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Variations in the local stability of the flow in a Taylor–Couette cell can be imposed by
adding an axial Poiseuille flow and a radial flow associated with one or both of the
cylinders being permeable. At a given rotation rate of the inner cylinder, this results in
adjacent regions of the flow that can be simultaneously stable, convectively unstable,
and absolutely unstable, making this system fit for studying global modes of instability.
To this end, building on the existing stability analysis in absolute modes developing
over axially invariant base flows, we consider the case of axially varying base flows
in systems for which the outer cylinder is impermeable, and the inner cylinder is a
weakly permeable membrane through which the radial flow is governed by Darcy’s
law. The frameworks of linear and nonlinear global modes are used to describe the
instabilities and assess the results of direct numerical simulations using a dedicated
pseudospectral method. Three different axially evolving set-ups are considered. In the
first, fluid injection occurs along the full inner cylinder. In the second, fluid extraction
occurs along the full inner cylinder. Besides its fundamental interest, this set-up is
relevant to filtration devices. In the third, fluid flux through the inner cylinder evolves
from extraction to injection as cross-flow reversal occurs. In agreement with the global
mode analyses, the numerical simulations develop centrifugal instabilities above the
predicted critical rotation rates and downstream of the predicted axial locations. The
global mode analyses do not fully explain, however, that the instabilities observed in
the numerical simulations take the form of axial stacks of wavepackets characterized
by jumps of the temporal frequency.

Key words: absolute/convective instability, nonlinear instability, Taylor–Couette flow

1. Introduction
Linear stability analysis has matured substantially since its first successful

predictions of thermoconvective instabilities in Rayleigh–Bénard convection by
Rayleigh (1916) and centrifugal instabilities in Taylor–Couette flow by Taylor (1923).
Nevertheless, these two classical systems remain actively studied to advance our
understanding of hydrodynamic instabilities and test new approaches of stability
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analysis (Koshmieder 1993, provides a thorough presentation). Though academic,
Rayleigh–Bénard and Taylor–Couette flows bear sufficient resemblance to practical
systems, and they can be readily studied experimentally to verify and motivate
analytical approaches. The current work demonstrates that Taylor–Couette–Poiseuille
(denoted TCP hereinafter) flow with a permeable inner cylinder provides a new
opportunity to investigate how instabilities develop and tend to synchronize themselves
in spatially varying open flows, a class of flows by which numerous industrial and
geophysical systems are described. The current work, for example, is motivated
by applications of supercritical TCP flow to membrane separation (Hallström &
Lopez-Leiva 1978; Beaudoin & Jaffrin 1989). More broadly, however, providing
rigorous theoretical frameworks for synchronized, global, instabilities is pivotal to
understand and predict how spatially varying open flows lose their stability and
transition to turbulence. By comparing the results of theoretical analyses to the
results of dedicated direct numerical simulations (DNS) of TCP flows, the current
work shows that the dynamics of these global instabilities are still not fully understood
beyond their critical conditions.

Early linear stability analyses of Taylor–Couette flow with a stationary outer
cylinder considered the ideal case of infinitely extended concentric cylinders. Temporal
stability analyses found standing wave instabilities that vary sinusoidally in the axial
direction. Excellent agreement between experimental, numerical, and theoretical results
are observed for the transition to supercritical flows, owing to the pitchfork nature of
the bifurcation. The addition of a mean axial flow, producing TCP flow, can similarly
be studied theoretically by considering infinitely extended cylinders between which
instabilities vary sinusoidally in the axial direction. This shows that a Hopf bifurcation
produces instability in the form of propagating waves. Mean axial flow also stabilizes
the appearance of centrifugal instability in comparison to Taylor–Couette systems (see
DiPrima 1960; Donnelly & Fultz 1960; Chung & Astill 1977; Johnson & Lueptow
1997, among many publications). For small mean axial velocity, instabilities appear
as toroidal vortices travelling axially. With increasing mean axial velocity, these are
superseded by travelling helical vortices. For sufficiently large axial flows, shear
instabilities can also develop (Meseguer & Marques 2002; Cotrell & Pearlstein 2004).
The current work, however, will consider only centrifugal instabilities.

The addition of mean axial flow motivates two new approaches to modelling
instabilities, due to the fact the system is now ‘open’. First, the mean flow-induced
non-normality of the unstable modes can produce transient instabilities (see Chomaz
2005, for a review). Second, considering the impulse response of the flow (the Green’s
function) produces instabilities of finite axial extent. This motivates a distinction
between convective and absolute instabilities (Huerre & Monkewitz 1985, for
instabilities in fluid flows). Convective instabilities grow in space and amplitude, but
are advected downstream such that they eventually wash out of finite-length domains.
In contrast, absolute instabilities grow sufficiently to overcome mean advection and
invade an entire system, both up- and downstream. Convective/absolute stability
analysis has been applied to Taylor vortices (Büchel et al. 1996) and extended to
helical vortices (Martinand, Serre & Lueptow 2009; Altmeyer, Hoffmann & Lücke
2011).

Most instabilities of practical interest develop on ‘imperfect’ base flows that vary
spatially in more than one direction. In addition, end effects in open flows are
more critical experimentally and numerically than in closed flows. In open flows,
inlet conditions are advected by the mean flow and impact the whole domain,
as observed by Babcock, Ahlers & Cannell (1991, 1994) for TCP flows. Outlet
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conditions can also impact the instabilities developing within the system, as observed
in rotating-disk flows (Pier 2013; Appelquist et al. 2016). Therefore, experiments
and numerical simulations often use specific inlet and outlet configurations that
modify physical or geometrical characteristics along the mean flow direction to
isolate instabilities developing in the core of the system. For example, experimental
set-ups of Rayleigh–Bénard–Poiseuille convection often use a tailored ‘thermal entry’
where a temperature difference between the plates is slowly imposed to a developed
Poiseuille flow (Nicolas 2002). Therefore, introducing a degree of inhomogeneity in
the base flow of the stability analysis, in the form of variations of its physical or
geometrical characteristics, is relevant, if not required.

When considering the stability of an axially varying base flow with autonomous
boundary conditions, instabilities take the form of synchronized modes called ‘global’
modes. A classical example is the von Kármán vortex street (Provansal, Mathis &
Boyer 1987). The direction of the mean flow is then an extra eigendirection and
such global modes can be computed numerically (see Theofilis 2003, for a review).
Computationally more affordable analyses of global modes are possible when the
base flow varies slowly in the mean flow direction. Such base flows are often
called ‘weakly non-parallel’. In this case, analyses can consider a convective/absolute
stability analysis that approximates the local base flow as axially invariant, albeit
with the physical and geometrical parameters set at the local values of the axially
varying base flow. For flows that are everywhere stable or convectively unstable,
perturbations can grow while in convectively unstable regions, but they either decay
when reaching a stable region or they advect out of the system. Global instability
arises when self-sustained localized perturbations occur in a region of local absolute
instability. Analytical approaches to global modes consequently build on how absolute
instabilities travel and saturate over axially varying base flows and look for a specific
axial location that can act as a wavemaker and govern the global mode by imposing
its critical conditions and frequency.

Two classes of wavemakers have emerged (see Huerre & Monkewitz 1990; Huerre
2000; Chomaz 2005, for reviews). The first, based on the linear dynamics of the
absolute instability, locates the wavemaker where this absolute instability reaches
its maximum local amplification. If the local amplification decreases monotonically
in the axial direction, global modes can be obtained in a semi-infinite domain
and the wavemaker will occur at the inlet (Monkewitz, Huerre & Chomaz 1993).
Conversely, the wavemaker will occur at the outlet if the local amplification increases
monotonically (Healey 2010). If the local amplification increases then decreases
axially, the wavemaker will settle within the domain (Monkewitz et al. 1993). Critical
conditions and frequencies of global modes are computed from the linear dispersion
relation for absolute instabilities. As the flow departs from criticality, the related
nonlinear dispersion relation leads to the saturated state of the global mode, including
a modification of its frequency (Pier & Huerre 1996; Couairon & Chomaz 1997;
Chomaz & Couairon 1999; Pier, Huerre & Chomaz 2001).

The second class of wavemakers is based on the nonlinear counterpart of an
absolute instability. It considers the behaviour of the front formed in the amplitude
of the instability at the boundary between the upstream region of unperturbed base
flow and the downstream region of saturated instability. Following Dee & Langer
(1983), this front can be ‘pulled’ by the unperturbed flow and propagate upstream
until it reaches the boundary between the convectively and absolutely unstable regions
where it gets pinned and acts as a wavemaker. As these dynamics are governed by
the unperturbed flow, the critical conditions and frequencies of global modes are

3

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.437


computed from the linear dispersion relation for absolute instabilities (Pier et al.
1998, 2001). According to van Saarloos & Hohenberg (1992), the front could also
be ‘pushed’ by the saturated instability. The present study implements three selection
mechanisms introduced by Monkewitz et al. (1993), Pier et al. (1998) and Healey
(2010). These rely exclusively on the linear local dispersion relation to determine
the location of the wavemaker, and the critical condition and frequency of the global
mode.

The theoretical approaches above were initially developed in the literature for model
scalar equations, including the one-dimensional complex Ginzburg–Landau equation or
the two-dimensional vorticity equation for shear flows. Our work fits within a series
of works extending these approaches to the three-dimensional Navier–Stokes equations
in combination with DNS or experiments in configurations such as rotating disks (Pier
2003; Appelquist et al. 2015, 2016). Global modes in Rayleigh–Bénard–Poiseuille
flow have received theoretical (Carrière & Monkewitz 2001), numerical (Martinand,
Carrière & Monkewitz 2006) and experimental (Grandjean & Monkewitz 2009)
attention, with excellent agreement. For that case, the thermoconvective instability
can be spatially altered by modifying the local temperature between the plates. Global
modes in TCP flows are less studied because it is more difficult to spatially vary the
centrifugal instabilities. Consider the case of a fixed outer cylinder of radius r2 and
a rotating inner cylinder with radius r1 and angular velocity Ω . Experimentally, the
angular velocity cannot be smoothly varied along the axial direction. Consequently,
the local stability must be altered indirectly.

The stability of TCP flow is governed by three control parameters. The first is the
Taylor number Ta=Ωr1d/ν (or rotating Reynolds number), where ν is the kinematic
viscosity of the fluid and d= r2− r1 the gap width. The second is the radius ratio η=
r1/r2. The third is the axial Reynolds number β =Wd/ν, where W is the mean axial
velocity. One method of locally increasing the instability of the TCP flow is to locally
increase r2. This increases the gap width and the Taylor number Ta, while decreasing
the radius ratio η and axial Reynolds number β owing to the conservation of the axial
mass flow rate. In § 5, we show that these changes can indeed promote centrifugal
absolute instabilities. This approach is nevertheless impractical, as it requires a set of
different outer cylinders that cannot be tuned easily. Though Taylor–Couette systems
with varying radii have been studied experimentally and numerically in the absence of
mean axial flow (Soward & Jones 1983), no results with mean axial flow are available
in the literature, to our knowledge.

