Luís Almeida 
  
Antoine Haddon 
email: antoine.haddon@etu.umontpellier.fr.
  
Claire Kermorvant 
email: claire.kermorvant@univ-pau.fr.
  
Alexis Léculier 
email: alexis.leculier@math.univ-toulouse.fr.
  
Yannick Privat 
email: yannick.privat@unistra.fr
  
Martin Strugarek 
email: martin.strugarek@gmail.com.
  
Nicolas Vauchelet 
email: vauchelet@math.univ-paris13.fr.
  
Jorge P Zubelli 
email: zubelli@gmail.com.
  
Luis Almeida 
  
Alexis L Éculier 
  
OPTIMAL RELEASE OF MOSQUITOES TO CONTROL DENGUE TRANSMISSION

published or not. The documents may come  

Introduction

Aedes aegypti is the main vector transmitting dengue viruses. This mosquito can also transmit chikungunya, yellow fever and Zika infection. According to the World Health Organization, 390 million people are infected by dengue every year and 3.9 billion people, in 128 countries, are at risk of infection by dengue viruses. As there is no treatment for dengue fever, the current method of preventing dengue virus transmission and epidemics is to target the vector, i.e. the mosquito. Beyond preventing mosquitoes from accessing egg-laying habitats by environmental management and modification, one of the most promising control techniques is to transform mosquito population with a virus-suppressing Wolbachia bacteria. The idea of using Wolbachia for disease control was first proposed in the 1960s [START_REF] Laven | Eradication of Culex pipiens fatigans through cytoplasmic incompatibility[END_REF] but applying it to Aedes aegypti population is very recent. Wolbachia bacterium strains were isolated from Drosophila melanogaster in laboratory just before 2000 [START_REF] Seymour | Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death[END_REF][START_REF] Mcmeniman | Host adaptation of a Wolbachia strain after long-term serial passage in mosquito cell lines[END_REF] but were introduced into Aedes aegypti embryos only on 2009 [START_REF] Mcmeniman | Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti[END_REF]. The capability of this bacteria to suppress dengue virus and other pathogens transmission by Aedes aegypti was shown in laboratory around 2010 [START_REF] Moreira | A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium[END_REF][START_REF] Bian | The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti[END_REF][START_REF] Walker | The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations[END_REF]. It was also shown that this bacteria shortens life span [START_REF] Yeap | Dynamics of the'popcorn'Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control[END_REF] and most of the infected adults do not reach the infectious stage. But the most important modification induced by the bacteria is cytoplasmic incompatibility (CI) [START_REF] Mcmeniman | Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti[END_REF]. Cytoplasmic incompatibility is used by the bacteria to spread rapidly into natural population [START_REF] Turelli | Cytoplasmic incompatibility in populations with overlapping generations[END_REF] by producing non-viable eggs when uninfected females mate with infected males. Reproduction between infected males and females lead to infected eggs. As this bacteria is vertically transmitted (from mother to off-springs), uninfected males mating with infected females give rise only to infected eggs.

Formally, a proportion 1 -s h of uninfected female's eggs fertilized by infected males actually hatch. Cytoplasmic incompatibility is complete when s h = 1. We denote by b 1 , respectively b 2 , the net fecundity rate of uninfected females, respectively infected females. Death rate for uninfected mosquitoes is denoted d 1 . As Wolbachia decreases lifespan, death rate of infected mosquitoes d 2 verifies d 2 > d 1 . Is is also observed that Wolbachia infected mosquitoes tend to have reduced fertility, then b 2 ≤ b 1 . Finally, we denote κ the carrying capacity. Cytoplasmic incompatibility and vertical transmission drive the spatial spread of the infected population producing a bistable dynamic of Wolbachia [START_REF] Turelli | Deploying dengue-suppressing Wolbachia: robust models predict slow but effective spatial spread in Aedes aegypti[END_REF]. If the infected population is installed above a sufficient threshold frequency Θ compared to the uninfected population, it will spread and tend to increase to 1, otherwise it will tend to decline to zero.

We are interested on optimizing the release of Wolbachia-infected mosquitoes into a wild host population of mosquitoes. We denote u the release function.

For fixed maximal time T > 0 and domain Ω, the system of equation that we consider is the following:

(1)

               ∂ t n 1 -D∆n 1 = b 1 n 1 (1 -s h n 2 n 1 + n 2 )(1 - n 1 + n 2 κ ) -d 1 n 1 in Ω, ∂ t n 2 -D∆n 2 = b 2 n 2 (1 - n 1 + n 2 κ ) -d 2 n 2 + u in Ω, ∂ ν n 1 = ∂ ν n 2 = 0 on ∂Ω, n 1 (0, x) = n 0 1 (x), n 2 (0, x) = n 0 2 (x)
in Ω.

