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Abstract. We report on numerical calculations of the spontaneous emission rate of a Rydberg-
excited sodium atom in the vicinity of an optical nanofibre. In particular, we study how this
rate varies with the distance of the atom to the fibre, the fibre’s radius, the symmetry s or p
of the Rydberg state as well as its principal quantum number. We find that a fraction of the
spontaneously emitted light can be captured and guided along the fibre. This suggests that such
a setup could be used for networking atomic ensembles, manipulated in a collective way due to
the Rydberg blockade phenomenon.
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1. Introduction

Within the last two decades, the strong dipole-dipole interaction experienced by two neighbouring
Rydberg-excited atoms [1] has become the main ingredient for many of the atomic quantum
information protocol proposals (see [2] and references therein). In particular, this interaction can
be so large as to even forbid the simultaneous resonant excitation of two atoms if their separation is
less than a specific distance, called the blockade radius [3], which typically depends on the intensity
of the laser excitation and the interaction between the Rydberg atoms [4]. The discovery of this
“Rydberg blockade” phenomenon [3, 5-9] paved the way for a new encoding scheme using atomic
ensembles as collective quantum registers [5, 10-12] and repeaters [13-15]. In this novel framework,
information is stored in collective spin-wave-like symmetric states, which contain fully delocalized
atomic excitations. Qubits are more easily manipulated and more robust in this collective approach
than in the usual single-particle paradigm.

Scalability is one of the crucial requirements for quantum devices [16] and interfacing atomic
ensembles into a quantum network is a possible way to reach this goal. Photons naturally appear as
ideal information carriers and the photon-based protocols considered so far include free-space [17],
or guided propagation through optical fibres [13]. The former has the advantage of being relatively
easy to implement, but presents the drawback of strong losses. The latter requires a cavity quantum
electrodynamics setup, which is experimentally more involved. An alternative option would be to
resort to optical nanofibres. Such fibres have recently received much attention [18, 19] because the
coupling to the evanescent (resp. guided) modes of a nanofibre allows for easy-to-implement atom
trapping [20, 21] (resp. detection [22]). This coupling increases in strength as the fibre diameter
reduces and the atoms approach the fibre surface. It was also even shown that energy could be
exchanged between two distant atoms via the guided modes of the fibre [23]. This strongly suggests
that optical nanofibres could play the role of a communication channel between the nodes of an
atomic quantum network consisting of Rydberg-excited atomic ensembles.

In this article, we make a first step towards this goal and investigate the emission rate of a
highly-excited (Rydberg) sodium atom in the neighbourhood of an optical nanofibre made of silica.
In the perspective of building a quantum network, we are particularly interested in quantifying how
much spontaneously emitted light can be captured and guided along the fibre. Here, we study the
influence of the atom to fibre distance, the radius of the fibre, and the symmetry of the Rydberg
state, on the emission rates into the guided and radiative fibre modes. Extending the treatments
of Refs. [24, 25], we find that up to ~ 13%, of the spontaneously emitted light can be captured and
guided along both directions of the fibre, which is comparable with the ratio of =~ 30% obtained
with a cesium atom initially in its lowest excited state 6P, and located on the surface of a 200-
nm-diameter nanofibre [25]. Although the theoretical framework we use here is the same, numerical
calculations are more complex than in Ref. [25] due to the larger number of transitions considered.
Contrary to Ref. [25], we do not take into account the atomic hyperfine structure in the excited
state, which is very small for Rydberg states [26].

The article is organized as follows. In Sec. 2 we briefly present the system and introduce the
expressions of the spontaneous emission rates. In Sec. 3, we present the results of our numerical
calculations and discuss the different behaviours observed when the atom is initially in an s or p
Rydberg state. Finally, in Sec. 4, we conclude and give perspectives of our work. Appendix A
and Appendix B provide details about the guided and radiative electromagnetic modes, Appendix
C sketches the derivation of the spontaneous emission rates of the atom in the presence of the
nanofibre and Appendix D displays the atomic data we used in our calculations.
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Figure 1. Sodium atom in the vicinity of an optical nanofibre with a radius a. The refractive
index is n; = 1.45 for silica and no = 1 for vacuum. The axis of the nanofibre is arbitrarily
chosen as the z-axis. The cylindrical coordinates (r, ¢, z) and frame (€, €,, €;) are introduced.

