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The present study addresses the computation of the wall pressure spectrum for a
turbulent boundary layer flow without pressure gradient, at high Reynolds numbers,
using a new model, the Kriging-based elliptic extended anisotropic model (KEEAM).
A space–time solution to the Poisson equation for the wall pressure fluctuations is
used. Both the turbulence–turbulence and turbulence–mean shear interactions are taken
into account. It involves the mean velocity field and space–time velocity correlations
which are modelled using Reynolds stresses and velocity correlation coefficients. We
propose a new model, referred to as the extended anisotropic model, to evaluate
the latter in all regions of the boundary layer. This model is an extension of the
simplified anisotropic model of Gavin (PhD thesis, 2002, The Pennsylvania State
University, University Park, PA) which was developed for the outer part of the
boundary layer. It relies on a new expression for the spatial velocity correlation
function and new parameters calibrated using the direct numerical simulation results
of Sillero et al. (Phys. Fluids, vol. 26, 2014, 105109). Spatial correlation coefficients
are related to space–time coefficients with the elliptic model of He & Zhang (Phys.
Rev. E, vol. 73, 2006, 055303). The turbulent quantities necessary for the pressure
computation are obtained by Reynolds-averaged Navier–Stokes solutions with a
Reynolds stress turbulence model. Then, the pressure correlations are evaluated with
a self-adaptive sampling strategy based on Kriging in order to reduce the computation
time. The frequency and wavenumber–frequency wall pressure spectra obtained with
the KEEAM agree well with empirical models developed for turbulent boundary layer
flows without pressure gradient.

Key words: turbulence modelling, turbulent boundary layers, turbulent flows

1. Introduction
Wall pressure fluctuations induced by turbulent boundary layer (TBL) flows raise

several engineering issues such as trailing edge noise, vibrations of structures which
in turn generate acoustic radiations and disturbances for towed underwater sonar and
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sonar domes. In the case of military naval architecture, the prediction and reduction of
noise generated by elongated vibrating structures is crucial. In order to analyse their
stochastic response to wall pressure excitations, the space–time correlation function or
the wavenumber–frequency spectrum is required.

Different regions can be defined for the pressure wavenumber–frequency spectrum:
the supersonic region, k < ka, the subconvective region, ka < k < kc, the convective
region (or convective peak), k≈ kc, and the viscous region, k� kc (where ka=ω/c is
the acoustic wavenumber, kc = ω/Uc is the convective wavenumber, ω is the radian
frequency, Uc is the convection velocity and c is the sound velocity). The most
energetic one is the convective region with pressure levels approximately 40 dB
above the levels in the subconvective range (for an attached TBL with zero pressure
gradient) (Bonness, Capone & Hambric 2010). In the case of aircraft applications
with high Mach number flows, significant vibrations are caused by pressure-field
components with wavenumbers of the convective range which match the wavenumbers
of the structure bending waves (Graham 1997). However, for underwater applications,
the convective peak may not be the only important part of the pressure spectrum. For
low Mach number flows over elongated structures, strong structural responses result
from excitation by pressure-field components with low wavenumbers which match
those of the subconvective region (Bull 1996; Bonness et al. 2010). Moreover, as the
sound velocity is higher in water and the vehicle speeds are lower, the acoustic and
convective wavenumbers are shifted downward and upward respectively. Thus, the
subconvective range is larger for underwater applications.

Accurate predictions of the pressure spectrum may be obtained using direct
numerical simulation (DNS) or large-eddy simulation (LES) (Choi & Moin 1990;
Chang, Piomelli & Blake 1999; Hu, Morfey & Sandham 2006; Wang et al. 2009).
However, the computation time for these simulations is still too large for complex
industrial problems where numerous simulations have to be done. Thus, modelling
techniques still have to be developed and used to predict the pressure loading.

Numerous semi-empirical models for the pressure spectrum can be found in the
literature. They were proposed during the last decades for the frequency spectrum
Φpp(ω) and the wavenumber–frequency spectrum Φ(k1, k3, ω) = Φ(k, ω) (where k1
and k3 are the streamwise and spanwise wavenumbers respectively, k = (k1, 0, k3)

is the wave vector). Detailed reviews of frequently used models for the pressure
spectrum can be found in the papers of Graham (1997) and Hwang, Bonness &
Hambric (2009). A few of them are presented in table 1. These models are based on
data fitting and a certain degree of analytical and theoretical modelling. They only
need few boundary layer characteristics as input so they are well adapted for design
phases. However, they were mostly developed for zero pressure gradient turbulent
boundary layers with ideal conditions, which may be far from the conditions of
interest. Rozenberg, Robert & Moreau (2012) showed that empirical models for the
frequency spectrum underestimate the spectral levels, particularly at low frequencies,
in case of adverse pressure gradient (APG). Thus, they proposed a frequency spectrum
model based on Goody (2004) which takes into account pressure gradient effects but
it is restricted to APG. Moreover, for the wavenumber–frequency spectrum, the
available semi-empirical models agree around the convective peak but show large
discrepancies in the low wavenumber range which is also an area of interest.

Another method is to express a solution to the Poisson equation for the pressure
which relates wall pressure fluctuations to velocity sources in the turbulent flow.
These source terms consist of the turbulence–mean shear (TMS) terms and the
turbulence–turbulence (TT) terms, which are also referred to as rapid and slow terms
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Reference Flow Reθ Input Output

Corcos (1964) ZPG-TBL — Uc, Φpp(ω) Φ(k, ω)
Chase (1980) ZPG-TBL — Uc, uτ , δ Φ(k, ω), Φpp(ω)

Chase (1987) ZPG-TBL — Uc, uτ , δ Φ(k, ω)
Smol’yakov ZPG-TBL [1.4× 103

; 2.93× 105
] uτ , Reθ Φpp(ω)

(2000)
Goody (2004) ZPG-TBL [1.4× 103

; 2.34× 104
] U∞, uτ , δ Φpp(ω)

Smol’yakov ZPG-TBL [3.5× 103
; 3× 105

] Uc, uτ , δ∗ Φ(k, ω)
(2006)
Rozenberg et al. APG-C, A [5.6× 102

; 1.72× 104
] U∞, uτ , τmax, δ, Φpp(ω)

(2012) δ∗, θ , dP/dx1

TABLE 1. Wall pressure spectra semi-empirical models. Flow: ZPG-TBL, zero pressure
gradient turbulent boundary layer; C, channel; A, airfoil; APG, adverse pressure gradient.
Reθ = U∞θ/ν with: U∞, free-stream velocity; ν, kinematic viscosity; θ , momentum
thickness. Input: Uc, convection velocity; uτ , friction velocity; δ, boundary layer thickness;
δ∗, displacement thickness; τmax, maximum shearing stress along the normal; dP/dx1,
mean pressure gradient. Output: Φpp(ω), wall pressure frequency spectrum; Φ(k, ω), wall
pressure wavenumber–frequency spectrum.

