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Abstract: A coupled multiphysics phase field framework is proposed to model
anodic dissolution induced by stress corrosion fracture growth at microstructual
level. The effects of electrochemical-mechanical processes (including crystal
anisotropy) are all taken into account. This new model is based upon: (i) an
anisotropic phase transformation model based on a variational formulation
to describe material dissolution along preferential directions; (ii) an efficient
description of grain boundaries as a smeared cohesive zone; (iii) an explicit
approximation to model the different electrochemical behaviors between grain
boundary and grain interior. Both intergranular and transgranular stress corrosion
cracking is simulated in an efficient manner. The abilities of the proposed model
are illustrated through several numerical examples involving a full prediction of
complex crack network growth induced by stress corrosion cracking within 2D
polycrystaline models.
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1 Introduction

Stress corrosion cracking (SCC) is a very common cause of failures for the
engineering components and structures. At the microstructural scale, cracks
often nucleate from corrosion pits and, depending on the kind of material and
environment, it could be inter- or transgranular (IG-TG) in nature [1]. Especially,
crystals orientation, grain boundary properties and mechanical loading strongly
affect the switching between the inter- and transgranular stress corrosion cracking
(IGSCC-TGSCCQ) [2, 3]. This competition provides a significant difference in the
material resistance [4, 5, 6]. Therefore, understanding these aspects plays an
important role for improvements in the development and application of advanced
structural materials.

Many works in the literature have been proposed to deal with the simulation
of microstructural effects on the stress corrosion assisted fracture growth in
polycrystals. Cohesive Zone Models (CZM), based on the original idea in the
work of Dugdale [7] and Barenblatt et al [8] to avoid the singularity of stress at
the crack tip, is a popular technique used in this field. One of its application can
be found in the study [9], where a grain-scale finite element (FE) model based
on the CZM is proposed to study IGSCC in stainless steel wire. In the work [10],
a 3D grain-level cohesive finite element model is proposed to study the IGSCC
characteristics of AZ31 magnesium alloy due to the hydrogen embrittlement
process. Another contribution based on cohesive zone domains can be found in
[11] by using multiscale model to simulate the intergranular hydrogen-assisted
cracking. The investigation of the microstructural effects (especially the grain
boundaries) on the behaviour of the IG stress corrosion assisted short cracks can
be found in [12] for the alloy 600 by using the body force method, and [13] in the
fully sensitised austenitic stainless steel by using the polycrystalline aggregate
model, or in [14] by using a new model based on Markov Chain theory and
Monte Carlo simulations. The polycrystalline model is also used in [15, 16] to
simulate the IGSCC in stainless steel. Another technique, namely dislocation-
based boundary element model is proposed in [17] to microstructurally study
intergranular stress corrosion short cracks in an elastoplastic medium.

Development of the numerical models at the grain size scales has so far been
mostly limited to simulate IGSCC. There is a very few studies dealing with both
IGSCC and TGSCC such as the work of Musienko et al [6]. The authors proposed
a coupled approach (environment and plasticity) based on the CZM to model
the IG-TG fracture transition. More recently, a numerical multiphysics peridy-
namic framework [18] based on the adsorption induced decohesion mechanism is
proposed to this field. However, a detailed description of the electrochemical and



mechanical effects on stress corrosion assisted damage is still missing, especially
for the common situation of anodic dissolution induced SCC.

In this work, the phase field method augmented by a smeared description
of interfaces is used to develop a fully coupled multiphysics model of stress
corrosion assisted damage growth [19, 20, 21]. Starting from the ideas in [22, 23],
we extend them to the case of polycrystalline materials, where the anisotropic
effects for both elastic energy and fracture surface energy are taken into account.
The behavior of grain boundaries is described by the smeared cohesive model
following the work [24, 25]. Moreover, to account for the different behavior of
grain boundary and grain interior, we propose an interpolation formulation to
present the smoothed transition of the electrochemical-mechanical properties
between the two regions. It is expected that the new model can model both
IGSCC and TGSCC depending on the electrochemical-mechanical loading.

The overview of the paper is as follows. In section 2 the fundamentals of the
proposed model are presented. In section 3, an extented formulation of phase field
method able to model the stress corrosion induced crack propagation accounted
the crystal effects is proposed. The variational principle for the proposed model
is then detailed in section 4. Finally, the potential of the proposed model is
illustrated by several numerical examples in section 5.

