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Abstract. We report on numerical calculations of the spontaneous emission rate of a Rydberg-
excited sodium atom in the vicinity of an optical nano�bre. In particular, we study how this
rate varies with the distance of the atom to the �bre, the �bre's radius, the symmetry s or p
of the Rydberg state as well as its principal quantum number. We �nd that a fraction of the
spontaneously emitted light can be captured and guided along the �bre. This suggests that such
a setup could be used for networking atomic ensembles, manipulated in a collective way due to
the Rydberg blockade phenomenon.
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1. Introduction

Within the last two decades, the strong dipole-dipole interaction experienced by two neighbouring
Rydberg-excited atoms [1] has become the main ingredient for many of the atomic quantum
information protocol proposals (see [2] and references therein). In particular, this interaction can
be so large as to even forbid the simultaneous resonant excitation of two atoms if their separation is
less than a speci�c distance, called the blockade radius [3], which typically depends on the intensity
of the laser excitation and the interaction between the Rydberg atoms [4]. The discovery of this
�Rydberg blockade� phenomenon [3, 5�9] paved the way for a new encoding scheme using atomic
ensembles as collective quantum registers [5, 10�12] and repeaters [13�15]. In this novel framework,
information is stored in collective spin-wave-like symmetric states, which contain fully delocalized
atomic excitations. Qubits are more easily manipulated and more robust in this collective approach
than in the usual single-particle paradigm.

Scalability is one of the crucial requirements for quantum devices [16] and interfacing atomic
ensembles into a quantum network is a possible way to reach this goal. Photons naturally appear as
ideal information carriers and the photon-based protocols considered so far include free-space [17],
or guided propagation through optical �bres [13]. The former has the advantage of being relatively
easy to implement, but presents the drawback of strong losses. The latter requires a cavity quantum
electrodynamics setup, which is experimentally more involved. An alternative option would be to
resort to optical nano�bres. Such �bres have recently received much attention [18, 19] because the
coupling to the evanescent (resp. guided) modes of a nano�bre allows for easy-to-implement atom
trapping [20, 21] (resp. detection [22]). This coupling increases in strength as the �bre diameter
reduces and the atoms approach the �bre surface. It was also even shown that energy could be
exchanged between two distant atoms via the guided modes of the �bre [23]. This strongly suggests
that optical nano�bres could play the role of a communication channel between the nodes of an
atomic quantum network consisting of Rydberg-excited atomic ensembles.

In this article, we make a �rst step towards this goal and investigate the emission rate of a
highly-excited (Rydberg) sodium atom in the neighbourhood of an optical nano�bre made of silica.
In the perspective of building a quantum network, we are particularly interested in quantifying how
much spontaneously emitted light can be captured and guided along the �bre. Here, we study the
in�uence of the atom to �bre distance, the radius of the �bre, and the symmetry of the Rydberg
state, on the emission rates into the guided and radiative �bre modes. Extending the treatments
of Refs. [24, 25], we �nd that up to ≈ 13%, of the spontaneously emitted light can be captured and
guided along both directions of the �bre, which is comparable with the ratio of ≈ 30% obtained
with a cesium atom initially in its lowest excited state 6P3/2 and located on the surface of a 200-
nm-diameter nano�bre [25]. Although the theoretical framework we use here is the same, numerical
calculations are more complex than in Ref. [25] due to the larger number of transitions considered.
Contrary to Ref. [25], we do not take into account the atomic hyper�ne structure in the excited
state, which is very small for Rydberg states [26].

The article is organized as follows. In Sec. 2 we brie�y present the system and introduce the
expressions of the spontaneous emission rates. In Sec. 3, we present the results of our numerical
calculations and discuss the di�erent behaviours observed when the atom is initially in an s or p
Rydberg state. Finally, in Sec. 4, we conclude and give perspectives of our work. Appendix A
and Appendix B provide details about the guided and radiative electromagnetic modes, Appendix
C sketches the derivation of the spontaneous emission rates of the atom in the presence of the
nano�bre and Appendix D displays the atomic data we used in our calculations.
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Figure 1. Sodium atom in the vicinity of an optical nano�bre with a radius a. The refractive
index is n1 = 1.45 for silica and n2 = 1 for vacuum. The axis of the nano�bre is arbitrarily
chosen as the z-axis. The cylindrical coordinates (r, ϕ, z) and frame (~er, ~eϕ, ~ez) are introduced.

