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aUniv. Bourgogne Franche-Comté, ImVia Laboratory EA 7535, Dijon, France
bInria Sophia Antipolis and Institut de Mathématiques de Bourgogne, 9 avenue Savary,
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Abstract

The dynamics of mass reaction kinetics chemical systems is modeled by the

Feinberg-Horn-Jackson graph and under the ”zero deficiency assumption”,

the behavior of the solutions is well known and splits into two cases: if the

system is not weakly reversible there exists no equilibrium, nor periodic so-

lution and if the network is weakly reversible in each stoichiometric subspace

there exists only one equilibrium point and this point is asymptotically sta-

ble. By varying the temperature, one gets a single input control system and

in this article we study the problem of maximizing the production of one

species during the batch time. Our aim is to present the geometric tech-

niques and results based on the Pontryagin maximum principle to compute

the closed loop optimal solution. The complexity of the problem is illustrated

by using two test bed examples: a sequence of two irreversible reactions and
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the McKeithan scheme.

Keywords: Mass action chemical systems, Zero deficiency theorem,

Pontryagin maximum principle, Geometric optimal control

1. Introduction

Important developments in optimal control come from the Pontryagin

maximum principle [28] which combined later (in the eighties) with the geo-

metric techniques led to seminal theoretical results, see for instance [1] and

[19]. They were applied to many industrial problems in space mechanics,

quantum control [12] and an important modern application is the control of

biological and chemical systems [29].

The objective of the article is to present the techniques of this area to

analyze the problem of maximizing the production of one chemical species

[X] of a chemical network where the sequence of reactions occurs in a batch

chemical reactor and the control is the temperature. Thanks to the Maximum

Principle it can be formulated as minimizing the batch time tf to produce a

fixed amount [X] = d and this leads to a time minimal control problem for a

single input control system: dc
dt

= f(c, T ), where c is the concentrations vec-

tor, T is the temperature, with c(0) = c0 and c(tf ) ∈ N , N being the terminal

manifold: {[X](tf ) = d}. The dynamics model under the mass action kinet-

ics assumption produces, at constant temperature T , a polynomial system,

which can be deduced from the Feinberg-Horn-Jackson graph [32]. Thanks

to the so-called seminal zero deficiency theorem obtained by the contribu-

tions of Feinberg, Horn, Jackson in the 70′s, the behaviors of solution can be

split in many applications into two cases. The first case is the non weakly
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reversible case, and there exists no equilibrium point nor periodic trajec-

tory, an example being a sequence of consecutive reactions A→ B → C . . ..

The second case is the weakly reversible case, where under a mild additional

assumption, in each stoichiometric class there exists an unique equilibrium

point c∗ which is asymptotically stable, see [17, 20]. An example of this case

being the so-called McKeithan scheme: T +M A B .

If the dynamics is simple at fixed temperature, the optimal control by

varying the temperature can be very complicated as illustrated by the follow-

ing tutorial example. The rate of each reaction using Arrhenius law depends

upon k(T ) = Ae−E/(RT ) where A,E are parameters, the second E being

the energy of activation. Consider the following scheme A B Ck1 k2 of

a sequence of two first order irreversible reactions. Denoting by c1 := [A],

c2 := [B] the respective concentrations, the dynamics takes the form:

ċ1 = −k1c1, ċ2 = k1c1 − k2c2, ki = Ai e
−Ei/(RT ), i = 1, 2.

Since T 7→ v(T ) := k1(T ) is a bijection, v can be chosen as the control vari-

able. The dynamics is irreversible and is very simple (note it is a consequence

of the zero deficiency theorem) and integrating the dynamics at constant tem-

perature leads to two situations only: k1 6= k2 or k1 = k2 (resonant case).

