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Context and Goal 
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Context and Goal 

o CMOS Image Sensor (CIS) are considered as the perennial path for 

future space imaging and especially the PPD technology. 

 

o Particles from space and nuclear radiation environments are likely 

to generate Displacement Damage Dose (DDD). 

 

o Displaced Si atoms create stable defects. Such defects act as 
generation centers and lead to a dark current increase.  

 

o Defects creation mechanisms and annealing behaviors are needed 

for a better understanding of radiation induced dark current 
increase  

 

o The main goal is to find a mitigation technique. 
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Dark Current Spectroscopy (DCS) 

 

o DCS is used to charaterize radiation induced defects throughout 

the dark current distribution of all the pixels of the matrix. 
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Dark Current Spectroscopy (DCS) 

 

o The generation dark current expression of a stable defect  with 

energy level 𝑬𝒕 is given by: 

 

 

 

 

 

o The dark current temperature evolution leads to defect activation 

energy estimation labeled 𝑬𝒂 with the Arrhenius law. 
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𝐼𝑑𝑐  ≈ 𝐴 . exp (− 

𝐸𝑔

2
 − 𝑬𝒕 − 𝐸𝑖

𝑘𝐵 . 𝑇
) 

𝑬𝒂  ≈
𝐸𝑔

2
 −  𝑬𝒕 − 𝐸𝑖  𝐼𝑑𝑐  ≈ 𝐴 . 𝑒

−𝑬𝒂
𝑘𝐵 .𝑇 

𝐸𝑔 

𝐸𝑡 

𝐸𝑖 

𝑘𝐵 

𝑇  

Silicon band GAP 

Defect energy level 

Silicon mid-GAP 

Boltzmann Constant 
Temperature 



COTS Imager 

o The CIS under test is a (Commercial 

Off-The-Shelf) COTS imager 

• 2048×2048 pixels 

• 0.18µm technology 

• 8T-PPD 

• Global shutter 

• 5.5 µm pitch pixels 

• PPD depleted volume of 5µm³ 

 

o This CIS is integrated in a 

microcamera for CNES space 
missions. 
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Dark Current distribution  Before Irradiation 

• Diffusion peak 
containing pixels 

without defect in the 

microvolume. 
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Dark Current distribution  Before Irradiation 

• Diffusion peak 
containing pixels 

without defect in the 

microvolume. 

 

• Generation peak due 

to CMOS foundry 

process. 
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Generation peak 

Diffusion peak 

o Dark current and activation energy distribution plotted at 20°C 



Irradiations Parameters 

7 2017 RADECS, October 3, Geneva, Switzerland Alexandre Le Roch  

o High energy proton (A-50MeV  B-150 MeV)  

• Nuclear chocs 

• Cascade of defects 

 



Irradiations Parameters 

 

o Carbon ion (D-10 MeV) 

• Nuclear chocs and 

Coulombic interaction 

• Cascade of defects 

and Point defects 

 

7 2017 RADECS, October 3, Geneva, Switzerland Alexandre Le Roch  

o High energy proton (A-50MeV  B-150 MeV)  

• Nuclear chocs 

• Cascade of defects 

 



Irradiations Parameters 

 

o Carbon ion (D-10 MeV) 

• Nuclear chocs and 

Coulombic interaction 

• Cascade of defects 

and Point defects 

 

o Low energy proton (C-1 MeV) 

• Coulombic interaction 

• Point defects 
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o High energy proton (A-50MeV  B-150 MeV)  

• Nuclear chocs 

• Cascade of defects 

 

• Best case for the Dark Current Spectroscopy technique 



High Energy Proton 

o Dark current distribution evolution with annealings plotted at 20°C 

8 2017 RADECS, October 3, Geneva, Switzerland Alexandre Le Roch  

3 

1 

2 

High-

energy 

proton 

 

 

 

 

 

 

 

 

 

 

 

 

Carbon 

ion 

 

 

 

 

 

 

 

 

 

 

 

Low 

energy 

proton 



High Energy Proton 

8 2017 RADECS, October 3, Geneva, Switzerland Alexandre Le Roch  

3 

1 

2 

High-

energy 

proton 

 

 

 

 

 

 

 

 

 

 

 

 

Carbon 

ion 

 

 

 

 

 

 

 

 

 

 

 

Low 

energy 

proton 

o Dark current distribution evolution with annealings plotted at 20°C 



High Energy Proton 

8 2017 RADECS, October 3, Geneva, Switzerland Alexandre Le Roch  

3 

1 

2 

High-

energy 

proton 

 

 

 

 

 

 

 

 

 

 

 

 