2. The system

We consider a sodium atom, initially prepared in the highly-excited (Rydberg) level n ≤ 10, in
the vicinity of a silica nano�bre, whose radius is denoted by a and whose axis is conventionally
taken as the z-axis, see �gure 1. Our goal is to investigate how the presence of the �bre modi�es
the spontaneous emission rate of the atom : in particular, we want to study the in�uence of
the radius of the �bre, the distance of the atom to the �bre as well as the symmetry of the
Rydberg state |nlj ,mj〉 considered and the principal quantum number n on the spontaneous
emission rate. Note that, though the con�guration is the same as in Ref. [25], in this work,
the atom is (relatively) highly excited and, in contrast to Ref. [25], several transition frequencies
must therefore be considered which complicates the numerical work. The choice of the sodium
atom and the maximal principal quantum number nmax = 10 is motivated by the fact that, for
the relevant transitions 10 → n = 3, · · · , 9, the �bre can be approximately considered as a non
absorbing medium of respective refractive indices n1 = (1.467, 1.450, 1.438, 1.399, 1.112, 1.615, 2.021)
[27]. Such constraints may, however, be alleviated by resorting to the formalism of macroscopic
quantum electrodynamics and the Green's function approach [28]. These techniques allow to take
the absorption of the medium into account and therefore to deal with higher Rydberg states. This
formalism and its application to the calculation of energy shifts will be investigated in a future
work. Moreover, the choice of sodium, rather than rubidium or cesium which are more commonly
used in nano�bre experiments, was made to allow us to neglect relativistic e�ects on the electronic
wavefunctions and therefore simplify our treatment. The case of cesium will also be tackled in a
future work.

As recalled in Ref. [25], the free electromagnetic �eld in the presence of a cylindrical �bre can be
decomposed into guided and radiative modes which respectively correspond to energy propagation
along the �bre and radially to it (see Appendix A and Appendix B).

Guided modes are characterized by their frequency ω > 0 and order m, which is a positive
integer �xing the periodicity of the �eld with respect to ϕ. Due to the continuity conditions at
the core-cladding interface of the �bre, the norm of the projection of the wavevector onto the
z axis, denoted by β, can only take a discrete set of values which are the solutions of the so-
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called characteristic equation, equation (A.1) [29, 30]. The corresponding modes have di�erent
cuto� frequencies. In particular, if ω is su�ciently low, only the (so-called �hybrid�) mode HE11,
corresponding to m = 1, can propagate along the �bre. Since a given mode can propagate either
in the positive or negative z-direction, an extra index f = ±1 is introduced, such that β × f is
the (algebraic) projection of the wavevector onto the z-axis. To complete the description, one
also allows for two di�erent polarization directions labelled by p = ±1. For simplicity, we gather
the characteristic numbers (ω,m, f, p) into one symbol µ and replace the discrete/continuous sums∑
mfp

´∞
0
dω by

∑
µ. Finally the general form of the quantized guided �eld component is

~Eg (~r) = i
∑
µ

√
~ωβ′
4πε0

aµ~e
(µ) (r, ϕ) ei(fβz+pϕ) + h.c.

In this expression, β′ stands for the derivative
(
dβ
dω

)
, ~eµ is the electric-�eld pro�le function of the

mode (µ) whose expression is given in Appendix A, while aµ is the annihilation operator of the

mode, satisfying the bosonic commutation rules
[
aµ, a

†
µ′

]
= δ (ω − ω′) δmm′δff ′δpp′ .

Radiative modes are characterized by their frequency ω > 0, their (positive integer) order m
and the projection of the wavevector on the nano�bre axis β which can now vary continuously
between −ωn2/c and ωn2/c. Here, the negative or positive sign indicates the direction of the
propagation of the radiation mode along the z-axis. A last number is needed to fully determine a
radiative mode, i.e. the polarization number p = ±1. The two values of p correspond to two modes
of orthogonal polarizations, see Appendix B. For simplicity, we gather the characteristic numbers

(ω, β,m, p) into one symbol ν and replace the discrete/continuous sums
∑
mp

´∞
0
dω
´ kn2

−kn2
dβ by∑

ν . The general form of the quantized radiative �eld component is

~Er (~r) = i
∑
ν

√
~ω

4πε0
aν~e

(ν) (r, ϕ) ei(βz+mϕ) + h.c.

In this expression ~eν is the electric-�eld pro�le function of the mode (ν) whose expression is given in
Appendix B, while aν is the annihilation operator of the mode, satisfying the bosonic commutation

rules
[
aν , a

†
ν′

]
= δ (ω − ω′) δmm′δpp′ .

In the presence of the nano�bre, the spontaneous emission rate ΓM of an atom from a state
|M〉 is the sum of the rates γMN from |M〉 to all lower states |N〉, i.e. ΓM ≡

∑
N<M γMN with

γMN ≡ 2π
∑
λ

|GλMN |2 δ (ωλ − ωMN ) . (1)

In the expression above, the sum is performed over all electromagnetic modes denoted by λ, whether
they be guided (λ = µ) or radiative (λ = ν) ; we moreover introduce the quantities

GµMN ≡ −
√

ωβ′

4πε0~

(
~dMN · ~e(µ)

)
ei(fβz+pϕ),

GνMN ≡ −
√

ω

4πε0~

(
~dMN · ~e(ν)

)
ei(βz+mϕ),

characterizing the coupling of the di�erent electromagnetic modes to the atomic transition |M〉 →
|N〉 of frequency ωMN ≡ (EM−EN )/~ and dipole matrix element ~dMN . Finally the decoherence rate
between states |M〉 and |N〉 is given by

ΓMN ≡
1

2
(ΓM + ΓN ) . (2)
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For a detailed derivation of equations (1,2), see Appendix C.