2. The system

We consider a sodium atom, initially prepared in the highly-excited (Rydberg) level n < 10, in
the vicinity of a silica nanofibre, whose radius is denoted by a and whose axis is conventionally
taken as the z-axis, see figure 1. Our goal is to investigate how the presence of the fibre modifies
the spontaneous emission rate of the atom : in particular, we want to study the influence of
the radius of the fibre, the distance of the atom to the fibre as well as the symmetry of the
Rydberg state |nl;, m;) considered and the principal quantum number n on the spontaneous
emission rate. Note that, though the configuration is the same as in Ref. [25], in this work,
the atom is (relatively) highly excited and, in contrast to Ref. [25], several transition frequencies
must therefore be considered which complicates the numerical work. The choice of the sodium
atom and the maximal principal quantum number ng,x = 10 is motivated by the fact that, for
the relevant transitions 10 — n = 3,---,9, the fibre can be approximately considered as a non
absorbing medium of respective refractive indices n; = (1.467, 1.450,1.438,1.399,1.112,1.615, 2.021)
[27]. Such constraints may, however, be alleviated by resorting to the formalism of macroscopic
quantum electrodynamics and the Green’s function approach [28]. These techniques allow to take
the absorption of the medium into account and therefore to deal with higher Rydberg states. This
formalism and its application to the calculation of energy shifts will be investigated in a future
work. Moreover, the choice of sodium, rather than rubidium or cesium which are more commonly
used in nanofibre experiments, was made to allow us to neglect relativistic effects on the electronic
wavefunctions and therefore simplify our treatment. The case of cesium will also be tackled in a
future work.

Asrecalled in Ref. [25], the free electromagnetic field in the presence of a cylindrical fibre can be
decomposed into guided and radiative modes which respectively correspond to energy propagation
along the fibre and radially to it (see Appendix A and Appendix B).

Guided modes are characterized by their frequency w > 0 and order m, which is a positive
integer fixing the periodicity of the field with respect to ¢. Due to the continuity conditions at
the core-cladding interface of the fibre, the norm of the projection of the wavevector onto the
z axis, denoted by S, can only take a discrete set of values which are the solutions of the so-
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called characteristic equation, equation (A.1l) [29, 30]. The corresponding modes have different
cutoff frequencies. In particular, if w is sufficiently low, only the (so-called “hybrid”) mode HFE4,
corresponding to m = 1, can propagate along the fibre. Since a given mode can propagate either
in the positive or negative z-direction, an extra index f = =£1 is introduced, such that 8 x f is
the (algebraic) projection of the wavevector onto the z-axis. To complete the description, one
also allows for two different polarization directions labelled by p = 4+1. For simplicity, we gather
the characteristic numbers (w,m, f, p) into one symbol u and replace the discrete/continuous sums
>om . fooo dw by > .- Finally the general form of the quantized guided field component is

n . h’wﬂl i z
E,(7) = IZ 1/ Trcg a#é'(“) (r,p)e (fBztre) 4 h c.
m

In this expression, 8’ stands for the derivative (%), €, is the electric-field profile function of the

mode (u) whose expression is given in Appendix A, while a, is the annihilation operator of the
mode, satisfying the bosonic commutation rules [au, aL,] =0 (w—w)OmmOf Opp-

Radiative modes are characterized by their frequency w > 0, their (positive integer) order m
and the projection of the wavevector on the nanofibre axis 5 which can now vary continuously
between —wng/c and wns/c. Here, the negative or positive sign indicates the direction of the
propagation of the radiation mode along the z-axis. A last number is needed to fully determine a
radiative mode, i.e. the polarization number p = +1. The two values of p correspond to two modes
of orthogonal polarizations, see Appendix B. For simplicity, we gather the characteristic numbers
(w,B,m,p) into one symbol v and replace the discrete/continuous sums -, fooo dw ff:fm dB by
>, The general form of the quantized radiative field component is

o= : / hw v i
ET (T) = IZ 47T60 aVé( ) (’I", 90) € (6z+mw) + h.C.

