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Abstract: shear aggregation of micrometric particles is an important phenomenon occurring 

in agitated chemical reactors. The resulting clusters of particles are porous and more or less 

elongated. It has previously been proved that the equivalent ellipsoid computed from the 

inertia tensor describes well the colliding clusters [F.Gruy and P. Nortier « Statistics about 

collisions of ellipsoids under shear flow » Colloids and Surfaces A: Physicochemical and 

Engineering Aspects, 558(2018)250-262]. The aim of the current paper is to consider chosen 

kinetic and morphological aspects of the complete aggregation dynamics. Monte Carlo 

simulations are used as a means of investigation. Four representations of the collision event 

have been compared: the classical collision of oriented clusters of sphere (A), the collision of 

oriented equivalent ellipsoids (B), the orientation-averaged collision of equivalent ellipsoids 

(C), the use of approximate expressions for C (D). For each case, the probability density 

functions of various morphological parameters of the cluster population are calculated as a 

function of the time. The comparison of the generated data shows that the approximate 

expressions for the aggregation kernel and the ellipsoid parameters allow for fast and 

representative simulations of the shear aggregation of suspensions. 
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Nomenclature 

 

A  vector between the centres of mass of two particles ( 1 2A C C ) 

a semi-major axis of ellipsoid 

b,c semi-minor axis of ellipsoid 

C centre of mass of particle 

d estimate of A 

Df fractal dimension 

ID  diagonalized inertia tensor 

,I mD  diagonalized inertia tensor after averaging 

f solid volume fraction in the cluster  

12f  diagonal tensor (Eq.16) 

Fab,Fac,Fbc 6x6 matrices (Eq.18) 

I  inertia tensor of the particle 

k prefactor of the fractal law 

k12 contribution to K12  

K12 kernel of aggregation 

L penetration length 

M particle mass 

n probability density 
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nb particle number in the MC simulation 

nc population density in the suspension 

N number of primary particles per aggregate 

Nr number (MC runs) of elementary collision events to describe the aggregation event 

between two given clusters 

Nt number (MC runs) of aggregation events 

Na number of complete aggregation processes (reproducibility)  

ri random number within the range [0; 1] 

Rg gyration radius 

Sp projected area 

t dimensionless time 

tf time corresponding to the beginning of the runaway growth 

T physical time 

U fitting parameter (case D) 

v particle volume 

V MC box volume 

X, X0 particle concentration in the suspension at time t and t=0 

W fitting parameter (case D) 

x  position vector of particle 

x,y,z space coordinates 

 

Greek letters 

 Kronecker symbol , 1k l   if k l  ; , 0k l   if k l  

ratio of the LC or SLC mass to the particle set mass 

 1 2/i iM M M    

,SLC LC 
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 solid volume fraction in the suspension 

 ,   dimensionless population density 

 ,   dimensionless variables 

  shear rate 

 permeability 

 mass density 

 Euler angle 

 

Superscript 

 (i) for tensor (particle i) 

 

Subscript 

X  tensor X 

app approximate 

eq equivalent 

i for scalar or vector (particle i) 

i,k k component of vector (particle i) 

k,l k,l element of the tensor or matrix 

m mean value 

LC largest cluster 

SLC second largest cluster 

 

symbol 

< > average 
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1. Introduction 

Multiphase flows appear in many industrial processes: bubbly flow, emulsion, aerosol, 

suspension. Disperse phase may be composed of different kind of particles: bubbles, drops, 

crystals or amorphous grains. Due to phenomena such as nucleation, growth, coalescence or 

aggregation, the number, the size and the shape of particles are changing with time. The 

dynamics of the disperse phase may be modelled by a means of the population balance 

modelling (PBM). The key point of the modelling is the choice of the morphological or 

geometrical descriptors (MD) that constitute the internal parameters of the population balance 

equation (PBE). The simplest analysis of disperse phase considers the particle as a sphere 

having equal amounts of matter; the only MD is the radius of the sphere and the PBE is 

monovariate [1]. Since the two past decades, PBM considers particles depicted by several 

MD’s: the PBM is called multivariate (see, for instance, [2]). The choice of the MD is often 

made based on physical arguments fitted with the studied problem. However, the selection of 

MD has to obey some mathematical rules.  Shape of particles may be divided into two classes: 

convex (sphere, ellipsoid, polyhedron) or non-convex (cluster of convex particles, 

erythrocytes …). The theory of Minkowski Functionals provides the rigorous framework for 

such parameter set. Mecke et al. [3-4] have applied the integral geometry in various fields of 

physics. Scalar Minkowski Functionals of a convex or non-convex particle in a 3D space are 

the volume, the surface area, the mean curvature and the Gaussian curvature averaged over 

the surface of the particle. Tensorial Minkowski Functionals (TMF) are an extension of the 

scalar ones. Recently, Essadki et al. [5] have modelled the atomization of a fuel with air from 

the exit of the injector nozzle to the combustion chamber; the two-phase flow changed from a 

separated flow to a disperse phase in a continuous medium. In particular the dynamics of the 

disperse phase is described by a means of a multivariate population balance equation; they 
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have considered a new phase-space including the particle surface area, the averages of the 

mean curvature, the Gauss curvature and the fuel-air interface velocity over the particle 

surface. The PBE includes terms for time evolution of new variables and for coalescence and 

fragmentation of droplets as well. The evolution equations for the curvatures in PBE are based 

on the work of Drew [6].  

Pure aggregation of solid particles has to be treated differently than the coalescence of 

droplets; The curvatures of primary particles and aggregates are not the most relevant 

variables associated with the dynamics of aggregation.  Aggregation of particles in a 

suspension is due to the binary collisions between two particles. The resulting aggregate or 

cluster is a branched and porous object consisting of primary particles, usually considered as 

identical. Most often, the morphology of the cluster is described by using the fractal theory: 

the cluster is built by successive attachments of smaller entities which leads to a hierarchical 

structure. In colloid science, the cluster is essentially defined by the radius of the primary 

particle, its number of primary particles and the fractal dimension Df [7]. The last quantity is a 

real number within the 1-3 range which is the exponent in the power law, linking the number 

of primary particles and the gyration radius Rg. Even if the fractal hypothesis was successful 

in describing the dynamics of aggregation, the fractal dimension is not the only relevant 

morphological parameter. It has been proved [8] that the aspect ratio of the aggregate is a 

major parameter for the dynamics of aggregate collisions.  