3. Numerical results and discussion

In this section, we present the numerical results we obtained for the spontaneous emission rate of
a sodium atom (Z = 11) initially prepared either in

∣∣ns1/2,mj

〉
or |npj ,mj〉 states with n ≤ 10 and

j = 1/2 or 3/2. We study the in�uence of the principal quantum number, n, and the distance from
the atom to the �bre surface on the emission rate. We also show how the �bre's radius modi�es
the relative weights of the di�erent transitions' contributions to the total rate. For simplicity, we
consider the contributions of the guided and radiative modes separately. The atomic data we used
can be found in Appendix D.

3.1. Guided modes

Figure 2 displays the spontaneous emission rates, Γ10s
g and Γ10p

g , of an atom initially prepared in

the states
∣∣10s1/2,mj

〉
and |10pj ,mj〉 with j = 1/2 or 3/2 , respectively, into the guided modes as a

function of the distance r to the �bre axis, see �gure 1. Note that the rates are presented relative to
the spontaneous emission rates Γ10s

0 , Γ10p
0 in vacuum and r is expressed in units of the �bre radius

with a = 100 nm. As expected, in both cases, the in�uence of the guided modes vanishes as r
increases, and therefore Γ10s

g ,Γ10p
g → 0 when r → +∞. The maximal value is obtained for r = a, i.e.

when the atom is on the �bre surface. More precisely, we have Γ10s
g ≈ 0.18Γ10s

0 for an atom initially

prepared in
∣∣10s1/2,mj = ± 1

2

〉
and Γ10p

g ≈ (0.027, 0.035, 0.044)×Γ10p
0 for an atom initially prepared

in
(∣∣10p3/2,mj = ± 1

2

〉
,
∣∣10p1/2,mj = ± 1

2

〉
,
∣∣10p3/2,mj = ± 3

2

〉)
. In these calculations we assumed

that the electronic wave-function of the Rydberg atom is not a�ected by the nano�bre, which
deserves further study. As a more realistic con�guration, we shall consider that the Rydberg atom
is located at a distance from the �bre surface which is much larger than its radius rNa ≈ 5 nm = a

20 .
For r = a + 10rNa ≈ 1.5 × a, we obtain the spontaneous rate Γ10s

g ≈ 0.066 × Γ10s
0 for an atom

initially prepared in
∣∣10s1/2,mj = ± 1

2

〉
and Γ10p

g ≈ (0.006, 0.011, 0.015)× Γ10p
0 for an atom initially

prepared in
(∣∣10p3/2,mj = ± 1

2

〉
,
∣∣10p1/2,mj = ± 1

2

〉
,
∣∣10p3/2,mj = ± 3

2

〉)
. Moreover, we note that in

general, Γ10p
g � Γ10s

g , and Γ
10p3/2,mj=±

1
2

g < Γ
10p1/2
g < Γ

10p3/2,mj=±
3
2

g . The latter relation can be
qualitatively understood by geometric arguments on the coupling of guided modes with the atomic
orbitals. The more a state is polarized along z, the less it couples to the guided modes which are
essentially polarized orthogonally to the �bre axis. This is consistent with what we observe, since
the states

∣∣10p3/2,mj = ± 1
2

〉
are better aligned along z than the states

∣∣10p1/2,mj = ± 1
2

〉
which

themselves are more aligned along z than
∣∣10p3/2,mj = ± 3

2

〉
. This can be seen on their relation

with the decoupled basis states [32].

Figure 3 shows the in�uence of the principal quantum number n on the spontaneous emission
rate Γnsg into the guided modes for an atom initially prepared in the state

∣∣ns1/2,mj = ± 1
2

〉
for n = 5

to 10. The higher the value of n, the more Γnsg is peaked as a function of r/a around 1. Moreover,
the plots get closer and closer as n increases : the curves n = 9, 10 cannot be distinguished and for
clarity, the curve n = 8 has not been plotted.