The current study shows that the local stability of the TCP flow can be altered in a
more controlled fashion by replacing one or both of the impermeable cylinders with
permeable cylindrical membranes. As fluid exits or enters the annular region through
these membranes, the mean axial flow increases or decreases and thus alters the local
stability. This configuration for TCP flow is used in an application called rotating
filtration, in which a cylindrical semi-permeable membrane rotates within a concentric
fixed impermeable cylinder. As suspension is introduced at one end of the annulus,
fluid is extracted through the inner cylinder, and concentrate exits the opposite end of
the annulus (see Lee & Lueptow 2004, and references therein for applications). This
approach reduces the accumulation of contaminants on the membrane surface because
the centrifugal instabilities wash them away from the membrane (Schwille, Mitra &
Lueptow 2002). Due to the small permeability of the membrane, the base flow in
rotating filtration systems varies slowly in the axial direction, thus opening the door
to a global mode analysis.

Previous analytical and numerical studies have considered the related case of TCP
flow with uniform radial through-flows applied at the inner and outer cylinders. The
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FIGURE 1. (a) Radial and axial velocities of the laminar base flow for the axially varying
problem in a meridional plane. The outer cylinder is impermeable while fluid flows across
the inner permeable cylinder, according to Darcy’s law, leading to a base flow varying
along the axial direction. Panel (b) shows the azimuthal velocity of the base flow in an
equatorial plane.

radial flows are applied such that the mass flux entering one cylinder equals that
exiting the other cylinder. The resulting base flow is axially invariant and amenable
to convective/absolute stability analysis (see Martinand et al. 2009, and references
therein). Until recently, stability analysis of global modes in rotating filtration has been
hindered by analytical and numerical difficulties related to the fact that the filtrate
flow through the membrane is driven by the transmembrane pressure difference.
Considering the base flow, this leads to a simultaneous coupling between the axial
pressure drop and the transmembrane pressure. A generalized analytical solution,
sketched in figure 1, has been found, however (Tilton et al. 2010), as an asymptotic
expansion that couples the transmembrane flow and pressure using Darcy’s law.
Centrifugal instabilities in rotating filtration systems are also challenging to simulate
numerically because the membrane introduces an additional coupling between the
velocity and the pressure on the permeable cylinder. As a result, traditional pressure
solvers for integrating the Navier–Stokes and continuity equations in time can fail.
Tilton et al. (2014) have addressed this issue by developing an efficient, non-iterative,
projection method tailored to simulating membranes in unsteady three-dimensional
fluid flows.

The current study is organized as follows. In § 2, we present the geometry,
governing equations, base state and global mode analyses. In § 3, we compare
the predictions of our global mode analyses with dedicated DNS. In § 4, we further
address the frequency jumps, a specific feature observed in the DNS, and test the
robustness of these instabilities by applying more intrusive inlet conditions or higher
Taylor numbers to the DNS. After summarizing our results, their implications for
rotating filtration and possible future work are then discussed in § 5.

2. Global modes in axially varying Taylor–Couette–Poiseuille flow
Hereinafter, we use cylindrical coordinates (r, θ, z), in which the velocity vector is

denoted V= (U,V,W)t. As sketched in figure 1, we consider an open Taylor–Couette
cell with a stationary outer cylinder of radius r2 and an inner rotating cylinder of

5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.437


thin permeable membrane that is shaded grey in figure 1. The rotating membrane
surrounds a cylindrical cavity that is maintained at a constant pressure Pref . The
radial fluid velocity U(r1, θ, z) through the permeable membrane depends on the
transmembrane pressure difference, as described by Darcy’s law:

U(r1, θ, z)=−
κ

µh
[P(r1, θ, z)− Pref ], (2.1)

where κ is the membrane permeability (units m2), h is the membrane thickness and µ
is the fluid dynamic viscosity. Note that the transmembrane flow in rotating filtration
is typically quite small, such that it flows along a thin film on the inner rotating
membrane. The assumption of constant Pref is consequently well justified, and without
loss of generality, we set Pref = 0.

Fluid flow in the annular region is governed by the incompressible Navier–Stokes
and continuity equations. We non-dimensionalize these equations with respect to the
gap width d = r2 − r1, characteristic time d2/µ, characteristic pressure ρν2/d2, and
characteristic velocity ν/d, with ρ the density of the fluid. The flow is characterized
by a Taylor number Ta, radius ratio η and non-dimensional permeability σ :

Ta=
Ωr1d
ν

, η=
r1

r2
, σ =

κ

hd
. (2.2a−c)

Hereinafter, all expressions are non-dimensional, unless otherwise stated. The govern-
ing Navier–Stokes and continuity equations then take the form:

∂V
∂t
+V · ∇V =−∇P+∇2V and ∇ ·V = 0. (2.3a,b)

On the outer cylinder, no-slip conditions are applied. On the permeable inner cylinder,
the azimuthal and axial components of the velocity also satisfy the no-slip condition,
while U is related to the transmembrane pressure difference through Darcy’s law:

U(r1, θ, z)=−σP(r1, θ, z) and U(r2, θ, z)= 0
V(r1, θ, z)= Ta and V(r2, θ, z)= 0

W(r1, θ, z)=W(r2, θ, z)= 0.

 (2.4)

The no-slip condition on the inner cylinder is guided by practical applications to
membrane filtration, which use strongly anisotropic membranes with negligible slip.
Focusing on the filtration of solutions, the dimensional ratio κ/h of membranes used
in filtration units typically ranges from 10−10 m for reverse osmosis to 10−4 m for
microfiltration. Though the gap d might vary substantially with the size of the unit,
the non-dimensional permeability σ is thus a very small quantity in real systems.

2.1. Base flow
The transmembrane pressure difference between the annulus and cavity drives a radial
extraction or injection of fluid through the permeable cylinder. This in turn drives
radial and axial flows that vary axially in the annular region. An analytical solution
for the axially varying steady axisymmetric base flow Vb(r, z) has been found by
Tilton et al. (2010) in the form of an asymptotic expansion about the small parameter

radius r1. The outer cylinder is impermeable, while the inner cylinder is made of a
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z-coordinate, or equivalently, a function of a slow variable εz. Based on this solution,
a local axial Reynolds number is introduced:

β(z) = W(z)=
1

π(r2
2 − r2

1)

∫ r2

r=r1

∫ 2π

θ=0
Wb(r, z)r dθ dr

= A1 exp(z
√
ζσ )+ A2 exp(−z

√
ζσ ), (2.5)

with Wb(r, z) as in appendix A and the geometrical factor

ζ =
16 log η

(r4
2 − r4

1) log η+ (r2
2 − r2

1)
2
. (2.6)

Constants A1 and A2 in (2.5) are first order in ε. They can be set by prescribing the
axial Reynolds number β(z) at two arbitrary locations z= 0 and z= L.

To characterize the transmembrane flow, we introduce a local radial Reynolds
number, related to the axial one β(z) by the conservation of mass:

α1(z) = r1Ub(r1, z)=
r2

2 − r2
1

2
dβ(z)

dz

=

√
ζσ (r2

2 − r2
1)

2
[A1 exp(z

√
ζσ )− A2 exp(−z

√
ζσ )]. (2.7)

This radial Reynolds number is second order in ε and, consequently, small. Owing to
the exponential terms in (2.5) and (2.7), β(z) and α1(z) only make sense over a finite
axial length, assuming end effects can be ignored.

The constants A1 and A2 in (2.5) and (2.7) are selected so as to consider three
different types of base flows over a finite axial length, as shown in figure 2. Panels (a–
c) all show an increase along the axial direction of the radial Reynolds number on
the inner cylinder α1(z) (dashed line). This occurs due to the axial pressure drop
driving the mean axial flow. Figure 2(a) demonstrates an ‘injection’ configuration in
which the axial Reynolds number β(z) (solid line) increases monotonically with z
because fluid is entering the annulus from the membrane along the entire axial length
L of the domain. Figure 2(b) demonstrates an ‘extraction’ configuration in which β(z)
decreases monotonically with z due to the fact that fluid is leaving the annulus through
the membrane along the entire axial length. Finally, figure 2(c) shows ‘cross-flow
reversal’ in which the transmembrane flow transitions from extraction to injection.

2.2. Global modes and their selection mechanisms
We now proceed to analytically address the centrifugal instabilities as global modes.
The velocity and pressure fields are decomposed as [V, P] = [Vb, Pb] + [Vp, Pp],
where [Vb(r, z), Pb(r, z)] is the base flow presented in § 2.1 and appendix A, and
[Vp(r, θ, z, t), Pp(r, θ, z, t)] is a small time-dependent perturbation. Linearizing the
problem (2.3)–(2.4) about the base flow [Vb, Pb] produces an autonomous system
of partial differential equations admitting synchronized solutions, i.e. solutions
presenting a common, complex, temporal frequency ωglob such that [Vp, Pp] =

[Vglob
p (r, θ, z), Pglob

p (r, θ, z)] exp(−iωglobt). Though the spatial shape functions
[Vglob

p ,Pglob
p ] can be obtained by solving a multi-dimensional eigenproblem numerically,

we leverage the slow axial variation of Vb to reduce the numerical cost to a

√
σ , see appendix A. This base flow is a slowly varying function of the axial

ε

=
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FIGURE 2. Three possible base flow variations of the axial Reynolds number β(z) (solid
lines) and radial Reynolds number α1(z) (dashed lines). (a) Results obtained when βinlet=

2, βoutlet= 40 and σ = 5× 10−5. The axial base flow β(z) increases monotonically as fluid
is injected along the membrane. The circle at the inlet marks the most unstable simple
turning point as defined in § 2.2. (b) Results obtained when βinlet = 40, βoutlet = 2 and
σ = 5× 10−5. The axial base flow β(z) decreases monotonically as fluid is extracted along
the membrane. The circle at the outlet marks the most unstable simple turning point as
defined in § 2.2. (c) Results obtained when βinlet = 20, βoutlet = 20 and σ = 2.3 × 10−4.
The base flow β(z) undergoes cross-flow reversal as α1(z) transitions from extraction to
injection at z= 0. The circle at the centre marks the most unstable double turning point
as defined in § 2.2.

one-dimensional eigenproblem. Based on the weak z-dependence of Vb(r, z), the
instabilities are expressed in the form of the Wentzel–Kramers–Brillouin (WKB)
ansatz of a wavepacket:

[Vp, Pp] = [v
glob
p (r, z), pglob

p (r, z)] exp(iψ) with ψ =
∫ z

z0

k(z′) dz′ + nθ −ωglobt. (2.8)

With this framework, the shape functions [vglob
p (r, z), pglob

p (r, z)] and the local axial
wavenumber k(z) are slowly varying functions of z or, equivalently, functions of the
slow variable εz. Injecting ansatz (2.8) into (2.3)–(2.4) linearized about the base
flow [Vb, Pb] leads one to expand ωglob and [vglob

p , pglob
p ] in powers of ε and solve a

hierarchy of systems of ordinary differential equations.
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The leading order (ε0) of the WKB expansion satisfies a local generalized
eigenvalue problem

A(k(z), n,Vb,0(r, z))[vloc
p , ploc

p ] =ω
locB[vloc

p , ploc
p ], (2.9)

where the superscripts on eigenvector [vloc
p , ploc

p ] and eigenvalue ωloc stress that (2.9)
depends on the local base flow as discussed below. The operator A is a r-differential
operator, parametrized by the axial coordinate z through the wavenumber k(z) and
the base flow Vb,0(r, z), the leading order ε0 of the base flow Vb(r, z). To include
axial variations at order ε0, the base flow reported in appendix A must be slightly
modified, so that the axial Reynolds number β(z), given by (2.5), is considered as
order ε0 instead of ε1. Referring to the expressions in appendix A, this produces a
leading-order base flow that is identical to axially invariant TCP flow, composed of
the axial velocity Wb = β(z)wb(r), and the leading order of the azimuthal velocity,
Tavb,0(r). Consequently, problem (2.9) amounts to the stability of axially invariant TCP
flow with the parameter β set to β(z).

