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We study the local and global dynamics of sheared granular materials in a stick-slip experiment, using a slider
and a spring. The system crackles, with intermittent slip avalanches, or exhibits irregular or periodic dynamics,
depending on the shear rate and loading stiffness. The global force on the slider during shearing captures the
transitions from the crackling to the periodic regime. We deduce a dynamic phase diagram as a function of the
shear rate and the loading stiffness and associated scaling laws. Using photoelastic particles, we also capture the
grain-scale stress evolution, and investigate the microscopic behavior in the different regimes.
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I. INTRODUCTION

Sheared amorphous materials yield and flow, when suf-
ficiently loaded [1–3]. The flow can be spatially heteroge-
neous and erratic in time. This intermittent behavior has
been observed in phenomena as diverse as seismicity [4–6],
fracture [7–9], damage [10,11], friction [12,13], plastic-
ity [14,15], magnetization [16,17], wetting [18,19], neural
activity [20,21], and granular avalanches [22–26].

In granular media, the intermittent dynamics, also called
“crackling” [27], is associated with the transition between
jammed and unjammed states [26,28] around yielding: When
slowly sheared, a granular system may stick and slip, with slip
sizes spanning a wide range of scales [29–32]. Meanwhile,
under certain conditions, some sheared systems do not obey
this crackling behavior. Instead, slips occur “periodically”
with a narrow size distribution [33–36]. For other systems, the
oscillations may be damped or the grains flow continuously.
In addition to safety and industrial challenges to control these
dynamics, understanding these different behaviors is crucial in
granular physics and many other associated fields, exhibiting
similar dynamics.

The crackling response of granular media is of particular
interest [2,26,37] and the effect of the system’s parameters
on the dynamics, their scaling laws, and avalanche shapes
has been investigated [38–41]. Other studies concentrated on
understanding the transition between the periodic stick-slip
and steady sliding regimes [36,42]. However, the transitions
from crackling to periodic dynamics have not been studied.
Consequently, fundamental issues remain: Do crackling and
periodic dynamics arise from fundamentally different sys-
temic behaviors, identifiable at a microscopic scale, or do they
occur as bifurcations controlled by system-scale parameters?
Are they the only dynamical regimes? What is the inter-
play between the grain-scale mechanics and the macroscopic
system parameters?
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The study reported here addresses these questions. Ex-
periments on sheared granular materials reproduce crackling
and periodic regimes, with an “irregular” regime in between.
Adjusting the driving rate and the system stiffness causes the
system to transition between different behaviors, and yields a
dynamic phase diagram. The system observables, such as the
loading force, are analyzed in both regimes. We find that the
periodic behavior of the macroscopic force is accompanied by
erratic microscopic stress dynamics and is observed only with
finite loading stiffness.

II. EXPERIMENTS

The experimental device provides data both at the global
and local scales, similarly to Refs. [36,43]. As shown in
Fig. 1(a) [44], a stage pulls a two-dimensional (2D) frictional
slider of fixed length 25 cm and variable mass M. The stage,
which moves at constant speed c, pulls the slider by means
of a linear spring of stiffness k, which represents the loading
stiffness. The slider rests on a vertical bed of fixed depth
L = 9.5 cm, and length 1.5 m consisting of bidisperse cylin-
drical photoelastic particles with diameters 0.4 and 0.5 cm
(small/big ratio of 2.7) to avoid crystallization. Unless spec-
ified, the experiments are made with a slider of mass M =
85 g. The slider+particles system is sandwiched between two
dry-lubricated glass plates. The slider bottom is toothed to
enhance the friction with the grains. The force f applied to
the spring is measured by a sensor at a frequency of 1 kHz.
The system is designed to be at a constant pressure, and the
slider can move in either the horizontal or vertical directions.
However, the granular bed is prepared flat enough that it stays
mostly horizontal, while being pulled. Due to a free granular
surface, a small pile of granular matter develops in front of
the slider. The front of the slider is designed with an angle
and without teeth to reduce the force applied by the pile. We
also prepare the initial front pile the same as the steady state
such that the dynamics is stationary. The system is lit from
behind by a polarized light source. In front, a camera with a
crossed polarizer images the grains and slider at a frequency
of 120 Hz [see Fig. 1(b)]. The photoelastic response of the
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FIG. 1. (a) Sketch of the experiment from the side: A slider is
pulled over a 2D vertical granular bed of bidisperse photoelastic
disks. The slider is pulled at a constant speed c by means of a spring
of stiffness k. The pulling force f is measured by a force sensor,
connected to the spring. The system is lit from behind by polarized
light and observed from the front by a fast (120 fps) camera equipped
with a crossed polarizer. (b) Photoelastic response of the granular bed
during loading.

media provides a local measure of the stress from the image
intensity I [29]. We analyze the mean response of the granular
medium as the fast imaging is not accurate enough to provide
grain-level stress measurement.