Finally, �gures 4 and 5 illustrate the in�uence of the �bre radius, a, on the spontaneous
emission rate from the state

∣∣ns1/2,mj = ± 1
2

〉
into the guided modes. More precisely, �gure 4

displays the partial spontaneous emission rates along the speci�c transition 10s → 3p (Note that
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Figure 2. Spontaneous emission rate of a sodium atom into the guided modes of a nano�bre of
radius a = 100nm. The rate is plotted as a function of the distance r of the atom to the �bre axis
: (top) atom initially prepared in the state

∣∣10s1/2,mj = ± 1
2

〉
, (bottom) atom initially prepared

in the states
∣∣10p1/2,mj = ± 1

2

〉
,
∣∣10p3/2,mj = ± 1

2

〉
and

∣∣10p3/2,mj = ± 3
2

〉
. The rates Γ10s

g ,Γ10p
g

are presented relative to the spontaneous emission rates Γ10s
0 , Γ10p

0 in vacuum.

n = 3 corresponds to the ground state of the sodium atom) into di�erent guided modes HEmn,
EHmn, TEmn and TMmn. Two cases are considered : (i) the atom is located on the �bre surface,
i.e. at a distance r = a from the z-axis, and (ii) the atom is placed at a �xed distance of 150
nm from the �bre surface, i.e. at a distance r = a + 150 nm from the z-axis. As expected, case
(ii) gives rise to much weaker relative rates than case (i), since the atom is further away from
the �bre and therefore the guided modes are strongly attenuated. Moreover, as a increases, the
cuto� frequencies of higher modes become smaller : when the cuto� frequency of one mode passes
below the frequency of the transition 10s→ 3p, this mode starts to contribute to the spontaneous
emission rate. The peaked structure observed on the di�erent plots results from the peaked shape
of the mode intensity pro�le itself with respect to a.

Figure 5 displays the partial spontaneous emission rates γ10s→np
g into the guided modes along

the respective transitions 10s→ np as well as the total rate Γ10s
g =

∑
3≤n≤10 γ

10s→np
g as functions

of the �bre radius, a, in the same two cases (i, ii) as above. One observes that, due to the range
chosen for a, only the transitions 10s → np for n = 3, 4, 5 give relevant contributions to the total
rate. It also appears that only the transition 10s→ 3p substantially couples to higher-order guided
modes, while the other transitions couple only to the fundamental guided mode HE11. On the
range chosen for a, the peak structure observed for the total emission rate is therefore mainly due
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Figure 3. Spontaneous emission rate of a sodium atom initially prepared in
∣∣ns1/2,mj = ± 1

2

〉
,

for n = 5, · · · , 10, into the guided modes of a nano�bre of radius a = 100 nm. The rate is plotted
as a function of the distance r of the atom from the �bre axis. The rate, Γns

g , is renormalized
by the spontaneous emission rate in vacuum, Γns

0 , and the distance r is expressed in units of the
�bre radius, a.

to the partial rate γ10s→3p
g , while the other transitions smoothly modify the value of Γ10s

g . Note
that the intensity pro�les of the guided modes relative to the di�erent transition frequencies are
expected to coincide up to a rescaling of the a-axis : this scaling factor is given by the ratio of the
frequencies. The positions of the peaks of the di�erent partial rates γ10s→np

g should therefore also
coincide up to a simple scaling. The heights of the peaks, however, are expected to be di�erent
since, for instance, the dipole matrix element is not the same for the di�erent transitions.

3.2. Radiative modes

We now turn to the contribution of the radiative modes to the total spontaneous emission rates.
Figure 6 displays the spontaneous emission rates Γ10s

r and Γ10p
r of an atom initially prepared

in the states
∣∣10s1/2,mj

〉
,
∣∣10p1/2,3/2,mj

〉
, respectively into the radiative modes as a function
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Figure 4. Partial spontaneous emission rates of a sodium atom along the speci�c transition
10s→ 3p into di�erent guided modes of the nano�ber, as functions of the �bre radius, a : (top)
the atom is on the �bre surface ; (bottom) the atom is located at a distance 150 nm from the
�bre surface. The rates are presented relative to the spontaneous emission rate in vacuum, Γ10s

0 .

of the distance r to the �bre axis, see �gure 1. Note that the rates are renormalized by the
spontaneous emission rates in vacuum Γ10s

0 , resp. Γ10p
0 , and r is expressed in units of the �bre

radius a = 100 nm. As expected, in both cases, the in�uence of the �bre vanishes as r increases,
i.e. Γ10s

r ,Γ10p
r → 1 for r → +∞. The maximal value is observed for r = a, i.e. when the

atom is on the �bre surface. More precisely, we have Γ10s
r ≈ 1.24 × Γ10s

0 for an atom initially
prepared in

∣∣10s1/2,mj = ± 1
2

〉
and Γ10p

r ≈ (1.19, 1.23, 1.29)× Γ10p
0 for an atom initially prepared in(∣∣10p3/2,mj = ± 1

2

〉
,
∣∣10p1/2,mj = ± 1

2

〉
,
∣∣10p3/2,mj = ± 3

2

〉)
. For an atom at r ≈ 1.5× a, , i.e., at a

distance from the �bre surface, we obtain the spontaneous rate Γ10s
r ≈ 1.041 × Γ10s