As the convective/absolute stability of this flow is well studied (Recktenwald, Lücke
& Müller 1993; Martinand et al. 2009; Altmeyer et al. 2011), it is only summarized
in appendix B and results relevant for the global mode analysis in § 3 briefly presented.
Figure 3 shows the results, in the form of the critical Taylor numbers and critical
frequencies, of the local convective/absolute stability problem (B 2), as a function of β,
for η set to 0.85. Beyond their respective critical conditions, figure 3 also sheds light
on some differences and similarities between convective and absolute instabilities.
Whereas absolute critical modes are always travelling toroidal vortices (nabs

crit = 0),
convective critical modes become helical vortices for axial Reynolds numbers above
β = 13.8. The critical frequency is a growing function of the axial Reynolds number
β for both convective and absolute instabilities. For axisymmetric vortices, absolute
and convective instabilities exhibit very similar frequencies. It is therefore difficult
to discriminate between convective and absolute toroidal instabilities on the basis of
their temporal frequencies.

As the local stability problem (2.9) is parametrized by the axial coordinate z, its
solution provides no selection criterion for a global mode frequency ωglob per se.
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A selection criterion is usually related to specific axial location(s) from which the
wavepacket can propagate both down- and upstream, i.e. to a ‘turning point’ zt.p.
where the group velocity vanishes:

∂ω

∂k
(zt.p.)= 0. (2.10)

Hereinafter, the (zt.p.)-dependence means that the group velocity is computed from
the resolution of the local stability problem (B 2) where the β is set to β(zt.p.).
Condition (2.10) can be satisfied by an absolute mode that is unstable if the system
is locally above the critical conditions for absolute instabilities. A turning point then
acts as a wavemaker if it imposes the temporal frequency of the local absolute mode,
i.e. ωabs(zt.p.) to the rest of the domain. Critical conditions for the global mode, Taglob

crit ,
can be then deduced from the growth rate of the absolute mode at the turning point,
i.e. the imaginary part of ωabs(zt.p.).

Several analytical selection criteria for identifying wavemakers are available in
the literature. They begin by identifying the axial location of a turning point. We
implement two linear selection criteria introduced in Monkewitz et al. (1993) and
extended in Healey (2010). Both criteria consider a turning point located where the
flow is locally the most unstable, i.e. where Im(ωabs(z)) is maximum. Elaborating
on figure 3(a), the growth rate of the critical absolute instabilities is a decreasing
function of the axial Reynolds number β: ∂βIm(ωabs

crit) = −∂TaIm(ωabs
crit)/∂Taβ

abs
crit < 0.

A local maximum of the growth rate Im(ωabs(z)) therefore corresponds to a local
minimum of β(z).

The first selection criterion (Monkewitz et al. 1993) addresses cases where an
island of absolute instability is surrounded by a sea of stability, up- and downstream.
Though this criterion assumes an infinite axial domain, it also applies to finite axial
configurations in which the inlet is locally stable and the outlet is either locally
stable or convectively unstable. The axial flow shown in figure 2(c) presents a
minimum of β(z) located within the fluid domain, constituting a potentially unstable
‘double turning point’. The second selection criterion addresses cases of semi-infinite
axial extent that present a maximum absolute instability at the inlet or outlet, as
in Monkewitz et al. (1993) and Healey (2010), respectively. Though this criterion
assumes a semi-infinite axial extent, it also applies for systems of finite axial extent
in which the outlet or the inlet are locally stable or convectively unstable. Figure 2
demonstrates base flows that present minimums of β(z) at the inlet (panel a) or
the outlet (panel b). These constitute potentially unstable ‘single turning points’. A
linear selection criterion therefore leads to critical conditions in term of a critical
Taylor number Taglob

crit , together with characteristics of the global mode at these critical
conditions, such as the critical frequency ωglob

crit .

2.2.1. Linear selection by a double turning point
Based on the local stability problem at a double turning point zd.t.p., where the flow

is locally the most unstable, the local growth rate also satisfies:

∂Im(ωabs)

∂z
(zd.t.p.)= 0 and

∂2Im(ωabs)

∂z2
(zd.t.p.) < 0, (2.11a,b)

in addition to condition (2.10). As the z-dependence of the dispersion relation amounts
to the axial variations of the axial Reynolds number β, condition (2.11) requires:

dβ
dz
(zd.t.p.)= 0 and

d2β

dz2
(zd.t.p.) > 0. (2.12a,b)
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This condition is achieved in the case of cross-flow reversal, as illustrated in
figure 2(c), where zd.t.p. is indicated by a circle.

At leading order, the global mode frequency imposed by a double turning point is
ωloc
= ωabs(zd.t.p.), computed by solving the local stability problem (B 2) for the most

unstable absolute instability, with β set to β(zd.t.p.). A global mode governed by a
double turning point should thus be observed as the Taylor number overcomes the
critical absolute Taylor number at the double turning point:

Taloc
crit = Taabs

crit(zd.t.p.). (2.13)

The global mode is characterized by the real frequency:

ωloc
crit =ω

abs
crit(zd.t.p.). (2.14)

Following (4.21a) in Monkewitz et al. (1993), matching the perturbation around
this double turning point to the perturbation in the rest of the domain mathematically
imposes a small correction to the frequency in the form:

ωglob
= ωloc

+ i
1
2
∂2ω

∂k∂z

∣∣∣∣abs

±
1
2

 ∂2ω

∂k2

∣∣∣∣abs
∂2ω

∂z2

∣∣∣∣abs

−

(
∂2ω

∂k∂z

∣∣∣∣abs
)2
1/2

= ωloc
±

1
2

d2β

dz2

1/2
(
∂2ω

∂k2

∣∣∣∣abs
∂ω

∂β

∣∣∣∣abs
)1/2

. (2.15)

Though the (zd.t.p.)-dependences are dropped for convenience in (2.15), all quantities
inferred from the local stability problem and β(z) are computed at zd.t.p.. Equation
(4.21a) in Monkewitz et al. (1993) also includes a term due to the corrections to the
base flow at order ε1. This term involves here the radial velocity Ub = dβ/dzub(r)
and the correction to the azimuthal velocity dβ/dzvb,1(r). These components being
proportional to dβ/dz, they vanish at the double turning point. The frequency
correction in (2.15) is complex, and the sign in the expression is chosen so that
Im(ωglob) < Im(ωloc), i.e. so that this correction is stabilizing. This stabilizing effect
increases the critical Taylor number above which such a global mode can be observed,
compared to the leading-order critical value (2.13):

Taglob
crit = Taloc

crit −
1
2

d2β

dz2

1/2
Im

±( ∂2ω

∂k2

∣∣∣∣abs

crit

∂ω

∂β

∣∣∣∣abs

crit

)1/2


Im

(
∂ω

∂Ta

∣∣∣∣abs

crit

) . (2.16)

Moreover, this global mode presents a corrected real critical frequency

ω
glob
crit = ω

loc
crit

±
1
2

d2β

dz2

1/2

Re

(∂2ω

∂k2

∣∣∣∣abs

crit

∂ω

∂β

∣∣∣∣abs

crit

)1/2
+Re

(
∂ω

∂Ta

∣∣∣∣abs

crit

)
(Taglob

crit − Taabs
crit). (2.17)
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Beyond the axial variations of its local wavevector imposed by the dispersion
relation with ω set to ω

glob
crit , the axial variation of the amplitude of the global mode

is obtained in the vicinity of zd.t.p. as a hypergeometric function, matched up- and
downstream to WKB expansions (2.8). As the perturbation travels downstream, it
gains energy as long as it lies in a locally unstable domain. The linear global mode
is thus expected to reach its maximum amplitude on the downstream boundary
between the convectively unstable and the stable domains.

A nonlinear extension of global modes developing from a double turning point has
been proposed (see Pier & Huerre 1996; Pier et al. 2001), yielding a correction to
the frequency and the amplitude at saturation of the instability. This extension,
nevertheless, is based on the nonlinear dispersion relation and has not been
implemented here.

2.2.2. Linear selection by a simple turning point
For base flows without cross-flow reversal, the maximum of the local growth rate,

and the corresponding turning point, is expected to occur at the axial boundary of
the domain where β(z) is minimum. Figure 2(a) demonstrates that in cases of fluid
injection the turning point (marked with a circle) is located at the inlet. Figure 2(b)
demonstrates that in cases of fluid extraction the turning point is located at the outlet.
In the case of fluid injection (extraction), the simple turning point is located at the
inlet (outlet), zs.t.p = zinlet (zs.t.p = zoutlet), as illustrated in figure 2(a) (injection) and
figure 2(b) (extraction), where zs.t.p. are indicated by circles.

At leading order, the frequency of a global mode set by a simple turning point is
ωloc
= ωabs(zs.t.p.), computed by solving the local stability problem (B 2) for the most

unstable absolute instability with β set to β(zs.t.p.). An instability governed by such
a turning point should thus be observed as the Taylor number overcomes the critical
absolute Taylor number at the simple turning point:

Taloc
crit = Taabs

crit(zs.t.p.). (2.18)

The global mode is characterized by the real frequency:

ωloc
crit =ω

abs
crit(zs.t.p.). (2.19)

Following (5.17b) in Monkewitz et al. (1993), and developing on (2.8) in Healey
(2010), matching the perturbation around this turning point to vanishing boundary
conditions for the velocity of the global mode, at the inlet (injection) or at the outlet
(extraction), imposes a correction to this frequency:

ωglob
=ωloc

−
a0
3
√

2

( ∂ω
∂β

∣∣∣∣abs
)2

∂2ω

∂k2

∣∣∣∣abs
1/3

dβ
dz

2/3

, (2.20)

where a0 ≈−2.3381 is the first zero of the Airy function. Again, though the (zs.t.p.)-
dependences are dropped for convenience in (2.20), all quantities inferred from the
local stability problem and β(z) are to be computed at zs.t.p.. The frequency correction
is complex and, together with choosing (dβ/dz)2/3 real, the cube root in (2.20) is
chosen so that Im(ωglob) < Im(ωloc), i.e. so that this correction is stabilizing. This
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stabilizing effect increases the critical Taylor number above which such a global mode
can be observed, compared to the leading-order critical value (2.18):

Taglob
crit = Taloc

crit +

Im

 a0
3
√

2

( ∂ω
∂β

∣∣∣∣abs

crit

)2
∂2ω

∂k2

∣∣∣∣abs

crit

1/3

dβ
dz

2/3


Im

(
∂ω

∂Ta

∣∣∣∣abs

crit

) . (2.21)

Moreover, this global mode presents a corrected real critical frequency

ω
glob
crit = ω

loc
crit

−
a0
3
√

2

dβ
dz

2/3

Re

(∂ω
∂β

∣∣∣∣abs

crit

)2
∂2ω

∂k2

∣∣∣∣abs

crit

1/3+Re

(
∂ω

∂Ta

∣∣∣∣abs

crit

)
(Taglob

crit − Taabs
crit).