In this expression €, is the electric-field profile function of the mode () whose expression is given in
Appendix B, while a,, is the annihilation operator of the mode, satisfying the bosonic commutation

rules {a,,, ai,} =0 (w—w) O/ Oppr -
In the presence of the nanofibre, the spontaneous emission rate I'y; of an atom from a state
|M) is the sum of the rates yyy from [M) to all lower states |[N), i.e. T'ny =Dy p YN with

yun =213 |Gann|? 6 (wa — warn)- (1)
A
In the expression above, the sum is performed over all electromagnetic modes denoted by A, whether
they be guided (A = u) or radiative (A = v) ; we moreover introduce the quantities

Gonin = — [ wB' (JMN~ ém)) ei(fB=+pe).
dmegh

Gouin = — w (JMN.é(u)) ((Bz+me).
4dmegh

characterizing the coupling of the different electromagnetic modes to the atomic transition |M) —
|N) of frequency wyny = (Em—En)/n and dipole matrix element dpsy. Finally the decoherence rate
between states |M) and |N) is given by

Parw = 5 (Tar +T). (2)
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For a detailed derivation of equations (1,2), see Appendix C.

3. Numerical results and discussion

In this section, we present the numerical results we obtained for the spontaneous emission rate of
a sodium atom (Z = 11) initially prepared either in |nsl/2,mj> or |npj, m;) states with n < 10 and
j =1/2 or 3/2. We study the influence of the principal quantum number, n, and the distance from
the atom to the fibre surface on the emission rate. We also show how the fibre’s radius modifies
the relative weights of the different transitions’ contributions to the total rate. For simplicity, we
consider the contributions of the guided and radiative modes separately. The atomic data we used
can be found in Appendix D.

3.1. Guided modes

Figure 2 displays the spontaneous emission rates, I';** and T';°P, of an atom initially prepared in
the states ’1081/27mj> and [10p;, m;) with j = 1/2 or 3/2, respectively, into the guided modes as a
function of the distance r to the fibre axis, see figure 1. Note that the rates are presented relative to
the spontaneous emission rates I'}%%, F(l)()p in vacuum and r is expressed in units of the fibre radius
with ¢ = 100 nm. As expected, in both cases, the influence of the guided modes vanishes as r
increases, and therefore I‘;OS, I‘;Op — 0 when r — 400. The maximal value is obtained for r = a, i.e.

when the atom is on the fibre surface. More precisely, we have T’ ;05 ~ 0.18T'3° for an atom initially
prepared in [10s:/,,m; = £1) and I'}% ~ (0.027,0.035,0.044) x I';"” for an atom initially prepared
in (‘10p3/27mj = :I:%) , |10p1/2,mj = :i:%> , |10p3/2,mj = :I:%>) In these calculations we assumed
that the electronic wave-function of the Rydberg atom is not affected by the nanofibre, which
deserves further study. As a more realistic configuration, we shall consider that the Rydberg atom

is located at a distance from the fibre surface which is much larger than its radius 7y, ~ 5 nm = 5=

20°
For 7 = a 4+ 10ry, ~ 1.5 x a, we obtain the spontaneous rate I'}** ~ 0.066 x I';’® for an atom

initially prepared in |1031/2,mj = :i:%> and F;Op ~ (0.006,0.011,0.015) x I‘(l)Op for an atom initially
prepared in (|1()p3/2,mj = :i:%) , |10p1/2,mj = :I:%> , flOps/z,mj = j:% ) Moreover, we note that in

10 my=+1 10 .
general, ;% < I'}%%, and T P mi=Ey o p P The latter relation can be

qualitatively understood by geometric arguments on the coupling of guided modes with the atomic
orbitals. The more a state is polarized along z, the less it couples to the guided modes which are
essentially polarized orthogonally to the fibre axis. This is consistent with what we observe, since
the states |10ps,,m; = £3) are better aligned along z than the states [10p./,,m; = £3) which
themselves are more aligned along z than |10ps,,m; = +3). This can be seen on their relation
with the decoupled basis states [32].