As this paper is concerned by the modelling of pure shear aggregation, we remind some non-

exhaustive literature focused on the topic. Some authors consider shear aggregation as a 

ballistic aggregation. However, other authors dispute this point (see Elimelech et al. ([1], 

p.182)) that can be involved in the following: 

- Hentschel [9] recalls that Meakin showed that Df=1.91 for 3-D ballistic cluster-cluster 

aggregation. He added that the anisotropy factor (as the ratio of the two largest 
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principal gyration radii) is equal to 2. From dimensional arguments, Hentschel found 

Df=1.80; This value does not depend on the collision mechanism and is consistent with 

a weak interpenetration of clusters and an anisotropy factor equal to 2.  

- Potanin [10] has found a Df value equal to 1.98. 

- Torres et al. [11] have, for instance, performed simulations of 3-D shear aggregation. 

They found a fractal dimension value equal to 1.83 and they observed the non-

spherical shape of the aggregate. Moreover, they have calculated the gyration tensor 

(normalized by the square of the gyration radius) for clusters with a number N of 

primary particles smaller than 4100. They have observed that the semi-axes ratio of 

the equivalent ellipsoid were a/b=1.94 and a/c=3.1, whatever the origin of the particle 

collision (Brownian motion, shear flow, elongation flow). 

- Frungieri and Vanni [12] have simulated the cluster-cluster aggregation by 

considering weak Van der Waals interaction and tangential interaction; in the absence 

of tangential interaction, the primary particles in the cluster are free to slide and roll 

over each other; therefore, a compaction of the cluster can be observed early. 

Tangential interaction strongly hinders the restructuring and leads to a more open 

structure. Corresponding clusters look like isostatic ones, where contact and bond 

between colliding clusters is achieved between two primary particles leading to a 

frozen structure. The fractal dimension was found equal to 1.88. The authors defined 

an aspect ratio from the parameters of the equivalent ellipsoid of the cluster and 

computed the corresponding probability density function (pdf) for the particle 

population. 

- Pranami et al.[13] studied the anisotropy of clusters with prescribed fractal dimension 

which was found to satisfy well the scaling relation. The authors selected two shape 

anisotropy parameters based on the principal moments of inertia. They computed the 
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two pdf’s for different N values where N is the number of primary particles in the 

cluster; The results showed that the pdf curves overlap irrespective of the N-value. 

Gyration radius and aspect ratio of the aggregate may be defined from its inertia tensor. The 

shape of the convex hull of aggregates may be approximated by an ellipsoid. Inertia tensor is 

a quantity similar to TMF and a more popular concept among physicists than the Minkowski 

functionals. Therefore, inertia tensor may be used as morphological descriptor for particles. 

Gruy laid the foundations of a new modelling method for the aggregation based on the inertia 

tensor and the equivalent ellipsoid [14]. This has been illustrated in the simplest case: the 2D-

aggregation of equivalent ellipses of 2D-clusters under shear flow. We have also determined 

the collision dynamics and the parameters of the resulting equivalent ellipsoid for ellipsoids 

and 3D-clusters [15]. More specifically, some empirical expressions aiming at accelerating 

the simulations of particle population dynamics have been proposed.  Therefore the collision 

act as defined by Gmachowski [16] is completely described in [15]: each particle is described 

by its mass content and the three semi-axes of the equivalent ellipsoid. The aim of this paper 

is to consider the complete dynamics of the population of particles by applying our previous 

results about the elementary aggregation act. Monte Carlo Simulations (MCS) will be used to 

solve the multivariate population balance.   

Section 2 is dedicated to the methods: the theoretical elements corresponding to the collision 

of two clusters and the algorithms for Monte Carlo Simulation. Section 3 contains the results 

for the aggregation dynamics of the entire population. Section 4 discusses the results and 

concludes the paper. 

 

2. Methods 

2.1. Aggregation act 
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The aggregation dynamics of a suspension is studied by a means of a population balance. The 

particles are described by their internal parameters, the morphological parameters included. 

The additivity of the parameters of two colliding particles, denoted by 1 and 2, is an important 

property needed for a concise writing of the population balance. This property is verified by 

the mass or the matter volume: 

1 2 1 2M M M             (1) 

It is not the case for the common morphological descriptors, e.g. aspect ratio, roundness, …, 

that have not been intended for studying aggregation. However, this is almost the case for the 

inertia tensor if it is evaluated about the centre of mass of the resulting cluster. We recall 

hereafter how to consider the inertia tensor in the aggregation act. Details may be found in 

[14]. 

Let us consider two objects with the inertia tensors 
 1

I  and 
 2

I , each one evaluated about its 

own centre of mass iC . Then the inertia tensor of the object resulting from the collision of 

two smaller objects with the centres of mass separated by 1 2A C C  obeys the equation [17]: 

       21 2 1 2 1 2

1 2

kl kl kl kl k l

M M
I I I A A A

M M



   


       (2) 

One defines the equivalent ellipsoid as the real ellipsoid having the same diagonalized inertia 

tensor as the object (1, 2 or 1+2). Each equivalent ellipsoid has an orientation defined by the 

Euler angles i . The solid volume of primary particles is smaller than the geometrical 

volume of the equivalent ellipsoid. It is assumed that the vector 1 2A C C  is such as the 

equivalent ellipsoids of the two colliding objects/clusters are tangent in the sense of the 

geometry. This hypothesis is not trivial and will be discussed later on: as the radius of 

gyration of fractal aggregates is smaller than the geometrical size, one may expect that the 

distance between the centres of the two colliding equivalent ellipsoids will be shorter than the 

previously assumed one. 