(2.22)

Beyond the axial variations of its local wavevector imposed by the dispersion
relation with ω set to ω

glob
crit , the axial variation of the amplitude of the global mode

is obtained in the vicinity of zs.t.p. as an Airy function, matched down- (injection) or
upstream (extraction) to a WKB expansion (2.8). With zs.t.p. located at the inlet, as
the perturbation travels downstream, it gains energy as long as it lies in a locally
unstable domain. The linear global mode is thus expected to reach its maximum
amplitude on the downstream boundary between the convectively unstable and the
stable domains. With zs.t.p. at the outlet, the maximum amplitude of the linear global
mode is at the outlet.

Even though the exact nature of the outlet boundary condition is only a second-
order effect in the present selection criterion, experimental or numerical outlet
conditions usually differ from imposing vanishing Dirichlet conditions for the
velocity and pressure fields of the perturbation at the outlet boundary, conditions
upon which the analytical approach of Healey (2010) is based. This could hamper
comparisons between this theoretical construction and experimental set-ups or
numerical simulations.

A nonlinear extension of global modes developing from a single turning point at the
inlet has been proposed (see Couairon & Chomaz 1997; Chomaz & Couairon 1999),
yielding a correction to the frequency and the length over which the amplitude of the
instability reaches saturation. As for nonlinear double turning points, this extension is
based on the nonlinear dispersion relation and has not been implemented here.

2.2.3. Nonlinear selection by the upstream convective/absolute boundary
The nonlinear selection criterion developed by Pier et al. (1998, 2001) is based on

the front-forming dynamics of the nonlinear wavepacket. At the convective/absolute
boundary, where the local stability evolves from convectively unstable to absolutely
unstable as one moves downstream, the amplitude of the global mode is expected
to present a steep front that acts as a wavemaker. This front matches an upstream
region where the small perturbation is governed by linear dynamics to a downstream
region where the perturbation is substantial and governed by nonlinear dynamics. The
location of this front, and the selected complex frequency, are actually outcomes of the
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local linear stability problem and of the existence of a turning point satisfying (2.10)
at this boundary. This selection mechanism allows to consider Taylor numbers above
the critical conditions Taglob

crit , as increasing Ta results in moving the boundary upstream.
Using this selection criterion thus leads to the global frequency, as a function of the
Taylor number ωglob

front(Ta).
At arbitrary Taylor number Ta, the location of the convective/absolute boundary zc/a

is found by solving the local stability problem (B 2) with β set such that Ta= Taabs
crit.

The location zc/a is then found so that β(zc/a) = β, and is a function of the Taylor
number Ta. Such a location requires

dβ
dz
(zc/a) < 0, (2.23)

and can be obtained in the case of fluid extraction and cross-flow reversal.
At leading order, the frequency of the global mode based on this front, located at

convective/absolute boundary zc/a, is then:

ωloc
front =ω

abs
crit(zc/a), (2.24)

computed from the resolution of the local stability problem (B 2) for the most
unstable absolute instability with β set to β(zc/a). Following (70) in Pier et al. (2001),
matching the linear perturbation upstream of the front to the nonlinear perturbation
downstream of the front introduces a correction to the leading-order frequency (2.24):

ω
glob
front =ω

loc
front + a0

dβ
dz

2/3

∣∣∣∣∣ ∂ω∂β
∣∣∣∣abs

crit

∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣

−
2
∂ω

∂β

∣∣∣∣abs

crit

∂2ω

∂k2

∣∣∣∣abs

crit


1/3∣∣∣∣∣∣∣∣∣

2

Im


−

2
∂ω

∂β

∣∣∣∣abs

crit

∂2ω

∂k2

∣∣∣∣abs

crit


1/3

Im

(
∂ω

∂β

∣∣∣∣abs

crit

) , (2.25)

and moves the position of the front slightly downstream, to be located at:

zglob
front = zc/a + a0

dβ
dz

2/3

Im

 ∂ω

∂β

∣∣∣∣abs

crit

−
2
∂ω

∂β

∣∣∣∣abs

crit

∂2ω

∂k2

∣∣∣∣abs

crit


1/3


Im

(
∂ω

∂β

∣∣∣∣abs

crit

) ∣∣∣∣∣∣∣∣∣∣

−
2
∂ω

∂β

∣∣∣∣abs

crit

∂2ω

∂k2

∣∣∣∣abs

crit


1/3
∣∣∣∣∣∣∣∣∣∣

2 . (2.26)

Again, though the (zc/a)-dependences are dropped for convenience in (2.25) and
(2.26), all quantities inferred from the local stability problem and β(z) are computed
at zc/a. The axial evolutions of the wavevector and amplitude of the global mode are
now governed by the fully nonlinear stability problem, which has not been obtained
so far.
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FIGURE 4. Sketch of the numerical domain.

3. Global modes in direct numerical simulations
3.1. Numerical method

We perform DNS of centrifugal instabilities in a rotating filtration system using
the multidomain pseudospectral method of Tilton et al. (2014). The governing
Navier–Stokes equations are integrated in time using a second-order projection
method that applies the Darcy boundary condition (2.1) on the membrane exactly at
each time step. Together with boundary conditions (2.4) on the cylinders, laminar
annular Taylor–Couette–Poiseuille flows are applied at inlet and outlet, prescribed
by the global Taylor number Ta and the local axial Reynolds numbers βinlet and
βoutlet. To accommodate these inlet and outlet boundary conditions, the membrane
permeability σ is forced smoothly to zero in buffer regions adjacent to the inlet and
outlet, as illustrated in figure 4. The governing equations are discretized spatially
using a multidomain spectral method using Chebyshev polynomials in the radial and
axial directions, and in Fourier modes in the azimuthal direction.

Perturbations to the base flow occur from a combination of the numerical noise
occurring throughout the system at all time steps and a controlled perturbation applied
at the inlet on the first four azimuthal modes of the axial component of the velocity
(see (52) and (53) in Tilton et al. 2014). In all cases but figure 15(b), the controlled
perturbation is smoothly ramped up and down in time, starting at the initial time step
and over a short duration 5/Ta (see (54) in Tilton et al. 2014). For figure 15(b), the
controlled perturbation is continuously applied as the sum of 50 random frequencies
(see (55) in Tilton et al. 2014). Simulations used a numerical domain decomposed
into two central subdomains of length Lcentral = 2× 60 (Lcentral = 2× 65 for cross-flow
reversal in § 3.2.3), bounded by an inlet buffer Lin= 10 and an outlet buffer Lout = 15.
All simulations are integrated in time until a saturated state is achieved.

Typical results for simulations, performed at η = 0.85 and Ta = 120 with a short
initial perturbation, are shown in figures 5 (fluid injection), 8 (fluid extraction) and 11
(cross-flow reversal). Panels (a) show snapshots, taken at the final simulation times, of
the isosurfaces where the azimuthal velocity is 50 % that of the rotating cylinder, i.e.,
0.5r1Ω . The three configurations show the development of instabilities in the form of
axisymmetric vortices. Panels (b) show spatio-temporal diagrams of the radial velocity
at the mid-gap U(rmid, z, t). These show that in all three cases, the systems achieved
saturated steady states in which vortices are present in only portions of the domains.
In figures 5 and 11, the vortices tend to organize themselves in several packets, with
different temporal frequencies. Following saturation, we compute these frequencies
from the spatio-temporal diagrams by performing fast Fourier transforms (FFTs) in
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FIGURE 5. (Colour online) Numerical simulations for η = 0.85, Ta = 120 with fluid
injection. (a) Isosurface where the total azimuthal velocity is equal to one half of the
velocity at the rotating inner cylinder, at final time. (b) Spatio-temporal diagram of the
radial velocity at mid-gap U(rmid, z, t). (c) Axial Reynolds number β(z): numerical (dashed
light grey, green online, curve) and analytical (solid dark grey, blue online, curve), this
latter reconstructed from expression (2.5) and numerical values of the mean axial flow
at the boundaries between the inlet buffer and central domain and the central domain
and outlet buffer. These boundaries are shown in solid black circles (in panel a) and
vertical lines. The dash-dotted dark grey (blue online) circle (in panel a) and vertical line
locate the absolute/convective boundary; and the dotted dark grey (blue online) circle (in
panel a) and vertical line show the convectively unstable/stable boundary. Stable regions
are labelled S, convectively unstable regions are labelled CU and absolutely unstable
regions are labelled AU.

time at every axial location z. Panels (a) of figures 6–7, 9–10 and 12–13 show the
resulting dominant frequency ωmax(z) as solid (red online) piecewise horizontal lines.
From the FFTs and related Hilbert transforms, we also demodulate the radial velocity
at mid-gap. Panels (b) of the same figures show the resulting amplitudes ‖Umid‖(z)
in solid (red online) curves. We see that ‖Umid‖(z) envelopes the solid black curve
showing the instantaneous radial velocity at mid-gap at the final time.
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FIGURE 6. (Colour online) Numerical and analytical results for η = 0.85, Ta = 114,
with fluid injection. (a) Solid piecewise horizontal (red online) curve: dominant frequency
ωmax(z), exhibiting three steps at ω = 7.50, 15.01 and 30.02 (with spectral resolution
1ωfft = 0.17) to be compared with the dashed dark grey (blue online) horizontal line:
ω

glob
crit = 7.40. The dotted dark grey (blue online) curve in panel (a) shows the local

frequency ωloc(z) at Ta= 114. (b) Radial velocity at mid-gap U(rmid, z), at final time (solid
black curve), enveloped by the amplitude ‖Umid‖(z) computed from the temporal Hilbert
transform (solid, red online, curve). The solid black, dash-dotted dark grey (blue online)
and dotted dark grey (blue online) vertical lines are as in figure 5.
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FIGURE 7. (Colour online) Similar to figure 6, with Ta= 130. The dominant frequency
ωmax(z) (solid, red online, piecewise horizontal curve in panel a) exhibits four steps at
ω = 7.55, 15.26, 30.51 and 61.03 (with 1ωfft = 0.21), to be compared with the dashed
dark grey (blue online) line: ωglob

crit = 7.40.
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FIGURE 8. (Colour online) Similar to figure 5 (η = 0.85 and Ta = 120), but for fluid
extraction.