The system of equations (1) models the propagation across time and space of the infected-mosquito population n 2 into an already existing uninfected mosquito population n 1 . The two coupled equation driving the dynamics of n 1 and n 2 are classical bi-stable reaction-diffusion equations. Note that in the reaction term of the first equation the term -n2 n1+n2 stands for the vertical transition of the disease whereas the coefficient s h models that this vertical transmission may or not be perfect because of the cytoplasmic incompatibility. The diffusion coefficient is denoted D; it is assumed to be the same for both population since both populations belongs to the same genus of mosquitoes. The last term of the second equation +u stands here to model the releases of infected mosquitoes developed in laboratory: it is on this control that we will act upon. More precisely, a question we want to address in this work is to know what should be the shape of the release function u to be as close as possible to the total invasion of the infected population into the domain.

The outline of this paper is the following. In the next section, we introduce the optimal control problem and prove the existence of an optimum for this problem. In Section 2, we consider a toy problem, which is a very simplified version of the full problem, for which we can solve explicitly the optimal problem and find the optimum. In Section 3, we investigate numerically the optimization of the spatial releases of mosquitoes. Finally, we end this paper with a conclusion and perspective for future works. An appendix is devoted to recalling the reduction of system (1).

Optimal Control Problem

We are going to simplify the problem. Instead of studying the coupled equations (1), we are going to follow the proportion of mosquitoes p(t, x) = n2(t,x) n1(t,x)+n2(t,x) as in [START_REF] Strugarek | Reduction to a single closed equation for 2 by 2 reaction-diffusion systems of Lotka-Volterra type[END_REF]. This reduction is clearly justified in the limit of large population in [START_REF] Strugarek | Reduction to a single closed equation for 2 by 2 reaction-diffusion systems of Lotka-Volterra type[END_REF] (see also [START_REF] Almeida | Optimal releases for population replacement strategies, application to Wolbachia[END_REF]Section 2.3]). The formal computation is explained in the Appendix. In order to simplify the reading, we perform the scaling x = x √ D not to keep the diffusion coefficient along the computations. Obviously, for the numerical simulations performed in Section 3, we have to keep in mind this scaling.

Denoting by p the proportion of infected mosquitoes, and u the release function, the dynamics is governed by the reaction-diffusion equation

(2)        ∂p ∂t -∆p = f (p) + ug(p), t ∈ (0, T ), x ∈ Ω, ∂ ν p(t, x) = 0, x ∈ ∂Ω, p(0, x) = 0, x ∈ Ω, where (3) 
f (p) = p(1-p) d 1 b 2 -d 2 b 1 (1 -s h p) b 1 (1 -p)(1 -s h p) + b 2 p and g(p) = 1 κ • b 1 (1 -p)(1 -s h p) b 1 (1 -p)(1 -s h p) + b 2 p .
The general optimal control problem we want to investigate involves the leastsquares functional J defined by ( 4)

Ĵ(u) = 1 2 Ω (1 -p(T, x)) 2 dx,
which models that one aims at steering the system as close as possible to the target state. In some sense, it stands for the research of a control strategy ensuring the persistence of infected mosquitoes at the time horizon T . Of course, it is relevant from the biological point of view to impose several constraints on the control function u. Indeed, the production of Wolbachia-infected mosquitoes is limited, which imposes that the total number of mosquitoes released is bounded. Hence, the control function u is assumed to belong to the set (5)

U T,C,M = u ∈ L ∞ ([0, T ] × Ω), 0 ≤ u ≤ M a.e. , T 0 Ω u(t, x) dxdt ≤ C .
modeling an upper limit on the instantaneous number of Wolbachia-infected individuals released at time t, as well as on the total number of released mosquitoes.

We then deal with the following optimal control problem:

(P full ) inf u∈U T ,C,M Ĵ(u).
Since this problem involves the minimization over function depending on time and space variables, it is difficult to study. Then, we will reduce it to a simpler one by assuming that the time distribution of the control function is given.

