(1) in equation ( 11) is trivially zero because of equation (3). Higher order terms ∼ o(2 ) are neglected.

First-order eigenvalue sensitivity

The equation for the first order ∼ O( ) is recast as

N {ω 0 , p 0 } q1 = - ∂N {ω, p 0 } ∂ω ω 0 ω 1 q0 + δ p N {ω 0 , p 1 } q0 . ( 12 
)
The objective is to find the eigenvalue drift ω 1 due to the perturbation δ p N . The adjoint eigenfunction provides a solvability condition for the non-homogeneous system (12) fulfilling the Fredholm alternative 2 [START_REF] Oden | Applied Functional Analysis[END_REF]. Mathematically, this is achieved by projecting equation ( 12) onto the adjoint eigenfunction, q+

0 q+ 0 , N {ω 0 , p 0 } q1 = -q+ 0 , ∂N {ω, p 0 } ∂ω ω 0 ω 1 q0 + δ p N {ω 0 , p 1 } q0 . ( 13 
)
Using equation ( 5), the definition of the inner product (4) and its linearity, yields an equation for the first-order eigenvalue drift

ω 1 = -q+ 0 , δ p N {ω 0 , p 1 } q0 q+ 0 , ∂N {ω,p 0 } ∂ω ω 0 q0 , ( 14 
)
assuming that ∂N {ω, p 0 } /∂ω = 0. If the number of components of p is S, and we are interested in the first-order sensitivity for each, equation ( 14) enables us to reduce the number of nonlinear-eigenproblem computations by circa S P , where P is the average of the number of iterations needed to obtain ω 1 by solving the nonlinear eigenproblem perturbed via finite difference.

If the unperturbed eigenvalue ω 0 is N-fold degenerate, 3 the eigenfunction expansion becomes q = N i=1 α i ê0,i + q1 + 1 2 2 q2 , where α i are complex numbers and ê0,i are the N independent eigenfunctions associated with ω 0 . By requiring the right-hand side of equation [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] to have no components along the independent directions ê0,i (Fredholm alternative), we obtain an eigenproblem in α i and eigenvalue ω 1 [START_REF] Hinch | Perturbation Methods[END_REF] 

ê+ 0,i , ∂N {ω, p 0 } ∂ω ω 0 ê0, j ω 1 α j = -ê+ 0,i , δ p N {ω 0 , p 1 } ê0, j α j , ( 15 
)
for i, j = 1, 2, ..., N. Einstein summation is used, therefore, the inner products in equation ( 15) are the components of an N × N matrix, α j are the components of an N × 1 vector and ω 1 is the eigenvalue. This equation is defined only in the N-fold degenerate subspace. In thermo-acoustics, degeneracy occurs in rotationally symmetric annular combustors in which azimuthal modes have 2-fold degeneracy [START_REF] Noiray | On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers[END_REF][START_REF] Ghirardo | Azimuthal instabilities in annular combustors: standing and spinning modes[END_REF][START_REF] Bauerheim | Symmetry breaking of azimuthal thermo-acoustic modes in annular cavities: a theoretical study[END_REF][START_REF] Mensah | Efficient computation of thermoacoustic modes in annular combustion chambers based on Bloch-wave theory[END_REF]. The generalized eigenproblem [START_REF] Mantegazza | Aeroelastic derivatives as a sensitivity analysis of nonlinear equations[END_REF] outputs N first-order eigenvalue drifts and N unperturbed eigendirections. We select the first-order eigenvalue drift, ω 1 , with greatest growth rate, which causes the greatest change in the stability.

To demonstrate the adjoint-based eigenvalue sensitivity [START_REF] Messiah | Quantum Mechanics[END_REF], we consider the generic nonlinear eigenvalue problem represented by a 2 × 2 matrix

N 11 (ω) N 12 (ω) N 21 (ω) N 22 (ω) q1 q2 = 0 0 . ( 16 
)
We solve for the characteristic equation