respectively. Two kinds of approaches can be considered: a spectral solution which
gives an expression for the wavenumber–frequency pressure spectrum; a space–time
solution which gives an expression for the pressure fluctuation correlations. A few
examples of both strategies are presented in table 2. The former approach was first
applied by Kraichnan (1956) who expressed the wavenumber–frequency spectrum for
a TBL flow over a flat plate as a double integral over the wall-normal coordinate.
His expression was obtained by taking into account only the linear TMS term
and supposing the homogeneity of the TBL in planes parallel to the wall. This form
involves the gradient of the mean streamwise velocity in the wall-normal direction and
the Fourier transform of the vertical velocity correlations. The latter can be modelled
using the Reynolds stress u2u2 and the vertical velocity correlation coefficient C22
or a spectral correlation function Φ22. Based on the work of Kraichnan (1956),
several authors have proposed similar relationships for the pressure spectrum (see
table 2). Panton & Linebarger (1974) used empirical models for the mean velocity
and the velocity correlations as input for their expression. Blake (1986) used a
derived expression for the frequency spectrum and deduced some characteristics for
the spectrum due to the TMS term. Lysak (2005) applied the method to turbulent pipe
flows. In more recent works, Reynolds-averaged Navier–Stokes (RANS) solutions are
used as input data for relationships similar to Kraichnan (1956) which are applied to
TBL flows without a pressure gradient (e.g. Aupoix 2015) or to more complex flows
such as flow over a backward-facing step (Lee, Blake & Farabee 2005) or over an
airfoil (Remmler et al. 2010; Bertagnolio, Fischer & Jun Zhu 2014).

As the Poisson equation for the wall pressure fluctuations with the nonlinear
TT source terms cannot be solved directly in the spectral domain, these terms are
disregarded in the Kraichnan (1956) relation and similar works. Neglecting the TT
source terms is often considered as a satisfactory assumption, particularly at mid and
high frequencies (Kraichnan 1956; Panton & Linebarger 1974; Remmler et al. 2010).
However, when the area of interest is located at low frequencies and wavenumbers,
the TT source terms should not be neglected. Besides, Chang et al. (1999) showed,
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using DNS data for a fully developed turbulent channel flow at low Reynolds number,
that the TMS and TT terms are of the same order throughout the wavenumber range.
In order to take into account the TT terms, Lee et al. (2009) tried to include
heuristically a nonlinear source term, based on the DNS results of Kim (1989), in a
spectral relation. They obtained satisfactory results for a flow over a backward-facing
step. As an alternative, a more accurate and general way to estimate the TT terms
contribution may be to solve the Poisson equation in the space–time domain. This
approach is performed by Peltier & Hambric (2007) who proposed a stochastic model
to estimate wall pressure spectra. A space–time solution to the Poisson equation for
wall pressure correlations is used and the pressure spectrum is obtained by their
Fourier transform. The TMS and TT source terms are expressed as a double integral
over the space above the wall. The relation of Peltier & Hambric (2007) involves
the gradient of the mean streamwise velocity in the wall-normal direction and four
space–time velocity correlation functions. These latter are modelled as a product
of velocity correlation coefficients (denoted by Cij), which are obtained using a
semi-empirical model developed by Gavin (2002), and Reynolds stresses which are
obtained by RANS solutions. Their model was able to correctly predict the effects of
pressure gradients on wall pressure frequency spectra for a channel flow. Their results
show that the TT contribution is smaller than the TMS one but not negligible. Monté
(2013) applied a similar method to estimate the wavenumber–frequency spectrum for
TBL flows over towed underwater antennas.

In the present work, we propose a new model to compute the pressure correlations,
referred to as the Kriging-based elliptic extended anisotropic model (KEEAM),
which relies on an expression similar to Peltier & Hambric (2007) for the pressure
correlations and a new closure model for the velocity correlations based on the DNS
results of Sillero, Jiménez & Moser (2014). RANS data, obtained with Reynolds
stress models, are also used as an input. The evaluation of wall pressure correlations
is detailed in § 2 and the velocity correlation model is described in § 3. The present
work focuses on the validation of the method and the velocity correlation model for a
TBL flow over a flat plate. The results are presented in § 4 where they are discussed.
Contrary to Peltier & Hambric (2007), both frequency and wavenumber–frequency
spectra are computed. The influence of both the closure model and the Reynolds
number on the pressure spectrum are investigated. The results are also compared to
other approaches previously described.

2. Wall pressure correlations and spectrum
The instantaneous velocity components in the streamwise (x1), wall-normal (x2) and

spanwise (x3) directions are denoted by ũ1, ũ2, ũ3, respectively. The instantaneous
pressure is indicated by p̃. Points on the wall are denoted by xs and ys. Points x and
y are located in the volume above the wall (see figure 1). Times are denoted by t
and τ . An instantaneous variable ã is decomposed into mean part and fluctuation as:
ã = A + a (Reynolds decomposition). Mean field quantities are represented in upper
case and fluctuations in lower case.

2.1. Equation for the wall pressure correlation
2.1.1. General formulation

The Poisson equation for the instantaneous pressure is obtained by taking the
divergence of the incompressible Navier–Stokes equations. By integrating the resulting
equation using an appropriate Green function G and by neglecting the normal
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FIGURE 1. Sketch of the spatial computational domain.

derivative of the pressure at the wall, a solution for the wall pressure can be written
(Kraichnan 1956; Chassaing 2000):

1
ρ

p̃(xs, t)=−
∫
Ωx

∂

∂xi

(
ũj(x, t)

∂ ũi(x, t)
∂xj

)
G(x, xs) dx, (2.1)

where ρ is the fluid density. This equation shows that the surface pressure is
determined by contributions from all parts of the velocity field over the wall.

The expression of the wall pressure fluctuations is obtained by applying Reynolds
decomposition to separate the mean and fluctuating wall pressures and then subtracting
the mean pressure:

1
ρ

p(xs, t) =
∫
Ωx

[
2
(
∂Ui(x)
∂xj

uj(x, t)
)
∂G(x, xs)

∂xi

− (ui(x, t)uj(x, t)− uiuj(x))
∂2G(x, xs)

∂xi∂xj

]
dx. (2.2)

In (2.2), the spatial derivative were transferred to the Green function via applications
of integration by parts and the divergence theorem (see Peltier & Hambric 2007). The
overbar indicates an ensemble average.

The space–time correlations of the wall pressure fluctuations are obtained from the
ensemble average of the product of (2.2) evaluated at two different points and two
different times (xs, t) and (ys, τ ):

1
ρ2

p(xs, t)p(ys, τ ) =

∫
Ωx

∫
Ωy

[
4
∂Ui

∂xj

∂Vk

∂yl
ujvl

∂G(x, xs)

∂xi

∂G(y, ys)

∂yk

− 2
∂Ui

∂xj
ujvkvl

∂G(x, xs)

∂xi

∂2G(y, ys)

∂yk∂yl

− 2
∂Vk

∂yl
vluiuj

∂G(y, ys)

∂yk

∂2G(x, xs)

∂xi∂xj

+ (uiujvkvl − uiuj vkvl)
∂2G(x, xs)

∂xi∂xj

∂2G(y, ys)

∂yk∂yl

]
dy dx, (2.3)

with Ui(x) the mean velocity at point x; Vk(y) the mean velocity at point y; uj(x, t)
the fluctuating velocity at point x and time t; vl(y, τ ) the fluctuating velocity at point
y and time τ .
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Assuming that the joint distribution of the fluctuating velocities is normal,
equation (2.3) can be simplified. Indeed, the third-order correlation tensor is zero and
the fourth-order correlation tensor can be written as a function of the second-order
correlation tensor:

uiujvkvl = uiuj vkvl + uivk ujvl + uivl ujvk. (2.4)

This hypothesis is not accurate for the velocity but it allowed Peltier & Hambric
(2007) to obtain satisfactory results for wall pressure correlations.