1.1. Modeling of the optimal control problem. In order to weaken the difficulty of Problem (P full ), we introduce a simpler, although still relevant, problem by assuming that:

• releases are done periodically in time (for instance every week) and are impulses in time1 ; • at each release, the largest allowed amount of mosquitoes is released, corresponding to the maximal production capacity per week (which is relevant, according to the comparison principle). As a consequence, we will be interested in determining the optimal way of releasing spatially the infected mosquitoes. Let us denote by t 0 = 0 < t 1 < . . . < t N = T , t i = i∆T , the release times. Rewriting the L 1 constraint on the control as u, 1 D ,D((0,T )×Ω) ≤ C, the control function reads

u(t, x) = N -1 i=0 u i (x)δ {t=ti} , with N -1 i=0 Ω u i (x) dx ≤ C,
where the pointwise constraint is modified into 0

≤ u i (•) ≤ M .
The new optimal design problem reads

(P full ) inf u∈V T ,C,M J(u), where u = (u i ) 0≤i≤N -1 , J(u) = J N -1 i=0 u i (•)δ {t=ti} and V T,C,M = u = (u i (•)) 0≤i≤N -1 , 0 ≤ u i ≤ M a.e. in Ω, i ∈ {0, . . . , N -1} , N -1 i=0 Ω u i (x) dx ≤ C .
It is possible to recast System (2) without source measure terms, coming from the specific form of the control functions. For the sake of simplicity, we provide here a naive formal analysis, but claim that this can be proven rigorously by using a standard variational analysis.

Let us approximate the Dirac measure at t = t i by the function 1 ε 1 [ti,ti+ε] . Making the change of variable t = t i + τ , and introducing p given by p(τ, x) = p(t, x), one gets from system (2) that p solves

∂ p ∂τ -ε∆p = εf (p) + u i g(p). τ ∈ [0, 1], x ∈ Ω.
Letting formally ε go to 0 and denoting, with a slight abuse of notation, still by p the formal limit of the system above yields

(6) ∂ p ∂τ (τ, x) = u i (x)g(p(τ, x)), τ ∈ [0, 1], x ∈ Ω.
Let us denote G the anti-derivative of 1 g vanishing at 0, namely

G(p) = p 0 dq g(q) .
Then, by a direct integration of ( 6) on [0, 1], we obtain

G(p(1, x)) = G(p(0, x)) + u i (x), x ∈ Ω.
Coming back on the function p yields

p(t + i , x) = G -1 (G(p(t - i , x)) + u i (x)), x ∈ Ω.
Hence we arrive at the system (7)

             ∂p ∂t -∆p = f (p), t ∈ (0, T ) \ {t i } i∈{1,...,N -1} , x ∈ Ω, ∂ ν p(t, x) = 0, x ∈ ∂Ω, p(0 + , •) = G -1 (u 0 (•)), p(t + i , •) = G -1 G(p(t - i , •)) + u i (•) , i ∈ {1, . . . , N -1}
and the optimization problem reads

(P reduced ) inf u∈V T ,C,M J(u) with J(u) = 1 2 Ω (1 -p(T, x)) 2 dx ,
where p is the solution of [START_REF] Seymour | Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death[END_REF]. In the next Section, we investigate the existence of solutions for this problem.

1.2. Existence of minimizers.

Theorem 1. Problem (P reduced ) has a solution.

Proof. For the sake of readability, we only provide the proof in the case N = 2. Indeed, there is no additional difficulty to deal with the general case whose proof follows exactly the same lines. The proof is divided into several steps. Let

u n = {u n i } i∈{1,...,N } ∈ (V T,C,M
) N be a minimizing sequence for Problem (P reduced ).

Notice that, since u belongs to V T,C,M and G -1 takes its value in [0, 1[, we infer from the maximum principle that 0 ≤ p(t, •) < 1 for a.e. t ∈ [0, T ] so that one has for all u ∈ V T,C,M

0 ≤ J(u) ≤ |Ω| 2 .
It follows that inf u∈V T ,C,M J(u) belongs to (0, |Ω| 2 ) and, in particular, is finite.

Step 1: Convergence of the minimizing sequence. Let p n be the solution to [START_REF] Seymour | Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death[END_REF] associated to the control function u n and let us introduce

v n 0 (.) = u n 0 (.) v n 1 (.) = G -1 (G(p n (t - 1 , .)) + u n 1 (.))
. By induction, one easily shows that v n is uniformly bounded in L ∞ . Since the class V T,C,M is closed for the L ∞ weak-star topology, there exists v ∞ ∈ V T,C,M such that, up to a subsequence, v n converges weakly-star to v ∞ in L ∞ . Here and in the sequel, we will denote similarly with a slight abuse of notation a given sequence and any subsequence.

Multiplying the main equation of ( 7) by p n and integrating by parts, we infer from the above estimates the existence of a positive constant C such that

1 2 T 0 Ω ∂ t (p n (t, x) 2 )dxdt + T 0 Ω |∇p n (t, x)| 2 dxdt ≤ C
for every n ∈ N, which also reads

1 2 Ω (p n (t, x)) 2 ) t=t1 t=0 + (p n (t, x)) 2 ) t=T t=t1 dx + T 0 Ω |∇p n (t, x)| 2 dxdt ≤ C
for every n ∈ N.