 10 

The equivalent ellipsoid of the resulting object is obtained from the diagonalization of the 

tensor 
 1 2

I


; the corresponding tensor is denoted by (1 2)

ID  . Then, the mathematical treatment 

of a collision event of two clusters, which are approximated as ellipsoids, will follow the 

sequence: 

1. transform ellipsoid to inertia tensors for defined orientation: 

       ( ) ( ), , ii i i i i

Ia b c D I


   with i=1,2 

2. compute new inertia tensor (Eq.2): 

     1 2 1 2
I I I


   

3. determine the geometric parameters of the equivalent ellipsoid: 

          1 2 1 2 1 2 1 2 1 2
, ,II D a b c

    
   

     1 2 1 2 1 2
, ,a b c

  
are the semi-axis lengths of the equivalent ellipsoid. This sequence can be 

repeated when modelling the aggregation phenomenon. 

In practice, aggregation involves a large number of particles; a sub-set of particles has the 

same morphological characteristics, but with different orientations. Therefore, the description 

of a collision between two objects with different morphological parameters needs to be 

averaged over all the possible orientations of the two objects
 

 1 2

1 2

,

D


 

. The calculations 

of mean values 
i
are performed over all the orientations. The average is applied to 

 1 2

ID


. 

This procedure has been selected for the following reason: 

Specifying the orientation of the ellipsoids for each collision add a unit vector, i.e. its 

components, into the set of internal variables describing the particle. In order to reduce the 

number of internal variables an averaging over orientations and relative positions is done. 

Hence, a particle is characterized by only its mass and the lengths of the ellipsoid semi-axes. 
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This will be particularly important when solving the corresponding population balance 

equation. 

The orientations of the two colliding objects are assumed non-correlated, i.e. the 

hydrodynamic resistance between two particles moving towards each other is not taken into 

account. The orientation angle distribution of a particle in a fluid depends on its shape and on 

the flow field. The relative position of the centres of mass at impact 1 2A C C  depends on the 

orientations and the initial relative position of the two objects, and on the mechanism of 

collision. Finally the inertia tensor of the resulting cluster after the collision of two smaller 

objects is: 

   

   1 2
1 2

1 2 1 2

,
,

,

I m I
C C

D D
 

 

         (3) 

m refers to the mean value of 
 1 2

ID


 ; the average 
 1 2,C C

is performed over all the possible 

loci of the two centres of mass of the particles in contact. 

The two main mechanisms, so-called perikinetic and orthokinetic, for aggregation are 

characterized by different kinetic constants or kernels [1]. From a geometrical point of view: 

- In the case of perikinetic aggregation, two particles moving thanks to Brownian 

motion have the same collision probability whatever the relative angular position. 

- In the case of orthokinetic aggregation, the probability of encounter is higher as the 

two particles are offset to the side in the shear flow: The relative velocity of the 

colliding particles is proportional to the distance between the corresponding parallel 

streamlines; for instance, the impact of particles moving on the same streamline is 

unlikely. 

Thus, one may write: 

   

   

 

   
1 2

1 2 1 2
1 2

1 2 1 2 1 2

, 12 12
,

, ,
,

/I m I I
C C

D D D dk K
  

    
 

       (4) 
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12K  consistently denotes the aggregation kernel.
12dk  is the contribution of an infinitesimal 

interception or collision area to the kernel. One performs the sum over all the collision area. 

The whole collision area, that depends on the orientations of the two particles, is denoted by 

 1 2,   . 

As a consequence, the kernel obeys the relation: 

   1 2
1 2

12 12

,
,

dk K
  

 

          (5) 

Therefore the geometrical properties of the average equivalent ellipsoid will be deduced from 

 1 2

,I mD


 and will be denoted by 
   1 2 1 2(1 2) , ,m m ma b c
  . The averaging step is performed by the MC 

method based on repeating Nr times the elementary collision event. 

This approach is applied to the case of the orthokinetic aggregation. One considers a shear 

flow in a three-dimensional space ( k  is the unit vector along the flow direction, the unit 

vector j  corresponds to the velocity gradient, i j k  ). 

12 1 2 pdk C C j dS            (6) 

where   is the shear rate, pdS  is the element of area swept by the orthogonal projection along 

k  of 1 2C C  in the plane  ,i j . The orientation angle distribution of a single ellipsoid is 

assumed uniform. As a reminder, the hydrodynamic resistance is neglected in this paper. 

These assumptions are discussed in [14-15]. 

Aggregation is a series of collisions between equivalent ellipsoids; each collision event or 

aggregation act corresponds to: 

                1 1 2 2 1 2 1 2 1 2(1) (2)

1 11 22 33 2 11 22 33 1 2 11 22 33
12, , , , , , , , ,

K
M D D D M D D D M M D D D

  
     (7) 
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The subscript m is withdrawn from the diagonal elements of 
,I mD and the corresponding semi-

axis lengths, considering that the equivalent ellipsoid has forgotten the memory of its 

construction. 

The collision event may be rewritten as: 

                    1 1 1 2 2 2 1 2 1 2 1 2

1 2 1 2
12, , , , , , , , ,

K
M a b c M a b c M M a b c

  
     (8) 

The colliding particle ((1) or (2)) may have any shape, e.g. sphere, needle, ellipsoid, 

aggregate…; its geometry properties are replaced by  those  of the equivalent ellipsoid. 

However, the resulting particle (1+2) will be only considered as an ellipsoid, i.e. the average 

equivalent ellipsoid; the real shape of the resulting particle will not be known. As a 

consequence, the complete aggregation process will consider a set of collisions between 

ellipsoids. Each particle, i.e. ellipsoid, is therefore defined by four internal variables. 

 

2.2. Aggregation dynamics 

A Monte-Carlo method has been selected to solve the population dynamics. One starts from a 

population consisting of a large number of primary particles; the probability to have a 

collision between any two particles is proportional to the corresponding kinetic constant 

(kernel) of aggregation. Hence, two objects are randomly selected by applying this probability 

distribution. Then its equivalent ellipsoid is calculated. The process is repeated until clusters, 

i.e. their equivalent ellipsoids, with a large number (N=104) of primary particles are built. At a 

given time, the population of clusters, i.e. equivalent ellipsoids, can be analysed: pdf 

(probability density function) of N, pdf of anisotropy parameters, fractal dimension …. 