But assume that we want by controlling the temperature to maximize the

ratio: z = c2/c1. This leads to maximize z(tf ) where [0, tf ] is the batch

duration. Using the dynamics: ż = v − βvαz + vz, α = E2/E1, β = A2/A
α
1

with z(0) = [B]/[A]|t=0 which can be taken as z(0) = 0 and v ∈ [vm, vM ]

is associated to T ∈ [Tm, TM ]. Denoting H = ż (which plays the role of

Hamiltonian in the optimal problem) the problem leads to maximize H over

3



v ∈ [vm, vM ] in order to maximize z(tf ). Clearly one gets three cases if α > 1

(and one case if α < 1): the maximum is depending upon z and can be either

v = vm, v = vM or an intermediate value v = vs called singular in optimal

control defined by: ∂H
∂v

= 1− αβvα−1z + z = 0.

In this case a simple graph analysis ofH tells us that an optimal policy can

be of the form σMσsσm where σM , σs, σm being arcs associated to vM , vs, vm

respectively, σ1σ2 representing an arc σ1 followed by σ2. This corresponds

on [0, tf ] to the concatenation of the controls vM , vs, vm.

A similar analysis in the case of α < 1 leads to the optimal control:

v = vM over [0, tf ], associated to maximal temperature TM .

From this example we deduce two facts. The first one is that the optimal

policy depends upon α = E2/E1 v.s. k1/k2 for the dynamics at constant T .

Second, the discussion depends upon the competition between the Hamilto-

nians H associated to vm, vM , vs, to provide the maximum of H. This second

point will give the geometric frame to perform the analysis in relation with

singularity theory: competition between Hamiltonians dynamics to compute

the optimal solutions, see the earliest seminal contributions [16, 22]. In par-

ticular, the complexity of the problem is directly illustrated by the two test

bed cases.

The organization of the article is the following. In section 2, the mathe-

matical model is recalled based on the Feinberg-Horn-Jackson graph and the

zero deficiency theorem is precisely stated [17, 20] and we present the two

test bed cases, in particular the McKeithan network [30, 27]. The section

3 is devoted to the Pontryagin maximum principle and the classification of

the solutions into regular and singular solutions. The general properties are
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discussed, based on [22] in the regular case and [8] in the singular case. This

leads to compute time optimal sequences useful in our study, based on ba-

sic concepts of singularity theory, in particular semi-normal forms [26]. The

section 4 presents the main technical tool to handle the problem that is sin-

gularity theory and classification of the optimal syntheses based on [10, 9].

This is applied in section 5 to discuss the optimal syntheses for the two test

bed cases. In the final section we discuss in conclusion the mathematical and

computational obstacles to complete our study.

2. Mathematical model and the zero deficiency theorem

In this section, we make a brief presentation of the model with main

properties based on the seminal works of Feinberg-Horn-Jackson in the 70’s.

For more details, references are the earliest articles [17, 20] and [30, 2] for

more recent contributions.

2.1. Mass action kinetics and the Feinberg-Horn-Jackson graph

We consider a set of m chemical species {X1, . . . , Xm}, and the state of

the dynamics is the vector c = (c1, . . . , cm) ∈ Rm
≥0 representing the molar

concentrations. Let R be a set of reactions, each reaction being denoted

y → y′ and is of the form:

m∑
i=1

αiXi →
m∑
i=1

βiXi ,

where αi, βi are the stoichiometric coefficients and the vectors y = (α1, . . . , αm)ᵀ

and y′ = (β1, . . . , βm)ᵀ are forming the vertices of the so-called Feinberg-

Horn-Jackson oriented graph associated to the network, edges being oriented
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according to y → y′. Each reaction y → y′ is characterized by a reaction rate

K(y → y′) and the system is said simple (or mass kinetics) if the rate of the

reaction is of the form:

K(y → y′) = k(T ) cy, (1)

cy = c1
α1 . . . cm

αm (2)

and

k(T ) = Ae−E/(RT ) (3)

is the Arrhenius law, A is the exponential factor, E is the activation energy,

both depending on the reaction, R is the gas constant and T is the tem-

perature. Note that another rate formulae can be used in particular to deal

with biomedical systems (see for instance [30]). One can label the sequences

of reaction R by i = 1, . . . , ñ and this is defining a set of (increasing) func-

tions of the temperature denoted ki(T ), i = 1 . . . ñ, each defined by a set of

parameters (Ai, Ei) forming the set Λ.