By using the pointwise bounds on p n , it follows that p n is uniformly bounded in L 2 ([0, T ], H 1 (Ω)). Furthermore, by using [START_REF] Seymour | Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death[END_REF], one gets that the sequence ∂ t p n is uniformly bounded in L 2 ([0, T ], W -1,1 (Ω)). According to the Aubin-Lions theorem (see [START_REF] Simon | Compact sets in the space L p (0, T ; B) Ann[END_REF]) we infer that p n converges (up to a subsequence) to

p ∞ ∈ L 2 ([0, T ], H 1 (Ω)), strongly in L 2 ([0, T ], L 2 (Ω))
and weakly in L 2 ([0, T ], H 1 (Ω)). Passing to the limit in [START_REF] Seymour | Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death[END_REF] yields that p ∞ is a weak solution to (8)

∂ t p ∞ -∆p ∞ = f (p ∞ ), t ∈ (0, T ), x ∈ Ω, ∂ ν p ∞ (t, x) = 0, t ∈ (0, T ), x ∈ ∂Ω,
It is standard that any solution to this bistable reaction-diffusion equation is continuous in time.

Introducing

u ∞ 0 := G(p ∞ (0 + , .)) and u ∞ 1 := G(v ∞ 1 ) -G(p ∞ (t - 1 , .)), one shows that p ∞ (t - 1 , .) = v ∞ 1 ( 
.) by passing to the limit as n → +∞ in the variational formulation on p n , using adapted test-functions belonging to

V 1 = q ∈ C ∞ ([0, T [, C ∞ (Ω) ∩ C 0 ( Ω)) whose support is contained in [t i , t i+1 [ . This is a consequence of the weak convergence of p n in H 1 (Ω) to p ∞ . Notice, in par- ticular, that G(v n 1 ) converges weakly star in L ∞ to G(v ∞ 1 )
, which is a consequence of the continuity and convexity 2 of G for p ∈ [0, 1).

Step 2: Conclusion. Let us first show that u ∞ belongs to V T,C,M . Since the derivative of G is 1/g which is positive, G is increasing and therefore, one has 0 ≤ u ∞ ≤ m a.e. in Ω. For the integral condition (namely, Ω u ≤ C), let us distinguish between two cases: Case 1: if m|Ω| ≤ C, the conclusion follows immediately. 2 Indeed, one has G (p) = κb 2 (1 -s h p 2 ) ((p -1)(s h p -1)) 2 . which is positive whenever p belongs to [0, 1].

Case 2: if m|Ω| > C, let us use that G is, as aforementioned, lower semicontinuous for the weak-star topology of L ∞ . Thus, we deduce that

Ω u ∞ = Ω G(v ∞ ) ≤ lim inf n→+∞ Ω G(v n ) = lim inf n→+∞ Ω u n ≤ C.
It follows that u ∞ belongs to V T,C,M and one concludes by using the Fatou Lemma:

J(u ∞ ) = 1 2 Ω (1 -p ∞ (T, x)) 2 dx = 1 2 Ω lim inf n→+∞ (1 -p n (T, x)) 2 dx ≤ lim inf n→+∞ 1 2 Ω (1 -p n (T, x)) 2 dx = lim inf n→+∞ J(u n ) = inf u∈V T ,C,M J(u).
We finally infer that u ∞ solves Problem (P reduced ).

Remark 1. The uniqueness issue remains open, even for simple domain. It is likely that symmetries of the release domain play an important role.

It is interesting to notice that, in a very particular case, we have an explicit expression of the minimizer for this problem. Proof. It is a direct application of the comparison principle. Let u * be a solution of Problem (P reduced ). By contradiction, let us assume that u * is not identically equal to M a.e. in Ω. Then, let t i be a release time for which the associated control function u * i is not identically equal to M in Ω. Recall that u * i ≤ M . Let us denote by p * the solution of the problem (2) associated to the control function u * . Let u M be the control function defined by u M i = M and u M j = u * j for all j ∈ {0, . . . , N -1}\{i}.

Let p M be the solution of (2) associated to u M identically. Since G -1 is an increasing function by the comparison principle we have for all time t ∈ [0, T ] and a.e.

x ∈ Ω, 0 < p * (t, x) ≤ p M (t, x) < 1.

Evaluating this expression at time t = T , the expected conclusion follows by noting that the constant function equal to M on (0, T ) × Ω belongs to U T,C,M .