3.2. Comparisons between numerical and analytical results
In this section, we use the global mode selection criteria presented in § 2 to analyse
DNS results of systems characterized by fluid injection (figures 5–7), fluid extraction
(figures 8–10) and cross-flow reversal (figures 11–13). For each case, we begin by
extracting the axial variation of β(z) from the DNS. To this we then fit the analytical
expression (2.5) by evaluating the constants A1 and A2 using the mean axial flow
in the DNS at the boundaries between the inlet and outlet buffers and the central
subdomain. Panels (c) of figures 5 (fluid injection), 8 (fluid extraction) and 11 (cross-
flow reversal) show there is excellent agreement between the DNS (dashed light grey,
green online, curves) and expression (2.5) (solid dark grey, blue online, curves). The
only deviation occurs in the inlet/outlet buffers (marked by solid vertical black lines
in figures 5–13) where the permeability σ of the DNS is smoothly set to zero.

Linear selection criteria are based on turning points located at minima of the axial
Reynolds number β(z). For fluid injection (extraction), the minimum of β(z) is located
at the inlet (outlet), where, despite the buffer, the value obtained from expression (2.5)
only minutely differs from the mean axial flow in the DNS. For cross-flow reversal,
the location and value of the minimum of β(z) are found from expression (2.5). As
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FIGURE 9. (Colour online) Similar to figure 6, with η = 0.85, Ta = 113 and fluid
extraction. The dominant frequency ωmax(z) (solid piecewise horizontal, red online, curve
in panel a) exhibits a single step at ω = 7.69 (with spectral resolution 1ωfft = 0.19), to
be compared with the dashed dark grey (blue online) horizontal line: ωglob

crit = 7.55 and the
dash-dotted light grey (green online) horizontal line: ωglob

front = 7.17. The solid black dotted
and dash-dotted dark grey (blue online) vertical lines are as in figure 8. The dash-dotted
light grey (green online) vertical line in panel (a) shows the modified front location zglob

front.
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FIGURE 10. (Colour online) Similar to figure 9 with Ta= 130. The dominant frequency
ωmax(z) (solid piecewise horizontal, red online, curve in panel a) exhibits three steps at
ω = 18.45, 11.50 and 7.87 (with 1ωfft = 0.30), to be compared with the dash-dotted
horizontal dark grey (blue online) line: ωglob

crit = 7.55 and the dash-dotted horizontal light
grey (green online) line: ωglob

front = 17.91.
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FIGURE 11. (Colour online) As in figure 5 (η= 0.85, Ta= 120), for cross-flow reversal.
The dashed dark grey, blue online, circle (in panel a) and vertical line locate the double
turning point where the axial Reynolds number β(z) is minimum.

the permeability σ does not appear in the local stability problem (B 2), the presence
of the inlet/outlet buffers does not impact the local linear analysis of the perturbations,
beyond setting β(z). The whole analysis is therefore based on the knowledge of the
radius ratio η, the permeability σ , the mean axial flow at two locations and the
Taylor number, together with resolutions of the local convective/absolute stability
problem (B 2).

Boundaries where the flow transitions from stable to convectively unstable and from
convectively unstable to absolutely unstable are found by solving the axially invariant
stability problem (B 2) with Ta as in the DNS, and β so as to be at critical conditions
for convective or absolute instabilities. Boundaries are then found as z such that β(z)
in (2.5) is equal to the critical β. In figures 5–13, stable regions are labelled

�� ��S ,
convectively unstable regions are labelled

�� ��CU , and absolutely unstable regions are
labelled

�� ��AU . When relevant, a double turning point is indicated by a dashed dark
grey (blue online) vertical line, a boundary between a stable and convectively unstable
domain by a dotted dark grey (blue online) vertical line and a boundary between
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FIGURE 12. (Colour online) Similar to figure 6, with η= 0.85, Ta= 112 and cross-flow
reversal. The dominant frequency ωmax(z) (solid piecewise horizontal, red online, curve
in panel a) exhibits two steps at ω= 5.98 and 11.96 (with spectral resolution 1ωfft= 0.24),
to be compared with the dashed dark grey (blue online) horizontal line: ωglob

crit = 6.04 and
the dash-dotted horizontal light grey (green online) line: ωglob

front = 6.00. The solid black,
dashed, dash-dotted and dotted dark grey (blue online) vertical lines are as in figure 11.
The dash-dotted light grey (green online) vertical line in panel (a) shows the modified
front location zglob

front.
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FIGURE 13. (Colour online) Similar to figure 12 with Ta= 130. ωmax(z) (solid piecewise
horizontal, red online, curve in panel a) exhibits six steps at ω= 16.84, 10.32, 6.95, 13.89,
27.79 and 55.58 (with 1ωfft = 0.21), to be compared with the dashed dark grey (blue
online) horizontal line: ωglob

crit =6.04 and the dash-dotted light grey (green online) horizontal
line: ωglob

front = 16.47.
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a convectively and an absolutely unstable domain by a dash-dotted dark grey (blue
online) vertical line in figures 5–13.

3.2.1. Fluid injection: maximum instability at the inlet
We begin by considering systems with fluid injection along the full length of the

membrane. As demonstrated in figures 2(a) and 5(c), fluid injection causes the axial
Reynolds number, β(z), to increase monotonically with z, such that the local stability
increases as fluid moves downstream. In the DNS, we impose fluid injection by
applying βinlet = 2 and βoutlet = 40, for a permeability σ = 5× 10−5 and Lcentral = 120.
Simulations are repeated for Ta= 112, 114, 115, 120, 130, 140 and 150.

Figure 5 shows DNS results for Ta = 120. Panels (a,b) demonstrate that an
axisymmetric instability develops and propagates from the inlet until it reaches a
saturated state in which vortices are present over most of the domain, except near
the outlet. From the spatio-temporal diagram in figure 5(b), we observe that the
saturated state is characterized by vortices organized in several packets with different
frequencies.

For fluid injection cases, our global mode analysis predicts a linear selection
mechanism based on a simple turning point located at the inlet zinlet, as addressed
in § 2.2.2. At leading order, based on the values of η=0.85 and βinlet=1.88, condition
(2.18) and the resolution of the local stability problem (B 2) for absolute instability,
with β set to βinlet leads to a critical value Taloc

crit = 111.2, above which a global
mode becomes unstable. Equation (2.19) predicts a corresponding critical frequency
ωloc

crit = 6.87. Taking the corrections at the next order into account, expressions (2.21)
and (2.22) slightly shift these values to Taglob

crit = 112.7, above which a global mode
with frequency ω

glob
crit = 7.40 becomes unstable. The corrected critical Taylor number

Taglob
crit is in agreement with the DNS, which shows no instability at Ta= 112 and an

instability at Ta= 114.
Figure 6 shows the axial variations of the wavepacket in the DNS slightly above

the critical conditions, at Taylor number Ta= 114. Figure 7 further departs from these
critical conditions at Ta=130. Global instabilities originating at the inlet occur in both
cases. Near the inlet, these modes have the frequencies ω= 7.50 for Ta= 114 and ω=
7.55 for Ta= 130. This is in agreement with the linear selection mechanism governed
by a simple turning point at the inlet, leading to ω

glob
crit = 7.40 at critical conditions,

as mentioned above. Nonlinear effects are expected in the dynamics of the instability,
because the Taylor number departs from its critical value for a global mode, Taglob

crit ,
in both DNS. The asymmetry between the inward (U(rmid, z, tfinal) < 0) and outward
(U(rmid, z, tfinal) > 0) phases of the radial velocity observed in figures 6(b) and 7(b)
tends to confirm the existence of noticeable nonlinearities that could also impact the
frequency of the instability in the DNS. Such a modified frequency could be obtained
using the nonlinear extension of semi-infinite global modes proposed in Couairon &
Chomaz (1997). The frequency, as measured in the leading subpacket of the DNS,
nevertheless remains very close to the result of the linear selection mechanism.

Moving downstream from the inlet, the local dominant frequencies of the
wavepackets in the DNS, ωmax(z) shown in figures 6(a) and 7(a) exhibit abrupt
changes in a sequence of step-ups that are not accounted for by the global mode
analysis. As indicated by the values in the captions of figures 6 and 7, these
frequency jumps correspond to frequency doublings and occur until the wavepacket
enters the locally stable domain and diminishes. Comparing the frequency jumps in
figures 6(a) and 7(a) with the Hilbert transform in figures 6(b) and 7(b), we observe
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that the perturbation amplitude decreases as it approaches a frequency jump, and
then increases downstream from the jump. These results suggest that the frequency
jumps allow perturbations to resettle to more natural frequencies. This interpretation
is supported by noting that the jumps occur both in the locally absolutely and
convectively unstable regions, which suggests that the jumps are related to the local
convective behaviour of the stability problem. The dotted dark grey (blue online)
curves in figures 6(a) and 7(a) show the frequency ωloc(z) of the most unstable
axisymmetric convective mode obtained for the local axial Reynolds number β(z) and
the respective Taylor numbers. We see that frequency doublings occur at locations
such that the local frequency coarsely adapts to ωloc(z). This feature will be further
addressed in § 4.1.

3.2.2. Fluid extraction: maximum instability at the outlet
Next, we consider systems in which fluid is extracted along the full length of

the membrane, as in figures 2(b) and 8(c). Fluid extraction causes β(z) and the
local stability of the flow to decrease monotonically as fluid moves downstream. In
the DNS, we impose fluid extraction by applying βinlet = 40 and βoutlet = 2, for a
permeability σ = 5 × 10−5 and Lcentral = 120. Simulations are repeated for Ta = 111,
113, 115, 120, 130 and 140.

Figure 8 shows DNS results for Ta = 120. We observe in figure 8(b) that an
axisymmetric instability originates at the outlet. A wavepacket then propagates
upstream until it reaches a steady state, within the region where the flow is locally
absolutely unstable (downstream of the dash-dotted dark grey, blue online, vertical
line). The spatio-temporal diagram in figure 8(b) shows that the steady wavepacket
includes two subpackets, with different temporal frequencies.

For fluid extraction cases, our global mode analysis predicts a linear selection
criterion based on the simple turning point at zoutlet, described in § 2.2.2. For the values
η = 0.85 and βoutlet = 1.90, condition (2.18) predicts a critical value Taloc

crit = 111.4,
above which a global mode becomes unstable. Equation (2.19) predicts the critical
frequency ωloc

crit= 7.04. Considering the corrections at the next order, expressions (2.21)
and (2.22) slightly shift these values to Taglob

crit = 112.3, above which a global mode
with frequency ω

glob
crit = 7.55 becomes unstable. This linear critical condition Taglob

crit is
in agreement with DNS, which shows no instability at Ta= 111 and an instability at
Ta= 113.

In this configuration, global modes can also be governed by the nonlinear
front-forming mechanism described in § 2.2.3. This possibility arises because the flow
transitions from convectively unstable to absolutely unstable, at the axial locations
zc/a indicated by the dash-dotted dark grey (blue online) vertical lines in figures 8, 9
and 10. At leading order, this mechanism selects the frequency ωloc

front as the critical
absolute frequency at zc/a, as given by (2.24). Implementing the next-order correction
leads to the corrected frequency ω

glob
front computed from (2.25). This also shifts the

front slightly downstream from zc/a to zglob
front, according to (2.26). Both the modified

front location and selected frequency are then functions of the Taylor number and
are shown in dash-dotted light grey (green online) vertical and horizontal lines,
respectively, in figures 9 and 10.