10;03/2 ,mj :i%
g

Figure 3 shows the influence of the principal quantum number n on the spontaneous emission
rate I'2* into the guided modes for an atom initially prepared in the state [nsi/,, m; = +3) forn =5
to 10. The higher the value of n, the more I'J* is peaked as a function of r/a around 1. Moreover,
the plots get closer and closer as n increases : the curves n = 9,10 cannot be distinguished and for
clarity, the curve n = 8 has not been plotted.

Finally, figures 4 and 5 illustrate the influence of the fibre radius, a, on the spontaneous
emission rate from the state |nsi,,m; = +3) into the guided modes. More precisely, figure 4
displays the partial spontaneous emission rates along the specific transition 10s — 3p (Note that
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Figure 2. Spontaneous emission rate of a sodium atom into the guided modes of a nanofibre of
radius a = 100nm. The rate is plotted as a function of the distance r of the atom to the fibre axis

: (top) atom initially prepared in the state |1051/2, m; = i%% (bottom) atom initially prepared
in the states [10p/5,m; = £3), [10p3/o, m; = £1) and [10ps/5,m; = £3). The rates T}, 1y’
are presented relative to the spontaneous emission rates I%OS, F(l)OP in vacuum.

n = 3 corresponds to the ground state of the sodium atom) into different guided modes HE,,,
EH, ., TE .y, and TM,,,. Two cases are considered : (i) the atom is located on the fibre surface,
i.e. at a distance r = a from the z-axis, and () the atom is placed at a fixed distance of 150
nm from the fibre surface, i.e. at a distance r = a + 150 nm from the z-axis. As expected, case
(éi) gives rise to much weaker relative rates than case (i), since the atom is further away from
the fibre and therefore the guided modes are strongly attenuated. Moreover, as a increases, the
cutoff frequencies of higher modes become smaller : when the cutoff frequency of one mode passes
below the frequency of the transition 10s — 3p, this mode starts to contribute to the spontaneous
emission rate. The peaked structure observed on the different plots results from the peaked shape
of the mode intensity profile itself with respect to a.

Figure 5 displays the partial spontaneous emission rates v:%*>"? into the guided modes along
the respective transitions 10s — np as well as the total rate I‘gos = Z3Sn§10 7;05_””’ as functions
of the fibre radius, a, in the same two cases (4, #) as above. One observes that, due to the range
chosen for a, only the transitions 10s — np for n = 3,4,5 give relevant contributions to the total
rate. It also appears that only the transition 10s — 3p substantially couples to higher-order guided
modes, while the other transitions couple only to the fundamental guided mode HF1;. On the
range chosen for a, the peak structure observed for the total emission rate is therefore mainly due
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Figure 3. Spontaneous emission rate of a sodium atom initially prepared in |n51/2,mj = :l:%),
for n =5,---,10, into the guided modes of a nanofibre of radius a = 100 nm. The rate is plotted

as a function of the distance r of the atom from the fibre axis. The rate, I'y®, is renormalized

by the spontaneous emission rate in vacuum, I'f®, and the distance r is expressed in units of the
fibre radius, a.

to the partial rate v1°73, while the other transitions smoothly modify the value of T';°*. Note
that the intensity profiles of the guided modes relative to the different transition frequencies are
expected to coincide up to a rescaling of the a-axis : this scaling factor is given by the ratio of the
frequencies. The positions of the peaks of the different partial rates 7;05”"1’ should therefore also
coincide up to a simple scaling. The heights of the peaks, however, are expected to be different

since, for instance, the dipole matrix element is not the same for the different transitions.