2 Fundamentals of the proposed method

Let Q € RP be an open domain describing a corroding system at micro scale,
which generally contains four domains: (i) metal or solid phase described by

temporally and spatially constant metal atom concentration c?uoy; (ii) electrolyte

solution or liquid phase described by temporally and spatially constant electrolyte
atom concentration ¢'%; (iii) an interfacial region where the corrosion occurs
with the atom concentration taken within the range (clanoy , cgnoy); (iv) and the
grain boundaries region described by metal atom concentration AV ag well,
but with another behavior.

The normalization procedure is then adopted following the work [22]. We
define c; as the normalized solid concentration and ¢; as the normalized electrolyte

concentration, reading:

alloy solution

C
Z__  and ¢ = L
alloy
Cs

(1)

Cs = C:lloy

The corrosion process is modeled by using the phase field method. A scalar
parameter ¢(x) is considered to describe the corroding system. ¢(x) = 1 is



solid phase, ¢(x) = 0 is liquid phase and the interfacial region is within the
range 0 < ¢(x) < 1. Moreover, the grain boundaries are also approximated by
a smeared representation defined by a temporally constant 8(x), taking a unit
value on grain boundaries and vanishing away from it'. An illustration of a
two-dimensional corroding system is depicted in Fig. 1

Ao

Interface
(transition zone)
1
Grain boundary —
/T
¢p=1]1¢=0
Cs C

) [Solid phase |
*O‘

Fig. 1: 2D representation of a typical corroding system due to the anodic dissolution of a

polycrystalline body

The dissolution of material (phase transformation: solid ¢ = 1 to liquid ¢ = 0)
is provided by the diffusional transport of metal ions from solid domain to liquid
domain at interfacial domain. Note that, the interfacial region (transition domain)
is represented here as a mixture of both phases (solid - liquid) with different
chemical compositions by using the assumption of (Kim Kim Suzuki) KKS model
[26]. Then, by introducing the interpolation function, satisfying h(¢ = 0) = 0,

1 The smeared grain boundaries are here described by introducing a grain boundaries
1 L
density function v5(8,V3) = J/B(XF + EBVﬁ(x) - VB(x), where £3 is the regularization
B
parameter. Then the total grain boundaries length represents by I's(58) = fﬂ v8(8,VB) dQ2.

Note that for £g — 0, this description leads to the exact description of the sharp cohesive
interface, i.e I'g — I'p (see e.g. [25, 24] for more details)



h(¢=1)=1 and 8}572?)@:07 #=1 = 0; one choice: h(¢) = —2¢> + 3¢?, the ions
concentration at any material point ¢ can be described by the following:

c=h(®)es + [1 = h(e)]cr, (2)

As mentioned in the work [23], the phase transformation occurs when the
ions concentration achieves the saturation value, denoted cge and ¢, for solid
metal and electrolyte respectively, in the normalized framework.

3 Phase field model

This work focuses on the study of polycrystalline effects to the anodic dissolution
induced stress corrosion crack growth. To this aim, we extend the formulation pro-
posed in [23] to the case of polycristalline materials. The new energy formulation
is rewritten as follows:

E(u,[u]  6.¢) = / bu (c() d9+/wv(ﬂu]]m) ar
I's

O\I'p,I'y

+/w¢ dr+/¢c(c, ¢) dQ, (3)
Ty Q

where 1, (e(u)) is the strain energy density, ¥.(c, ¢) is the electrochemical energy
density and v, describes the fracture energy. The term 1, ([u], %) is added to
account for the energy of grain boundaries, which is a function depending on the
displacement jump across grain boundaries I'p and an history parameter .

In the phase field framework, the regularized description for strong disconti-
nuities related to both fracture and grain boundaries is adopted (substituting
[u] by v(x)). A sharp grain boundary is regularized by a smeared grain bound-
ary (substituting I'p by I'g = fQ v8(8,VB) d2). Then its decohesion will be
described by the smeared cohesive law proposed in [25]. This approach is based
on a smeared displacement jump approximation (see [27, 24]), in which the grain
boundary decohesion is approximated as a smooth transition v(x). That provides
a decomposition of infinitesimal strain tensor into a part related to the bulk and
a part induced by smoothed jumps, denoted by €¢ and &, respectively.

e=¢e%+é. (4)



&=n"" & vy, (5)

where n'# is the normal vector to Ig.