0 for an atom
initially prepared in

∣∣10s1/2,mj = ± 1
2

〉
and Γ10p

r ≈ (1.028, 1.044, 1.062)× Γ10p
0 for an atom initially

prepared in
(∣∣10p3/2,mj = ± 1

2

〉
,
∣∣10p1/2,mj = ± 1

2

〉
,
∣∣10p3/2,mj = ± 3

2

〉)
. This allows us to compute
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Figure 5. Partial, γ10s→np
g , and total, Γ10s

g , spontaneous emission rates of a sodium atom

initially prepared in
∣∣10s1/2,mj = ± 1

2

〉
into the guided modes of a nano�bre. The rates are

plotted as a function of the �bre radius, a : (top) the atom is on the �bre surface ; (bottom) the
atom is located at a distance 150 nm from the �bre surface. The rates are presented relative to
the spontaneous emission rate in vacuum, Γ10s

0 .

the proportion of light which is emitted into the guided and radiative modes. For instance, for
an atom initially prepared in the state

∣∣10s1/2,mj = ± 1
2

〉
, Γg/ (Γg + Γr) ≈ 13% when the atom is

located on the �bre surface (r = a), and Γg/ (Γg + Γr) ≈ 6% when the atom is located at 50 nm
from the �bre surface (r = 1.5× a). Since light is mostly spontaneously emitted into the radiative
modes, it seems quite challenging to e�ciently interface a Rydberg atom with a guided mode of the
nano�bre and, thence, to build a valuable quantum network. The use of atomic ensembles might
alleviate this concern, since, as already demonstrated in free-space, their spontaneous emission
could be made highly directional and their coupling strength is enhanced [17]. These issues and the
perspectives they o�er will be addressed in a future work.
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Figure 6. Total spontaneous emission rate of a sodium atom into the radiative modes of a
nano�bre of radius a = 100 nm. The rate is plotted as a function of the distance r of the atom
to the �bre axis : (top) atom initially prepared in the state

∣∣10s1/2,mj = ± 1
2

〉
, (bottom) atom

initially prepared in the states
∣∣10p1/2,mj = ± 1

2

〉
,
∣∣10p3/2,mj = ± 1

2

〉
and

∣∣10p3/2,mj = ± 3
2

〉
.

The rates Γ10s
r ,Γ10p

r are presented relative to the spontaneous emission rates Γ10s
0 , Γ10p

0 in vacuum
and the distance r is expressed in units of the �bre radius, a.

Finally, in �gure 6, one observes a damped semi-oscillatory behaviour for Γ10s
r and Γ10p

r as
functions of r, and for Γ10p

r the oscillations of the di�erent contributions j = 1/2, 3/2 are not in
phase. These features result from the behaviour of the di�erent transition components γnl→n′l′

shown in �gure 7 for nl = np3/2,mj = ± 1
2 , which is itself due to the oscillatory behaviour of the

radiative �eld. For a transition of frequency ω, the frequency of oscillation with r is approximately
given by 2ω/c.

4. Conclusion

We have investigated the in�uence of an optical nano�bre on the spontaneous emission rate of a
sodium atom prepared in a Rydberg state. The respective contributions of the guided and radiative
modes to the total rate were numerically determined, for di�erent principal quantum numbers and
di�erent symmetries, and their remarkable features were physically discussed.
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Figure 7. Spontaneous emission rate of a sodium atom initially prepared in
∣∣10p3/2,mj = ± 1

2

〉
into the radiative modes of a nano�bre of radius a = 100 nm : contributions of the di�erent
transitions

∣∣10p3/2,mj = ± 1
2

〉
→

∣∣ns1/2,mj = ± 1
2

〉
,
∣∣nd5/2,mj = ± 1

2
,± 3

2

〉
, for n = 3, · · · , 6, .

The rate is plotted as a function of the distance r of the atom to the �bre axis. The distance r
is expressed in units of the �bre radius, a.

Though the radiative modes' contribution is dominant, a small fraction of the spontaneously
emitted light is transferred into the guided mode of the nano�bre. This e�ect might be enhanced
by resorting to atomic ensembles which could o�er stronger and more directional collective
coupling. Using thicker �bres, with more than one guided mode, may also yield for a higher
ratio of spontaneous emission into the guided modes. This potentially paves the way towards the
implementation of a quantum network based on Rydberg atomic ensembles linked by nano�bres,
which will be further addressed in a future work.
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Appendix A. Guided modes

A guided mode is characterized by a set µ ≡ (ω, β,m, f = ±, p = ±). β is the projection of the
wavevector onto the axis of the nano�bre whose value is determined by the eigenvalue equation(

n2
1J
′
m(κa)

aκJm(κa)
+
n2

2K
′
m(γa)

aγKm(κa)