As a remark, in the case of isotropic turbulence, only the fourth-order correlation
tensor appears in the pressure correlation equation. This tensor is expressed as
a function of the second-order correlation tensor as in the case of a normal
distribution but nothing is assumed for the third-order tensor. This is referred to
as the quasi-normality hypothesis (Millionschikov 1941), which is known to yield
accurate results for the pressure evaluation (Batchelor 1951; Lesieur, Ossia & Métais
1999; Meldi & Sagaut 2013).

Finally, with the normality hypothesis, the space–time correlations of the wall
pressure fluctuations take the form:

1
ρ2

p(xs, t)p(ys, τ ) =

∫
Ωx

∫
Ωy

[
4
∂Ui

∂xj

∂Vk

∂yl
ujvl

∂G(x, xs)

∂xi

∂G(y, ys)

∂yk

+ 2 uivk ujvl
∂2G(x, xs)

∂xi∂xj

∂2G(y, ys)

∂yk∂yl

]
dy dx. (2.5)

Two types of terms can be identified in (2.5): the first group on the right-hand side
denotes turbulence–mean shear (TMS) interactions source terms and the second group
on the right-hand side represents turbulence–turbulence (TT) interactions source terms.

In order to estimate turbulent pressure correlations from (2.5), several quantities
are required: a Green function, the mean velocity field at two different points and
two-point and two-time velocity correlations ui(x, t)vk(y, τ ). The velocity field can be
obtained by RANS solutions but the two-point and two-time velocity correlations (or
space–time velocity correlations) have to be modelled.

The two-point two-time velocity correlations, Rik(x, y, t, τ )= ui(x, t)vk(y, τ ), can be
written as a function of Reynolds stresses (i.e. one-point velocity correlations) and a
space–time correlation coefficient:

Rik(x, y, t, τ )=
√

uiui(x)
√
vkvk(y) Cik(x, y, t, τ ). (2.6)

Reynolds stresses can be obtained from RANS solutions and a closure model is
needed for the space–time correlation coefficients. This model is detailed in § 3.

2.1.2. Flow over a flat plate
We consider the case of a fully developed turbulent boundary layer over a flat

rigid plate in a flow with zero pressure gradient at low Mach number. In this flow,
the boundary layer thickness increases slowly in the streamwise direction and the
velocity field can be considered homogeneous in the (x1, x3) plane (parallel to the
wall) with a good approximation. Moreover, we assume that the flow is statistically
two-dimensional so Reynolds stresses are reduced to four terms (Pope 2000): u1u1,
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wall pressure correlations are expressed as:

1
ρ2

p(xs, t)p(ys, τ )=

∫
Ωx

∫
Ωy

[
4
∂U1

∂x2

∂V1

∂y2

√
u2u2
√
v2v2C22

∂G(x, xs)

∂x1

∂G(y, ys)

∂y1

+ 2
√

uiui
√
vkvkCik

√
ujuj
√
vlvlCjl

∂2G(x, xs)

∂xi∂xj

∂2G(y, ys)

∂yk∂yl

]
dy dx. (2.7)

Finally, the Green function for a flat plate is:

G(x, xs)=−
1

2π

1
‖x− xs‖

. (2.8)

The relation for pressure correlations (2.7) is slightly different from the one
of Peltier & Hambric (2007) because their definition of the velocity correlation
coefficients differs from (2.6). There is also a difference for the velocity gradients:
Peltier & Hambric (2007) assume that ∂U1/∂x2 ≈ ∂V1/∂y2 so only ∂U1/∂x2 appears
in their equation.

2.2. Wall pressure spectrum
We assume that wall pressure correlations can be written as a function of the spatial
separation rs = ys − xs and the time separation 1t= τ − t:

p(xs, t)p(ys, τ )= Rpp(rs, 1t). (2.9)

The wall pressure wavenumber–frequency spectrum is commonly obtained by the
Fourier transform of the pressure fluctuation correlations:

Φ(k1, k3,ω)=
1

(2π)3

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

Rpp(rs1, rs3,1t)e−i(k1rs1+k3rs3+ω1t) drs1 drs3 d1t. (2.10)

The frequency spectrum is related to the pressure correlations and the wavenumber–
frequency spectrum by:

Φpp(ω)=
1

2π

∫
∞

−∞

Rpp(0, 0, 1t)e−iω1t d1t=
∫
∞

−∞

∫
∞

−∞

Φ(k1, k3, ω) dk1 dk3. (2.11)

2.3. Numerical method
To evaluate (2.5) or (2.7), a double volume integral must be estimated numerically.
Moreover, in the case of a flow over a flat plate, the Green function and its derivatives
are singular for x = xs and y = ys. Since the velocity and the Reynolds stresses are
zero on the wall, numerical problems occur only when x and y are close to xs and ys
but above the wall. In this case, the integrand varies strongly. To take these variations
into account, we use an adaptive quad-tree grid. This grid generation is based on an
error estimator of the integration of the Green function derivatives. Integrations on
each subspace of the grid are realized with a seventh-order discrete Gauss–Legendre
method. The size of the integration domain is taken sufficiently large to guarantee the
convergence of the results.

u2u2, u3u3 and u1u2. Considering these hypotheses and substituting (2.6) in (2.5), the
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FIGURE 2. Flowchart of the adaptive sampling method.

Besides, to obtain the pressure spectrum for broad frequency and wavenumber
ranges, a considerable number of pressure correlation values are required. In order
to reduce the computation time, we evaluate the pressure correlations only at a few
points and create a surrogate model using Kriging (Krige 1951). A self-adaptive
sampling strategy is used to increase the accuracy of the surrogate model (see
Braconnier et al. 2011; Margheri & Sagaut 2016). Figure 2 shows the steps of the
method. Starting from an initial sample with a uniform distribution, the pressure
correlations are calculated. Then, using the leave-one-out cross-validation process, a
local error is estimated for each point. Precisely, the sample is split into a training
set (used to build the surrogate model with Kriging) and a test set (with only one
point). The local error is evaluated between the pressure correlation value at the test
point, Rpp(Xtest), and the value obtained with the surrogate model at the test point,
Rs

pp(Xtest):

LE=
|Rpp(Xtest)− Rs

pp(Xtest)|

Rpp(0, 0, 0)
. (2.12)

Rpp(0, 0, 0) is the maximal value of the pressure correlations and is computed in the
initial sample. This error is estimated for each element of the sample and points are
added with quad-tree sampling where the error is maximal. The pressure correlations
are evaluated for the new points and the previous steps are repeated until a satisfactory
error is reached. A minimal value is imposed for the distance between points in order
to avoid accumulations near discontinuities or high gradients. Finally, the surrogate
model is used to interpolate the pressure correlations on a fine grid.