The strain energy density of damageable material 1, (€°(u), ¢) is then con-
structed from elastic part €® by using unilateral contact assumptions introduced
in [24]:

bu(e®(u), ) = 5 [e°: C(9) : €°], (6)

l\')\»—t

with the elastic tensor C(¢) is defined by the following:
C(¢) = h(¢)C° + kol ® 1[1 — h(¢)]sign™ (tre®), (7)

where C denotes the initial elastic tensor of the material, possibly anisotropic;
ko is the bulk modulus; the sign function sign™(z) = 1 if x < 0 and sign™(z) =0
if x > 0.

The energy formulation in the phase field framework is now defined by:

E(u,v,¢,c) /1/)u dQ—}—/d)vvk)'yﬂdQ

+ [ % (6, V) A+ [ e (c,¢) dS. (8)
/ /

The third term in Eq. (8), ¥4 (¢, V¢) describes the surface energy or the amount
of energy released upon the creation of new fracture surfaces. It is chosen following
the work [23]:

Yy (6, V) = wgd*(1 — ¢°) + g : (Vo @ Vo), 9)

with wg is the height of the imposed double-well energy barrier, o is the second-
order tensor describing gradient energy (included the anisotropic effects), which
is an invariant with respect to rotations:

a¢:a0[1+€(1—N®N)], (10)

where «q is the classical gradient energy coefficient for the case of isotropic
material; N denotes the unit vector normal to the preferential cleavage plane
(with respect to the material coordinates), and & > 0 is used to penalize the



damage on planes not normal to IN. This formulation can be extended for the
case of many preferential cleavage planes. The detailed description can be found
in the work [28].

Note that wg and ap can be determined from the relation with the transition
length £ and the interface energy oy or the critical fracture energy g.:

/oW 2 l
oy = 0v¢ and ¢ =qao* ﬂ, or w¢=& Oé():gi» (11)
3v2 we 2 2

where a* ~ 2.94 corresponds to the transition zone taken within the range
0.05 < ¢ < 0.95.
The electrochemical energy density 1.(cs, ¢;, ¢) in Eq. 8 is chosen based on

the KKS model [26], wherein the transition region is postulated as a mixture
of the two phases with different chemical compositions, but equal chemical
potentials:

Veleser, @) = h9)[Ales =) | + [1=h(@)|[A( -’ (12)
where A is the free energy density curvature which is often identified from ther-
modynamical databases [29, 30]; ¢se and ¢ are the equilibrium concentrations

of the coexisting phases; the concentration of solid ¢s and liquid ¢; phases can
be expressed from the equilibrium condition at the transition zone as follows:

cs =c+ [h(¢) — 1] (cre — cse)
{ aq=c+ h(¢) (cle - Cse)~ (13)

The total energy is then rewritten as E (u, v, ¢,c) = /1/) d in which
Q

1/J=1/Ju+111v+1/)¢+1/1c (14)

is identified total energy density.

4 Variational principle

4.1 Variational principle for mechanical problem

The weak form of mechanical problem is obtained by taking an arbitrary variation
in the displacement field du and in the auxiliary displacement jump field dv,



while the phase field is kept constant. In the absence of body forces, it is defined
as:

/<a:(5€e+vgt(v,/@)6v+g“$’gj)> dQ — /f~5ud5’:0 (15)
Q e o

where t(v, k) are the tractions at grain boundaries with outward normal n';

t, U are the prescribed tractions and the prescribed displacements on 9€);, 09,

respectively; z, = (x — xp,) -n'# and xp, = argmin (|| y — x ||), the positive
yer

constant ( is introduced to ensure that the auxiliary displacement jump field is
constant in the normal direction [27]. o is the Cauchy stress in the bulk material,
defined by:

oy,
Oe®

o(u,v,¢) = =C(¢) : € (16)
where the expression of the elastic strain ¢ is given by (see [25]):

e =Viu—nls @° VY8, (17)

with (V*u),; = 3 (uij + uj;) and (n's ®° v)ij = 1 (nyv; + vin;). From Egs. 15,
17, the weak form can be rewritten as:

2
/<(V co)du — ['yg (a-nrzs —t(v,K)) + CZT;] 5'0) dQ
Q
—/(f—ant)ﬁu s — /ﬂavds —0 (18)
0z, A
% arg

In the case the crack curvature is assumed to be small, by considering a
variation in the displacement and displacement jump, yields the BVP:

V-o(u,v,o) =0 Vx € Q,
r 9?v
o7 [t(v, k) —nts . o(u,v, qﬁ)] = Ca(xn)Q vx € I'g,
a% -0 vx € T, (19)
u = 1 Vx € 08y,
n; o t Vx € 0,



The corresponding mechanical problem will be solved:

/a’ e¢(du)dQ — /E-éudS:O

Q o

/{ t(v,k)0v — 0o : e(5v)}(§;’gj}}d9/§;(5vd55—0
Q or'g

4.2 Variational principle for electrochemical problem

The Cahn-Hilliard and Allen-Cahn equation is used to described the electro-
chemical processes of phase transformation. The diffusion of ions from solid
volume to electrolyte, or the spatial evolution of conserved field ¢ is governed by
a conservation law (Cahn-Hilliard). The material dissolution or the evolution of
non conserved field ¢ is governed by Allen-Cahn equation:

oc 81&
8t( H=v: M< 80)’

d¢ _ Y i
E(X,t) = —L¢, <8¢ -V 6qu>

(21)

where L is the interface kinetics parameter, that describes the transformation
rate; M is the diffusion mobility, which can be evaluated based on an analogy
between the Cahn—Hilliard equation and the Fick’s second law (see [23, 22|, for
more details), being written as:

D

M=— 22

24 (22)
with D is the diffusion coefficient. An important property of polycrystalline
materials needs to be considered is the different SCC phenomena between grain
boundary and grain interior. The grain boundary atoms are more easily and
rapidly dissolved, or corroded, than the atoms within the grains. So that, the
grain boundaries oxidize or corrode more rapidly. To model this phenomenon,
the diffusion coefficient D is here defined as a function of the smeared description
of grain boundary 8 by the following:

D¢

P ko) o =




where D¢ is the diffusion coefficient for grain interior; n is an exponent; kp is
the diffusion mismatch ratio between grain interior and grain boundary. This
definition ensures D = D¢ in the grain interior, D = D = D¢ /kp in the center
of grain boundary and Dg < D < Dp in the smeared region. An illustration
of the variation of the diffusion coefficient crossing the grain boundary for the
case of n = 2 and kp = 0.1 is depicted in Fig. 2. This approximation can be
understood as an interpolation procedure for two different regions. By using the
same principle, the fracture energy for whole domain g. can be written:

g = [(1= B)"(1 = ky) + ko o€ (24)

where g& is the fracture energy in the grain interior, kg is fracture energy
mismatch between the grain boundary ¢g? and the grain interior g¢, defined by

kg = g2 /5.

14
ls
0 >
Interface :
Grainjboundary\ T (transition zone) Grain boundary
B
VA ¢o=1| ¢=0 D Dp
Lingfof investigation o

() [Solid phase -
[

)

c

=

s}

o

=

8

O]

D¢
' 8

Fig. 2: Explicit description of the different electrochemical behavior between grain boundary

and grain interior
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Using the variation in the concentration for Eq. (21)1, and the variation in
the phase field for Eq. (21)2, the corresponding weak form was obtained:

/—5 dQ+/Mv8;:~v5ch:0

(25)
/8¢5¢ dQ + /L¢(5¢1/J dQ =0

Q Q

where dg1) reads

_ (oY 9
5W<a¢ v aws)‘;‘b

oC
+[€e : 7325)) :

) [awc

9 e] +w<z>g’(<b)] S¢+V o [ao (1+¢1-NoN) )] V6.(26)

In order to handle loading and unloading histories, we introduce the history
function following the work of [31, 32]

H(x,t) = max]{ee (x,7) : [(CO (x)—ko (x) 1@1 sign™ (tre® (x,7))] : €° (x,7) }(27)

TE[0,t

From (26), (27), the final weak form for electrochemical processes is obtained
by the following equation:

/—éch + /MV?’SV&dQ:o
Q

/ %‘w v+ / L¢{ zif +h(O)H(x,1) + wpg’ (qb)} spaq (28
Q2 Q

+ /L¢v¢[a0(1+§(1—N®N))}v5¢ a0 =0

Q
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5 Representative numerical examples