)(
J ′m(κa)

aκJm(κa)
+

K ′m(γa)

aγKm(γa)

)

=

(
mcβ

ω

)2
(

1

(γa)
2 +

1

(κa)
2

)2

, (A.1)

Here we introduced κ ≡
√
n2

1k
2 − β2, γ ≡

√
β2 − n2

2k
2 and k ≡ ω

c . a is the radius of the �bre, n1

is the core index, n2 ≈ 1 is the index of the surrounding vacuum. Jm and Km denote the Bessel
functions of the �rst kind and the modi�ed Bessel functions of the second kind, respectively. Note
that, when the monomode conditions are ful�lled, only the hybrid modes HE11 with m = 1 exist,
and are fully characterized by µ ≡ (ω, f, p).

The polarization vectors of the guided mode (µ) for r < a are given by

e(µ)
r =

βC

2iκ

Km(γa)

Jm(κa)

(
Jm−1(κr)(1−ms)− Jm+1(κr)(1 +ms)

)
e(µ)
ϕ =

pβC

2κ

Km(γa)

Jm(κa)

(
Jm−1(κr)(1−ms) + Jm+1(κr)(1 +ms)

)
,

e(µ)
z = C

Km(γa)

Jm(κa)
Jm(κr),

while, for r > a, they are

e(µ)
r =

βC

2iγ

(
Km−1(γr)(1−ms) +Km+1(γr)(1 +ms)

)
,

e(µ)
ϕ =

βpC

2γ

(
Km−1(γr)(1−ms)−Km+1(γr)(1 +ms)

)
,

e(µ)
z = CKm(γr),

where

s =

1
γ2a2 + 1

κ2a2

J′
m(κa)

κaJm(κa) +
K′
m(γa)

γaKm(γa)

.

Using the normalization condition
ˆ 2π

0

dϕ

ˆ +∞

0

n (r)
2
∣∣∣e(µ)

∣∣∣2 rdr = 1,

we deduce that

|C| = 2

aβKm (γa)
√

2π(n2
1A1 + n2

2A2)
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with the abbreviations

A1 =

(
1

κJm (κa)

)2

×
(

(1−ms)2 (
J2
m−1 (γa)− Jm (γa) Jm−2 (γa)

)
+ (1 +ms)2

(
J2
m+1 (γa)− Jm (γa) Jm+2 (γa)

)
+2

κ2

β2

(
J2
m (γa)− Jm−1 (γa) Jm+1 (γa)

))
,

A2 =

(
1

γKm (γa)

)2

×
(

(1−ms)2 (−K2
m−1 (γa) +Km (γa)Km−2 (γa)

)
+ (1 +ms)

2 (−K2
m+1 (γa) +Km (γa)Km+2 (γa)

)
+2

(
γ

β

)2 (
−K2

m (γa) +Km−1 (γa)Km+1 (γa)
))

.

Appendix B. Radiative modes

A radiative mode is characterized by a set ν ≡ (ω, β,m, p = ±), where m is the order of the mode,
and the meaning of p will be explained below.

De�ning the quantities κ ≡
√
n2

1k
2 − β2, σ ≡

√
n2

2k
2 − β2 and k ≡ ω/c, one can write the

polarization vectors of the radiative mode (ν) for r < a :

e(ν)
r =

1

iκ

(
βAJ ′m(κr) + iB

ωm

rκ
Jm(κr)

)
,

e(ν)
ϕ =

1

iκ

(
iA
mβ

κr
Jm(κr)− ωBJ ′m(κr)

)
,

e(ν)
z = AJm(κr),

while for r > a :

e(ν)
r =

1

iσ

[
β (CJ ′m(σr) + EY ′m(σr)) +

imω

σr
(DJm (σr) + FYm (σr))

]
,

e(ν)
ϕ =

1

iσ

[
i
νβ

σr
(CJm (σr) + EYm (σr))− ω (DJ ′m(σr) + FY ′m(σr))

]
,

e(ν)
z = CJm (σr) + EYm (σr) ,

where Ym denote Bessel functions of the second kind. The coe�cients C, D, E and F are related
to A and B as follows

C = − πaσ2

2ε0n2
2

(AL2 + iBV2) ,

D = i
πaσ2

2
(Aµ0V2 + iBM2) ,

E =
πaσ2

2ε0n2
2

(AL1 + iBV1) ,

F = − i
πaσ2

2
(Aµ0V1 + iBM1) ,
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with

V1 =
mβ

aωµ0κ2σ2

(
n2

2 − n2
1

)
Jm (σa) Jm (κa) ,

V2 =
mβ

aωµ0κ2σ2

(
n2

2 − n2
1

)
Ym (σa) Jm (κa) ,

M1 =
1

κ
Jm (σa) J ′m (κa)− 1

σ
J ′m (σa) Jm (κa) ,

M2 =
1

κ
Ym (σa) J ′m (κa)− 1

σ
Y ′m (σa) Jm (κa) ,

L1 =
ε0n

2
1

κ
Jm (σa) J ′m (κa)− ε0n

2
2

σ
J ′m (σa) Jm (κa) ,

L2 =
ε0n

2
1

κ
Ym (σa) J ′m (κa)− ε0n

2
2

σ
Y ′m (σa) Jm (κa) .