For two-dimensional results with a local error lower than 5 %, approximately 500
values of pressure correlations are required to compute a streamwise wavenumber–
frequency spectrum on a 2048 × 2048 grid. An example of the pressure frequency
spectrum obtained with and without Kriging is presented in § 4.
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3. Two-point two-time velocity correlation model
3.1. Velocity correlation characteristics

Space and time dependencies are here systematically specified so the fluctuating
velocity at point y and time τ is also denoted ui without any confusion. Since the
turbulent boundary layer is considered as stationary in time, the space–time velocity
correlations can be written:

Rij(x, y, t, τ )= Rij(x, r, 1t)= ui(x, t)uj(x+ r, t+1t), (3.1)

with r= y− x the spatial separation vector and 1t= τ − t the time separation.
Some conditions can be written for the form of the velocity correlations, which in

turn, have an impact on the form of the correlation coefficients Cij. It is assumed
that the motion at one point of the fluid and one time is statistically independent of
the motion at a point sufficiently distant in space or time. Thus, Rij should become
negligible for large values of |r| or 1t. Rij also vanishes when a point is located on
the wall (i.e. when x2= 0 or r2=−x2). The former requirement applies directly to Cij
and the last one is automatically satisfied using (2.6).

The form of the velocity correlations should also satisfy the continuity condition
(Rotta 1962):

∂

∂rj
Rij(x, r, 1t)= 0. (3.2)

Since the instantaneous flux across any closed surface is zero and Rij tends to zero at
large |r|, the integration of (3.2) with respect to all values of r2 and r3 for a constant
value of r1 leads to (Rotta 1962; Townsend 1980):∫

∞

−∞

∫
∞

−x2

Ri1(x, r, 1t) dr2 dr3 = 0, i= 1, 2, 3. (3.3)

Equation (3.3) implies that Ri1 has positive and negative values within the plane
(r2, r3). Similar equations can be written for the other velocity correlations by
integrating over planes (r1, r3) and (r1, r2). The condition (3.3) does not apply exactly
to Cij even if the coexistence of negative and positive regions can be observed (Sillero
et al. 2014).

Finally, Rij should tend to one-point correlations for r= 0 and 1t= 0:

Rij(x, 0, 0)= uiuj(x), (3.4)

which implies for the correlation coefficient Cij that:

Cii(x, 0, 0)= 1 (3.5)

Cij(x, 0, 0)=
uiuj(x)

√
uiui(x)

√
ujuj(x)

, i 6= j. (3.6)

For the sake of simplicity, we introduce C̃12 such as:

C̃12(x, r, 1t)=
C12(x, r, 1t)
C12(x, 0, 0)

, (3.7)

which satisfies C̃12(x, 0, 0)= 1.
The previous requirements help to define a form for the velocity correlation

coefficients. To model these space–time coefficients we proceed in two steps:

(i) modelling the spatial evolution of the correlation coefficients (§ 3.2);
(ii) relating spatial correlations to space–time correlations (§ 3.3).

10

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.810


–0.75 –0.50 –0.25 0 0.25 0.50 0.75
0

0.1

0.2

0.3

0.4

–0.75 –0.50 –0.25 0 0.25 0.50 0.75
0

0.1

0.2

0.3

0.4

–0.75 –0.50 –0.25 0 0.25 0.50 0.75
0

0.1

0.2

0.3

0.4

–0.75 –0.50 –0.25 0 0.25 0.50 0.75
0

0.1

0.2

0.3

0.4

FIGURE 3. Streamwise (r1, r2) sections of the correlation coefficients obtained with the
DNS data of Sillero et al. (2014) for r3 = 0, 1t = 0, x2/δ = 0.065 and Reθ ≈ 4860 (the
flow is from left to right). Positive contours (——) are from 0.1 to 0.9 with increments
of 0.1, the negative contours (- - -) are [−0.1; −0.05].

3.2. Space correlation model
To model the spatial evolution of the velocity correlation coefficients we proposed a
semi-analytical model (for Cii and C̃12) using the DNS data of Sillero et al. (2014)
as reference. The spatial characteristics of these data are detailed in § 3.2.1. The main
characteristics of the isotropic model and the simplified anisotropic model (SAM) are
given in §§ 3.2.2 and 3.2.3 respectively. Both approaches are used as a basis for the
new Cij form, referred to as extended anisotropic model (EAM), proposed in this work
and presented in § 3.2.4. Lastly, these three models are compared in § 3.2.5.

3.2.1. Spatial characteristics from reference data
Sillero et al. (2014) give detailed results of two-point statistics, particularly

velocity correlation coefficients, for the buffer, logarithmic and outer regions of
turbulent boundary layers. Data are available for three Reynolds number Reθ ≈
4000, 4860 and 6500 (where Reθ = U∞θ/ν, U∞ is the free-stream velocity, ν is the
kinematic viscosity and θ is the momentum thickness). These data can be found at
http://torroja.dmt.upm.es/turbdata/blayers/high_re/correlations.

An example of sections of the four correlation coefficients in the plane (r1, r2),
obtained by post-processing the Sillero et al. (2014) data, are presented in figure 3.
The variables are scaled by the boundary layer thickness δ. Correlation coefficients are
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more or less elongated structures tilted with respect to the wall. Sillero et al. (2014)
observed that their size in the three directions as well as their inclination angle depend
on the variable being considered and the wall distance x2. The streamwise velocity
correlation coefficient C11 is more elongated than the others in the streamwise
direction (see figure 3). Its maximum length observed for the weakly correlated
structures (C11 ≈ 0.025) is of the order of 7δ (see also the experimental results of
Tutkun et al. (2009)) whereas for C22 and C33 the maximum streamwise length is
of the order of 2δ–δ. On the contrary, these three coefficients have similar spanwise
widths of the order of δ. However, the size of these coefficients in each direction
evolve differently with the wall distance x2. The value of the inclination angle depends
on the correlation level being considered (see figure 3) but Sillero et al. (2014) define
a characteristic inclination angle which is the maximum angle observed as a function
of the wall distance x2. For C11, the angle is α1 ≈ 10◦. For C33, the inclination angle
tends quickly to a steeper one, α3 ≈ 32◦. Both angles are principally uniform across
the boundary height. C22 is mainly vertical except in a region close to the wall where
α2 ≈ α1. Finally, C̃12 looks like a shorter version of C11 (Sillero et al. 2014).

3.2.2. Isotropic model
In the case of isotropic turbulence, the velocity correlations can be expressed as

(Batchelor 1959; Sagaut & Cambon 2008):

Rij(r)= ui(x)uj(x+ r)= u2

(
f (r)− g(r)

r2
rirj + g(r)δij

)
, (3.8)

where u2
= 2K/3 is a scaling factor function of the kinetic energy K; δij is the

Kronecker delta; f and g are the longitudinal and transverse correlation functions
respectively, r is the norm of the spatial separation vector r.