1.3. Computation of derivatives. As a preliminary remark, we claim that for any element u of the set V T,C,M and any admissible perturbation h, the mapping

V T,C,M u → p ∈ L 2 (0, T, H 1 (Ω))
, where p denotes the unique weak solution of (7), is differentiable in the sense of Gâteaux at u in the direction h. Indeed, proving such a property is standard in calculus of variations and rests upon an application of the implicit function theorem. In the sequel, and with no confusion possible, we will denote by ṗ the Gâteaux-differential of p at u in direction h and by dJ(u), h the Gâteaux-differential of J at u in direction h, namely

dJ(u), h = lim ε 0 J(u + εh) -J(u) ε .
Let us make the cone of admissible perturbations precise. We call "admissible perturbation" any element of the tangent cone T u,V T ,C,M to the set V T,C,M at u. Definition 1. The cone T u,V T ,C,M is the set of N -tuples h = (h 0 , . . . , h N -1 ) ∈ (L ∞ (Ω)) N such that, for any i ∈ {0, . . . N -1} and for any sequence of positive real numbers ε n decreasing to 0, there exists a sequence of functions h n i ∈ L ∞ (0, T ) converging to h i as n → +∞, and u i + ε n h n i ∈ V T,C,M for every n ∈ N (see e.g. [START_REF] Cominetti | Tangent sets to unilateral convex sets[END_REF]).

Proposition 2. Assume that N = 1. Let u = (u 0 ) ∈ V T,C,M and h = (h 0 ) ∈ T u,V T ,C,M . One has dJ(u), h = Ω h(x)(G -1 ) (u 0 (x))q(0, x) dx,
where q is the unique solution of the backward problem

     -∂ t q(t, x) -∆q(t, x) -f (p(t, x))q(t, x) = 0, (t, x) ∈ (0, T ) × Ω, ∂ n q(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω, q(T, x) = p(T, x) -1, x ∈ Ω.
Proof. By using the preliminary discussion, one has ( 9)

dJ(u), h = Ω ṗ(T, x)(p(T, x) -1) dx,
where ṗ denotes the unique solution of the system (10)

       ∂ ṗ ∂t -∆ ṗ = f (p) ṗ, t ∈ (0, T ), x ∈ Ω, ∂ ν ṗ(t, x) = 0, x ∈ ∂Ω, ṗ(0 + , •) = (G -1 ) (u 0 (•))h.
Let us multiply the main equation of this system by q and then integrate by parts with respect to the variables t and x. By using in particular the Green formula, we get successively that

T 0 Ω q ∂ ṗ ∂t dxdt = - T 0 Ω ṗ ∂q ∂t dxdt + Ω q(T, x) ṗ(T, x) dx - Ω q(0, x) ṗ(0 + , x) dx, - T 0 Ω q∆ ṗ dxdt = - T 0 Ω ṗ∆q dxdt,
and therefore,

dJ(u), h = Ω q(T, x) ṗ(T, x) dx = Ω q(0, x) ṗ(0 + , x) dx,
yielding the desired conclusion.

Remark 2. For practical purposes, it may be useful to notice that

q(t, x) = q(T -t, x), t ∈ [0, T ], x ∈ Ω,
where q denotes the solution of the initial boundary value problem

     ∂ t q(t, x) -∆ q(t, x) -f (p(T -t, x)) q(t, x) = 0, (t, x) ∈ (0, T ) × Ω, ∂ n q(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω, q(0, x) = p(T, x) -1, x ∈ Ω.

A toy Problem

This section is devoted to investigating a simpler version of (P full ) corresponding to the case N = 1 with f = 0. More precisely, let p be the solution of ( 11)

     ∂p ∂t -∆p = 0, t ∈ (0, T ), x ∈ Ω, ∂ ν p(t, x) = 0, x ∈ ∂Ω, p(0 + , •) = u 0 (•).
Then, the optimization toy problem reads

(P toy ) inf u0∈V T ,C,M Ĵ(u 0 ) with Ĵ(u 0 ) = 1 2 Ω (1 -p(T, x)) 2 dx ,
where p ∈ C 0 ([0, T ], L 2 (Ω)) is the unique solution of Equation [START_REF] Mcmeniman | Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti[END_REF]. Note that the equation ( 11) has to be understood in a weak sense, since u 0 ∈ L ∞ (Ω) ⊂ L 2 (Ω) (see for example [START_REF] Tucsnak | Observation and control for operator semi-groups[END_REF]Section 10.7]).