The dynamics of the system, taking into account the whole network is:

ċ(t) = f(c(t), T ) =
∑

y→y′∈R

K(y → y′) (y′ − y). (4)

Note that if the reactor is fed at some constant rate r, the more general

dynamics takes the form

ċ(t) = f(c(t), T ) + r
(
(c0

1, . . . , c
0
m)ᵀ − c(t)

)
. (5)

where (c0
1, . . . , c

0
m) are the fixed concentrations of the feeding reactor. This

led to a more general system which can be set in an unique frame of chem-

ical network (introducing additional reaction), but in this article, from the
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purpose of control theory, we shall consider only the case (4) which is called

the batch (or closed) case.

2.2. More explicit representation of the dynamics and the zero deficiency

theorem

First of all, we introduce the so-called stoichiometric subspace S = span{y−

y′, y → y′ ∈ R} and the set (c(0) + S) ∩ Rm
≥0 are called the (strictly if > 0)

positive stoichiometric compatibility classes. From (4) it is clear that S is

invariant for the dynamics but more precisely one has.

Lemma 1 ([2]). Let c(t) be a solution of (4) with initial condition in c(0) ∈

Rm
>0. Then c(t) ∈ Rm

>0 for all t > 0.

Before to state our theorem the dynamics has to be rewritten using the

following concepts.

• Having labeled the set of vertices by i = 1, · · · , n, whose corresponding

stoichiometric vectors (y1, . . . , yn), the complex matrix is Y = (y1, . . . , yn)

• The incidence connectivity matrix: A := (aij) contains the Arrhenius

coefficients ki of the reactions using the rule: k1 = a21 indicating a

reaction with constant k1 from the first node to the second, that is

y1 y2
k1 .

With the mass kinetics assumption (see [30] for extension) the dynamics (4)

can be expressed as

ċ(t) = f(c(t), T ) = Y Ã cY (6)
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where Ã is the Laplacian matrix in graph theory defined by

Ã = A− diag

(
n∑
i=1

ai1, . . . ,

n∑
i=1

ain

)
(7)

and we denote:

cY = (cy1 , . . . , cyn)ᵀ. (8)

2.3. Examples in the two test bed cases

Case 1: Sequence of N first order reactions. A B Ck1 k2 . . .. Let c =

(c1, . . . , cN+1) ∈ RN+1 and the dynamics takes the form:


ċ1

...

ċN

 =



−k1 0 · · · · · · 0

k1 −k2
. . . 0

...

0 k2
. . . . . .

...
...

. . . . . . . . . 0

0 · · · 0 kN−1 −kN




c1

...

cN

 . (9)

One can introduce the normalized concentration ci/(c1(0) + . . . + cN+1(0)),

so that ci ∈ [0, 1]. Observe also that the cN+1 evolution can be deleted and

this amounts to restrict to the stoichiometric class.

For the case A B Ck1 k2 further normalizing coordinates are:

x = ln c1, y = c2/c1, v = k1 (10)

and the dynamics takes the form:

ẋ = −v, ẏ = v − βyvα + vy, v̇ = u, (11)

where α = E2/E1, β = A2/A
α
1 .
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Equations can be extended to a more general scheme:

n1A n2B n3C . . .k1 k2 k3

of N consecutive irreversible reactions of order ni. We obtain the following

matrices:

Y = diag(n1, . . . , nN+1), A =



0 · · · · · · · · · 0

k1 0 · · · · · · 0

0 k2 0 · · · 0
...

. . . . . . . . .
...

0 0 0 kN 0


.

Introducing ”reversibility” A B C
k1 k2

k3

leads to

ċ1 = −vc1 + βvαc2

ċ2 = vc1 − βvαc2 − β′vα
′
c2

(12)

where α = E3/E1, α′ = E2/E1, β = A3/A
α
1 , β′ = A2/A

α′
1 .