The correlation function g is linked to f via the continuity condition (3.2) which
leads to:

g(r)= f (r)+
r
2
∂f (r)
∂r

. (3.9)

These functions have to satisfy f (0) = g(0) = 1. A common expression for the
correlation function f is (Panton & Linebarger 1974; Peltier & Hambric 2007):

f (r)= exp
(
−

r
L

)
, (3.10)

where L is a correlation length. Different formulas can be used for L such as Taylor
microscale λf =

√
15νu2/ε or a characteristic integral scale Lu = K3/2/ε (Sagaut &

Cambon 2008) which are both functions of the kinetic energy dissipation rate ε. With
(3.10), the condition that Rij should vanish for large values of |r| is satisfied.

From (3.8), the correlation coefficients can be written:

Cii(r)=
f (r)− g(r)

r2
riri + g(r) (3.11)

C̃12(r)=
f (r)− g(r)

r2
r1r2. (3.12)

The four correlation coefficients obtained with the isotropic model are shown in the
plane (r1, r2) in figure 4. The DNS results presented in figure 3 are also plotted (grey
dotted lines) as a reference. The correlation length used for this figure is proportional
to Lu. It shows the necessity to take into account the inclination angles as well as the
anisotropy effects. Indeed, only one correlation length for all the Cij is not sufficient.
Besides, the form of the model for C̃12 is clearly not adapted.
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FIGURE 4. Streamwise (r1, r2) sections of the correlation coefficients obtained with the
isotropic model (L = 0.54Lu) for r3 = 0, 1t = 0, x2/δ = 0.065 and Reθ ≈ 4860 (the flow
is from left to right). For C11, C22 and C33, positive contours (——) are from 0.1 to 0.9
with increments of 0.1. For C̃12, the positive contour (——) is 0.05 and the negative one
(- - -) is −0.05. The grey dotted contours are the DNS results of Sillero et al. (2014) at
the same height and Reynolds number.

3.2.3. Simplified anisotropic model
The simplified anisotropic model, presented in Peltier & Hambric (2007), was

developed by Gavin (2002). It is an empirical model based on measurements
of turbulent velocity correlations in the outer region of a high Reynolds number
boundary layer. In order to take into account the ellipsoidal shape and the inclination
of the velocity correlations to the wall, Gavin (2002) defined a rotation angle θ and
stretching coefficients γi to modify the separation vector r = y − x and then used a
form similar to the isotropic model (3.8).

Firstly, a rotation is applied to the separation vector:

ξ =

 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

r1
r2
r3

 . (3.13)

Then, a separation length is defined using the stretching coefficients:

r∗ =

√(
ξ1

γ1

)2

+

(
ξ2

γ2

)2

+

(
ξ3

γ3

)2

. (3.14)
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Cij θ γ1 γ2 γ3

C11 20◦ 1.000 0.700 0.520
C22 90◦ 0.500 0.525 0.350
C33 35◦ 0.800 0.220 0.400

TABLE 3. SAM parameters.

Finally, velocity correlation coefficients are written by adapting the model for the
isotropic turbulence:

Cij(ξ)=
ξiξj

r∗2 [ f (r
∗)− g(r∗)] + δijg(r∗), (3.15)

with f (r∗)= exp(−r∗/L). The transverse correlation function g is obtained using (3.9).
According to Peltier & Hambric (2007), Gavin used L = 0.35δ for the correlation

length which is valid only in the outer region of the TBL. Instead, they use L(x2)≡
0.54Lu(x2). The values of the SAM parameters determined by Gavin are presented
in table 3. Since no values are given for C̃12, we use C̃12 ≈

√
|C11C22| as Peltier &

Hambric (2007).
The resulting correlation coefficients are plotted in figure 5 and compared with

the DNS results of Sillero et al. (2014). The SAM angles appear to be too large,
particularly for C11. However, it depends on the correlation level being considered.
Except C22, the Cij coefficients decay too fast which implies that the correlation length
is too small for this value of x2. Other drawbacks of the SAM are that the lengths
of the coefficients in each direction evolve similarly as functions of x2 which is not
expected (see Sillero et al. 2014). Moreover the definition of C̃12 makes the existence
of negative values impossible which is inconsistent with the continuity condition.

3.2.4. Extended anisotropic model
By taking into account the advantages and disadvantages of the previous approaches,

we propose a new model, the extended anisotropic model (EAM). Its form is based
on the SAM with some improvements. Instead of using the separation length r∗ with
the SAM stretching coefficients, we define a scaled separation vector r̃ with three
correlation lengths Li:

r̃i(ξ , x2)=
ξi

Li(x2)
(3.16)

r̃(ξ , x2)=

√(
ξ1

L1(x2)

)2

+

(
ξ2

L2(x2)

)2

+

(
ξ3

L3(x2)

)2

. (3.17)

Then we use an expression similar to (3.11) for the diagonal components of the
correlation coefficient tensor, but for C̃12 we choose an anisotropic form, leading to
an additional term in the right-hand side:

Cii(r̃)=
(

r̃i

r̃

)2

[ f (r̃)− g(r̃)] + g(r̃) (3.18)

C̃12(r̃)=
r̃1r̃2

r̃2
[ f (r̃)− g(r̃)] + g(r̃). (3.19)
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FIGURE 5. Streamwise (r1, r2) sections of the correlation coefficients obtained with the
SAM (L = 0.54Lu) for r3 = 0, 1t = 0, x2/δ = 0.065 and Reθ ≈ 4860 (the flow is from
left to right). Positive contours (——) are from 0.1 to 0.9 with increments of 0.1. The
grey dotted contours are the DNS results of Sillero et al. (2014) at the same height and
Reynolds number.

The longitudinal correlation function is:

f (r̃)=

{
exp(−r̃), for C22, C33 and C̃12

α exp(−r̃)+ (1− α) exp(−β r̃), for C11,
(3.20)

with β = 10 and α is a function of the wall distance x2. The transverse correlation
function g is obtained using (3.9).

The expression of f for C11 takes into account the more elongated shape of this
coefficient in the streamwise direction. The inclination angle are θ11 = 10◦ for C11

and θ12= 115◦ for C̃12. For the normal and spanwise velocity correlations, inclination
angles are linear functions of x+2 (x+2 = x2uτ/ν with uτ the friction velocity):

θ22 =

{
linear evolution from 5◦ to 90◦, x+2 6 100
90◦, x+2 > 100

(3.21)

θ33 =

{
linear evolution from 5◦ to 30◦, x+2 6 100
30◦, x+2 > 100.

(3.22)
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FIGURE 6. Correlation lengths for the EAM scaled in wall units (x+2 = x2uτ/ν, L+i =
Liuτ/ν): —— (black), C11; - - -, C22; − · −, C33; · · · · · ·, C̃12. The grey lines represent
equivalent correlation lengths (Li ≡ 0.54γiLu) for the SAM for C11.

The evolutions of the parameter α and the correlation lengths Li for each coefficient
are presented in figures 6–8. These parameters are calibrated using the DNS data of
Sillero et al. (2014) for Reθ ≈ 4860, available at http://hal.dmt.upm.es/raw_database/
Boundary_Layer/High-Reynolds/HR2-3D-Correlations. We use an inner and an outer
regions, defined as x+2 6 100 and x+2 > 100, where the parameters are scaled with wall
units and outer units respectively. The evolutions of equivalent correlation lengths for
the SAM (Li ≡ 0.54γiLu) are also included in figures 6 and 7 (only for C11). The
evolutions of the EAM correlation lengths are very different from the SAM ones.