MCS for reaction set and aggregation have been introduced by Gillepsie [18]. He proposed 

three different algorithms. All these algorithms consider a number of particles that decreases 

as the aggregation proceeds; aggregation stops when there is only one cluster. The accuracy 

decreases during the simulation. Consequently, the initial number of particles must be very 
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large in order to reach a small number of large clusters and to study a few collision events 

between the large clusters. As the calculation of each MC step is proportional to the square of 

the number of particles, it is clear that this method becomes impracticable. 

Smith and Matsoukas [19] have developed an algorithm based on one of the Gillepsie’ 

algorithms, but working with a constant number of particles as the aggregation proceeds: at 

each aggregation event, the two colliding particles are replaced by the resulting cluster and a 

particle randomly chosen among particle population. Therefore, the initial number of particles 

can be much smaller. This algorithm is very efficient for Brownian aggregation, having a 

kernel showing a weak increase with the particle size. However, it works less efficiently  

when considering the shear aggregation for which the aggregation kernel is roughly 

proportional to the cubic particle size [1]. Ormel et al. [20] use another algorithm of Gillepsie, 

but working with a constant number of particles. This is very efficient for all aggregation 

kernels. It has been verified by comparing it with the analytical solutions of the stochastic 

coagulation equation [21]. Monte Carlo simulations are based on the stochastic coagulation 

equation. Smoluchowski equation is derived from the stochastic equation under certain 

assumptions. More specifically, Tanaka and Nakazawa [21] presented analytical solutions for 

the sum kernel, the homogeneity order of which is equal to one as the Smoluchowski kernel 

for sphere aggregation under shear flow [1].  

The MC procedure used in this paper is the one proposed by Ormel. We recall the different 

steps of the algorithm: 

We start with nb particles located in a box with volume V. For MC simulation, each particle is 

located in a numbered slot from one to nb. At each MC time-step, we calculate the following 

quantities: 
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, ,

,

1

1

1

/

1,..., 1

i j i j

nb

i i j

j i

nb

t i

i

C K V

C C i nb

C C

 







  







        (9a,b,c) 

,i jK  is the aggregation kernel for particles i and j. Ci,j, Ci and Ct have no physical meaning 

and are mathematical intermediate variables.  

 Selection of the two colliding particles i and j [18] 

Let ri be three random numbers within the range [0; 1]. 

- The time step t elapsed between two collisions is  1ln / tt r C     (10) 

- The first collision partner will have the smallest i value such as 
2

1

i

k t

k

C r C


  (11) 

- The second collision partner will have the smallest j value such as 
3

1

j

ik i

k i

C r C
 

  (12) 

The result of the collision between i and j will be placed in the i-slot.   

 Update [19,20] 

Another random number then determines which of the nb − 1 particles (excluding j) 

will be duplicated and this one is stored in the j-slot. Having modified the particle set, 

all of the C-s need to be updated. This entails only the subtraction/addition of the ,i jC  

that have changed, not the re-computation of Eqs. (9). Moreover, this implies a 

rescaling of the simulated volume, V, such that the density of solids, 
1

/
nb

i

i

M V


 , 

remains constant. As 
1

nb

i

i

M


  increases with the time, the volume V of the box 

increases as well. 

The algorithm can then be repeated.  
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3. Results 

In this section, several ellipsoid based modelling will be compared to the classical cluster 

formation for shear aggregation. For this purpose, one considers an initial monodisperse 

population of spheres (with radius 1 and with density 1). MCS will be performed with a 

constant number of particles, i.e. primary particles, clusters or ellipsoids, equal to 2000, 

whereas the number of time steps is chosen equal to 3000. The computational volume V of the 

box at time zero is chosen to be one. At a given time, i.e. after Nt time steps (Nt<3000), the 

population of particles will be analysed: pdf of N (number of primary particles inside the 

particle), pdf of anisotropy parameters as a/b and a/c, fractal dimension ….In the rest of the 

text, time t is dimensionless and is related to the real time T by the expression: 

 3/ 4t T   where  is the solid volume fraction in the suspension. The dimensionless 

time is frequently used when considering the shear aggregation and highlights some 

invariance properties of aggregating systems [22]. The value ranges of the physical 

parameters are within [10; 1000s-1] for the shear rate and [10-5; 10-2] for the solid volume 

fraction in lab experiments and some industrial processes. 

Therefore, we will begin by describing the formation of a population of clusters as the 

reference case. 

3.1 Reference case (case A) 

The aggregation of a monodisperse population of spheres leads to clusters of spheres. The 

aggregation act corresponds to the collision of two clusters. This collisional process is divided 

into the following steps (for details, see section 3 [15]) in MCS: 

i) random orientation of the two clusters around their centres of mass 

ii) choice of initial relative position and collision complying with the shear flow and 

stochastic processes 
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These steps can be repeated many (Nr) times or not repeated at all for a given two cluster set 

in order to extract information about the kinetic constant of collision and pdf of anisotropy 

parameters of the resulting clusters [15]. However, it is not possible to deduce an equivalent 

resulting cluster, i.e. defined by the coordinates of each constituent primary particle that 

would be statistically representative of all the effective collisions. For this reason only one 

collision (Nr=1) will be performed for the aggregation act between two given clusters; there is 

no average performed over orientation angle or relative position. On the other hand, the 

kinetic constant needed for MCS will be calculated by using Eq.5 with the parameters of the 

equivalent ellipsoids of the two clusters [15]. In this manner, the complete aggregation 

process will be a series of unique collision events between two given clusters. The complete 

aggregation process will be repeated Na times in order to obtain an acceptable description.  Na 

has been fixed to 10 (It must be noted that this way of performing MCS is slightly different 

from this presented in sub-section 2.1). Two simulations with Na=10 have been compared.  

The figures 1A, 2A present the N-pdf for various times. Herein the P-pdf corresponding to the 

particle property P is defined as the number fraction of particle with P within the range 

[P,P+dP] divided by dP.  As expected and showed in the table 1, the mean N-value is 

increasing with time. The two simulations lead to similar results; it will be also true for the 

figures 3A-6A. This indicates that 10 MCS run would be sufficient to get realistic data. The 

main feature is the presence of a large amount of small clusters (N<20) and of some very 

large particles. The figure 3A represents the largest cluster content versus dimensionless time. 