Case 2: McKeithan scheme ([30, 27]). It is given by:

T +M C0 C1
. . . CN

k1 kp,0 kp,1 kp,N

k−1,0

k−1,1

k−1,N

.
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The matrix Y is defined by:

Y =



1 0 . . . . . . 0

1 0
...

0 1
. . .

...
...

. . . . . . . . .
...

...
. . . 1 0

0 . . . . . . 0 1


and the matrix A = (aij) is defined by: a21 = k1, a1,i = k−1,i−2 i =

2, . . . ,m (m = N + 2), ai,i−1 = kp,i−3, i = 3, . . . ,m and all others ai,j = 0.

The stoichiometric subspace is defined by S = {c ; T + C0 + . . .+ CN =

M+C0+. . .+CN = 0} and let δ1 = T+C0+. . .+CN and δ2 = M+C0+. . .+CN

the constant associated to first integrals.

Consider the case N = 2 so that the reaction scheme is denoted

T +M B Ck1 k2

k3

k4

and restricting to the stoichiometric class (δ1 and δ2

fixed), one gets with x := [A], y := [B] the dynamics

ẋ = k1 (δ1 − x− y)(δ2 − x− y)− (k2 + k3)x

ẏ = k2 x− k4 y.
(13)

The Zero Deficiency Theorem [17, 20]

Definition and notation. Using graph theory concepts we introduce the fol-

lowing: the deficiency of the network is: δ = n − l − s, with n = number

of vertices, l = number of connected components and s = dimension of the

stoichiometric subspaces. The network is called weakly reversible if for each

pair (i, j) of vertices such that there exists an oriented path joining i to j

there exists a path joining j to i.
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Theorem 1. Let any simple reaction network of deficiency zero.

(i) If the network is not weakly reversible, then for arbitrary kinetics, the

differential equation cannot have a positive equilibrium nor a periodic

trajectory that is contained in Rm
>0

(ii) If the network is weakly reversible, there exists within each strictly

positive stoichiometric compatibility class precisely one equilibrium c∗,

the equilibrium is locally asymptotically stable with (pseudo-Helmholtz)

Lyapunov function V (c, c∗) =
∑

i [ci(ln ci − ln c∗i − 1) + c∗i ]. Moreover,

there is no non trivial periodic orbit.

Remark 1. Note that properness of V like in the McKeithan network led to

global stability property (see [2]) and the proof of the existence of equilibrium

related to the Perron-Frobenius therorem [30].

2.3.1. Application

• Case 1 A B Ck1 k2 : δ = 3 − 1 − 2 = 0 and the network is not

weakly reversible.

• Case 2 T+M A Bk1 k2

k3

k4

: δ = 3 − 1 − 2 = 0. The network is

weakly reversible. Equilibrium can be easily found from (13) by solving

ẋ = ẏ = 0 and we get.

Lemma 2. Let (δ1, δ2) ∈ R∗+
2 fixed. There exists a unique equilibrium point

Xeq = (xe, ye) ∈ R2
+ for the system (13) given by

xe =
2δ1δ2k1k4

∆ + δp α + β
, ye =

2δ1δ2k1k2

∆ + δp α + β
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where α = k1 (k2 + k4), β = k4 (k2 + k3), δm = δ1 − δ2, δp = δ1 + δ2 and

∆ =
√
δ2
mα

2 + 2δp αβ + β2.

Proposition 1. Take the equilibrium point Xeq. The linearized system at

Xeq is defined by the matrix

L =

 −k2(k2+k3)−∆
k2+k4

k4(k2+k3)−∆
k2+k4

k3 −k4

 .

We have detL = ∆ > 0 and Tr L = −
(

∆+k2(k2+k3)
k2+k4

+ k4

)
< 0. The point

Xeq is globally asymptotically stable and

• if (TrL)2 − 4 detL < 0, then Xeq is a stable focus (see Fig.1 (left)),

• if (TrL)2 − 4 detL > 0, then Xeq is a stable node (see Fig.1 (right)).

Figure 1: Phase portrait for the McKeithan model. (left) Focus; (right) Node.