Slightly above the critical conditions, at Taylor number Ta= 113 (figure 9), the very
good agreement between the linear frequency ω

glob
crit = 7.55 and the numerical result

ω= 7.69, together with the propagation of the perturbation upstream of the modified
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front, suggest that linear dynamics prevail for these weakly supercritical
conditions.

Increasing the Taylor number further from critical conditions, to Ta = 130
(figure 10), together with unshown results at Ta = 115, 120 and 140 exhibits the
role of the nonlinear front-forming mechanism in the selection and dynamics of the
global mode. The upstream edge of the perturbation in figure 10(b) almost exactly
collapses on zglob

front (the dash-dotted light grey, green online, vertical line in figure 10a)
as given by (2.26). The frequency ωmax(z) = 18.49 of the leading subpacket agrees
very well with ωglob

front = 17.91 (the dash-dotted light grey, green online, horizontal line
in figure 10a) as given by (2.25).

Whereas the DNS at Taylor number Ta = 113 in figure 9 shows a synchronized
global mode, the DNS at Ta = 130 in figure 10 shows that the local dominant
frequency of the perturbation, ωmax(z) in figure 10(a), changes along the axial
direction. This change takes the form of two successive jumps to smaller frequencies
as fluid travels downstream across the wavepacket. As in § 3.2.1, this change is
again associated with a ‘bump’ in the Hilbert transform shown in figure 10(b). This
suggests again that the frequency jumps allow perturbations to resettle to more natural
frequencies, depicted as the dotted (blue online) curves which show the frequency
ωloc(z) of the most unstable axisymmetric absolute mode obtained for the local axial
Reynolds number β(z) and the Taylor number of the DNS. Frequencies observed
in figure 10 and for similar cases at Ta = 120 and 140 suggests that the frequency
downstream of the step-down is about two-thirds of the frequency upstream of the
step-down. Section 4.1 will discuss these step-downs further.

3.2.3. Cross-flow reversal: maximum instability within the domain
Our final configuration considers systems with cross-flow reversal, as in figures 2(c)

and 11(c). The axial Reynolds number first decreases with z, then increases after
the transmembrane flow reverses. This set-up exhibits a maximum of local instability
where β =βmin is a minimum. We impose cross-flow reversal in the DNS by applying
βinlet= βoutlet= 31.2, with a permeability σ = 2.3× 10−4 and Lcentral= 130. Simulations
are repeated for Ta= 110, 112, 115, 120, 130 and 140.

Figure 11 shows DNS results for Ta = 120. An axisymmetric instability develops
in the form of a wavepacket originating slightly downstream from the location of
βmin (the dashed vertical dark grey, blue online, line), as seen in figure 11(b). This
wavepacket propagates both down- and upstream until its trailing edge reaches the
downstream stable domain (the dotted vertical dark grey, blue online, line on the
right), where the instability diminishes, and its leading edge gets pinned downstream
of the convective/absolute boundary (the dash-dotted vertical dark grey, blue online,
line on the left). Figures 11(b,c) show that the steady wavepacket is again composed
of several subpackets with different temporal frequencies.

A region of local absolute instability can exist around the location of βmin. This
location, where β is minimum and the flow locally the most unstable, constitutes a
double turning point. At leading order, from the minimum axial Reynolds number
βmin = 1.61, the linear selection mechanism driven by the double turning point
produces a critical Taylor number (2.13) Taloc

crit = 110.5 and a critical frequency (2.14)
ωloc

crit = 5.95. Including next-order corrections (2.16) and (2.17) shifts these slightly
to Taglob

crit = 110.9 and ω
glob
crit = 6.04. The threshold for the instabilities in the DNS is

in agreement with these analytical values. No instability is observed at Ta = 110,
whereas increasing the Taylor number to Ta= 112 exhibits an instability, as seen in
figure 12.

front location zglob

24

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.437


Owing to the existence of the upstream convective/absolute boundary zc/a, the
selection by the front-forming mechanism, described in § 2.2.3, may also occur, in
a similar fashion to the cases of fluid extraction. As in § 3.2.2, both the modified
front location, as given by (2.26), and selected frequency, as given by (2.25), are
then functions of the Taylor number and are shown in dash-dotted light grey (green
online) vertical and horizontal lines, respectively, in figures 12 and 13.

Slightly above the critical conditions, it is difficult to discern the selection
mechanism of the global mode from the numerical simulation at Ta= 112 in figure 12.
The associated frequencies ωglob

front= 6.00 by the nonlinear front and ωglob
crit = 6.04 by the

linear double turning point are nearly identical when Ta= 112, and are both close to
the observed value ω = 5.98 for the leading subpacket. The fact that this subpacket
does not exhibit a clear front could suggest a linear global mode, selected by the
double turning point. The amplitude of such a linear global mode should grow until it
reaches the downstream boundary between convectively unstable and stable domains,
but in our case, such a growth is hampered by the local detuning and the frequency
jump.

Increasing the Taylor number to Ta = 130 in figure 13, together with unshown
similar DNS at Ta = 115, 120 and 140, shows that the leading subpacket of the
instability tends to be governed by the nonlinear front-forming mechanism, with this
subpacket pinned on the shifted location zglob

front (the dash-dotted light grey, green online,
vertical line in (a)) and the frequency of the subpacket ω = 16.84 closely matching
the analytical value ωglob

front = 16.47 (the dash-dotted light grey, green online, horizontal
line in (a)) and clearly departing from ω

glob
crit = 6.04.

As in §§ 3.2.1 and 3.2.2, the wavepackets at Ta= 112 and 130 exhibit jumps in the
dominant temporal frequency, ωmax(z) in (a), as fluid travels downstream. These jumps
are similar to those observed in cases of fluid extraction, with step-downs upstream of
the cross-flow reversal, and fluid injection, with step-ups downstream of the cross-flow
reversal. As for fluid injection, figures 12 and 13, together with unshown results at
Ta= 115, 120 and 140, show that step-ups consist of frequency doublings between the
successive frequencies. In a fashion similar to fluid extraction, step-downs observed in
figure 13 tend to follow a two-thirds ratio between the successive frequencies, though
this is not as rigorous as the frequency doublings of the step-ups, and the lowest
frequency ω= 6.95 is close to the frequency selected by a double turning point at the
minimum of β, ωglob

crit = 6.04. Those jumps are further addressed in the next section.

4. Discussion
4.1. The frequency jumps and the subpackets

For almost all cases, our DNS exhibit instabilities composed of several subpackets,
oscillating at different temporal frequencies that occur in sequences of step-ups or
step-downs. Step-ups are observed in regions of fluid injection as in the simulations
of § 3.2.1, and in regions downstream of cross-flow reversal in § 3.2.3. Step-downs
are observed in regions of fluid extraction, as in the simulations of § 3.2.2 and in
regions upstream of cross-flow reversal in § 3.2.3. To investigate the dynamics of the
subpackets and frequency jumps observed in our DNS, we consider the case of cross-
flow reversal shown in figure 11 for Ta = 120. This set-up simultaneously presents
step-ups and step-downs of the frequency. Further information can be obtained from
figure 14, which shows the complete Fourier transform in time of the instability, upon
which the computation of ωmax(z) is based, as a function of the axial coordinate z.
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FIGURE 14. (Colour online) Frequency spectrum of the radial velocity at mid-gap
obtained for cross-flow reversal at η= 0.85 and Ta= 120, as in figure 11, as a function
of the axial coordinate z. The dash-dotted (green online) vertical line shows the location
of the front zglob

front. The dashed (blue online) vertical line shows the location of the double
turning point. The dotted (blue online) curve the local most amplified frequency ωloc(z).
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FIGURE 15. (Colour online) Numerical simulations for η = 0.85, Ta = 130 with fluid
extraction and the inlet locally convectively unstable. Radial velocity at mid-gap U(rmid, z),
at final time (solid black curve) and amplitude computed from the temporal Hilbert
transform (solid red curve). The perturbation at the inlet is at initial time (a) or a
continuous random noise (b).

As seen in figure 14, as well as in figures 6–7 and 12–13, step-ups clearly consist
of successive frequency doublings. These frequency doublings occur irrespective of
whether the upstream subpacket with the lowest frequency was imposed by a linear
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turning point, as in § 3.2.1, or if it resulted from a sequence of step-downs upstream,
as in the cross-flow reversal cases of § 3.2.3. This suggests that the frequency doubling
is governed by some local dynamics. In figure 14, for example, the step-up between
the two subpackets pulsating at frequencies ω2 and 2ω2 occurs due to the local
amplification in the subpacket downstream of the step-up of the first harmonic (2ω2)
of the frequency (ω2) of the subpacket upstream of the step-up. The first harmonic
(2ω2) is fed by nonlinear dynamics and can be already observed in the subpacket
upstream of the step-up. The frequency step-up occurs where this first harmonic is
locally amplified by the mechanism of the centrifugal instability. This is shown by
examining the local frequency ωloc(z), the dotted, blue online, curves in figures 14.
Similar curves are also depicted in figures 6, 7, 12 and 13. This local frequency
consists, in the domains where fluid injection occur and step-ups occur, of the
frequency of the most unstable axisymmetric convective mode obtained at the local
value of the axial Reynolds number β(z) and the Taylor number of the DNS. The
FFT depicted in figure 14 shows that, in the region of fluid injection, the maximum
amplitudes of the successive harmonics are located along this curve of local frequency.
As seen in figures 6, 7 and 12, in cases of fluid injection and cross-flow reversal close
to the critical conditions, the instabilities consist in sequences of step-ups. It seems
then legitimate to consider the complete wavepacket as a global mode: the leading
subpacket subdues the successive downstream subpackets and, moreover, subpackets
are synchronized, as harmonics are synchronized to their fundamental.

While step-ups can be explained in terms of local dynamics, a physical interpretation
for the step-downs is more elusive. Step-downs occur when the leading subpacket
is governed by the nonlinear front-forming mechanism at the convective/absolute
boundary. In these cases, a linear turning point is also present downstream of the
front, where the axial Reynolds number β is minimum. In the simulations shown in
figures 8, 10, 11, 13 and 14, the leading subpacket pulsates at the frequency ω

glob
front

selected by the front (labelled ω1 in figure 14). The leading subpacket is superseded
by a subpacket pulsating at a frequency close to ωglob

crit selected by the linear turning
point (labelled ω2 in figure 14). Furthermore, step-downs tend to follow a two-third
ratio between the successive frequencies, though this ratio is not as rigorous as the
frequency doublings observed in the step-ups. The step-down in figure 14 shows that
the spatial overlap between the two subpackets involved, i.e. the z-range where both
frequencies are noticeably present, is limited. It is therefore not clear if, across a
step-down, the upstream subpacket drives the downstream subpacket. This motivates
us to compare the local maximum frequency ωmax(z) in regions where step-downs
occur to a local frequency ωloc(z) defined as the frequency of the most unstable
axisymmetric absolute mode, obtained at the local axial Reynolds number β(z) and
the Taylor number of the DNS. This local frequency is shown as a dotted curve (blue
online) in figures 10, 13 and 14. We observe that a new subpacket develops after
a step-down where its frequency becomes the locally most unstable. In figure 14,
the local frequency ω(z) of the DNS is compared to the analytical result ωloc(z).
This latter is the frequency of the most unstable axisymmetric absolute mode where
extraction and step-downs occur, while it is the frequency of the most unstable
axisymmetric convective mode where injection and step-ups occur. This choice
reflects the hypotheses that the perturbation downstream of a step-up is excited by
the perturbation upstream, while the perturbation downstream of a step-down seems
to arise irrespective of the perturbation upstream. Figure 3(b) suggests that convective
and absolute frequencies weakly differ. Comparing the value of ω(z) to the local
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FIGURE 16. (Colour online) Numerical simulation for η = 0.85, Ta = 160 with fluid
injection: isosurface where the total azimuthal velocity is equal to one half of the velocity
at the rotating inner cylinder, at final time. The whole domain is unstable and the
dash-dotted (blue online) circle shows the absolute/convective boundary.

convective or absolute frequencies thus hardly discriminates between convective and
absolute local dynamics of the perturbation.