The latter increases dramatically and reaches very high value whereas the mean N value 

remains small; this is expected as the kernel of shear aggregation is proportional to the cubic 

particle sizes. Only fragmentation of large and loose particles may hinder this phenomenon. 

Therefore, without fragmentation or other size-limiting phenomenon, shear aggregation 

becomes catastrophic at a given time.  This issue can be analysed by the method of Tanaka 
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and Nakazawa [21]: by comparing the stochastic and statistical coagulation equations, they 

proved that the statistical approach fails when a transition between aggregation and a runaway 

growth happens; at the same time, the mass content of the largest cluster strongly increases 

whereas the smaller clusters do not or decrease. This behaviour, i.e. the beginning of gelation, 

depends on the kernel expression and has been confirmed by Alfonso et al. [23-24] by using a 

statistical indicator. Figure 4A compares the change with time of the mass fraction of the 

largest cluster (LC) and the second largest cluster (SLC). It can be seen that the two 

corresponding mass fraction values deviate for LC>0.1 as the time is running. LC=0.3 seems 

to be the value beyond which the divergence occurs. The corresponding time tf will be the 

ultimate instant for a relevant study of aggregation; as shown in the figure 3A, the 

corresponding cluster size, [103-104], is beyond the experimental value for the shear 

aggregation of micrometric particles [22, 25]. The tf value is within the range 0.13-0.16. This 

wide value range is related to the stochastic nature of the gelation event [23-24]. The figures 

5A, 6A present the a/b-pdf and a/c-pdf. a, b and c are the parameters of the equivalent 

ellipsoid deduced from the inertia matrix of the sphere clusters.  The two pdf’s are wide. a/b 

and a/c values are within the range [1; 5] and [1; 6] respectively. The peak at a/b=a/c=2.45 

corresponds to the doublet of spheres [15]. Pdf’s do not change with time for the time value  

larger than 0.09 (Nt>1000).   

The gyration radius of a cluster consisting of N spheres with radius equal to one obeys the 

relation [7]: 

2

1

/ 3/ 5
N

g i

i

R x N


           (13) 

where the position vector of the sphere i is taken from the centre of mass of the cluster to the 

centre of the sphere. Considering the whole cluster population, we may draw the gyration 

radius versus N for various times. As an example, the Figure 7a shows such data for a given 
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time (t=0.136). We observe that the gyration radius versus N obeys a power law, i.e. 

1/ fD

gR kN  , like for fractal-like aggregates [7]. The prefactor k and the fractal dimension Df 

may be obtained from a least square optimization algorithm applied to the cluster set 

(N>3). The Table 2 reports them for each time:  the prefactor value is about 0.9 whereas the 

fractal dimension is about 2. A slight drift with the time can be observed; however its 

amplitude is much smaller than the one due to the restructuring of clusters.  

Following Friedlander and Wang [26], the population density  ,cn v t  of an aggregating 

suspension may be transformed by using the new variables: 
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/

cn v t X t
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         (14) 

v is the volume of the particle. X and X0 are the total concentrations of particle at time t and 0, 

respectively.   is a dimensionless distribution function.  For certain aggregation kernels and 

for long times, the function  ,   tends to the self-preserving function  as  . As a 

consequence, when    
2

,cX t n v t


 is plotted against /Xv  , the size distribution curves 

corresponding to various times become a single curve. This has been previously used for the 

study of the shear aggregation [27]. When applying this transformation to the data generated 

from the constant-number Monte Carlo simulations, we draw  ,n N t N   against 

/N N   for various times. The figure 7b contains such data for the case A. It can be 

observed that a self-preserving pdf is rapidly reached (t>0.03; Nt>300).   

 

 

3.2 Ellipsoids collision with Nr=1 (case B) 
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Starting from the same initial state, we now consider the aggregation between two equivalent 

ellipsoids (Eq.8), but with Nr=1. The figures 1B-6B must be compared with the figures 1A-

6A corresponding to the reference case. First, we observe a good fit between all the 

corresponding curves, especially for the anisotropy factors (Figures 5-6), i.e. the pdf curves 

and their change with time. This ascertains some published conclusions by analysing the 

properties of the collision events between two given clusters [15]: the equivalent ellipsoid of 

the cluster represents well the cluster when considering any collision event. We also remark a 

slight difference between cases A and B: the catastrophic behaviour happens early for the case 

B. tf value is equal to 0.13 (case A) versus 0.08 (case B). 

One may also compare both cases A and B to the dynamics of shear aggregation of equivalent 

spheres, i.e. collision of two spheres leading to the sphere with the same matter volume. tf 

value is now equal to 1.4 (not shown). Figure 8a represents the largest cluster size versus time. 

As expected, the size increase is exponential, but the time scale is much longer than the one 

for cases A and B. This behaviour is consistent with the compactness and the isotropy of the 

equivalent sphere, i.e. Df=3, resulting in a much smaller value of the collision rate constant. 

Figure 8b represents the N-pdf for various times: the curves are similar to the ones of cases A 

and B, but with a more pronounced smoothness.  

The gyration radius of the equivalent ellipsoid of a cluster consisting of N spheres with radius 

equal to one obeys the relation: 

 2 2 2 / 5gR a b c            (15) 

Considering the whole ellipsoid population, we observe that the gyration radius versus N 

obeys a power law as for fractal-like aggregates:  1/1.75

gR N  ; therefore, the fractal 

dimension is equal to 1.75 whereas the prefactor is equal to 1.  

 

 



 21 

3.3 Ellipsoids collision with Nr=20000 (case C) 

One could consider now the collision between averaged equivalent ellipsoids: the collision 

between two given ellipsoids is repeated Nr times and the averaged ellipsoid parameters are 

calculated following Eqs.4-5. The Nr value is taken equal to 20000 [15]. Figures 1C-6C must 

be compared with the figures corresponding to cases A and B. tf value is again equal to 0.081. 

The data of case C concerning N-pdf, Nmax, LC and SLC are very similar to those of case B. 