3.2. Radiative modes

We now turn to the contribution of the radiative modes to the total spontaneous emission rates.
Figure 6 displays the spontaneous emission rates T'}% and Tl° of an atom initially prepared
in the states |10si,,m;), |10pis s, m;), respectively into the radiative modes as a function
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Figure 4. Partial spontaneous emission rates of a sodium atom along the specific transition
10s — 3p into different guided modes of the nanofiber, as functions of the fibre radius, a : (top)
the atom is on the fibre surface ; (bottom) the atom is located at a distance 150 nm from the
fibre surface. The rates are presented relative to the spontaneous emission rate in vacuum, F(l)os.

of the distance r to the fibre axis, see figure 1. Note that the rates are renormalized by the
spontaneous emission rates in vacuum I'}%% resp. F(l)Op , and r is expressed in units of the fibre
radius ¢ = 100 nm. As expected, in both cases, the influence of the fibre vanishes as r increases,
ie. T T2 — 1 for r — +o0o. The maximal value is observed for r = a, i.e. when the
atom is on the fibre surface. More precisely, we have I't% ~ 1.24 x T} for an atom initially
prepared in [10s1,,m; = £3) and 1% ~ (1.19,1.23,1.29) x [y*” for an atom initially prepared in
(leps/Z,mj = i%> , ‘10p1/2,mj = i%>, 10ps/s, mj = i%>) For an atom at r ~ 1.5 x q, , i.e., at a
distance from the fibre surface, we obtain the spontaneous rate I''% &~ 1.041 x '} for an atom
initially prepared in |10s./,, m; = £1) and )% ~ (1.028,1.044, 1.062) x I';’” for an atom initially
10p1,, mj = £3),|10pss,, m; = £3)). This allows us to compute

prepared in (|10p3/2, mj = :I:%> ,
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the proportion of light which is emitted into the guided and radiative modes. For instance, for
an atom initially prepared in the state |1051/2,mj = j:%>, I,/ (Ty+T,) ~ 13% when the atom is
located on the fibre surface (r = a), and I'y/ (I'y +T'y) ~ 6% when the atom is located at 50 nm
from the fibre surface (r = 1.5 x a). Since light is mostly spontaneously emitted into the radiative
modes, it seems quite challenging to efficiently interface a Rydberg atom with a guided mode of the
nanofibre and, thence, to build a valuable quantum network. The use of atomic ensembles might
alleviate this concern, since, as already demonstrated in free-space, their spontaneous emission
could be made highly directional and their coupling strength is enhanced [17]. These issues and the

50 100

Figure 5. Partial, W;OSH"K and total, I';%¢, spontaneous emission rates of a sodium atom
initially prepared in |10$1/2,mj = i%) into the guided modes of a nanofibre. The rates are
(top) the atom is on the fibre surface ; (bottom) the

plotted as a function of the fibre radius, a :
atom is located at a distance 150 nm from the fibre surface. The rates are presented relative to

150 200 250 300 350 400

Radius of the fiber (nm)

the spontaneous emission rate in vacuum, I'}%%.

perspectives they offer will be addressed in a future work.
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Figure 6. Total spontaneous emission rate of a sodium atom into the radiative modes of a
nanofibre of radius a = 100 nm. The rate is plotted as a function of the distance r of the atom
to the fibre axis : (top) atom initially prepared in the state |1051/2,mj = i%), (bottom) atom

initially prepared in the states [10pi/,,m; = £1), [10ps/y, m; = £1) and [10ps/,, m; = £2).
The rates I'105, T'1% are presented relative to the spontaneous emission rates rios, F(l)Op in vacuum
and the distance r is expressed in units of the fibre radius, a.

Finally, in figure 6, one observes a damped semi-oscillatory behaviour for T'1% and 'l as
functions of r, and for T'}% the oscillations of the different contributions j = 1/2,3/2 are not in

phase. These features result from the behaviour of the different transition components ;.

shown in figure 7 for nl = npss,, m; = :I:%, which is itself due to the oscillatory behaviour of the

radiative field. For a transition of frequency w, the frequency of oscillation with r is approximately

given by 2w/c.