Though we found no convincing mechanisms that clearly explain the selection of
the frequency drop in step-downs, we report some possibilities. First, we note that
step-downs cannot be unambiguously explained by a downstream subpacket governed
by a linear turning point superseding an upstream subpacket governed by the nonlinear
front-forming mechanism. Figure 13, for instance, exhibits two successive step-downs
involving three subpackets, one downstream of the front, one near the double turning
point, and an intermediate one, the dynamics of which is unclear. A second hypothesis
is motivated by the observation that successive frequencies in a step-down (labelled
ω1 and ω2 in figure 14) are in a ratio close to two-thirds. This ratio suggest that
the first harmonic (2ω1) of the upstream subpacket excites the downstream subpacket
via its second harmonic (3ω2). Unfortunately, this ratio is only loosely matched and
figure 14 reveals that this common harmonic 2ω1 ≈ 3ω2 is weak. Third, a step-down
could suggest that the locally most unstable absolute mode occurs along another
branch of the dispersion relation. But the frequency of such a new branch would
not conform to ωloc(z). Moreover, to date, no physically acceptable extra solution
branches of absolute modes have been found for the dispersion relation. We cannot
rule out, however, that an acceptable solution could exist, because finding extra
pinch points in the complex k-plane is difficult without an analytical expression for
the dispersion relation. Finally, a step-down could be the symptom of a secondary
instability. However, secondary instabilities in Taylor–Couette systems usually take the
form of vortices presenting a waviness in the azimuthal direction, and the frequency
of the subpacket downstream of a step-down would again not conform to the local
frequency ωloc(z) but to a different dispersion relation. Moreover, wavy vortices
resulting from a secondary instability mechanism are observed in our DNS at higher
Taylor numbers (see figure 16). Though we incline towards considering that the
dynamics underlying the step-downs are intrinsic, i.e. the feature does not depend on
external factors, they remain an open question. Related to these unsettled dynamics,
to identify the whole wavepacket as a global mode is debatable.

4.2. The selection of the leading wavepackets
Besides the frequency jumps that cannot be explained in terms of global modes,
the analysis presented § 2.2 leads to reliable and interesting results, summarized
here. The thresholds in terms of Tacrit, beyond which instabilities develop in the
DNS in § 3, agree with the analytical expressions based on a linear turning point,
whether a simple turning point, as developed in § 2.2.2, in the case of fluid injection
shown in § 3.2.1 and fluid extraction shown in § 3.2.2, or a double turning point,
as developed in § 2.2.1, in the case of cross-flow reversal shown in § 3.2.3. The
agreement is already satisfying with the leading order of the critical Taylor number

28

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.437


Taloc
crit as given by (2.13) and (2.18) and further improved when corrected to Taglob

crit
as given by (2.16) and (2.21). Concerning the frequency selection, the instabilities
observed in the DNS are almost always composed of stacks of several subpackets
of waves oscillating at different frequencies. Nevertheless, the leading subpackets
always exhibit a frequency related to a global mode selection criterion. The linear
selection by a simple turning point at the inlet (2.19) works accurately in the case
of fluid injection, even when the Taylor number substantially departs from its critical
value, and its dynamics downstream are clearly nonlinear, and without requiring to
proceed to the next order (2.22). The linear selection by a simple turning point at
the outlet (2.19) works accurately in the case of fluid extraction for Taylor numbers
close to the critical conditions, as in figure 9, where, moreover, the instability is fully
synchronized. The linear selection by a double turning point located where the axial
Reynolds number β(z) is minimum (2.14) works accurately in the case of cross-flow
reversal for Taylor numbers close to the critical conditions, as in figure 12. For fluid
extraction and cross-flow reversal, proceeding to the next orders (2.22) and (2.17)
slightly improves those results.

As the Taylor number departs from the critical conditions, as in figures 10 and 13,
the nonlinear selection by the front-forming mechanism accurately predicts the
frequency and the location of the front of the leading subpacket in cases of fluid
extraction and cross-flow reversal. This agreement, however, requires the corrected
expressions (2.25) and (2.26). This mechanism is fully nonlinear, and the agreement
between the DNS and the analysis actually improves as the Taylor number departs
from its critical condition As the Taylor number increases, the front approaches to
the absolute/convective boundary zc/a and the frequency approaches the leading-order
expression (2.24).

The location and extension of the vortices in the domain can also be explained
by the local analysis. In the case of fluid injection, the vortices develop between the
inlet and the downstream boundary between the locally convectively unstable and
stable regions (the dark grey, blue online, dashed vertical lines between the

�� ��CU
and

�� ��S regions). Entering the locally stable region
�� ��S , they decayand vanish. In

the case of fluid extraction, assuming that the front-forming mechanism selects the
leading subpacket, the vortices develop between the upstream boundary between the
locally convectively unstable and absolutely unstable regions (the dark grey, blue
online, dashed vertical lines between the

�� ��CU and
�� ��AU regions) and the outlet. In

the case of cross-flow reversal, assuming again that the leading subpacket is selected
by the front-forming mechanism, the vortices develop between the upstream boundary
between the convectively and absolutely unstable regions (the dark grey, blue online,
dashed vertical lines between the

�� ��CU and
�� ��AU regions) and the downstream

boundary between the locally convectively unstable and stable regions (the dark grey,
blue online, dashed vertical lines between the

�� ��CU and
�� ��S regions). Entering the

locally stable region
�� ��S , they decay and vanish.

4.3. How robust are the global modes?
In the DNS, the manner in which the flow is perturbed impacts the development of
the vortices. In § 3, part of the perturbation is controlled as initial and/or boundary
conditions, in the form of an initial non-axisymmetric perturbation of the axial
component of the inlet velocity. The perturbation also includes numerical noise.
Though very limited within the numerical subdomains of the multidomain simulations,
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some noticeable noise is expected at the boundaries between the subdomains, such as
those between the inlet and outlet buffer and the central subdomain. Based on these
different perturbations, we extrapolate that the initial perturbation at the inlet triggers
the vortices in the case of fluid injection in § 3.2.1. The noise at the outlet triggers
the vortices in the case of fluid extraction in § 3.2.2. The numerical noise in the
whole domain triggers the vortices in the case of cross-flow reversal in § 3.2.3. The
low level of this noise explains the longer time required to observe the instability in
figure 11, compared to figures 5 and 8.

Different initial and/or boundary conditions could potentially lead to the selection
of flow structures different from those we observed. Whereas the dynamics of the
vortices observed in § 3 are based on local absolute instability, we now consider
the possibility to observe structures driven by convective instabilities, in a fashion
similar to the ‘convective route’ proposed to explain the transition to turbulence in the
boundary layer over a rotating disk (see Imayama, Alfredsson & Lingwood 2016, and
references therein on this topic). In our case, these convective modes are conceived
of as a response to a forcing in the form of a non-axisymmetric continuous random
noise on the axial component of the velocity at the inlet, instead of an initial pulse.
In the case of fluid extraction and cross-flow reversal, as shown in figures 8–10
and 11–13, respectively, the inlet is located in a locally stable domain, isolating
the dynamics of the vortices from the perturbations at the inlet. We confirmed that
changing the perturbation at the inlet from an initial pulse to a continuous random
noise had no impact on the instabilities. In the case of fluid injection, as shown in
figures 5–7, the minimum axial Reynolds number βinlet = 2 at the inlet implies that
the location is convectively unstable as soon as Ta > Taconv

crit ≈ 108.5. Changing the
perturbation at the inlet from an initial pulse to a continuous random noise results in
identical steady wavepackets, similarly decomposed into sets of subpackets oscillating
at the same frequencies ωmax(z). The initially forced and continuously forced cases
only differ by the fact that, in the latter case, the global mode rises from a substantial
background noise resulting from the forcing of convective instabilities. The convective
modes are therefore present in the flow, but the dynamics of the global mode prevail.

The possibility of triggering convective instabilities is further addressed in the
case of fluid extraction at Ta = 130, by imposing a lower axial Reynolds number
at the inlet βinlet = 20, so that the inlet is now locally convectively unstable and
by changing the inlet condition from an initial pulse to a continuous random noise.
Figure 15 shows the results of these numerical simulations, with an initial perturbation
(figure 15a) or with a continuous random noise (figure 15b) at the inlet. Whereas an
initial perturbation evolves towards a leading subpacket governed by the front-forming
mechanism, similar to the case shown in figure 10, a continuous noise leads to a
more complex final steady wavepacket, the dynamics of which are hardly intelligible
at this point, that could consist of convective instabilities upstream of the wavepacket.
Despite these different upstream dynamics, the two downstream-most subpackets in
both cases are of comparable axial extensions and frequencies, with ω = 11.90 and
8.28 for an initial perturbation (figure 15a) and ω= 12.18 and 8.30 for a continuous
noise (figure 15b), probably denoting similar downstream dynamics related to the
frequency step-downs addressed in § 4.1.

To investigate the sensitivity of the global modes to the numerical treatment of
the DNS outlet conditions, we repeated all simulations shown in the current using
a ‘sponge layer’ that attenuates perturbations in a near-outlet region (see Tilton
et al. 2014, for details). The results were qualitatively similar, except in cases
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wavemaker. In this DNS, the flow was found to directly transition at Ta = 117 to a
global mode governed by a front forming at the boundary between the convectively
unstable and absolutely unstable domains. Modifications of the outlet are known
to impact the dynamics of instabilities in rotating-disk boundary layers (Pier 2013;
Appelquist et al. 2016), a configuration where the local instability increases with the
radius, in a fashion similar to the increase of the instability along the axis in TCP
with fluid extraction. The impact of the nature of the outlet on the instability in TCP
flow would require a substantial and thorough study.