F(ω) = N 11 (ω)N 22 (ω) -N 21 (ω)N 12 (ω) = 0, (17) 
and find ω 0 such that F(ω 0 ) = 0. We assume that this root is non-degenerate. The corresponding direct and adjoint eigenvectors are, respectively

q0 = -N 12 (ω 0 )/N 11 (ω 0 ) 1 q2 , ( 18 
)
q+ 0 = -N 21 (ω 0 ) * /N 11 (ω 0 ) * 1 q+ 2 , ( 19 
)
where N 11 (ω 0 ) is assumed = 0 and q2 , q+ 2 are arbitrary non-trivial complex numbers, which are set to 1. The dependency on ω 0 is dropped for brevity from now on. Assuming that the characteristic equation defines a continuously differentiable manifold, the exact first-order eigenvalue sensitivity is calculated by the implicit function theorem (also known as Dini's theorem) 

∂ω ∂ p = - ∂ F /∂ p ∂ F /
) 21 
When the vector-matrix-vector multiplications are performed, the adjoint-based sensitivity ( 21) coincides with the analytical sensitivity [START_REF] Tumin | Instability wave excitation by a localized vibrator in the boundary layer[END_REF]. This illustrates that equation ( 14) is an exact representation of the first-order eigenvalue drift, δω/δ p.

Second-order eigenvalue sensitivity

The equation for the second-order is recast as

1 2 N {ω 0 , p 0 } q2 = - ∂N {ω, p 0 } ∂ω ω 0 ω 1 q1 + δ p N {ω 0 , p 1 } q1 + - 1 2 ∂ 2 N {ω, p 0 } ∂ω 2 ω 0 ω 2 1 + 1 2 ∂N {ω, p 0 } ∂ω ω 0 ω 2 q0 = 0. ( 22 
)
The calculation of the second-order eigenvalue drift is obtained by projecting equation ( 22) onto the adjoint eigenfunction, yielding

1 2 q+ 0 , N {ω 0 , p 0 } q2 = q+ 0 , - ∂N {ω, p 0 } ∂ω ω 0 ω 1 q1 + δ p N {ω 0 , p 1 } q1 + q+ 0 , - 1 2 ∂ 2 N {ω, p 0 } ∂ω 2 ω 0 ω 2 1 + 1 2 ∂N {ω, p 0 } ∂ω ω 0 ω 2 q0 . ( 23 
)
Using equations ( 5) and ( 4) yields an equation for the second-order eigenvalue drift

ω 2 = -2 q+ 0 , ∂N {ω,p 0 } ∂ω ω 0 ω 1 q1 + δ p N {ω 0 , p 1 } q1 q+ 0 , ∂N {ω,p 0 } ∂ω ω 0 q0 + -2 q+ 0 , 1 2 ∂ 2 N {ω,p 0 } ∂ω 2 ω 0 ω 2 1 q0 q+ 0 , ∂N {ω,p 0 } ∂ω ω 0 q0 . ( 24 
)
The eigenvalue-drift equations ( 14), ( 15), ( 24) enable the calculation of the i-th drift only by using eigenfunctions up to (i -1)-th order. The calculation of the perturbed eigenfunction q1 , necessary for the calculation of the second-order eigenvalue drift, is discussed in the next section.

Calculation of the perturbed eigenfunction

The calculation of the perturbed eigenfunction q1 in equation ( 12) requires solving for a non-homogeneous singular linear system because the inversion operator, N -1 {ω 0 , p 0 }, does not exist. However, the compatibility condition ensures that this linear system has (infinite) solutions. For brevity, we define dim(N ) = K and use matrices. In a non-defective degenerate system, a complete eigenbasis is { q0 , êi }, where i = 1, 2, . . . , K -N, q0 = N j α j ê0, j and êi are the remaining non-degenerate eigenfunctions. (We are assuming that only the 0-th eigenfunction is N-fold degenerate. The extension to other eigenfunctions' degeneracy is straightforward.) In general, the coefficients α j are arbitrary, however, when working with perturbations, these coefficients are uniquely determined by the first-order sensitivity [START_REF] Mantegazza | Aeroelastic derivatives as a sensitivity analysis of nonlinear equations[END_REF]. The perturbed eigenfunction is decomposed as q1 = ẑ + β 0 q0 , [START_REF] Tammisola | Second-order perturbation of global modes and implications for spanwise wavy actuation[END_REF] where β 0 is in general a complex number. By substituting equation ( 25) into [START_REF] Crocco | Research on combustion instability in liquid propellant rockets[END_REF], we obtain N {ω 0 , p 0 }ẑ = , [START_REF] Camarri | Flow control design inspired by linear stability analysis[END_REF] because N {ω 0 , p 0 }(ẑ + β 0 q0 ) = N {ω 0 , p 0 }ẑ for equation [START_REF] Polifke | Reconstruction of acoustic transfer matrices by instationary computational fluid dynamics[END_REF].

is the right-hand side of equation [START_REF] Crocco | Research on combustion instability in liquid propellant rockets[END_REF].

q1 is then calculated as follows.