3. Pontryagin maximum principle and extremal curves

3.1. Statement and notation for the optimal control problem

The system is written as dc
dt

= f(c, T ) and controlling the temperature

leads to T ∈ [Tm, TM ]. In practice, thermodynamics has to be used to model
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the heat exchanges, in relation with the heat produce by the reactions [32]

or the heat exchange model used in the experiments. To avoid this part of

the study and without loss of generality for the mathematical point of view,

we shall choose v̇ as the control variable, where v is defined by v = ki(T )

for some reaction i. This leads to deal with the single-input affine control

system:

q̇(t) = F (q(t)) + u(t)G(q(t)) (14)

where q = (c, v) ∈ Rn, F = F (c, v) ∂
∂c

, G = ∂
∂v

, u− < u < u+ and the bounds

v ∈ [vm, vM ] will not be taken into account. Note that the map : v 7→ v̇ is the

standard Goh-transformation in optimal control and plays an important role

(see [6]). We choose the labeling such that the optimization of the production

is given by:

max c1(tf ) (15)

where tf is the time duration of the batch time. An equivalent formulation

will be (thanks to the maximum principle)

min tf , c1(tf ) = d,

where d ≥ 0 is the desired amount of the species [X1] during the batch

duration tf .

3.2. Maximum principle [28]

3.2.1. Geometric preliminaries

Consider a single-input control system: q̇(t) = f(q(t), u(t)), q ∈ Rn,

f real analytic and the set of input is the set U of bounded measurable

mappings u : [0, tf (u)] 7→ [−1,+1]. Fixing q(0) = q0 we denote by q(·, q0, u)
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the solution associated to u(·) and starting from q(0). The accessible set in

time tf is the set: A(q0, tf ) = ∪u(·)q(tf , q0, u), image at time of the extremity

mapping: Eq0,tf : U 3 u(·) 7→ q(tf , q0, u) ∈ Rn. The set of inputs is endowed

with the L∞−norm topology. The Maximum Principle is a parametrization

of the boundary of accessibility set.

3.2.2. Needle or Weierstrass variations. First order Pontryagin cone K1(tf )

Take u(·) ∈ U such that the solution written shortly q(·) is defined on

[0, tf ] and let t be a Lebesgue time on [0, tf ]. A needle variation of u(·) with

data (t, v, ε) is the L1 perturbation defined by: uε = v on [t− ε, t] and equal

to the control u(·) elsewhere with ε > 0 and v constant ∈ [−1,+1]. We

shall denote in short by qε(·) the response to uε (starting at time 0 from q0).

Consider at final time tf , the curve ε 7→ qε(tf ). The first order Pontryagin

cone K1(tf ) is the smallest convex closed cone containing tangent vectors

d
dε |ε=0

qε(tf ) for all perturbations. The key point of the Maximum Principle

is to use the Pontryagin cone as an approximation of the accessibility set, see

[28].

3.2.3. Statement of the Maximum Principle

One needs the following. The pseudo-Hamiltonian or (unmaximized)

Hamiltonian is H(q, p, u) = p · f(q, u), where p ∈ Rn\{0} is the adjoint

vector. We denote M(q, p) = max|u|≤1 H(q, p, u).

Consider first the time minimal control problem, with q(0) = q0 fixed and

q(tf ) ∈ N : terminal analytic manifold. One has.

Theorem 2. Assume (q∗(·), u∗(·)) is an optimal time minimal solution on
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[0, t∗f ], then there exists p∗(·) nonzero such that a.e. on [0, t∗f ]

q̇∗(t) =
∂H

∂p
((q∗(t), p∗(t), u∗(t)), (16a)

ṗ∗(t) = −∂H
∂q

((q∗(t), p∗(t), u∗(t)) (16b)

H((q∗(t), p∗(t), u∗(t)) = M((q∗(t), p∗(t)). (16c)

Moreover t 7→ M((q∗(t), p∗(t)) is constant and non negative and at the final

time one has the transversality condition:

p∗(tf ) ⊥ Tq∗(tf )N. (17)