In this section, we present several numerical examples using the proposed method
to study SCC of a zirconium alloy. Thanks to a tightly adherent and protective
oxide film, zirconium is well known for its excellent corrosion resistance to a
lot of acids (hydrochloric acid, hot organic acids, sulfuric acid,...) even when
exceeding the normal boiling point temperature. Moreover, this material exhibits
very good mechanical properties. However, zirconium can be corroded in the
situation of hydrochloric acid containing oxidizing species such as cupric chloride,
ferric chloride, or wet chlorine. Both Intergranular and Transgranular Stress
Corrosion Cracking (IGSCC - TGSCC) were experimentally observed in the
literature [33], [6].

In this study, anodic dissolution induced stress corrosion crack propagation of
this material is investigated. The considered zirconium alloy is composed mostly
of zirconium, tin, iron and chromium with a typical mass density of paioy =
6.56 g/cm?. The complete chemical composition is given in Table. 1. The metal
concentration is finally obtained 2 = 72.23 mol/l (see the work [23] for more
details).

Table 1: Chemical composition of the considered zirconium alloy (Zircaloy-4)

Alloy Element Mass fraction, Molar mass, Mole fraction
S il %] M(g/mol] Fmil %)
Cr 0.10 52.00 0.175
Fe 0.20 55.85 0.325
zirconium alloy (0} 0.12 16.00 0.681
Sn 1.40 118.71 1.071
Zr 98.50 91.22 97.748

The diffusion coefficient is assumed to be homogeneous for all chemical
compositions, and taken as the value for pure Zr, with Dg = 1.3 x 10~8m?/s
[34, 35]. The saturated concentration is taken as in the study [36]: csqt = 3
mol/L. Hence, the saturated concentration of solid and liquid phase are cg. = 1,
cle = 3/72.23. The free energy density curvature A is identified by fitting the
chemical free energies obtained from thermodynamic databases. That gives
A =8.02x 1087 /mol. The size of transition zone and the interface energy are

12



chosen ¢ = 0.5 pum and o4 = 0.5 kN/m (giving the equivalent fracture energy
¢S =107 kN/mm). The interface kinetics energy is Ly = 0.15 1/(J.s).
The grain boundary cohesive energy is taken following the work of Xu et al

137]:
VP ([u]) = g! [ (1 + Eﬂ) exp <—[£Z}]> ] : (29)

The normal traction separation law is obtained as:

t([ul) = gt % exp (—[Ejiﬂ) , (30)

with v, = g2 /(tyexp(1)), and t,, the fracture strength, which can be dependent
on the angular mismatch between grains (see eg. [38]) as follows:

7 av 1 i
tu(A0) = 637 + S AL, Zcos(élAH ), (31)

where t,'®, At, are the average and the maximal fracture strength deviation,
respectively; the angular mismatch A6 is defined as the difference between the
orientations of two crystals %, 65, along the considered grain boundary on plane
1

AG = 0% — 65, (32)

However, for the sake of simplicity and due to the lack of experimental
data, the grain boundary fracture strength is considered here as independent
for misorientation between two grains and taken as t,, = 0.1 GPa. The fracture
energy within the grain boundary is g2 = 2.85 x 1074 kN/mm. The elastic
tensor of hep symmetry is used. For 0° orientation, it is written as follows [39]:

142 734 0
C’= (734 142 0 | (GPa). (33)
0 0 343

The bulk modulus is defined as kg = (CY; +2CY,)/3 = 96.26 GPa. For easier
numerical implementation, all parameters are normalized following the work by
[29, 30].

We first consider a rectangular domain with dimension 40 x 30 pm? containing
an initial crack and 10 grains. The geometry and mesh of this microstructure is

13



generated using the open source software Neper [40] (developed by Romain Quey

at CNRS and MINES Saint-Etienne, France). A refined mesh was constructed

using triangular elements, with element size ~ 0.15 pm, to have 6-8 elements in
40 x 30

10
details of the geometry and of boundary conditions are described in Fig. 3. In

the transition zone. The average grain size is about ~ 11 pm. The

each grain, both direction of anisotropy and preferential damage directions are
generated randomly.

fU

B 0 =283.4° 9 = 105.5°

Initial cra Initial crack
_ 0 =102.4¢ 150

Film rupture

Iy
(a) (b)

Fig. 3: Geometry and boundary conditions for the polycrystalline structure containing 10
grains: (a) grain boundary and loading description; (b) description of crystals with angle of
the direction of anisotropy.