• Decompose N = U ˜ V H (Singular Value Decomposition, SVD), where

˜ = 0 0 . ( 27 
)
The submatrix is diagonal and contains the K -N non-trivial singular values of N {ω 0 , p 0 }. The submatrix is a N × N null matrix. The columns of the unitary matrix U are the left singular vectors and the columns of the unitary matrix V are the right singular vectors.

• Set to any non-trivial diagonal matrix, for example, the identity matrix.

• Solve for Y 1 Y 2 = ˜ -1 U -1 . ( 28 
)
• Set Y 2 = 0 and find the solution

ẑ = V Y 1 0 . ( 29 
)
Another method for the calculation of q1 is presented in Appendix A. In this study no normalization constraint is imposed and, therefore, β 0 is arbitrarily set to zero. This means that we are removing the non-uniqueness of q1 by requiring it not to have a component along the unperturbed eigenfunction q0 [36].

Mathematical model of an annular combustor

Annular combustion chambers are commonly used in aircraft gas turbines because of their compactness and ability for efficient light around [START_REF] Boileau | LES of an ignition sequence in a gas turbine engine[END_REF][START_REF] O'connor | Transverse combustion instabilities: acoustic, fluid mechanic, and flame processes[END_REF]. Such configurations, however, suffer from combustion instabilities due to azimuthal modes that often appear at low frequencies, where damping mechanisms are less effective. We study an annular combustor configuration typical of modern ultra Low-NOx combustion chambers, detailed in [START_REF] Bauerheim | Symmetry breaking of azimuthal thermoacoustic modes: the UQ perspective[END_REF]. The network model developed by Bauerheim et al. [START_REF] Bauerheim | An analytical model for azimuthal thermoacoustic modes in an annular chamber fed by an annular plenum[END_REF], which was validated against a three-dimensional Helmholtz solver to predict the stability of azimuthal modes, is therefore used in the present study. This low-order model describes a combustion chamber connected by longitudinal burners fed by a common annular plenum (Fig. 2).

The Annular Network Reduction methodology [START_REF] Bauerheim | An analytical model for azimuthal thermoacoustic modes in an annular chamber fed by an annular plenum[END_REF] analytically derives the dispersion relation det (N {ω, p}) = 0 of the annular system, where the operator N is defined as

N {ω, p} = N b i R i (ω)T i (ω, p) -I, ( 30 
)
where I is the identity operator and N b = 19 is the number of burners. R i ∈ R 4×4 is the propagation operator that maps the acoustic waves in the uniform components of the network, represented by the matrices The adjoint sensitivity matches the benchmark solution given by finite differences. In Case C, the sensitivity of n and τ is the mean value of the single-burner sensitivities of Figs. 9 and 10. The first-order eigenvalue drift is obtained by multiplying these sensitivities by .

R i = R(k p x p ) 0 0 R (k c x c ) , (31) 
R(k x) = cos(k x) -sin(k x) sin(k x) cos(k x) , (32) 
Fig. 8. Same as Fig. 7 but for second-order sensitivities. The normalized second-order sensitivities are higher than the first-order sensitivities of Fig. 7. The second-order eigenvalue drift is, however, smaller because it is obtained by multiplying these sensitivities by 2 .