In the single-mode approximation, a guided mode is completely speci�ed by the frequency ω, the
direction of propagation f = ±1 and the polarization p = ±1. By contrast, at �rst glance, this
is not the case for the radiative modes any longer. Once β, ω and m are �xed, we are left with
two constants A and B, and a normalization condition will only determine one constant. We must
therefore separate these into two modes. For instance, we can just set A = 0 for one mode and
B = 0 for the other one. We want, however, the two modes to be orthogonal to each other. An
alternative method consists in setting B = piηA with the parameter p = ±1, then imposing an
orthogonality condition between e(p=+1) and e(p=−1). Explicitly, this condition is written :ˆ 2π

0

dϕ

ˆ ∞
0

n (r)
2
[
e(ν) · e(ν′)

]
rdr = δpp′δmm′δ (ω − ω′) δ (β − β′) .

If we consider the vacuum surrounding with the index n2 = 1, this leads to :

η =

√
L2

1 + L2
2 + ε0µ0 (V 2

1 + V 2
2 )

V 2
1 + V 2

2 + ε0
µ0

(M2
1 +M2

2 )
,

1 =
2πω

σ2

[(
|C|2 + |E|2

)
+ c2

(
|D|2 + |F |2

)]
.

The second normalization equation allows us to calculate the form of |A|

|A| = 1

σa

 2

ωπ3

∑
j=1,2

(
1

ε0
|Lj − pηVj |2 + |µ0Vj − pηMj |2

)− 1
2

.

This shows that ν = (ω, β,m, p) completely determines a radiative mode.

Appendix C. Spontaneous emission of an atom in the presence of a nano�bre

With the de�nitions σMN ≡ |M〉 〈N |, ωMN ≡ (EM − EN ) /~, k ≡ ω/c, the Hamiltonian of the full
system consisting of the atom and the electric �eld takes the form H = Hat +Hf +Hint with
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Hf =
∑
µ

~ωa†µaµ +
∑
ν

~ωa†νaν ,

Hat =
∑
m

~ωMσMM ,

Hint = − ~D · ~E,

where ~D =
∑
M,N

~dMNσMN and ~E (~r) = ~Eg (~r)+ ~Er (~r) are the atomic dipole operator and the total
electric �eld operator, respectively. Switching to the interaction picture relative to H0 ≡ Hat +Hf ,
and resorting to the rotating wave approximation (RWA) we get the interaction Hamiltonian (note
that the states |M〉 are ordered by increasing energies)

H̃int (t) ≈ i~
∑
N<M

∑
µ

GµMNσMNaµe
−i(ω−ωMN )t + h.c.

+ i~
∑
N<M

∑
ν

GνMNσMNaνe
−i(ω−ωMN )t + h.c.

where we introduced

GµMN ≡ −
√

ωβ′

4πε0~

(
~dMN · ~e(µ)

)
ei(fβz+pϕ),

GνMN ≡ −
√

ω

4πε0~

(
~dMN · ~e(ν)

)
ei(βz+mϕ).

For simplicity, from now on we shall use λ to denote either guided modes, i.e. λ = (ω, f = ±, p = ±),
or radiative modes, i.e. λ = (ω, β,m, p), and use

∑
λ to represent the sum, either discrete or

continuous, of these modes, whence

H̃int (t) ≈ i~
∑
N<M

∑
λ

GλMNσMNaλe
−i(ωλ−ωMN )t

− i~
∑
N<M

∑
λ

G∗λMNa
†
λσNMe

+i(ωλ−ωMN )t (C.1)

From equation (C.1), we get the Heisenberg equations for the �eld and atomic operators, aλ
and σPQ

∂taλ = −
∑
N<M

G∗λMNσNMe
+i(ωλ−ωMN )t, (C.2)

∂tσPQ =
∑
M<Q

∑
λ

GλQMσPM (t) aλ (t) e−i(ωλ−ωQM )t

−
∑
P<M

∑
λ

GλMPσMQ (t) aλ (t) e−i(ωλ−ωMP )t

−
∑
Q<M

∑
λ

G∗λMQa
†
λ (t)σPM (t) e+i(ωλ−ωMQ)t

+
∑
M<P

∑
λ

G∗λPMa
†
λ (t)σMQ (t) e+i(ωλ−ωPM )t. (C.3)
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We can eliminate the �eld degree of freedom by inserting the formal solution of equation (C.2)

aλ (t) = aλ (t0)−
∑
N<M

G∗λMN

ˆ t

t0

σNM (s) e+i(ωλ−ωMN )s

into equation (C.3). Then performing Markov approximation [31] and usingˆ ∞
0

dse±i∆s = πδ (∆)± iP
(

1

∆

)
we get

∂tσPQ ≈ − {ΓPQ + i∆PQ}σPQ (t) + δPQ
∑
P<M

γMPσMM (t) + ξPQ (t)

where we introduced the di�erent decay rates and energy shifts due to spontaneous emission into
the modes of the �bre,