In the crystallographic orientation, the cleavage plane N = [1 0] is chosen.
The structure will be numerically assigned to both electrochemical degradation
and mechanical loading. The displacements are prescribed along the y—direction
for upper edge (y = 30 pum) and lower edge (y = 0) while the displacement along
x is here free. The rupture of passive film allowing electrochemical processes is
manually activated from the beginning at the initial crack location. Plane strain
condition is assumed.

The competition between IGSCC and TGSCC is analyzed by considering
two situations:

(C1) SCC with low mechanical loading,.

(C2) SCC with high mechanical loading.

14



The first case (C1) is set up to expect the IGSCC, because at low mechanical
loading, SCC process, taking place preferentially at grain boundaries, prevails on
mechanical process. Therefore IGSCC will be dominant in this situation. In the
second case (C2), when the structure is subjected to higher mechanical loading,
the mechanical process becomes dominant. So that, the cracks will propagate not
only on grain boundaries but also within the grains depending on the direction
which is suitable for fracture growth. The details of boundary conditions are
given in table 2.

Table 2: Loading details of two situations: (C1) and (C2)

V (um/min)
Case Period [0:3 min) Period [3:120 min) Period [120 : 300 min]
(C1) 0.03 1.35 x 1073 6 x 1074
(C2) 0.06 1.80 x 1073 6 x 1074

The resulting crack propagation for the first case (C1) is depicted in Fig. 4.
The initial crack propagates towards the grain boundaries, according to the
preferential direction (Fig. 4 with U = 0.21 pm). The strong influence of SCC
is captured in this loading condition. The fracture width near the edge z = 0
is much larger than the region nearly crack tip, because of material dissolution
induced by SCC had more time to developp in this zone. After reaching the grain
boundary, the crack has a tendency to propagate along the grain boundaries
(Fig. 4 with U = 0.27, 0.30 and 0.32 pum). IGSCC is clearly observed.

A different fracture scenario is obtained in the second case (C2) (see Fig. 5).
With the higher loading rate, the mechanical process becomes predominant. The
fracture morphology is shaper, but the effect of SCC is still captured at the edge
x = 0. The fracture growth in the grain boundary is always observed (see Fig. 5
with U = 0.28 pm), but then the crack in this situation mostly propagates within
the grains (see Fig. 5 with U = 0.35 and 0.39 pum). Under the higher mechanical
loading, fracture growth is essentially due to mechanical process, that supports
for both IG and TG cracks (not like only IG fracture in loading condition C1).
Thus cracks choose either IG or TG, depending on which one is more favorable
energetically. This phenomenon has been proved in Fig. 5 for U = 0.41 um,
where the orientation of the last grain is not suitable for crack propagation, the
fracture has switched from TG to IG. The obtained numerical simulation results

15
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(a) U=0.21 ym (t = 115 min) (b) U =0.27 pm (t = 205 min)
30 l1 30 l1
0.8 0.8
20 20
106 1 0.6
0.4 0.4
10 10
02 Ioz
0 ' 0 0 0
0 10 20 30 40 0 10 20 30 40
(¢) U =0.30 pm (t = 255 min) (d) U =0.32 um (t = 285 min)

Fig. 4: Crack propagation for the first situation (C1) corresponding to the low mechanical
loading. The IGSCC is clearly captured

show a very good qualitative agreement with experimental observations in the
literature [41, 42, 6].

Note that the transition between IG and TG fracture is strongly affected
by the interfacial properties at grain boundaries as well. By using the same
mechanical loading condition as the case (C2) but taking a new grain boundary
energy gP = 8.3 x 10% kN/mm (denoted here the case (C3)), TG crack propa-
gation is obtained as in Fig. 6(c). The crack trajectory of this last case (C3) is
quite similar to one obtained from the loading case (C2), but with lower grain
boundary effects. Especially at the last loading step, the fracture switches from
TG to IG for the case (C2), while it is still TG for the case (C3). This result
confirms the influence of the fracture energy mismatch between grain boundaries
and grain interior on the transition between IGSCC and TGSCC.