4. Conclusion

We have investigated the influence of an optical nanofibre on the spontaneous emission rate of a
sodium atom prepared in a Rydberg state. The respective contributions of the guided and radiative
modes to the total rate were numerically determined, for different principal quantum numbers and
different symmetries, and their remarkable features were physically discussed.
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Figure 7. Spontaneous emission rate of a sodium atom initially prepared in }10p3/2,mj = i%}
into the radiative modes of a nanofibre of radius a = 100 nm : contributions of the different

transitions |10ps/,, m; = i%} — |nsip,my = i%>,|nd5/2,mj = i%,i%% forn = 3,---,6, .

The rate is plotted as a function of the distance r of the atom to the fibre axis. The distance r
is expressed in units of the fibre radius, a.

Though the radiative modes’ contribution is dominant, a small fraction of the spontaneously
emitted light is transferred into the guided mode of the nanofibre. This effect might be enhanced
by resorting to atomic ensembles which could offer stronger and more directional collective
coupling. Using thicker fibres, with more than one guided mode, may also yield for a higher
ratio of spontaneous emission into the guided modes. This potentially paves the way towards the
implementation of a quantum network based on Rydberg atomic ensembles linked by nanofibres,
which will be further addressed in a future work.
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Appendix A. Guided modes

A guided mode is characterized by a set u = (w, S, m, f = £,p==). 3 is the projection of the
wavevector onto the axis of the nanofibre whose value is determined by the eigenvalue equation

(et i) (e * avieaon)

- (mjﬁf (wiz)? ’ <1>> -

Here we introduced & = \/nik? — 2, v = /%2 —n3k? and k = £. a is the radius of the fibre, n,
is the core index, no &~ 1 is the index of the surrounding vacuum. J,, and K,, denote the Bessel
functions of the first kind and the modified Bessel functions of the second kind, respectively. Note
that, when the monomode conditions are fulfilled, only the hybrid modes H E1; with m = 1 exist,
and are fully characterized by p = (w, f,p).

The polarization vectors of the guided mode (u) for r < a are given by

1 S (1 - st )

) = 00 fj:((,jj)) (T () (1 = 108) + Ty () (1 + m5) )

K, ('Ya) o
JIm(ka) Jm (7).

eg“) =C

while, for r > a, they are

C
el = B2 (K 0r)(1 = ms) + Ko o)1+ ms)),
el = % (Kmq(ﬁ’?”)(l —ms) — Kpi1(yr)(1 + mS))a
e = CKpm(yr),

where

,\/21(12 + Ii2a2

5= "I (ra) Kj,(va) -
Kadm (ka) + YyaKm (va)

Using the normalization condition
2 “+o00 5 2
/ d<p/ n (r) ‘e(“)‘ rdr =1,
0 0
we deduce that

2
 aBK, (ya) /21(n2 A1 + n2Ay)

Cl
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with the abbreviations

A= ( ) (1= ms)? (2, (30) = Jon (30) o2 (70)
+(1+m8) (T4 (va) = Jm (@) T2 (va))

ﬂ2 ( m (va) = Jm-1 (va) i1 (’Ya))) )

1 2 2
to= (it ) (0= (K2 (00 + Ko () Koo (00)

+ (1 +ms)” (K2 4y (7a) + K (va) Ky (va))

+2(3) (K200 + Knos 60) Ko ma))) .

Appendix B. Radiative modes

A radiative mode is characterized by a set v = (w, 8, m,p = £), where m is the order of the mode,
and the meaning of p will be explained below.

Defining the quantities k = \/n?k? — 32, 0 = \/n2k? — 32 and k = w/c, one can write the
polarization vectors of the radiative mode (v) for r < a :

1 L wm
eff’) = (ﬂAJ;n(m") + 1BﬁJm(m")),

1 mp
() — (14222 _ /
ey o <1A o Im (k1) —wBJ) (K )),

e = AJ,, (kr),

while for r > a :