Another aspect of the robustness of these axisymmetric global modes is their
stability with respect to azimuthal waviness. Axisymmetric Taylor vortices, stationary
or travelling, are expected to acquire some azimuthal waviness as the Taylor number
is increased (see Lueptow, Docter & Min 1992, for experimental results). In a
Taylor–Couette flow without axial and radial through-flows, wavy vortices are
expected above Tawavy

crit ≈ 120, for η = 0.85. In an axially varying configuration of
fluid injection, these wavy vortices are observed in the numerical simulation at Taylor
numbers Ta = 160, shown in figure 16. In the configurations of fluid extraction and
cross-flow reversal, these wavy vortices have not been observed at Ta= 150, and no
DNS at higher Taylor numbers are available so far. This discrepancy in the critical
conditions for the occurrence of the azimuthal waviness could be accounted for by
the finite axial extension of the vortex stack, more limited in the cases of fluid
extraction and cross-flow reversal, that could hamper the azimuthal waviness, though
this is only speculative.

5. Conclusions and outlook

We investigated hydrodynamic instabilities developing in an open Taylor–Couette
cell with a permeable inner cylinder. Our methodology considered both global mode
theory and DNS using high-order spectral methods. The study was motivated by
applications to membrane separations and by elucidating the physics of instabilities
developing over spatially varying flows in open systems. The global mode analysis
proved challenging because the selection criteria available in the literature have seen
little application to the full three-dimensional Navier–Stokes equations (see § 2.2). The
numerical simulations were also challenging due to the membrane Darcy conditions on
the permeable cylinder and the high aspect ratio domains (see § 3.1 and Tilton et al.
2014). Our results nevertheless show that a global mode analysis based on the local
linear dispersion relation successfully explains the critical conditions and locations
of the instabilities observed in the DNS (see § 4.2). However, our DNS also clearly
and reproducibly demonstrates a new feature of global modes to which we found
no previous record in the literature. Specifically, the DNS produced global modes
composed of stacked subpackets that are each synchronized at specific frequencies
related to the spatial evolution of the most unstable local mode (see § 3.2). Cases in
which the frequency steps up as one moves downstream between two subpackets can
be explained by the local amplification of nonlinearly driven harmonics. A physical
explanation for cases in which the frequency steps down, however, remains elusive
(see § 4.1). We expect this new result will motivate future numerical and theoretical
work to confirm and explain similar behaviours in other open systems with global
modes.

As a final point and outlook, we consider how the mechanics of these instabilities
could improve the design of rotating filtration devices. The set-up of such devices
is similar to the case of fluid extraction, shown in § 3.2.2. The efficiency of rotating
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FIGURE 17. (Colour online) Local linear stability results, as functions of the radius ratio η
and axial Reynolds number β. (a) Convective critical Taylor number Taconv

crit . (b) Absolute
critical Taylor number Taabs

crit. The colourscale of the surfaces corresponds to the critical
azimuthal wavenumbers nconv

crit and nabs
crit. Solid (blue online) curve in (a) and dashed (blue

online) curve in (b) show the specific results for convective and absolute, respectively,
critical conditions at η= 0.85, as in figure 3.

filtration is based on the idea that centrifugal instabilities, in the form of vortices,
developing in the gap between the cylinders, will promote the mixing of the substance
(whether a solute or a suspension) and thereby reduce the accumulation of the filtered
retentate near the semi-permeable membrane surface. This reduces membrane fouling
and improves performances. Crucial to the efficiency of rotating filtration devices is
the transport and mixing of the solute or suspension by these vortices. These transport
and mixing properties depend on the radial shape functions, temporal frequencies,
wavenumbers and amplitude of the vortices in a complex fashion which is a current
research topic for axially invariant configurations.

Owing to the large number of physical and geometrical parameters, a parametric
study of the flow and related transport and mixing in axially varying set-ups remains
a tremendous task, if addressed experimentally or numerically. Analytical approaches
can offer a way to reduce this task. Together with local convective/absolute stability
analyses, the analytical framework of global modes helps foresee some aspects
of the dynamics of the vortices, such as their critical conditions, frequencies and
wavenumbers, and in the case of global modes, their axial location and extension.
These characteristics are determined by controlled parameters such as the solvent
viscosity, the permeability and rotation rate of the inner membrane, the inlet feed rate
of the device and the working pressure inside the inner cylinder. By setting the base
flow and performing a local linear stability analysis as presented in appendix B, the
flow configuration is amenable to parametric studies.

Present DNS and analyses in § 3 have covered cases with η= 0.85. To illustrate the
interest of a parametric study, figure 17 shows the effect of varying the radius ratio
η on the convective (figure 17a) and absolute (figure 17b) critical Taylor numbers,
Taconv

crit and Taabs
crit, for the centrifugal instabilities, parametrized by the axial Reynolds

number β. Results for convective instabilities are reproduced from Martinand, Serre
& Lueptow (2017). By favouring the occurrence of vortices, moderate radius ratios
(η ∼ 0.5) could increase the efficiency of filtration devices. Besides the critical
Taylor numbers, the critical azimuthal wavenumbers nconv

crit and nabs
crit are also indicated

in figure 17 by the colourscale; non-zero values denoting the selection of helical
travelling vortices instead of toroidal ones. Depending on their respective efficiencies
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for mixing and transport, which remain to be assessed, fine tuning the physical
parameters to select toroidal or helical vortices could be of practical interest for
filtration. Figure 17(b) shows that for most of the radius ratios, the critical absolute
instabilities remain toroidal. Helical absolute vortices, though, can be selected in
a narrow band of the η − β space, where η is close to unity, i.e. in narrow gaps,
where right-handed helical modes (nabs

crit = −1) are selected. In contrast, convective
instabilities of figure 17(a) are found to select left-handed helical modes with
azimuthal wavenumbers up to nconv

crit = 22 as β increases over the same range. From the
aspect of the azimuthal wavenumber, one might conclude that favouring convective
instabilities instead of absolute ones present some interest.

Besides the selection of convective, absolute or global modes, DNS presented
in § 3.2.2 show that the stack of vortices decomposes into several subpackets, with
different temporal frequencies, axial wavenumbers and phase speeds and, consequently,
different transport properties. Understanding and predicting the frequency jumps would
be of clear practical interest, either to account for them in models of rotating filtration
or to design systems that avoid them. We are currently working along these lines.
Moreover, predicting the amplitude at saturation of the vortices remains a complex
and open question. This amplitude varies in the axial direction, is impacted by the
frequency jumps, and results from nonlinear dynamics that have not been address to
date.

Appendix A. Axially varying base flow
As explained in Tilton et al. (2010), a base flow for the axially varying configuration

obtained when the rotating inner cylinder is permeable while the stationary outer one
is impermeable is obtained by an asymptotic expansion. This expansion requires one
to assume that both the non-dimensional permeability

√
σ and the pressure drop

along the axial direction 1P/1z, primarily related to the axial flow, are small. The
axially varying base flow is then obtained as an asymptotic expansion up to the
second order in ε=

√
σ :

Ub(r, z)=
dβ
dz

ub(r), Vb(r, z)= Tavb,0(r)+
dβ
dz
vb,1(r) and Wb(r, z)= β(z)wb(r),

(A 1a−c)
with the varying axial Reynolds number β(z) as given in (2.5). According to the
asymptotic expansion, the axial Reynolds number β(z) is first order in ε, so that
Ub(r, z) is second order in ε, the first term in Vb(r, z) is zeroth order while the second
one is second order, and Wb(r, z) is first order.

The radial shape functions in (A 1) read as

vb,0(r)=
r1r2

r2
2 − r2

1

(
r2

r
−

r
r2

)
, (A 2)

wb(r)= 2
r2

2 ln(r/r1)+ r2
1 ln(r2/r)− r2 ln(r2/r1)

(r2
1 + r2

2) ln(r2/r1)− r2
2 + r2

1
, (A 3)

ub(r)=
1

16 ln η

[
C
r
+ 2Ar ln r+ (2B− A)r+ (ln η)r3

]
(A 4)

and

vb,1(r)=
r1

128A ln η

[
Er+

F
r
+ 8Cr ln r+ 4Ar3 ln r+ (4B− 5A)r3

+
2
3
(ln η)r5

]
, (A 5)
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where A= r2
2 − r2

1, B= r2
1 ln r2 − r2

2 ln r1, C= Ar2
2 + r4

2 ln η,

D=
r2

1r2
2

2A2
(η2
+ η−2

− 4 ln r1), (A 6)

E=−8
C
A
(r2

2 ln r2 − r2
1 ln r1)+

10 ln η
3

(r4
1 + r2

1r2
2 + r4

2)+ 5(r4
2 − r4

1) (A 7)

and

F=−r2
1r2

2

[
8

C
A

ln η+
10 ln η

3
(r2

1 + r2
2)+ 5A

]
. (A 8)

Since the pressure field of the base flow is not required for the stability analysis, it
is not included here.

Appendix B. Local convective/absolute stability analysis

The local linear convective/absolute stability analysis is similar to that in Martinand
et al. (2009), and is only summarized here. The velocity and pressure fields are
decomposed as [V,P]= [Vinv

b ,P
inv
b ]+ [V

inv
p ,P

inv
p ], where Vinv

b (r)= (0,Tavb,0(r), βwb(r))t

is the axially invariant TCP base flow, quantified by Taylor number Ta and constant
axial Reynolds number β, and [Vinv

p (r, θ, z, t),P
inv
p (r, θ, z, t)] is a small time-dependent

perturbation. Equations (2.3) and (2.4) are linearized about the base flow Vinv
b , and

the perturbation is sought as

[Vinv
p , Pinv

p ] = [vp(r), pp(r)] exp(iψ) with ψ = kz+ nθ −ωt, (B 1)

where ω is the temporal frequency, k the axial wavenumber, and n the azimuthal
wavenumber. This yields an eigensystem of r-differential equations satisfied by the
radial shape functions [vp(r), pp(r)], written in condensed form as:

A(k, n,Vinv
b (r))[vp, pp] =ωB[vp, pp], (B 2)

for which [vp(r), pp(r)] is an eigenvector and ω the associated eigenvalue. Operators
A and B can be obtained in appendix B of Martinand et al. (2017). System (B 2)
is solved for a given set of parameters (Ta, β, η, k, n) using a Chebyshev spectral
method. The solvability conditions of the set of systems of differential equations
obtained by differentiating (B 2) with respect to k, n and the parameters Ta and β

lead to the several partial derivatives of the complex frequency ω required by the
convective/absolute stability analysis and the global mode selection criteria (besides
the axial group velocity ∂kω, ∂nω, ∂Taω, ∂βω, ∂2

kω, ∂2
nω and ∂k∂nω are also used

in the analysis), and the corresponding partial derivatives of the eigenvector. As
detailed in Martinand et al. (2009), critical conditions (kconv

crit , nconv
crit , Taconv

crit ) for the
most unstable convective mode ([vconv

crit , pconv
crit ], ω

conv
crit ) are found by imposing Im(ω)= 0

and Im(∂kω) = 0, with k real and n integer. Critical conditions (kabs
crit, nabs

crit, Taabs
crit) for

the most unstable absolute mode ([vabs
crit, pabs

crit], ω
abs
crit) are found by imposing Im(ω)= 0

and ∂kω= 0, with k complex and n integer. Those critical conditions and modes are
found as functions of the other parameters β and η, as shown in figures 3 and 17.
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