burner to burner, as shown in Figs. 9 and 10. (Their mean values are shown in Fig. 7e, f and Fig. 8e,f.) The thermo-acoustic system has drastically different behaviours depending on the burner being perturbed. The first-order sensitivities oscillate in the azimuthal direction and can be negative or positive. This 2-periodic pattern is physically related to the eigenvalue splitting caused by symmetry breaking [START_REF] Noiray | Investigation of azimuthal staging concepts in annular gas turbines[END_REF][START_REF] Bauerheim | Theoretical analysis of the mass balance equation through a flame at zero and non-zero Mach numbers[END_REF], which is due to the 2nd Fourier coefficient of the flame parameters' spatial distribution (C 2n in [START_REF] Noiray | Investigation of azimuthal staging concepts in annular gas turbines[END_REF]). From Figs. 9c, d and 10c, d, we note that the second-order sensitivity patterns are 4-periodic. This oscillation might be due to the 4th Fourier coefficient of the flame distribution. This analysis, however, is beyond the scope of this paper and is left for a follow-on study. By inspection, we find an accurate match between the finite difference calculations and the adjoint predictions. The growth rate is overall most sensitive to the time delays τ , but the value is about twenty times smaller than the corresponding rotationally symmetric Case B of Fig. 7d. Moreover, although configuration C is similar to the corresponding rotationally symmetric Case B, the parameters to which it is most sensitive are different. This might indicate that modelling an annular combustor as a rotationally symmetric configuration might overestimate and poorly predict the sensitivities.

Conclusions

We present first-and second-order sensitivities of eigenvalues in nonlinear non-self-adjoint eigenproblems with/without degeneracy via an adjoint method. This is the first application of adjoint sensitivity analysis to nonlinear eigenproblems as applied to design-parameter sensitivity studies in thermo-acoustics. The adjoint sensitivities are calculated in an elaborate annular combustor thermo-acoustic network. Two cases are studied as representative cases of plenum-combustion-chamber dynamics: the weakly coupled case, in which the combustion-chamber mode is unstable, and the strongly coupled case, in which the plenum mode is coupled with the combustion-chamber mode through the burners.

We show how to use the adjoint framework to study the sensitivity to the system's parameters reducing the number of computations by a factor equal to the number of the system's parameters. This is particularly attractive to annular combustors, where the number of flames, thus parameters, is large. We find the strongly coupled case is overall more sensitive and the symmetry breaking makes the system less sensitive. This suggests that perfect rotational symmetry might be an exceedingly sensitive model. Moreover, the adjoint sensitivities are not prone to numerical cancellation errors, in contrast to finite differences, because they do not depend on the size of the perturbation.

The sensitivity analysis showed that the eigenvalue can be most sensitive to geometric parameters (see cases A and C in Table 3). However, the manufacturing tolerances on the geometry are usually small, i.e., the uncertainty on the physical dimensions of the annular combustor is small. On the other hand, the uncertainty on the flame parameters and/or damping is larger [START_REF] O'connor | Transverse combustion instabilities: acoustic, fluid mechanic, and flame processes[END_REF]. In order to evaluate the probability that a thermo-acoustic mode is unstable, the adjoint method proposed is extended to uncertainty quantification of the eigenvalue calculation in the second part of this paper [START_REF] Magri | Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part II. Uncertainty quantification[END_REF].

The adjoint framework is a promising method for design to obtain quick estimates of the thermo-acoustic sensitivities at very cheap computational cost. [START_REF] Mensah | Efficient computation of thermoacoustic modes in annular combustion chambers based on Bloch-wave theory[END_REF] where N 1k , N 3k are K × N submatrices; N k1 , N k3 are N × K submatrices and N kk is an N × N submatrix. q0,1 , q0,k , q0,3 are subvectors. The subvector q0,k is chosen to have non-trivial components. Hence, the system can be recast as (

) 38 
The matrix on the left-hand side has rank = K -N because all its columns are independent since the N values of q0,k are non-trivial and the right-hand side is a linear combination of the left-hand side. Therefore, the columns of N corresponding to q0,k on the left hand-side can be removed from the matrix without affecting its rank. To reduce the row space to a subspace in which the matrix has full rank, we use the same argument as before with the adjoint eigenvector q+ 0 . The N components q+ 0,k are chosen to be non-trivial. Hence, the N rows corresponding to q+ 0,k can be removed and the final linear system becomes invertible in this subspace, as follows N 11 N 13 N 31 N 33 q0,1 q0,3 = -

N 1k N 3k q0,k . ( 39 
)
Now, the square matrix on the left-hand side is invertible because it has rank = K -N and the subspace dimension is K -N.