1 |
o) = - 5(Caor) + B om) 4
ag

ar

(DJp, (o1) + FYy (07‘))} ,

el = = [ Uf (Cdp (o7) + EY,, (07)) —w (DJ!, (o7) + FY;(JT))] :

e = CJ,, (or) + EYy, (07),

where Y,,, denote Bessel functions of the second kind. The coefficients C', D, F and F' are related

to A and B as follows
2

C= - 2% (AL, +iBWy),
260 ny
7Ta0'
D= (ApoVa +iBMs),
2
E =22 (AL, +iBV}),
260
Ta 2
F = —i~—— (AuoVi +iBM),
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Vi

Vs
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— _mB (n% - n%) Im (ca) Jn (ka),

awﬂolﬁ?20'2
mf3
= corong? (1 =11 Y (00) I ().
1 1
=—Jn (Ua) J:n (Ha) — —JT’n (O'CL) I (I’ia),
K g

= %Ym (ca) JT/n (ka) — %Y,./n (ca) Jm (Ka),

2 2
= 60:1 I (0a) J}, (ka) — wJ,’n (ca) I (ka),
o

Gon% 6071%

= Y, (0a) J), (ka) —

Y, (ca) J,, (ka).

In the single-mode approximation, a guided mode is completely specified by the frequency w, the
direction of propagation f = +1 and the polarization p = +1. By contrast, at first glance, this
is not the case for the radiative modes any longer. Once 3, w and m are fixed, we are left with
two constants A and B, and a normalization condition will only determine one constant. We must
therefore separate these into two modes. For instance, we can just set A = 0 for one mode and
B = 0 for the other one. We want, however, the two modes to be orthogonal to each other. An
alternative method consists in setting B = pinA with the parameter p = +1, then imposing an
orthogonality condition between e®=*1 and e(»=—1. Explicitly, this condition is written :

/O27T do /000 n(r)? {e(”) . e(”/)] rdr = 8pp Smm: 6 (w —w') 6 (B8 — ).

If we consider the vacuum surrounding with the index ny = 1, this leads to :

1=

\/L‘{ + L2 + eopo (V2 + V2)

VP + V3 + 50 (M + M3)’
2{% (107 +127) + & (1D +171)].

The second normalization equation allows us to calculate the form of |A]

|A]

=

1| 2 1 ) )
= a lom Z (EOLJ'—PUVJ‘| +|M0VJ—P’7MJ>

7j=1,2

This shows that v = (w, 8, m, p) completely determines a radiative mode.

Appendix C. Spontaneous emission of an atom in the presence of a nanofibre

With the definitions oy n = | M) (N|, wpyn = (Ey — En) /By k = w/e, the Hamiltonian of the full
system consisting of the atom and the electric field takes the form H = Hy + H¢ + H;pe with
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Hy = Zm}a;au—kzm‘)aiaw
o v
Ho = ZMMUMM,

Hip = _553

where D = > MAN dynonn and E (7) = Eg (7)+E,. (7) are the atomic dipole operator and the total
electric field opérator, respectively. Switching to the interaction picture relative to Hy = Hy + Hy,
and resorting to the rotating wave approximation (RWA) we get the interaction Hamiltonian (note
that the states |M) are ordered by increasing energies)

Hint (t) ~in Z Z G#MNUMNauefi(wfwMN)t +h.c.
N<M p

+in Z Z GuyvNoyNa e @WmeMN)t L ¢
N<M v

where we introduced

wp' - :
G = ./ (d e (i (fBztpe)
HMN 4dmegh MN =€ ) €
GI/MN = — hd (JMN . éi(y)) 61(5Z+mw).
dmegh

For simplicity, from now on we shall use A to denote either guided modes, i.e. A = (w, f = +,p = %),
or radiative modes, i.e. A = (w,f,m,p), and use ), to represent the sum, either discrete or
continuous, of these modes, whence

Hiny (t) m=ih Y Y Gaynoanaxe A«mn)t
N<M A

—ih Y Y GhyvahonaetiaTent (C.1)
N<M X

From equation (C.1), we get the Heisenberg equations for the field and atomic operators, ay
and opg

dray = — Y Giunonuetimemnt (C.2)
N<M

Oopg = Z Z Gromopm (t) ax (t) e iwr—wan)t
M<Q X

B Z Z GAMPUMQ (t) a) (t) efi(WA*WMP)t

P<M X

_ Z Z G;MQCLTA (t)opur (t) eHilwr—wrQ)t
Q<M A

+ 33 Gipaal (1) oarg () etilerwrnt, (C.3)