For this simple problem, we are able to solve explicitely the optimization problem :

Theorem 2. Problem (11) has a unique solution u 0 , which is constant and equal to min 1, M, C |Ω| . Proof. First, note that Problem (P toy ) has a solution. Indeed, it is standard that the mapping L 2 (Ω) u 0 → p ∈ C 0 ([0, T ], L 2 (Ω)) is continuous. Therefore, so is Ĵ by composition of continuous mappings. The conclusion follows by observing that V T,C,M is a compact subset of L 2 (Ω).

The proof relies on a well-adapted rewriting of the criterion Ĵ. For that purpose, let us introduce the Neumann operator -∆ N on Ω defined on

D(-∆ N ) = {y ∈ H 2 (Ω) | ∂y ∂n |∂Ω = 0 and Ω y(x) dx = 0}.
According to the spectral theorem, there exists an orthonormal family (φ j ) j≥1 consisting of (real-valued) eigenfunctions of -∆ N , associated with the non-decreasing sequence positive eigenvalues (λ j ) j≥1 . Moreover, by setting λ 0 = 0 and φ 0 = 1 √ |Ω| , the sequence (φ j ) j≥0 is a Hilbert basis of L 2 (Ω) and any solution p of (11) can be expanded in a unique way in L 2 (Ω) as ( 12)

p(t, x) = +∞ j=0 p(0, •), φ j L 2 (Ω) e -λj t φ j (x) = +∞ j=0 u 0j e -λj t φ j (x), with u 0j = u 0 , φ j L 2 (Ω)
. By expanding the square in the definition of Ĵ, we then infer that

Ĵ(u 0 ) = |Ω| 2 - Ω p(T, x) dx + 1 2 Ω p(T, x) 2 dx = |Ω| 2 -|Ω|u 00 + 1 2 +∞ j=0 e -2λj T u 2 0j = |Ω| 2 - Ω u 0 (x) dx + 1 2 +∞ j=0 e -2λj T Ω u 0 (x)φ j (x) dx 2 .
Let u be a solution of Problem [START_REF] Mcmeniman | Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti[END_REF] and h ∈ T u0,V T ,C,M . Then, one has

d Ĵ(u 0 ), h = - Ω h(x) dx + +∞ j=0 e -2λj T Ω u 0 (x)φ j (x) dx Ω h(x)φ j (x) dx = Ω h(x)ψ(x) dx,
where ψ(x) = -1 + +∞ j=0 e -2λj T u 0j φ j (x). The first order optimality conditions reads [START_REF] Nelson | Analytic vectors[END_REF] d

Ĵ(u 0 ), h ≥ 0, ∀h ∈ T u0,V T ,C,M .
The analysis of such optimality condition is standard in optimal control theory (see for example [START_REF] Li | Necessary conditions for optimal control of distributed parameter systems[END_REF]) and yields the existence of a Lagrange multiplier ξ ≤ 0 such that

• on {u 0 = M }, ψ(x) ≤ ξ, • on {u 0 = 0}, ψ(x) ≥ ξ, • on {0 < u 0 < M }, ψ(x) = ξ,
• ξ Ω u 0 (x) dx -C = 0 (complementarity condition). Let us investigate the optimality of constant functions. To this aim, notice that the functional Ĵ is strictly convex 3 . It follows that the optimality conditions [START_REF] Nelson | Analytic vectors[END_REF] are at the same time necessary and sufficient and that Problem (11) has a unique solution.

Let u 0 be an admissible constant function for Problem (P toy ). Then,

u 0 ∈ [0, M ] whenever M ≤ C/|Ω| and u 0 ∈ [0, C/|Ω|] elsewhere. Furthermore, if u 0 is constant, then, ψ(x) = -1 + u 0 .
Let us now investigate each case separately. If u 0 = 0, then, from the complementarity condition, ξ = 0 and ψ(x) = -1 which is in contradiction with the optimality conditions above. Let us assume that u 0 = 0. The conclusion follows. 3 The convexity results from the convexity of the square function combined with the linearity of u 0 → p(T, •). Furthermore,

• If u 0 = C |Ω| ,
d 2 Ĵ(u 0 ), h, h = +∞ j=0 e -2λ j T Ω h(x)φ j (x) dx 2 ≥ 0
and vanishes if, and only if, Ω h(x)φ j (x) dx = 0 for all j, meaning that h = 0 since (φ j ) j≥1 is a Hilbert basis of L 2 (Ω). The strict convexity of Ĵ follows.

Gaussian Releases

From a practical point of view, not all controls u ∈ V T,C,M correspond to a release that could actually be conducted, as for example the constant solution of the toy problem of the previous section. To guarantee a solution that could be implemented, we restrict here the admissible controls to more accurately model the way mosquitoes are released in practice.