The results obtained with the EAM in the plane (r1, r2) are displayed in figure 9
where they are compared with the Sillero et al. (2014) data. The size of the
coefficients and their inclination angles appear to be more adapted, particularly
for C11. Nevertheless, some discrepancies are still visible for the other coefficients.
For instance, these coefficients decay a little too quickly. As the other models, the
EAM also fails to accurately take into account the decrease of the coefficient values
close to the wall.

Figure 10 shows the evolution of the correlation coefficients, obtained with the
EAM, the SAM and DNS data, with respect to x2 for a fixed separation distance.
The EAM results are better than the SAM ones for C33 and C̃12. For C11, both results
are quite close for 0.2 < x2/δ < 0.6. For x2/δ < 0.2 and x2/δ > 0.6, the coefficient
C11 estimated with the EAM is closer to DNS data. For the C22, the values obtained
with the EAM are better for x2/δ > 0.6.

3.2.5. Model comparison
A comparison of the EAM, SAM and the isotropic model is presented in figure 11.

Results are compared with the DNS data of Sillero et al. (2014). As expected, the
values obtained with the EAM are closer to the DNS data, particularly for C11 in
the streamwise direction. The isotropic model and the SAM are not adapted for C11
in this direction. For C22 and C33, all models have similar shapes but the scales are
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FIGURE 7. Correlation lengths for the EAM scaled in outer units: —— (black), C11; - - -,
C22; − ·−, C33; · · · · · ·, C̃12. The grey lines represent equivalent correlation lengths (Li≡
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FIGURE 8. Parameter α for the EAM scaled in wall units (a) and outer units (b).

different. The results obtained with the isotropic model for L= λf and the SAM for
L= 0.54Lu are too narrow whereas both models give correlations which are too wide
for the other correlation lengths (L= 0.54Lu and L= 0.35δ respectively).

As shown in figures 3 and 11, the shape of the velocity correlation coefficients is
complex and the ellipsoidal form of the model derived from the isotropic turbulence
theory is not perfectly adapted, even with inclination angles. Some improvements
involve more complex functions than the correlation functions f and g, in order to take
into account the asymmetry of the correlations for separations in the normal direction.
However, this is far beyond the scope of the present work. Further comparisons of
the Cij models are made in § 4.2 where their influence on the pressure frequency
spectrum is discussed.
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FIGURE 9. Streamwise (r1, r2) sections of the correlation coefficients obtained with the
EAM for r3 = 0, 1t = 0, x2/δ = 0.065 and Reθ ≈ 4860 (the flow is from left to right).
Positive contours (——) are from 0.1 to 0.9 with increments of 0.1. The grey dotted
contours are the DNS results of Sillero et al. (2014) at the same height and Reynolds
number.

3.3. Space–time correlations model
Several theories and models exist for turbulent space–time velocity correlations (see
the reviews of Wallace (2014) and He, Jin & Yang (2017)). In this work, we compare
two models which relate spatial correlations to space–time correlations.

The first one is Taylor’s frozen turbulence hypothesis (Taylor 1938), stating that
turbulent structures are carried past a fixed point by the mean flow at the convection
velocity Uc without any major changes. With this hypothesis, space–time velocity
correlations for a spatial separation r1 in the streamwise direction and a time
separation 1t can be written:

Rij(x, r1, 1t)= Rij(x, r1 −Uc1t, 0). (3.23)

According to He & Zhang (2006), Taylor’s frozen flow hypothesis is only a first
approximation which has limitations. Indeed, with this hypothesis, iso-correlation
contours of Rij(x, r1, 1t) are straight lines and thus the correlations remain constant
even for large values of r1 and 1t. This result is not consistent because correlation
functions decrease with increasing space and time separations. Moreover, several
simulations and experiments (He & Zhang 2006; Guo et al. 2012; Wallace 2014;
Wang, Guan & Jiang 2014) show that the iso-correlation contours are not straight
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FIGURE 10. Evolution of the correlation coefficients with respect to x2 for r =
(0.030δ, 0, 0.037δ), 1t = 0 and Reθ ≈ 4860. For each panel: ——, DNS (Sillero et al.
2014);E, EAM;u, SAM (L= 0.54Lu).

lines but elongated ellipses. Nevertheless, Taylor’s hypothesis is often used (Panton &
Linebarger 1974; Lee et al. 2005; Bertagnolio et al. 2014) due to its simplicity and
ease of implementation.

The elliptic model of He & Zhang (2006) is formulated using a second-order Taylor
series expansion of Rij(x, r1, 1t). This model relates space correlation to space–time
correlations via two parameters, the convection velocity Uc and a velocity V which
characterizes the distortion of small-scale eddies:

Rij(x, r1, 1t)= Rij

(
x,
√
(r1 −Uc1t)2 + V21t2, 0

)
. (3.24)

The iso-correlation contours obtained with this model are elliptic. Contrary to Taylor’s
hypothesis, the elliptic model also takes into account the decorrelation induced by
the random sweeping of velocity fluctuations and the shearing of mean flows which
distort small-scale eddies (He et al. 2017). This model was successfully applied by
Zhao & He (2009) and Guo et al. (2012) for turbulent channel flows and by Wang
et al. (2014) for a TBL flow.

Two different models for the convection velocity are considered. The first one is
Uc = 0.7U∞. Taking a uniform value for the convection velocity is mainly motivated
here by its simplicity and ease of implementation. The value Uc= 0.7U∞ is moreover
justified by the DNS results of Choi & Moin (1990), in which it is shown that this
value constitutes a reasonable approximation. In more recent efforts, del Álamo &
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FIGURE 11. Correlation coefficients evolution in one direction at x2/δ= 0.065 and Reθ ≈
4860. (a) C11(x2, r1, 0, 0); (b) C22(x2, 0, r2, 0); (c) C33(x2, 0, 0, r3). For each panel: ——,
DNS (Sillero et al. 2014); - - -, EAM; − · −, isotropic model (black, L = λf ; grey, L =
0.54Lu); · · · · · ·, SAM (black, L= 0.35δ; grey, L= 0.54Lu).

Jiménez (2009) demonstrate that a uniform convection velocity is not accurate since
the convection velocity is a function of the eddy frequency and of their wall distance.
Therefore, a second model, taken from Renard & Deck (2015) results for a global
correlation-based convection velocity, is evaluated. They obtained a convection velocity
which is a function of the wall distance x2 and is close to the mean velocity except
near the wall where it is larger and nearly constant. There are other models available
in the literature for Uc, particularly expressions which are functions of the frequency
(e.g. Wills 1971; Panton & Linebarger 1974). However their implementation in our
space–time correlation model is not straightforward so they are not studied in the
present work.