ΓPQ ≡
1

2
(ΓP + ΓQ)

∆PQ ≡ ∆P −∆Q

ΓP ≡
∑
M<P

γPM

γPQ ≡ 2π
∑
λ

|GλPQ|2 δ (ωλ − ωPQ)

∆P ≡ P

∑
M<P

∑
λ

|GλPM |2

ωλ − ωPM
−

∣∣∣G(0)
λPM

∣∣∣2
ωλ − ωPM

+ ∆
(0)
P

and the associated Langevin forces

ξPQ (t) ≡
∑
M<Q

∑
λ

GλQMσPM (t) aλ (t0) e−i(ωλ−ωQM )t

−
∑
P<M

∑
λ

GλMPσMQ (t) aλ (t0) e−i(ωλ−ωMP )t

−
∑
Q<M

∑
λ

G∗λMQa
†
λ (t0)σPM (t) e+i(ωλ−ωMQ)t

+
∑
M<P

∑
λ

G∗λPMa
†
λ (t0)σMQ (t) e+i(ωλ−ωPM )t. (C.4)

Note that due to the normal operator ordering in equation (C.4), 〈ξPQ〉 = 0.
From the relation ρQP (t) = Tr [ρ (t0)σPQ (t)] one immediately deduces the evolution equation

for the density matrix

∂tρQP ≈ − (ΓPQ + i∆PQ) ρQP (t) + δPQ
∑
P<M

γMP ρMM (t)

In particular, for coherences (P 6= Q), we obtain

ρQP (t) ≈ e−(ΓPQ+i∆PQ)(t−t0)ρQP (t0) .
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n′ 〈n′p‖r̂‖10s〉 〈n′s‖r̂‖10p〉 〈n′d‖r̂‖10p〉
3 0.1458095 0.0205458 -0.0159734
4 0.3574532 0.0914227 -0.0856747
5 0.7398834 0.2407079 -0.2638617
6 1.4886102 0.5381275 -0.6944033
7 3.2367546 1.1745454 -1.8591371
8 9.1040991 2.8038037 -6.1298872
9 71.1485790 8.9586411 160.0011787
10 93.2001425

Table D1. Reduced matrix elements 〈n′`′‖r̂‖n`〉 in units of ea0 (e is the absolute value of the
electron charge and a0 is the Bohr radius), for n` = 10s and 10p.

Appendix D. Atomic data

In order to calculate the rates of spontaneous emission for levels 10s1/2 and 10p1/2,3/2, we need
energies and transition dipole moments involving s, p and d lower levels. Regarding energies, we
take experimental values from the NIST database [33]. Transition dipole moments are calculated
using the Cowan codes [34].

The vector associated with the dipole operator is expressed as irreducible tensors d̂q (q = 0,±1),

such that d̂0 = d̂z and d̂±1 = ∓(d̂x ± id̂y)
√

2. Their matrix elements in the coupled atomic basis
{|n`jmj〉} read 〈

n′`′j′m
′
j

∣∣ d̂q |n`jmj〉 = e(−1)j+`
′+s
√

(2j + 1)×
{

` s j
j′ 1 `′

}
〈n′`′‖ r̂ ‖n`〉Cj

′m′
j

jmj1q
(D.1)

where e is the absolute value of the electron charge,

{
a b c
d e f

}
is a Wigner 6j symbol, and Ccγaαbβ

a Clebsch-Gordan coe�cient [35]. The quantity 〈n′`′‖r̂‖n`〉 is the reduced matrix element of the
position operator of the outermost electron. In our calculations, it is supposed to be independent
from j and j′.

Table D1 contains the quantities 〈n′`′‖r̂‖10s〉 and 〈n′`′‖r̂‖10p〉 relevant for our calculation.
They give radiative lifetimes of 0.855, 8.58 and 8.56 µs for 10s, 10p1/2 and 10p3/2 respectively,
which are in correct agreement with the values reported in Ref. [36].
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2 ,ms = − 1

2

〉∣∣j = 3
2 ,mj = − 1

2
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=
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∣∣l = 1,ml = 0; s = 1
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2

〉
+ 1√
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2 ,ms = 1

2
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3
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2
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+
√

2
3
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2
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2 ,mj = 3

2
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=
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2
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2 ,mj = − 1

2
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√

2
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