We thus consider that there are K ∈ N simultaneous releases and that each one results in a Gaussian distribution of mosquitoes centered around the position of the release x k ∈ Ω for k = 1, ..., K. Then, the feasible controls are of the form [START_REF] Simon | Compact sets in the space L p (0, T ; B) Ann[END_REF] u

K (x, x 1 , ..., x K ) = K k=1 m exp - x -x k 2 σ 2 ,
where the constants m and σ are chosen such that u K (•, x 1 , ..., x K ) ∈ V T,C,M . In particular, we choose to saturate the constraint on the total number of mosquitoes released, i.e. we take Ω u K (x)dx = C. The goal is then to find the best position of the releases and the optimization problem becomes

(P K ) inf (x1,...,x K )∈Ω K J K (x 1 , ..., x K ) with J K (x 1 , ..., x K ) = 1 2 Ω (1 -p(T, x)) 2 dx ,
where p ∈ C 0 ([0, T ], L 2 (Ω)) is the unique solution of ( 7) with control u K (•, x 1 , ..., x K ).

Remark 3.

Since Ω is a bounded domain in R 2 , the question of the existence of a minimizer is trivial. But, the uniqueness is still a challenging problem.

Proposition 3. Let (x 1 , ..., x K ) ∈ Ω K . For k ∈ {1, ..., K}, one has

∂J K ∂x k (x 1 , ..., x K ) = Ω (G -1 ) (u K (x))q(0, x) ∂u K ∂x k (x, x 1 , ..., x K ) dx,
where q is the unique solution of the backward problem

   -∂ t q(t, x) -∆q(t, x) -f (p(t, x))q(t, x) = 0, (t, x) ∈ (0, T ) × Ω, ∂ n q(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω, q(T, x) = p(T, x) -1, x ∈ Ω.
Proof. It is an easy application of the chain rule. First, we notice that

J K (x 1 , ..., x K ) = J(u K (x, x 1 , ..., x K )).
Next, using Proposition 2, we find thanks to the chain rule that for all k ∈ {1, ..., K}

∇J K (x 1 , ..., x K ) =< dJ(u(x, x 1 , ..., x K )), ∇u(x, x 1 , ...x K ) > = Ω (G -1 ) (u K (x, x 1 , ..., x K )q(0, x)∇u K (x, x, x 1 , ..., x K )dx.
We deduce the result from the last equality.

3.1. Numerical Resolution. We now present the computation of the numerical solution of (P K ). For this we use a direct method which consists in carrying out a discretization of Equation ( 7) and of the control in order to obtain a finite dimensional optimization problem with constraints. We can then compute an approximation of a local minimizer of (P K ) with a numerical optimization solver.

Our results were obtained with the finite element toolbox FreeFem++ [START_REF] Hecht | New development in FreeFem++[END_REF] which contains an implementation of the optimization routine Ipopt [START_REF] Wächter | On the implementation of Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming[END_REF]. We therefore consider a finite element basis of functions (ϕ i ) i that allows us to discretize the control as u h (x, x 1 , ..., x K ) = i u i ϕ i (x) and the proportion of infected mosquitoes as p h (t, x) = i p i (t)ϕ i (x), the finite element approximation of the solution of the PDE [START_REF] Seymour | Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death[END_REF] with initial condition G -1 (u h (x, x 1 , ..., x K )). The cost function can be computed with numerical integration as J h (x 1 , ..., x K ) = Ω (1p h (T, x)) 2 dx. In addition, Ipopt requires the gradient of the cost function and thanks to Proposition 3 we have

∂J h ∂x k = Ω (G -1 ) (u h (x))q h (0, x) ∂u h ∂x k (x, x 1 , ..., x K ) dx
where q h (0, x) is the finite element approximation of the solution of the backwards PDE.

Remark 4. Because of Proposition 1, we were interested in the case M > C |Ω| . In addition, we have fixed C such that the constant solution u = C

|Ω| leads to extinction (as T tends to +∞) but there exists R ∈]0, C πM [ such that the function u(x) = M × 1 B(0,R) (x) belongs to V T,C,M and leads to invasion (as T tends to +∞).

We now present numerical simulations for the parameters given in Table 1. The birth and death rates are given per day, whereas the unit of the carrying capacity is per m 2 and the diffusion coefficient is given per m 2 per day. The numerical values are taken from [START_REF] Almeida | Optimal releases for population replacement strategies, application to Wolbachia[END_REF] and references therein. We consider a square domain of 1 hectare, a final time of 200 days and we set the total amount of mosquitoes released such that C < G(θ)|Ω|. In Figure 1 we show the control u K (•, x 1 , ..., x K ) for K = 3, 4, 5, 6 releases and for each case the same total amount of mosquitoes is released. For the case of 6 releases we display in Figure 2 the time dynamics of the proportion of infected mosquitoes p(t, •). As expected, it leads to the total invasion of the domain.