Concerning the anisotropy parameters, differences can be observed. a/b and a/c-pdf’s are 

much narrower and less skewed in the case C, the density peak is around a/b=2.1 for case C 

whereas the one for case B is around 1.5. The locations of the peak for a/c-pdf are close to 

each other as cases B and C are compared. However the figure 9 shows that the mean values 

of the two anisotropy factors a/b and a/c over the population at a given time are close to each 

other. The average has been performed over the population with N>2; as the numerous 

monomers and dimers have constant anisotropy parameters, their contribution may mask the 

role of the larger particles. 

The reason of the differences in the a/b and a/c-pdf’s between cases B and C might be 

probably found in the averaging procedure performed in Eqs.4-5. The latter allows for a 

simple picture of the collision between two ellipsoids as depicted in Eq.7, but the effect of the 

ellipsoid random orientation is minimized. 

To summarize, the deviations between the reference case and the two versions based on the 

ellipsoid representation of the cluster are the time scale slightly shorter for cases B and C and 

the a/b, a/c-pdf’s narrower for case C.  

Considering the whole ellipsoid population for case C, we observe that the gyration radius 

versus N obeys a power law as for fractal-like aggregates:  1/1.761.02gR N  ; therefore, the 

fractal dimension is equal to 1.76 whereas the prefactor is equal to 1.02. 
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3.4 Ellipsoids collision with approximate parameters (case D) 

We have earlier presented an approximate expression for the collision kernel of two 

ellipsoids as well as the a, b, c parameters of the resulting equivalent ellipsoid [15]. This is 

a way to facilitate the implementation of the population balance and make the 

computation of the aggregation elementary act much faster.  The ellipsoid parameters 

issued from the approximation are denoted by aapp, bapp, capp; they are expressed as a 

function of  1 1 1 1 2 2 2, 2, , , , , ,a b c M a b c M . The equations 16-18 recall the principles of the 

approximation: In order to take into consideration the physics of the collision, we start 

from an expression containing the diagonalized inertia tensor: 

    (1) (2)

1 2 1 2/I I ID D D M M M M f    12       (16) 

12f  is a diagonal tensor the components of which are , ,bc ac abf f f . 

or 

   

   

   

2 2 2 2 2 2

1 1 1 2 2 2 1 2

2 2 2 2 2 2

1 1 1 2 2 2 1 2

2 2 2 2 2 2

1 1 1 2 2 2 1 2

5

5

5

app app bc

app app ac

app app ab

b c b c b c f

a c a c a c f

a b a b a b f

  

  

  

     

     

     

     (17a,b,c) 

with  1 2/i iM M M   . , ,bc ac abf f f  are to be determined. We have assumed that 

, ,bc ac abf f f  have a quadratic form in six variables: 

   1 2 3 4 5 6 1 1 1 2 2 2, , , , , , , , , ,u u u u u u u a b c a b c   

i.e.  
T

bcf u u bcF           (18) 

The 6x6 matrix bcF is symmetrical. Fbc, Fac and Fab have been obtained from an 

optimization procedure using data issued from collision simulations. Knowing the range 

of values expected for u and i  (from case A), the data set used for optimization has been 
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slightly modified compared to [15]; therefore the fit has been improved. The three 

matrices are gathered in appendix.  

 

As expected, the application of the approximate expressions leads to data close to the ones of 

case C (not shown in the paper). In order to take into account the above-mentioned highlights, 

the approximate expressions have been modified without loss of the computational 

performance and used as follows. Let us consider two real numbers U and W. We propose to 

consider the a, b, c ellipsoid parameters as random variables Xa, Xb, Xc .  They obey the 

normal distribution with mean appWa , bapp or capp and the standard deviation 

a appUWa  , b appUb  or c appUc  . In order to slow down the aggregation and to represent 

the particles as slightly rounded, the a parameter will be modified as appWa  (W<1). U 

quantifies the deviation of the actual resulting equivalent ellipsoid from the average one, due 

to the various relative orientation and positions of the colliding ellipsoids. U and W are fitting 

parameters. Figures 1D-6D represent the data corresponding to U=0.1 and W=0.985. The 

agreement with the data for the case A is very good. The sensitivity of the model with the U 

and W values is relatively low: U=[0.05-0.15] and W=[0.975-0.985] lead to very close data.  

The choice of a normal distribution is justified by its simplicity and by the roughly Gaussian-

shaped curve of the pdf’s of ellipsoid parameters [15]; however, the relationship between the 

parameters of the two colliding ellipsoids and the pdf’s of the resulting ellipsoid parameters 

seem to be very complicated [15]. It may be also underlined that the W parameter has so far 

not been related to physical parameters. 

Considering the whole ellipsoid population, we observe that the gyration radius versus N 

obeys a power law as for fractal-like aggregates:  1/1.8

gR N  ; therefore the fractal dimension 

is equal to 1.8 whereas the prefactor is equal to 1. It must be underlined that the increase of 
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the fractal dimension with time becomes much larger than the ones for cases A, B and C as 

t>0.1 (data not shown in the paper).  

 

4. Discussion and conclusion 

The data issued from this study will be discussed and compared to previous works of other 

investigators. 

4.1. Relationship with previous works 

We will only consider the works dedicated to theoretical considerations and simulations of 

pure shear aggregation; real clusters result from aggregation, restructuring and breakage.  

Pure shear aggregation is prevailing at the early phase of the process. 

According to the literature, the Df value for pure shear aggregation is within the range [1.8-

2.0]. Whereas the fractal dimension for the reference case is within this range, these ones for 

cases B, C are slightly smaller than 1.8. This means that the porosity of the clusters increases 

more strongly with the primary particle number in the latter cases, and that an additional 

phenomenon will be needed for reducing the porosity of the ellipsoid resulting from the 

collision of two smaller ellipsoids. The fitting parameter W introduced in the approximate 

expressions plays this role in the modelling developed in the case D: this leads to a slight 

increase of the fractal dimension.  

All the investigators agree that the prefactor is a function of the fractal dimension. Using such 

functions for Df=1.9, for instance, Gmachowski [28] has found for k the value 0.93, Ehrl et al. 

[29] 0.92, Babick [7] 1.0, respectively. The prefactor values found in this work are therefore 

close to the published values. 