III. RESULTS

Figure 2 shows the evolution of the pulling force f (t )
(colored) and of the slider speed v(t ) (black) for three typical
c’s. At low speed [Fig. 2(a)], c = 0.1 mm/s, the system

crackles [27,43]. The slider is immobile most of the time,
as it loads up elastically. It then undergoes erratic sudden
jumps. These unloading events are accompanied by slider
slips and irreversible grain flows. At high speed [Fig. 2(c)],
c = 100 mm/s, the slider never stops, and exhibits smooth
periodic oscillations. In between [Fig. 2(b)], c = 15 mm/s,
most of the time, the slider exhibits slow noisy displacements
with irregular jumps, smoother and less intense than in the
crackling case. Figure 2(d) shows the power spectral density
(PSD) of the force signal P f for these three different cases.
At low c, above a flat lower cutoff, P f follows a power
law spanning more than two decades in ω with an exponent
−2.4 ± 0.2, similar to Brownian noise [45]. At a medium c,
P f is constant for a large range of ω, such as white noise, and
decays rapidly above a cutoff frequency (≈10 Hz). For higher
c, P f develops a peak with a characteristic frequency which
depends on c, and differs from the constant inertial frequency

of the system, ωsyst = 1
2π

�
k
M = 4.6 Hz.

The system can transit from the crackling to irregular to
periodic. Figure 3(a) shows the evolution of P f , as c varies,
for fixed k [44]. Considering the crackling regime (small c)
and ignoring the flat part of the PSD at high frequencies
(related to the medium damping), P f is fitted to

P f (ω) ∝ (1 + ω/ωmin)−βe−ω/ωmax ,

where ωmin and ωmax are the lower and upper power-law cut-
offs, respectively, and β = 2.4 ± 0.2. The number of decades
for which P f obeys a power law log10 (ωmax/ωmin) decreases
as c increases. This is quantified in the inset of Fig. 3(b),
showing that this number is roughly inversely proportional
to c: ωmax/ωmin ∝ 1/c. Moreover, in the inset of Fig. 3(a),
P f curves, except for their upper cutoffs, collapse when ω

is scaled by c. This implies that ωmin = κc, where κ ≈ 102

(1/m) is a characteristic wave number of the system, and
independent of c. For higher c, a bump appears close to ωmin.

FIG. 2. Typical signals. Evolution of the slider speed v(t ) (black, lower) and pulling force f (t ) (colored, upper) for different loading speeds
(c = 0.1, 15, and 100 mm/s) displaying different dynamics: (a) Crackling at low speed, (b) irregular at medium speed, and (c) periodic at high
speed. (d)–(f) Corresponding power spectral density of the force signal P f . A dashed line shows a slope corresponding with the exponent
−2.4 ± 0.2 fitted on the power law obtained for c = 0.1 mm/s. The shaded areas show the 95% confidence interval of the curves. (d) and (e)
are in log-log scale, while (f) is in linear scale. Experiments are carried out with a spring of stiffness k = 70 N/m.
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FIG. 3. (a) Force power spectra P f (ω) for different loading
speeds, c ∈ [0.1, 100] mm/s with k = 192 N/m. For c = 2 mm/s,
P f is fitted by a gamma function displayed by a dashed line with
lower (ωmin) and upper (ωmax) cutoff positions. A straight dashed line
shows a slope corresponding with the exponent −2.4 fitted to the
lowest c curve. Inset: P f with frequency scaled by c. (b) Maximum
of P f as a function of c, for power spectra with a bump. The red
horizontal line represents the threshold used to define the periodic
regime in Fig. 4. A dashed line with slope 2 is given to guide the
eye. Inset: Spreading of the power-law regime (if any) ωmax/ωmin as
a function of c. A dashed line with slope −1 is given to guide the
eye. Different curves correspond to different k.