For V , we use the expression proposed by Monté (2013) which defines a velocity
V for each coefficient Cij:

V 2
ij(x)= S2

ij(x)λ
2
ij(x)+ uiuj(x), (3.25)
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FIGURE 12. (a) Mean streamwise velocity profile at Reθ ≈ 4860. ——, DNS data;
◦, RANS data. (b) Reynolds stress profiles at Reθ ≈4860. Lines are DNS data and symbols
are RANS data. —— andE, u1u1; - - - and@, u2u2; −·− andA, u3u3; · · · · · · and6, u1u2.

where Sij is the mean rate-of-strain tensor and λij is a Taylor scale defined from
Reynolds stresses as: λij =

√
15|uiuj|ν/ε.

The influence of the space–time model on the pressure spectrum is discussed in
§ 4.2.

3.4. Kriging-based elliptic extended anisotropic model
In this work, the EAM and the elliptic model are used to close (2.7). The whole
approach to compute the pressure correlations with the numerical method described in
§ 2.3 is referred to as the Kriging-based elliptic extended anisotropic model (KEEAM).
In the following section, the influence of the closure model on the pressure spectrum
is discussed. Then the KEEAM is compared to a few models presented in the
introduction.

4. Results
4.1. RANS simulation

The RANS data used in this work were generated with the open-source computational
fluid dynamics software Code_Saturne developed by EDF R&D (Archambeau,
Méchitoua & Sakiz 2004). The elliptic blending Reynolds stress model (EBRSM)
(Manceau & Hanjalić 2002) is used for the turbulence closure. With this model, the
value of x+2 = uτx2/ν for the first cell adjacent to the wall must be lower than 1.
Therefore wall functions are not used and the equations are solved in all regions of
the boundary layer.

In figure 12, the mean streamwise velocity and the Reynolds stress profiles obtained
with the EBRSM are compared with the DNS results of Sillero, Jiménez & Moser
(2013) at the same Reynolds number. The agreement of the data are satisfactory
although there are slight differences for the streamwise and the spanwise Reynolds
stresses.
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FIGURE 13. Frequency spectrum of the wall pressure fluctuations at Reθ ≈ 4860. ——,
without Kriging; - - -, with Kriging.

4.2. Frequency spectrum of the wall pressure fluctuations
4.2.1. Validation of the adaptive sampling method

In order to validate the adaptive sampling strategy, the wall pressure frequency
spectrum is computed with and without Kriging. The elliptic model with Uc= 0.7U∞
and the EAM are used. The results are presented in figure 13. The spectrum without
Kriging is computed with 1024 values of the pressure time correlations whereas only
77 points are necessary to obtain very satisfactory results with Kriging.

4.2.2. Influence of the velocity correlation coefficient model
Wall pressure frequency spectra obtained with the different velocity correlation

coefficient models previously described are presented in figure 14. The elliptic model
is used to relate spatial correlations to space–time correlations. The Goody (2004)
spectrum is also plotted as a reference since it provides satisfactory predictions of
the frequency spectrum for a TBL flow over a flat plate (Hwang et al. 2009). Large
discrepancies can be observed between the pressure spectra, which shows the strong
influence of the correlation coefficients. The choice of the correlation length L has
also a great influence for the SAM and the isotropic model. The wall pressure
fluctuations estimated with the EAM are satisfactory in the whole frequency range.

The influence of the space–time model (Taylor’s hypothesis or the elliptic model)
and the convection velocity model are also studied. The frequency spectra computed
with the EAM are shown in figure 15. The pressure spectra obtained with Taylor’s
hypothesis and the elliptic model are very close, except at low frequencies and
very high frequencies. However, for the wavenumber–frequency spectrum, Taylor’s
hypothesis leads to a Dirac delta function so the elliptic model is used in the
KEEAM. The convection velocity model has more influence on the form of the
pressure spectrum (see figure 16): the pressure levels obtained with Uc(x2) are
larger and the spectrum decay at a lower frequency. The spectrum computed with
Uc= 0.7U∞ is thus in better agreement with Goody (2004) model, so this expression
is retained for the rest of the study.

4.2.3. TMS and TT contributions
The wall pressure spectra with the TMS and TT terms contributions are displayed

in figure 17. The magnitude of the TT spectrum is lower than the TMS one, except at
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FIGURE 14. Frequency spectrum of the wall pressure fluctuations at Reθ ≈ 4860. ——
black, Goody (2004) model; —— grey, EAM; − · −, isotropic (black, L= λf ; grey, L=
0.54Lu); - - -, SAM (black, L= 0.35δ; grey, L= 0.54Lu).
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FIGURE 15. Frequency spectrum of the wall pressure fluctuations at Reθ ≈ 4860 (Uc =

0.7U∞). ——, elliptic model; - - -, Taylor’s hypothesis.

low frequencies. This is consistent with Kraichnan (1956) and Remmler et al. (2010).
However, depending on the precision required, the TT terms should not be neglected
at mid frequencies. These results differ from the Chang et al. (1999) results for the
streamwise wavenumber pressure spectrum of a fully developed turbulent channel flow
at a low Reynolds number. They observed that the TMS and TT terms are of the same
order but that the TMS term is greater for the whole streamwise wavenumber range.

4.2.4. Influence of the Reynolds number
The frequency pressure spectra obtained with the KEEAM at two Reynolds numbers

are presented in figure 18. They are compared to the Goody (2004) model which is
based on experimental pressure spectra measurements on a large range of Reynolds
numbers. Since it takes into account the effect of the Reynolds number, it is also used
as a reference here. The wall pressure spectra are in agreement with the Goody (2004)
model at both Reynolds numbers. It shows that the present model is also able to take
accurately into account the influence of the Reynolds number even if the parameters
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FIGURE 16. Frequency spectrum of the wall pressure fluctuations at Reθ ≈ 4860. ——,
Uc = 0.7U∞; - - -, Uc(x2).
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FIGURE 17. Frequency spectrum of the wall pressure fluctuations computed with the
KEEAM at Reθ ≈ 4860. ——, total; - - -, TMS; − ·−, TT.

of the EAM were calibrated with DNS results for a particular Reynolds number. Other
predictions of the pressure spectrum were performed with the KEEAM and it gives
accurate results (compared to Goody model) for 3× 103 < Reθ < 3× 104.

The wall pressure levels predicted by the KEEAM are quite close to the ones
obtained with Goody model but there are differences. Indeed, the maximum of the
KEEAM spectra are reached at higher frequencies. In the high frequency region, the
spectrum evolves as ω−3 whereas Goody model is designed to reproduce a −5 slope.
According to Blake (1986), the decay rate of the spectrum in this range is due to
contributions from the viscous wall region. The EAM could be improved in this area.
For Reθ ≈ 4860, the KEEAM does not predict the universal region, characterized by
a slope between −0.7 and −1.11 (Smol’yakov 2000; Goody 2004). However, this
region is visible for Reθ ≈ 21100 with a −0.75 slope, which is close to the −0.7
slope of the Goody spectrum. So the KEEAM reproduced the universal region but it
appears at a higher Reynolds number.