When applying the Friedlander transformation to the N-pdf corresponding to the cases B, C 

and D, the transformed data poorly follow the expected self-preserving pdf, i.e. the one found 

in the case A (data not shown in the paper). This point will be discussed in the sub-section 4.2. 
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Regarding the anisotropy of clusters, the figure 9 indicates that the mean values of a/b and a/c 

are close to 2 and 3-3.5 respectively as already shown by Hentschel [9] and Torres [11]. 

Pranami et al. [13] have selected the two following shape anisotropy parameters 

   2 2 2 2

13 1 3/ /A I I a b c b     and    2 2 2 2

23 2 3/ /A I I c a c b     where I1, I2 and I3 are 

the principal moments of inertia with I1>I2>I3. They computed the A13-pdf and A23-pdf for 

different N values (N=64, 128, 256, 512) within the range of our data; Figures 10a-b show 

A13-pdf and A23-pdf for case D; these data agree well with frequency distributions shown in 

fig. 3 [13]. 

Frungieri and Vanni [12] define an aspect ratio as  2 /AR a b c   where a, b, c are the 

parameters of the equivalent ellipsoid of the cluster and show that the AR-pdf is right skewed 

with a maximum value for AR=2 and a tail with values larger than 5. Figure 10c presents de 

AR-pdf for cases B and D; This can be compared to the AR-pdf for the population denoted by 

B in the figure 5.7 from Frungieri [8]; the data of Frungieri are closer to the data from case B 

than those of case D. However, all the distributions have a similar pattern.  

 

4.2. Improvement based on physical principles 

The deviation between the reference case (A) and cases B, C concerns mainly the fractal 

dimension and the aggregation time (and rate). The empirical approach used in case D in 

order to improve the modelling is based on shortening the largest semi-axis of the equivalent 

ellipsoid. The benefit of such approach is the simplicity. The drawback is its artificial 

character. However the physical reason of the deviation is the possible interpenetration of the 

colliding sphere clusters which is not taken into account during the collision of equivalent 

ellipsoids. Thus, the following improvement is proposed: The equivalent ellipsoid consists of 

a hard core and a penetrable shell with the thickness dependent on the permeability  of the 

ellipsoid. The contact point between the two colliding ellipsoids is at the level of the two core 
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boundaries. Several authors have evaluated the penetration length of a cluster (see Potanin 

[10], Veerapaneni et al. [30], Neale et al. [31]). They are in agreement, proposing the relation 

2L  (valid if the fractal dimension is higher than 1.8 in a 3-D space). The permeability  

of a set of spheres with radius R may be expressed as: 

 22

9

H fR

f E
            (19) 

where H(f) and E are respectively the Happel’s function [32] and the shielding factor [33]:   
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        (20a) 

101 0.6 fE e            (20b) 

f is the volume fraction of matter inside the porous medium, i.e. the cluster (  /f N abc ). 

Note that the ellipsoid is considered homogeneous with a constant density. 

Then the distance  1 2C C  between the centres of the two equivalent ellipsoids is reduced due 

to the reciprocal penetration of the two equivalent ellipsoids: 

     1 2 1 2 1 20
2C C C C             (21) 

The interpenetration leads to a densification that is implicitly handled by the model. 

The supplementary material contains the result of the implementation of Eqs. 19-21 into the 

modelling of ellipsoid collisions. The implementation is straightforward for the cases B and C. 

Concerning the approximate expression (case D), we propose to modify only the part of Eq.16 

involving the inter-centre distance of the two colliding ellipsoids. Two ways were tested:  

i) Changing the vector  1 1 1 2 2 2, , , , ,u a b c a b c in 12f   by 

 1 1 1 1 1 1 2 2 2 2 2 22 , 2 , 2 , 2 , 2 , 2u a b c a b c            , or 
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ii) Multiplying 12f  by the scalar    
2

1 21 2 / d    where d is an estimate of 

 1 2 0
C C  . d is chosen as a function of the gyration radii of the colliding 

ellipsoids: ,1 ,2g gd R R   . The exponent 2 comes from the dependence of A in 

Eq.2. 

This physical modelling replaces the introduction and the use of the empirical parameter 

W; it is equivalent to set the W value at 1. The value of U is maintained at 0.1 because this 

parameter is not concerned by the above physical modelling. The effects of these two 

ways of correcting on the data reported in the figures 1-6 are very close. Only the second 

one is shown in the figures 1D-6D. Moreover, the fractal dimension is within the range 

[1.9; 2.0] whereas the prefactor is within the range [0.9; 1]. It can be seen that the 

agreement between cases A, B and D is very good. The figures 7A-D in the 

supplementary material show the N-pdf after the Friedlander’s transform. It can be seen 

that all the size distributions fall on the self-preserving curve. The agreement between 

cases A, B and D is again validated.  

The both empirical and physical corrections for approximate expressions (Eqs.17a,b,c) 

lead to similar data (figures 1-6). The use of these approximate expressions (case D) 

reduces the computing time of PBE solving by a factor of 50 compared to the case C. The 

benefit is therefore significant. The physical correction based on the cluster permeability 

is satisfactory when considering a scientific approach. However, the introduction of the 

permeability of the two colliding particles in Eqs.17a,b,c makes non quadratic the 12f and 

ID  expressions with respect to  1 1 1 2 2 2, , , , ,a b c a b c  ; As a consequence, deriving, for 

instance,  2 2 2, ,a b c  knowing  1 1 1, ,a b c  and  , ,app app appa b c  may become difficult, as 
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required for the PBE solving. This should be easier when only correcting the aapp value by 

the fitting factor W.  

As a conclusion, we have shown that the sphere clusters can be successfully replaced by 

their equivalent ellipsoids when studying aggregation. This modelling can be illustrated 

by the scheme in Figure 11. At time t1 of the aggregation process, the suspension contains 

primary particles and clusters; the suspension evolves then thanks to binary collisions 

which lead to larger clusters at time t2.  At time t1, the population may be described as a 

population of ellipsoids defined from their inertia tensor. If this ellipsoid set undergoes 

collisions obeying the aggregation act considered in this paper until t2, then the population 

of ellipsoids at t2 models correctly the population of clusters at t2. The proof of the 

agreement includes the comparison of size distributions, anisotropy parameter 

distributions, values of the fractal dimension and the prefactor of the fractal law, self-

similarity behaviors. Moreover, the approximate expressions previously proposed for 

computing the ellipsoid parameters of the resulting particle after collision allow for faster 

and representative Monte Carlo simulations of the aggregation process of the particle 

population. As the interpenetration of colliding clusters is considered the modelling of 

aggregation is improved.  