The stress-displacement curves for all situations are plotted in Fig. 7. The
elastic period for the three cases exhibits the same behavior. Then, the IGSCC
in the case (C1) shows the weakest resistance, while the fully TGSCC in the
case (C3) presents the strongest resistance. These observations demonstrate the

16
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(a) U =0.28 ym (t = 95 min)

30

l1
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0.6
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Fig. 5: Crack propagation for the second situation (C2) corresponding to the high mechani-
cal loading. Both IGSCC and TGSCC are observed

Fig. 6: Comparison of crack path for different cases: (a) case study (C1) with the low
mechanical loading and g./gZ = 3.5; (b) case study (C2) with the high mechanical loading
and gc/g92 = 3.5; (c) case study (C3) with the high mechanical loading and g./gZ = 1.2

strong influence of the fracture features (IG or TG) on the macroscopic material
properties, which plays an major role in the material design.

In the next example, we perform the numerical simulation on a polycrystalline
structure containing 50 grains (dimension: 160 x 120 pm?) is performed in
order to demonstrate the efficiency of the proposed framework. The details of
geometry and boundary conditions are depicted in Fig. 8. The same values of the
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Fig. 7: Comparison of the stress-displacement curve for both different mechanical loading
conditions

material parameters are considered as for the previous example. The boundary
conditions are chosen here to capture both IGSCC and TGSCC as follows: the
prescribed displacement rate V = 0.1 pm/min for the period t = [0 : 5 min] and
V =0.002 pm/min for t = (5 : 500 min]. Only the cleavage plane N =[1 0] is
considered.

Film rupture

Fig. 8: Geometry and boundary conditions for the polycrystalline structure containing 50
grains: (a) grain boundary and loading description; (b) angle of the direction of anisotropy

The results of fracture evolution corresponding to different loading times are
plotted in Fig. 9. Both crack in the grain interior and along the grain boundaries
are observed. Note that the advantage of applying the phase field model is
demontrated, the model is able to capture the nucleation of severals cracks when
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the structure is subjected to predominant mechanical loading (see Fig. 9 with U
= 1.40 pm). These cracks often nucleate at the grain boundaries (the weakest
regions) and then either propagate along grain boundaries or onset and penetrate
the grain (see Fig. 9 with U = 1.42 um), so that the process requires minimal
energy. Then these new cracks may merge with the initial one.

A similar behavior has been observed experimentally in the SCC crack
growth in stainless steels exposed to high temperature water [43]. The process
is commonly cited as Initiation Dominant Growth [44] and has been related to
the nucleation of adjacent cracks in the vicinity of the primary crack tip (stress
concentration zone), so the main defect become larger by coalescence with the
recently nucleated cracks rather than by the direct growth of the primary crack.

0 50 100 150 0 50 100 150

(¢) U =140 pm (t = 455 min) (e) U =1.42 pm (t = 470 min)

Fig. 9: Crack propagation for polycrystalline structure containing 50 grains. The phase field
is plotted corresponding to several loading steps
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6 Conclusion

In this contribution, a new multiphysics model is proposed to describe the
transition between IGSCC and TGSCC at the microstructural level. The anodic
dissolution induced SCC is modeled by using the anisotropic phase filed method
based on KKS model [26] for the electrochemical process and the idea in the work
[23] for coupling with mechanical processes. The anisotropic effects of oriented
crystals are taken into account for both elasticity and fracture energies. Moreover,
the behavior of grain boundaries are described by the smeared cohesive model in
the phase field framework to avoid defining of new material phases for this region.
More specifically, we propose an approximation to account the different SCC
phenomena between grain boundary and grain interior by using the diffusion
coefficient and fracture energy of phase concentration depending on a smeared
grain boundary field. The new method is able to simulate the stress corrosion
crack propagation accounting for polycrystaline effects in a very efficient manner.

The applications to Zirconium alloy demonstrate a very good qualitative
agreement between numerical predictions and experimental observations for both
situation: IGSCC and TGSCC when SCC system is subjected to different loading
conditions. The transition from IG to TG fracture due to the distribution of
crystallographic and fracture energy mismatch between grain boundaries and
grain interior is also captured. The proposed method opens a new efficient way
to model the interaction and competition between IGSCC and TGSCC.
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