4.2.5. Comparison with a spectral formulation of the wall pressure
Besides the Goody (2004) model, the wall pressure spectrum computed is also

compared to the model of Bertagnolio et al. (2014) which uses a spectral solution
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FIGURE 18. Frequency spectra of the wall pressure fluctuations computed at two
different Reynolds numbers. Black lines are Goody (2004) model and grey lines are the
KEEAM. ——, Reθ ≈ 4860; - - -, Reθ ≈ 21100.

to the Poisson equation (see table 2). Using Taylor’s frozen flow hypothesis, the
frequency pressure spectrum is given by:

Φpp(ω)=

∫
∞

−∞

∫
∞

0

4ρ2

Uc
L2(x2)u2u2

(
∂U1

∂x2

)2 k2
c

k2
Φ22(kc, k3)e−2kx2 dx2 dk3, (4.1)

with:

Φ22(k1, k3)=
4

9π

β1β3

k2
e

(β1k1/ke)
2
+ (β3k3/ke)

2

[1+ (β1k1/ke)2 + (β3k3/ke)2]7/3
(4.2)

k=
√

k2
c + k2

3 (4.3)

L2 = 0.747Λ (4.4)

Λ= 0.519
K3/2

ε
(4.5)

ke =
1

2Λ
(4.6)

βi =
uiui

u1u1
. (4.7)

Since the Bertagnolio et al. (2014) expressions for β1 and β3 are not adapted for
TBL flows without pressure gradient, we use the ones proposed by Stalnov, Paruchuri
& Joseph (2015) instead. We also use their relation for ke which is expected to be
more accurate. The mean velocity field and the Reynolds stresses are obtained from
RANS solutions. A comparison of the frequency pressure spectra is presented in
figure 19. Discrepancies can be observed between the Goody (2004) and Bertagnolio
et al. (2014) models. The differences at low frequencies are expected since only the
TMS term is taken into account in the latter model. Large discrepancies can also be
observed between the TMS spectrum computed with the KEEAM and the Bertagnolio
et al. (2014) model.
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FIGURE 19. Frequency spectra of the wall pressure fluctuations at Reθ ≈4860. Black ——,
Goody (2004); grey ——, Bertagnolio et al. (2014); — —, KEEAM (total); - - -, KEEAM
(TMS).

4.3. Wavenumber–frequency spectrum of the wall pressure fluctuations
In the present work, the pressure correlations Rpp(rs1, 0, 1t) are computed as well as
the streamwise wavenumber–frequency spectrum which is given by:

Φ(k1, ω) =
1

(2π)2

∫
∞

−∞

∫
∞

−∞

Rpp(rs1, 0, 1t)e−i(k1rs1+ω1t) drs1 d1t

=

∫
∞

−∞

Φ(k1, k3, ω) dk3. (4.8)

The results, presented in figures 20 and 21, are compared to the empirical models
of Corcos (1964) and Chase (1987) (integrated over k3) at two frequencies. The
KEEAM is able to predict a convective peak whose amplitude is in agreement with
both empirical models. It also predicts a subconvective plateau that is close to the one
obtained with the Chase (1987) model. As mentioned before, large discrepancies exist
between the empirical models in the subconvective range and there is no consensus
on their validity. Nevertheless, the Corcos (1964) model is known to overestimate the
pressure spectrum at low wavenumbers (Bonness et al. 2010).

Figures 22 and 23 show the corresponding TMS and TT contributions for the
spectrum obtained with the KEEAM. Around the convective peak, the TT terms are
lower than the TMS one at both frequencies. On the contrary, in the viscous region
the TT terms dominate. In the subconvective range, the TMS and TT contributions are
of the same order for ωδ/U∞ ≈ 5 whereas the TT terms dominate for ωδ/U∞ ≈ 15.
In any case, it shows that the TT contributions should not be neglected at low
wavenumbers.

5. Conclusion
In this work, the wall pressure spectrum for a turbulent boundary layer flow

without a pressure gradient is computed using a new model, the Kriging-based elliptic
extended anisotropic model. The pressure spectrum is the Fourier transform of the
space–time pressure fluctuation correlations, which are obtained by solving a Poisson
equation. The solution takes into account both the turbulence–mean shear (TMS) and
the turbulence–turbulence (TT) interactions, contrary to spectral wall pressure models
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FIGURE 20. Wavenumber–frequency spectra of the wall pressure fluctuations at Reθ ≈
4860 and ωδ/U∞ ≈ 5. ——, KEEAM; - - -, Chase (1987); − ·−, Corcos (1964).
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FIGURE 21. Wavenumber–frequency spectra of the wall pressure fluctuations at Reθ ≈
4860 and ωδ/U∞ ≈ 15. ——, KEEAM; - - -, Chase (1987); − ·−, Corcos (1964).
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FIGURE 22. Wavenumber–frequency spectra of the wall pressure fluctuations computed
with the KEEAM at Reθ ≈ 4860 and ωδ/U∞ ≈ 5. ——, total; grey - - -, TT; black - - -,
TMS.

based on Kraichnan (1956). The mean velocity field and the space–time velocity
correlations are required to evaluate the wall pressure. As the velocity correlations

. 
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FIGURE 23. Wavenumber–frequency spectra of the wall pressure fluctuations at computed
with the KEEAM Reθ ≈ 4860 and ωδ/U∞≈ 15. ——, total; grey - - -, TT; black - - -, TMS.

cannot be obtained directly from RANS solutions, they are modelled using Reynolds
stresses and space–time velocity correlation coefficients. We propose a new model
for the spatial correlation coefficients, referred to as the extended anisotropic model,
which takes into account the evolution of the coefficients shape and size with the wall
distance. It requires a few parameters which are calibrated using the DNS results
of Sillero et al. (2014). Spatial correlation coefficients are related to space–time
coefficients with the elliptic model of He & Zhang (2006). Then, the pressure
correlations are evaluated with a Kriging self-adaptive sampling strategy in order to
reduce the computation time.

The EAM is an extension of the simplified anisotropic model of Gavin (2002) that
relies on a new expression for the velocity two-point correlation function and new
parameters which evolve with the wall distance. Contrary to the SAM, the EAM is
adapted for both inner and outer regions of the boundary layer. The EAM is compared
to the isotropic model and the SAM. Correlation coefficients obtained with the EAM
are closer to the DNS ones, even though some discrepancies are visible particularly for
the weak-level correlations. Nevertheless, the frequency and wavenumber–frequency
wall pressure spectra computed with the KEEAM are satisfactory. The wall pressure
model is able to take into account the effect of the Reynolds number even at higher
Reynolds numbers than the one of the DNS data used to calibrate the EAM. The
frequency spectrum is in good agreement with Goody (2004) model and the convective
peak of the wavenumber–frequency spectrum is close to empirical models such as
that of Chase (1987). The KEEAM is also able to predict the subconvective plateau.
Besides, the TT and TMS contributions to the wall pressure spectrum are detailed. The
TT terms are lower than the TMS one except at low frequencies, low wavenumbers
and in the viscous regions where they are greater.

The interest of the model presented in this work, compared to empirical models, is
that it can be applied to more complex flows since RANS solutions are used as input
data. Local information of the flow is then taken into account in the computation
of the wall pressure spectrum. The influence of adverse pressure gradients on the
wavenumber–frequency spectrum of the wall pressure for an attached turbulent
boundary layer flow and the ability of the KEEAM to predict it are the subject of
an ongoing study.
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