Remark 2. If we replace the time minimal problem by a Mayer problem:

min
u(·)

ϕ(q(tf )), (18)

the same conditions (16b), (16c) hold, while (17) is replaced by:

p∗(tf ) = −∂ϕ
∂q

(q∗(tf )). (19)

Definition 1. An extremal triplet (q, p, u) is a solution of (16b), (16c) and

it is called a BC-extremal if the transversality condition is satisfied. An ex-

tremal control is called regular if |u(t)| = 1 a.e. and singular if ∂H
∂u

(q, p, u) = 0

everywhere. It is called exceptional if M = 0. A regular extremal is called

bang-bang if the number of switches is finite.

3.2.4. Computation of singular extremals and properties

Notations. Let X, Y be two real analytic vector fields of R, the Lie bracket

is defined by: [X, Y ](q) = ∂X
∂q

(q)Y (q) − ∂Y
∂q

(q)X(q). The Hamiltonian lift

of X is HX(z) = p · X(q), z = (q, p). The Poisson bracket is defined by

{HX , HY }(z) = p · [X, Y ](q).
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Computation of singular extremals.

Definition 2. Let H(z, u) = p · f(q, u). The condition ∂2H
∂u2
≥ 0 (resp > 0)

is called (resp. strict) Legendre-Clebsch condition. Assume f(q, u) = F (q) +

uG(q). The condition ∂
∂u

d
dt2

∂H
∂u

= {{HG, HF}, HG} ≥ 0 (resp. > 0) is called

the (resp. strict) generalized Legendre-Clebsch condition.

Computation. If the strict Legendre-Clebsch condition is satisfied one

uses ∂H
∂u

= 0 to compute the singular control û(z) using the implicit function

theorem. Plugging such û(z) in H(z, u) leads to the true Hamiltonian de-

noted Ĥ(z). In the affine case, one has ∂2H
∂u2

= 0 and we proceed as follows.

The relation ∂H
∂u

= 0 leads to HG(z) = p · G(q) = 0. Deriving twice with

respect to time along the extremal solution leads to:

HG(z) = {HG, HF}(z) = 0,

{{HG, HF}, HF}(z) + u {{HG, HF}, HG}(z) = 0. (20)

Assume {{HG, HF}, HG}(z) 6= 0, the singular extremal is called of order 2

and the singular control u is computed as û(z), using relation (20). Plugging

such û(z) into H(z, u) leads to a true singular Hamiltonian denoted Hs(z),

one has:

Lemma 3. Singular extremals of order 2 are the solutions of:

dq

dt
=
∂Hs

∂p
(z),

dp

dt
= −∂Hs

∂q
(z) (21)

with the constraints HG(z) = {HG, HF}(z) = 0. Moreover in order to be

admissible the singular control given by

us(z) = −{{HG, HF}, HF}(z)

{{HG, HF}, HG}(z)
(22)

has to satisfy the admissibility constraints |us(z)| ≤ 1.
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Definition 3. Let (z, u) be a singular extremal of order 2 and M = HF = h

the constant value of the Hamiltonian. The extremal is called exceptional if

h = 0.

If h > 0, the extremal is called hyperbolic (resp. elliptic) if {{HG, HF}, HG} >

0 (resp. < 0).

Time optimality status of singular extremals for the point to point problem.

(N : single point). One needs the following seminal results based on [21] and

[8], see also [6] for a tutorial presentation.

Proposition 2 (High-order maximum principle). The generalized Legendre-

Clebsch condition is a necessary small time optimality condition.

Further results need the following.

Statement of the limit problem. We consider the time minimal problem with

fixed end-point for the affine system:

dq

dt
= F (q) + uG(q). (23)

The limit problem is the following:

• the constraints |u| ≤ 1 on the control are relaxed and we admit a

specific class of impulse controls. More precisely, a trajectory is a finite

concatenations of arcs corresponding to bounded measurable controls

and finite jumps in the G direction. The set of admissible controls

extending U is denoted U ′.