Parameter b 1 b 2 d 1 d 2 κ D Value
1.12 1.12 0.27 0.36 6 • 10 -2 2.5

Table 1. Model parameters

Conclusion

We investigate in this work the optimization of the release of Wolbachia-infected mosquitoes into a host population in the aim to replace the wild population by a Wolbachia-infected population unable to transmit several diseases to human. To conduct this study, we first reduce the optimal problem under investigation by assuming that the time distribution is given. Then we obtain existence of a minimum for this latter problem. Finally, reducing again the control problem by considering that the releases are modelled by Gaussian distributions, some numerical computations are performed.

Optimisation strategies for release protocols of mosquitoes have been investigated by several authors [START_REF] Thome | Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide[END_REF][START_REF] Campo-Duarte | Optimal control approach for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations[END_REF][START_REF] Bliman | Feedback Control Principles for Biological Control of Dengue Vectors[END_REF]. However, in these papers, only the time optimization of the releases is investigated. Up to our knowledge, this work is the first attempt in optimizing spatially the releases, which is of great interest for experiments in the field. The preliminary results obtained in this paper should be continued. In particular, the optimality conditions for the system (P K ) should be studied in a future work in the aim to find properties of the optimal solution. The numerical simulations should also be continued to have a better representation of what is observed in the field.

Proposition 1 .

 1 Let N ∈ N * and M ≤ C |Ω| . Then u = M is the unique solution of Problem (P reduced ).

  then this is admissible only if C ≤ M |Ω|. In this case we find ψ(x) = -|Ω|+C |Ω| , and thus the optimality conditions are satisfied if and only if |Ω| ≥ C. All in all, u 0 = C |Ω| is indeed a solution if, and only if, min(1, M )|Ω| ≥ C. • If u 0 = C |Ω| : then ξ = 0. Either u 0 = M , in which case the optimality conditions are satisfied only if M ≤ 1, and this solution is admissible only if M |Ω| ≤ C; or 0 < u 0 < M , in which case the optimality conditions hold only if u 0 = 1 (since ψ ≡ ξ = 0 in this case), which is admissible only if M ≥ 1 and |Ω| ≤ C. All in all, u 0 = min(1, M ) is a solution if and only if min(1, M )|Ω| ≤ C.

Figure 1 .

 1 Figure 1. u K (•, x 1 , ..., x K ) for K = 3, 4, 5, 6 releases and C = 0.017.

Figure 2 .

 2 Figure 2. p(t, •) for K = 6 releases, t = 0, 50, 100, 150 days and C = 0.017.

We consider Dirac measures since at the time-level of the study (namely, some generations), the release can be considered as instantaneous.

Appendix -Reduction of system [START_REF] Almeida | Optimal releases for population replacement strategies, application to Wolbachia[END_REF] For the sake of completness and for reader facility, we explain briefly in this appendix how to reduce system (1) to system (2). We will not provide all the details of this reduction but only the main steps. We refer to [START_REF] Strugarek | Reduction to a single closed equation for 2 by 2 reaction-diffusion systems of Lotka-Volterra type[END_REF] and [START_REF] Almeida | Optimal releases for population replacement strategies, application to Wolbachia[END_REF]Section 2.3] for the interested reader. The starting point is to introduce a small parameter 0 < ε 1 modelling the ratio of the fertility on the death rate. Indeed for mosquitoes population, the fertility is large compared to death rates. System (1) reads then

As ε → 0, we expect from this system that n ε 1 + n ε 2 → κ. Hence we introduce the quantity

) and denote

the proportion of infected mosquitoes. From straightforward computations, we deduce the system satisfied by (n ε , p ε ) :

where we use the notations

> 0. Assuming that the sequences (n ε ) ε and (p ε ) ε admit limits denoted n and p respectively, we deduce from the first equation that, formally, [START_REF] Strugarek | Reduction to a single closed equation for 2 by 2 reaction-diffusion systems of Lotka-Volterra type[END_REF] n = Z(p) -u κ a(p).

Passing into the limit into the equation satisfied by p, we get

Injecting the expression of n (15) into this latter equation, we recover the equation

with f and g defined in [START_REF] Bliman | Feedback Control Principles for Biological Control of Dengue Vectors[END_REF]