This indicates the onset of oscillations at a frequency ωc. The
inset of Fig. 3(a) shows that, unlike ωmin, ωc does not scale
with c, since the peaks do not collapse. Figure 3(b) shows the
value of P f at the peak. This scaling quantifies the oscillation
strength.

Figure 4(a) presents the phase diagram that quantifies
crackling and periodicity as a function of c and k. The
behavior is classified as crackling when there is a full decade
or more of power-law decay [log10 (ωmax/ωmin) > 1], a com-
monly accepted definition [46,47]. Conversely, the value of
P f at the peak is higher for higher c. In the domain where
P f > 10−4.6 (N s)2 is above the low-frequency plateau, the
periodic regime lies. Between these regions lies the irregular

FIG. 4. (a) Dynamic phase diagram as a function of k and c. The
color plot of the crackling regime uses the color bar on the top.
It shows the PSD power-law range log10(ωmax/ωmin) (when larger
than 1). The color plot of the periodic regime uses the color bar
on the right. It is a map of the maximum of P f , when larger than
10−4.6 (N s)2. The irregular region, shown in gray, is the complemen-
tary. Its complex boundary geometries encompass the measurement
uncertainty. Black dots are experimental measurement points, and
the rest of the map is linearly interpolated (in the log space). The top
line shows k = ∞, as the slider is pulled with a chain. (b) Evolution
of PSD peak frequency, ωc in the periodic regime, scaled by ωsyst, vs
c on log-linear scales. The scaling collapses the curves for different
stiffnesses within the error bars. The error bars represent the width
of the peaks in power spectra.

regime, where there is neither a clearly defined power-law
span nor a well-defined spectral peak, but a white-noise PSD.
Moreover, our experimental precision does not provide a clear
critical c between crackling and periodic regimes. Figure 4(b)
shows how the oscillation frequency evolves with c for differ-
ent k’s. We observe a vanishing frequency and consequently
a diverging period near the transition. This relation along
with the fast and slow processes in stick-slip dynamics is
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reminiscent of a homoclinic bifurcation with c [48] as the bi-
furcation parameter. Moreover, the dependence of frequency
on c shows that the periodicity is not trivially induced by load-
ing stiffness or can be described by a simple one-dimensional
(1D) frictional model [44], and the granularity of medium
plays a crucial role in the dynamics. This relation might be
due to the interplay of granular dilation with speed and the
effective friction [33]. Furthermore, the curves for different
stiffnesses approximately collapse, within the experimental
uncertainty, when ωc is scaled by ωsyst = 1

2π

√
k
M [44].

We also investigate the force signal probability distribution
function (PDF) P( f ). Figure 5(a) shows P( f ) for different
c’s, and fixed k. Regardless of the shear rate, these PDFs
are well fitted by a Gaussian function of standard deviation
σ (c, k). Their mean value is independent of c in the range
of speeds explored here. Similarly, as shown in the upper
inset of Fig. 5(a), the force fluctuations, quantified by σ ,
remain constant [σ ≈ 0.065 (N)] in the crackling and irregular
regimes. However, σ starts to increase when the periodic
behavior is first observed (from c ≈ 20 mm/s), accompanied
by the decoupling of the spring force and the granular friction
force on the slider. This broadening is most likely due to
the smooth turning points in the force curve for the periodic
system, which imply that more time is spent at the extreme
values of the force than in the crackling regime.

We also explore the effect of other macroscopic param-
eters. Unlike previous findings [39], changing the granular
layer depth L does not change the system’s behavior [44]
to our experimental precision. The slider motion creates a
narrow shear band, and particle flow is limited to the few top
layers of grains. The narrowness of this shear band, where
plastic granular flow occurs, is likely responsible for the fact
that L does not play a significant role in our experiment. How-
ever, the granular global pressure, from the slider weight W =
Mg, changes P( f ) significantly. The lower inset of Fig. 5(a)
shows these PDFs when the force is scaled by the slider mass
f /W . P( f /W ) for different M collapse on a single curve,
indicating that M controls both the mean and fluctuations of
f [44]. This collapse also implies a linear relation between
the global pressure P and the mean global shear stress τ and
its fluctuations στ . This provides a constant average friction
coefficient, μ = τ̄/P ≈ 0.47, for the slowly sheared medium.