This modelling dedicated to the pure aggregation is only valid for the first stage of the 

entire aggregation process. Restructuring and fragmentation have not been considered in 

this work as they occur later on. The latter are related to the deformation of the object, i.e. 

cluster or ellipsoid. We expect that the use of ellipsoids instead of clusters facilitates the 

modelling of these new phenomena. This study is in progress. 
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Appendix: 6x6 matrices for approximate expressions (Eqs.17a,b,c; Eq.18)  

Fbc 

  -0.1165    0.1803    0.1852    0.1655   -0.0073   -0.0037 

    0.1803   -0.2208   -0.0356   -0.0073   -0.0818   -0.0580 

    0.1852   -0.0356   -0.3227   -0.0037   -0.0580    0.0543 

    0.1655   -0.0073   -0.0037   -0.1165    0.1803    0.1852 

   -0.0073   -0.0818   -0.0580    0.1803   -0.2208   -0.0356 

   -0.0037   -0.0580    0.0543    0.1852   -0.0356   -0.3227 

 

Fac 

    0.6011   -0.3102   -0.3578   -0.0995    0.3017    0.1147 

   -0.3102    0.5141    0.4383    0.3017    0.0969    0.0763 

   -0.3578    0.4383    0.3442    0.1147    0.0763    0.0173 

   -0.0995    0.3017    0.1147    0.6011   -0.3102   -0.3578 

    0.3017    0.0969    0.0763   -0.3102    0.5141    0.4383 

    0.1147    0.0763    0.0173   -0.3578    0.4383    0.3442 

 

Fab 

    0.4664   -0.1066   -0.0582    0.0587    0.1380    0.1656 

   -0.1066    0.4751   -0.2575    0.1380    0.0563    0.0910 

   -0.0582   -0.2575    0.9031    0.1656    0.0910    0.0958 

    0.0587    0.1380    0.1656    0.4664   -0.1066   -0.0582 

    0.1380    0.0563    0.0910   -0.1066    0.4751   -0.2575 

    0.1656    0.0910    0.0958   -0.0582   -0.2575    0.9031 
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List of figures 

Figures 1-6: Color (Nt) black (100); red (300); green (500); blue (1000); magenta (2000); 

cyan (3000)  

Case A, B: Na=10; Case C: Na=1; Case D: Na=5  

Figure 1A: N-pdf for various times (repeated twice). 

Figure 1B, 1C, 1D: N-pdf for various times.  

Figure 2A: N-pdf for various times (repeated twice). 

Figure 2B, 2C, 2D: N-pdf for various times. 

Figure 3A, 3B, 3C, 3D: Nmax versus time 

Figure 4A, 4B, 4C, 4D: mass fraction of the largest cluster (*) and the second largest cluster 

(o) versus time. 

Figure 5A: a/b-pdf for various times (repeated twice). 

Figure 5B, 5C, 5D: a/b-pdf for various times. 

Figure 6A: a/c-pdf for various times (repeated twice). 

Figure 6B, 6C, 6D: a/c-pdf for various times. 

Figure 7a: gyration radius Rg versus N for t=0.136 (case A) 

Figure 7b: self-preserving population density;  ,n N t N   against /N N   for various 

times. 

Figure 8: shear aggregation of equivalent spheres. Color (Nt) black (1000);  red (2000); green 

(5000); blue (7500); magenta (10000) 

a. Nmax versus time for two realizations; b: N-pdf for various times. 

Figure 9: mean anisotropy parameters versus time 

triangle: a/b; circle: a/c empty (Case A)  full (Case C) 

Figure 10a: A13-pdf for comparison of case D (N>4) with Pranami et al. [13] . Case D: solid 

lines; Pranami’s work: full circles.  
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Figure 10b: A23-pdf for comparison of case D (N>4) with Pranami et al. [13]. Case D: solid 

lines; Pranami’s work: full circles.  

Figure 10c: AR-pdf for comparison of cases B and D (N>4) with Frungieri (fig.5.7 [8]). Cases 

B and D: solid lines; Frungieri’s work: full circles.  

Figure 11: cluster aggregation versus ellipsoid aggregation 
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Supplementary Material 

Effect of the permeability of the equivalent ellipsoids on the shear-aggregation dynamics 

(cases B, C and D); case A: reference case 

 

List of figures 

Figures 1-7: Color (Nt) black (100); red (300); green (500); blue (1000); magenta (2000); cyan 

(3000)  

Case A, B, D: Na=10; Case C: Na=2 

Figure 1A: N-pdf for various times (repeated twice). 

Figure 1B, 1C, 1D: N-pdf for various times.  

Figure 2A: N-pdf for various times (repeated twice). 

Figure 2B, 2C, 2D: N-pdf for various times. 

Figure 3A, 3B, 3C, 3D: Nmax versus time  

Figure 4A, 4B, 4C, 4D: mass fraction of the largest cluster (*) and the second largest cluster 

(o) versus time. 

Figure 5A: a/b-pdf for various times (repeated twice). 

Figure 5B, 5C, 5D: a/b-pdf for various times. 

Figure 6A: a/c-pdf for various times (repeated twice). 

Figure 6B, 6C, 6D: a/c-pdf for various times. 

Figure 7A, 7B, 7C, 7D: self-preserving N-pdf: N-pdf for various times as  ,n N t N   

versus /N N  . 
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t 0 0.009 0.026 0.0415 0.074 0.116 0.136 

<N> 1 1.05 1.16 1.28 1.66 2.85 4.1 

 

Table 1: mean N value versus time (case A) 

 

t 0.026 0.041 0.074 0.116 0.136 

k 0.876 

 

0.887 0.916 0.932 0.941 

Df 1.943 

 

1.88 1.94 

 

1.975 2.00 

 

Table 2: k and Df versus time t (case A) 

 