Using this observation, we can solve for the perturbed eigenvector substituting equation ( 25) into (39)

N 11 N 13 N 31 N 33 ẑ1 ẑ3 = - N 1k N 3k q0,k + 1k 3k . ( 40 
)
Setting the eigenvector to zero because it is already known, ẑ can be easily found by solving the linear system, the final solution of which is

q1 = ⎛ ⎝ ẑ1 0 ẑ3 ⎞ ⎠ + β 0 q0 , ( 41 
)
where 0 is a null N × 1 vector. This extends the method proposed by [START_REF] Nelson | Simplified calculation of eigenvector derivatives[END_REF] to degenerate nonlinear eigenproblems.

Fig. 7 .

 7 Fig.7. Normalized first-order eigenvalue sensitivities. Calculation with Finite Difference (FD) and Adjoint methods (AD). The angular frequency sensitivity is shown in the left panels, the growth-rate sensitivity is shown in the right panels. Case A in the top row; Case B in the middle row and Case C in the bottom row. The adjoint sensitivity matches the benchmark solution given by finite differences. In Case C, the sensitivity of n and τ is the mean value of

Fig. 9 .

 9 Fig. 9. First-(top row) and second-order (bottom row) sensitivities to the flame index, n, in Case C. The sensitivities vary because the configuration is symmetric (Fig. Angular frequency sensitivity in the left panels, growth-rate sensitivity in the right panels.The adjoint sensitivity matches the benchmark solution given by finite differences. The first-order eigenvalue drift is obtained by multiplying these sensitivities by .

Fig. 10 .

 10 Fig.10. Same as Fig.9as for the sensitivity to the time delay, τ . The second-order eigenvalue drift is obtained by multiplying these sensitivities by 2 .

NN 11 N

 11 {ω 0 , p 0 } q0 = ⎛ ⎝ 1k N 13 N k1 N kk N k3 N 31 N 3k N 33

N 33 ⎞

 33 {ω 0 , p 0 } q0 = ⎛ ⎝ N 11 N 13 N k1 N k3 N 31 N

  ∂ω = -N 11 ∂N 22 /∂ p + N 22 ∂N 11 /∂ p -N 12 ∂N 21 /∂ p -N 21 ∂N 12 /∂ p N 11 ∂N 22 /∂ω + N 22 ∂N 11 /∂ω -N 12 ∂N 21 /∂ω -N 21 ∂N 12 /∂ω .

				(20)
	Using an Euclidean Hermitian inner product, the adjoint eigenvalue sensitivity (14), for this algebraic problem, reads
	δω δ p	= -	q+H 0 (∂N /∂ p) q0 q+H 0 (∂N /∂ω) q0	,
			-N * 21 /N *	
		= -		

11 1 * ∂N 11 /∂ p ∂N 12 /∂ p ∂N 21 /∂ p ∂N 22 /∂ p -N 12 /N 11 1 -N * 21 /N * 11 1 * ∂N 11 /∂ω ∂N 12 /∂ω ∂N 21 /∂ω ∂N 22 /∂ω -N 12 /N 11 1 . (

Table 3

 3 Summary of the sensitivities of Figs. 7, 8, 9 and 10. xxx=strong, xx=mild, x=weak.

			Case	L i	S p	S i	ρ p	α	n	τ
	1st-order	Re(ω 1,n )	A	xxx	xx	xxx	xx	xx	xx	x
			B	x	x	x	x	x	x	xxx
			C	x x	x	x x	x	x x	x	x
		Im(ω 1,n )	A	x	x	x	x	x	x	xxx
			B	xx	x	xx	x	xx	xx	xxx
			C	xxx	xx	xxx	xx	xxx	x	x
	2nd-order	Re(ω 2,n )	A	x	x	x	x	x	x	xxx
			B	x	x	x	x	x	x	xxx
			C	xx	x	xx	x	xxx	x	x
		Im(ω 2,n )	A	x	x	x	x	x	x	xxx
			B	x	x	x	x	x	x	xxx
			C	xx	x	x	x	xxx	x	x

The left-hand side operator range is equal to the kernel of the orthogonal complement of its adjoint operator.

N-fold degeneracy occurs when an eigenvalue has N independent associated eigenfunctions, i.e., the eigenvalue has N geometric multiplicity.
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Appendix A. Restricted matrix inversion for the calculation of the perturbed eigenfunction

The aim is to find the square submatrix of N {ω 0 , p 0 } with rank = K -N, in the subspace of which the matrix is invertible. First, we partition N q0 as