M<P X
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We can eliminate the field degree of freedom by inserting the formal solution of equation (C.2)

ay (t) = ay (to) — Z GKMN/ ONM (S) e-‘ri(w)\—wMN)s

t
N<M to

into equation (C.3). Then performing Markov approximation [31] and using

) ) 1
/ dset B = 75 (A) +iP ()
O A

we get

Oopg~ —{T'pg +1Apg}topg (t) +dpo Z Ympomm (t) +Epq (1)
P<M

where we introduced the different decay rates and energy shifts due to spontaneous emission into
the modes of the fibre,

1
FPQ = 5 (Fp + FQ)

APQEAP—AQ
I'p = Z YPM
M<P

vrq =27y [Garal’ 6 (wr — wpe)
A

2
(0)
‘G/\PM’

2
ap =p| Yy Gl +AD

W)y — W Wy — W
M<P A A PM A PM

and the associated Langevin forces

Epq (1) = Y > Grguopn (t)ax (to) e r—wer)!

M<Q X

o Z Z Gampomq (t) ax (to) e~ ilwr—wmp)t

P<M X

B Z Z GKMQGL (to) opar (1) etilwa—wno)t
Q<M X

+ 373 Ghpural (to) oarg (1) eieamerant, (C.4)
M<P X

Note that due to the normal operator ordering in equation (C.4), ({pg) = 0.
From the relation pgp (t) = Tr [p (to) opg (t)] one immediately deduces the evolution equation
for the density matrix

Opgr = — (Tpg +1Apg) por (t) + 0pg Z Ymppy (t)
P<M
In particular, for coherences (P # @), we obtain

(t) =~ ef(FPQWLiAPQ)(tftO)

PQP pqp (to) -
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n' (np|[e[[10s) (n's|[[|10p)  {n'd||7|[10p)
3 0.1458095  0.0205458  -0.0159734
4 0.3574532  0.0914227  -0.0856747
5 0.7398834  0.2407079  -0.2638617
6 1.4886102  0.5381275  -0.6944033
7 32367546  1.1745454  -1.8591371
8 91040991  2.8038037  -6.1208872
9 71.1485790  8.9586411 160.0011787

10 93.2001425

Table D1. Reduced matrix elements (n'¢'||#||nf) in units of eap (e is the absolute value of the
electron charge and ag is the Bohr radius), for n¢ = 10s and 10p.

Appendix D. Atomic data

In order to calculate the rates of spontaneous emission for levels 10s;,5 and 10p; /2 3/2, we need
energies and transition dipole moments involving s, p and d lower levels. Regarding energies, we
take experimental values from the NIST database [33]. Transition dipole moments are calculated
using the Cowan codes [34].

The vector associated with the dipole operator is expressed as irreducible tensors (fq (¢ =0,+1),
such that dy = d, and dyq = :F(czm + szy)\/ﬁ Their matrix elements in the coupled atomic basis
{Int;m;)} read

~ . / B - g - . o
(0 | dy Intymy) = e(~1)7+ \/<21+1>X{ o }<”'””f||”€>0§1§?12

where e is the absolute value of the electron charge, Z e f
a Clebsch-Gordan coefficient [35]. The quantity (n'¢'||t||nf) is the reduced matrix element of the
position operator of the outermost electron. In our calculations, it is supposed to be independent
from j and j'.

Table D1 contains the quantities (n'¢'||£||10s) and (n'¢'||£||10p) relevant for our calculation.
They give radiative lifetimes of 0.855, 8.58 and 8.56 us for 10s, 10p;/2 and 10ps/, respectively,
which are in correct agreement with the values reported in Ref. [36].

b ¢ } is a Wigner 6_] SyHlbOl, and C;Zzbﬁ
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