Carbon 

ion 

 

 

 

 

 

 

 

 

 

 

 

Low 

energy 

proton 

o Dark current distribution evolution with annealings plotted at 20°C 



High Energy Proton 

8 2017 RADECS, October 3, Geneva, Switzerland Alexandre Le Roch  

3 

1 

2 

High-

energy 

proton 

 

 

 

 

 

 

 

 

 

 

 

 

Carbon 

ion 

 

 

 

 

 

 

 

 

 

 

 

Low 

energy 

proton 

o Dark current distribution evolution with annealings plotted at 20°C 



High Energy Proton 

8 2017 RADECS, October 3, Geneva, Switzerland Alexandre Le Roch  

3 

1 

2 

High-

energy 

proton 

 

 

 

 

 

 

 

 

 

 

 

 

Carbon 

ion 

 

 

 

 

 

 

 

 

 

 

 

Low 

energy 

proton 

o Dark current distribution evolution with annealings plotted at 20°C 



High Energy Proton 

8 2017 RADECS, October 3, Geneva, Switzerland Alexandre Le Roch  

3 

1 

2 

High-

energy 

proton 

 

 

 

 

 

 

 

 

 

 

 

 

Carbon 

ion 

 

 

 

 

 

 

 

 

 

 

 

Low 

energy 

proton 

o Dark current distribution evolution with annealings plotted at 20°C 



High Energy Proton 

8 2017 RADECS, October 3, Geneva, Switzerland Alexandre Le Roch  

3 

1 

2 

High-

energy 

proton 

 

 

 

 

 

 

 

 

 

 

 

 

Carbon 

ion 

 

 

 

 

 

 

 

 

 

 

 

Low 

energy 

proton 

o Dark current distribution evolution with annealings plotted at 20°C 



High Energy Proton 

8 2017 RADECS, October 3, Geneva, Switzerland Alexandre Le Roch  

3 

1 

2 

High-

energy 

proton 

 

 

 

 

 

 

 

 

 

 

 

 

Carbon 

ion 

 

 

 

 

 

 

 

 

 

 

 

Low 

energy 

proton 

• TID annealing 

TID annealing 

o Dark current distribution evolution with annealings plotted at 20°C 



High Energy Proton 

8 2017 RADECS, October 3, Geneva, Switzerland Alexandre Le Roch  

3 

1 

2 

High-

energy 

proton 

 

 

 

 

 

 

 

 

 

 

 

 

Carbon 

ion 

 

 

 

 

 

 

 

 

 

 

 

Low 

energy 

proton 

• TID annealing 
 

• Increase of the 

diffusion peak. 

 

 

o Dark current distribution evolution with annealings plotted at 20°C 

TID annealing 



High Energy Proton 

8 2017 RADECS, October 3, Geneva, Switzerland Alexandre Le Roch  

3 

1 

2 

High-

energy 

proton 

 

 

 

 

 

 

 

 

 

 

 

 

Carbon 

ion 

 

 

 

 

 

 

 

 

 

 

 

Low 

energy 

proton 

• TID annealing 
 

• Increase of the 

diffusion peak. 

 

• Decrease of the 
dark current tail. 

 

 

o Dark current distribution evolution with annealings plotted at 20°C 

TID annealing 



High Energy Proton 

8 2017 RADECS, October 3, Geneva, Switzerland Alexandre Le Roch  

3 

1 

2 

High-

energy 

proton 

 

 

 

 

 

 

 

 

 

 

 

 

Carbon 

ion 

 

 

 

 

 

 

 

 

 

 

 

Low 

energy 

proton 

• TID annealing 
 

• Increase of the 

diffusion peak. 

 

• Decrease of the 
dark current tail. 

 

• Multiple 

generation peaks 
ΔI = 26 e-/s (20°C) 
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• Increase of the 

diffusion peak. 

 

• Decrease of the 
dark current tail. 

 

• Multiple 

generation peaks 
ΔI = 26 e-/s (20°C) 

 
• Defect annealing 
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High Energy Proton 

o Activation energy evolution with annealings (240°C and 280°C) 

• Dark current ΔI = 26 e-/s (20°C) 

• Activation energy Ea = 0,83eV 

• Annealing temperature [240°C – 280°C] 
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Carbon Ion 
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o Activation energy evolution with annealings (240°C and 280°C) 

• Dark current ΔI = 30 e-/s (20°C) 

• Activation energy Ea = 0,83eV 

• Annealing temperature [240°C – 280°C]  

240°C annealing 280°C annealing 



Carbon Ion 

10 2017 RADECS, October 3, Geneva, Switzerland Alexandre Le Roch  

3 

1 

2 

High-

energy 

proton 

 

 

 

 

 

 

 

 

 

 

 

 

Carbon 

ion 

 

 

 

 

 

 

 

 

 

 

 

Low 

energy 

proton 

o Activation energy evolution with annealings (240°C and 280°C) 

• Dark current ΔI = 30 e-/s (20°C) 

• Activation energy Ea = 0,83eV 

• Annealing temperature [240°C – 280°C]  

Same defects 

identification after 

high energy proton 

240°C annealing 280°C annealing 



Low Energy Proton 
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• Increase of the 

diffusion peak. 
 