We also study the relation between the global dynamics, as
characterized by the f (t ), and the aggregated local dynamics
determined by the granular stress. The aggregated local stress
is computed from the polarized images’ mean intensity I [44],
in a region which covers all granular layers and is ∼1.5
slider’s length wide to include all force evolution. Figure 5(b)
shows the image intensity PSD, PI , for several c’s at fixed
k = 70 N/m. As P f in the crackling regime, PI follows a
power law with an exponent −2.2 ± 0.2, and the frequency
interval of this power-law regime decreases as c increases.
However, as c increases, we do not observe a clear peak in
PI that would indicate a periodic regime. For high c, we ob-
serve much faster stress fluctuations in the granular medium,
compared to the slider dynamics [44]. The high stiffness and
low inertia of particles may induce this difference. In this
case, we observe a decoupling between the granular medium
mean stress and the mean flow of particles, which is correlated
with the slider motion. These erratic stress fluctuations show

FIG. 5. (a) Probability density function of force P( f ), for dif-
ferent loading speeds c, at fixed stiffness k = 192 N/m. For c =
20 mm/s, P( f ) is fitted by a Gaussian displayed by a dashed line.
The standard deviation is σ . (b) σ vs c for different stiffnesses,
k ∈ {14, 30, 70, 192} N/m. (c) PDF of the force signal scaled by the
slider weight for different weights, Mg ∈ {0.83, 1.2, 1.55} N, with
c = 0.5 mm/s and k = 192 N/m. (d) Image intensity [I (t )] power
spectra PI (ω) for different c ∈ [1, 100] mm/s with k = 70 N/m. A
straight dashed line shows a slope corresponding with the exponent
−2.2 ± 0.2 fitted to the lowest speed.

a nonperiodic friction force on the slider, moving periodically.
This granular boundary friction force, when coupled with
finite loading stiffness [44] and the slider’s inertia, results in
periodic oscillations at the macroscopic scale.

IV. CONCLUDING DISCUSSION

The experiments reported here demonstrate crackling, ir-
regular, and periodic dynamics while shearing granular matter
via a slider and a spring. The system behavior depends on
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the stage speed c and the loading stiffness k. The transitions
between regimes occur over regions of c − k space, without
sharp crossovers. The other main observations of these exper-
iments are as follows: (i) The shearing force PSD provides
a useful tool to indicate the dynamics of the system for a
given set of system control parameters, namely, loading speed,
system stiffness, global pressure, and system size. (ii) The
transition to a periodic regime shows a diverging period,
which is similar to a homoclinic bifurcation, where c is the pri-
mary control parameter. (iii) The shearing force PDF follows a
Gaussian distribution with an increasing standard deviation in
the periodic regime. (iv) No periodic behavior is observed for
the local stress dynamics, which implies the important role of
the stiffness and inertia of the loading boundary in the periodic
regime.

These observations are in agreement with various numer-
ical simulations. Lacombe et al. [42] introduced a simple
friction model, similar to our experiment, with two degrees of
freedom, considering dilation. They reproduced stick-slip, in-
ertial oscillations and sliding regimes by increasing the shear
rate. However, no crackling dynamics was observed, since
their model lacks stochasticity. Our phase diagram, presented
in Fig. 4, may be a detailed version of the stick-slip domain of
their diagram. In an experimental study, Kaproth et al. [35]
observed only periodic stick-slip and sliding regimes, and
the driving rate only affects the slip event period. We be-
lieve they do not observe crackling dynamics because of the
monodispersity of their granular layers. In other studies,

Aharonov et al. [38] simulated a system, very similar to
ours, using the discrete element method. They also observed
crackling, oscillatory, and sliding regimes by changing the
loading speed and the slider mass. However, the effect of the
stiffness was not tested and the exact domains of the crackling
regime were not investigated. Liu et al. [39] also studied the
effect of the driving rate on avalanches. As in our experiments,
they observed that increasing the driving rate decreases the
power-law range of the avalanche size distribution, i.e., the
number of decades over which the avalanche size PDF obeys
a power law. Avalanches have also been observed in depinning
models and a phase diagram of dynamical regimes for such a
model has been demonstrated [49] as a function of c, k, and L.

The findings of this Rapid Communication can inform a
number of open problems in other fields, such as avalanche
dynamics for nonzero driving rate in crackling systems and
depinning transitions, and fluctuating dynamics of amorphous
media, including seismicity. Future work is required to inves-
tigate global and local (space-time) avalanche statistics.
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