• Decrease of The 

dark current tail. 

 

• Generation peaks  
ΔI = 500 e-/s (20°C) 

 

• No annealing 
between 240°C 
and 280°C. 

TID annealing 

o Dark current distribution evolution with annealings plotted at 20°C 
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o Diffusion peak 

• Idc ~ 30e-/s (20°C) 

• Ea ~ 0,95eV 

 

o First generation peak (remaining) 

• ΔIdc ~ 30e-/s (20°C) 

• Ea ~ 0,83eV 

 

o Second generation peak ? 

• Δ Idc ~ 150e-/s (20°C) 

• Ea ~ 0,75eV 

 

o Third generation peak 

• Δ Idc ~ 600e-/s (20°C) 

• Ea ~ 0,67eV 

Last annealing at 300°C  
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Defects Identification and Discussion 

13 

Defect 20°C Dark Current (e-/s) |Et-Ei| (eV) Annealing Temperature 

Vacancy-Oxygen VO - ~0,39 > 300°C 

Divacancy V2 ~[26–30] ~30 ~0,18 ~0,17 [240°C–280°C] 260°C 

Divacancy-Dioxygen V2O2 150 - ~0,11 ~0,16 > 300°C > 300°C 

Vacancy-Phosphorus VP ~35 ~0,13 150°C 

Divacancy-Oxygen V2O ~[500–600] - ~0,01 ~0,06 > 300°C > 330°C 
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Conclusion 

o 4 COTS imagers have been irradiated with: 

• High energy proton / Carbon ion / Low energy proton 
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Conclusion 

o 4 COTS imagers have been irradiated with: 

• High energy proton / Carbon ion / Low energy proton 

 

o The hypothetical existence of oxygen based defects such as V2O 

and V2O2 have been pointed out. 

 

• The role of oxygen impurities in the dark current rise after 
irradiation. 

 

 

 

 

 

o The DCS measurements suggest that similar divancancy based 

defects are involved in all the irradiations. 
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Thanks for your attention 
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Irradiations Parameters 
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IRRADIATION PARAMETERS 

Sensor Ref A B # (for UDF) C D 

Particles Proton Proton Proton Proton Carbon 

Energy (Mev) 50 150 50 1 10 

Fluence (cm-2) 1,30 E+11 3,00 E+11 2,00 E+11 3.00 E+8 1.00 E+10 

DDD (Tev.g-1) 504,4 645 776 + ++ 

TID (KradSi) 20,49 21,02 315,2 - - 

Carbon ion 
• Huge cross 

section and mass 
• DDD Nuclear 

chocs 
• Cluster of defects 

High energy proton 
• Good NIEL 

estimation 
• DDD Nuclear 

chocs 
• Cluster of 

defects 
 

Low energy proton 
• Huge NIEL at End 

Of Range (EOR) 
• Huge DDD 

• Coulombic 
interactions 

• Point defects 
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Universal Damage Factor (UDF) 
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Proton
Irradiations

Sensor Ref A B C 

Particles Proton Proton Proton 

Energy (Mev) 50 150 50 

Fluence (cm-2) 1,30 E+11 3,00 E+11 2,00 E+11 

DDD (Tev.g-1) 504,4 645 776 

TID (KradSi) 20,49 21,02 315,2 

ΔI (e-/s) 415 424 542 

𝐾𝑑𝑎𝑟𝑘 = 1.9 × 105 (𝑒/cm³.s)/(MeV/g) 𝑉𝑑𝑒𝑝 = 5µ𝑚³ 



Dark Current Distribution 
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IRRADIATION PARAMETERS 

Sensor Ref A B C D 

Particles Proton Proton Proton Carbon 

Energy (Mev) 50 150 1 10 

Fluence (cm-2) 1,30 E+11 3,00 E+11 3.00 E+8 1.00 E+10 

DDD (Tev.g-1) 504,4 645 + ++ 

TID (KradSi) 20,49 21,02 - - 
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RTS Analysis 1 
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RTS Analysis 2 
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