Assumptions. Consider the affine system q̇ = F (q) + uG(q) (u ∈ R) and let

(q, p, u) be an extremal of order 2 on [0, tf ]. Assume the following on U ⊂ Rn.
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(H0) F,G are linearly independent and the reference extremal curve t 7→

q(t) is one-to-one. Since the concept of singular-extremal is feedback

invariant (see [4]) one may set u ≡ 0. Let us denote by K1(t) =

span{adk F · G(q(t)); k ∈ N} with ad F · G = [F,G]. Then it is

known that K1(t) is the first-order Pontryagin cone along q(·) and the

codimension is non zero.

Moreover let us then assume that:

(H1) ∀t ∈ [0, tf ], K1(t) is of codimension one and is spanned by the vectors:

adk F ·G(q(t)), k = 0, . . . , n− 2.

(H2) If n ≥ 3, ∀t ∈ [0, tf ], F (q(t)) /∈ span{adkF ·G(q(t)); k = 0, . . . , n− 3}.

Remark 3. Note ∀t ∈ [0, tf ], [[G,F ], G](q(t)) /∈ K1(t).

Theorem 3. Let (q(·), p(·), u(·)) be a singular extremal defined on [0, tf ]

and satisfying assumptions (H1), (H2). Note that the adjoint vector p is then

unique up to a non-zero factor, and for any time t in [0, tf ], p(t) is orthogonal

to K1(t); so ((q(t), p(t)) is of order 2. Then there exists a C0-neighborhood

U of the reference trajectory q(·) such that q(·) is a time-minimizing (resp.

maximizing) trajectory with respect to all solutions of (23) contained in U and

joining q(0) to q(tf ) (the set of admissible control being U ′) if (q(·), p(·), u(·))

is exceptional or hyperbolic (resp. elliptic) and if t1c < 0 where t1c is the first

conjugate time to tf along q(·).

Proof. See [8].

Algorithm to compute conjugate times. They are described in [5] and prac-

tically implemented in the software HamPath [15].
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Relation between affine and non affine case using the Goh transformation

for chemical networks. Recall that for our network: ċ = f(c, v), v = ki is

extended into q̇ = F (q) + uG(q), F = f(c, v) ∂
∂c
, G = ∂

∂v
with q = (c, v).

Denote H̃ = pc · f(c, v) and H = p · (F (q) + uG(q)), p = (pc, pv). One has

the following relation between the corresponding singular extremals.

Lemma 4. The pair (q, p) is solution of:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,
∂H

∂u
= 0

if and only if pv = 0 and (c, pc, v) is solution of:

ċ =
∂H̃

∂pc
, ṗc =

∂H̃

∂c̃
,
∂H̃

∂v
= 0

and moreover the following relations are satisfied

d

dt

∂H

∂u
= {HF , HG} = −∂H̃

∂v
(24)

∂

∂u

d2

dt2
∂H

∂u
= {{HG, HF}, HG} = −∂

2H̃

∂v2
. (25)

In particular (25) relates the Legendre-Clebsch and the generalized Legendre-

Clebsch condition of both systems.

Computation in small dimensions.

• n = 2. Note q = (x, y). Introduce the following determinants

D = det(G, [[G,F ], G]),

D′ = det(G, [[G,F ], F ])

D′′ = det(G,F ), Ds = det(G, [G,F ]).

Eliminating p leads to:
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– S: Singular arcs located in Ds = 0.

– Singular control: us(q) = −D′(q)/D(q).

– Hyperbolic: DD′′ > 0.

– Elliptic: DD′′ < 0.

• n = 3. Note q = (x, y, z). Introduce the following determinants:

D = det(G, [G,F ], [[G,F ], G]),

D′ = det(G, [G,F ], [[G,F ], F ])

D′′ = det(G, [G,F ], F ).

Eliminating p leads to:

– Singular control: us(q) = −D′(q)/D(q).

– Singular vector fields: q̇ = F (q)− D′(q)
D(q)

G(q).

– Hyperbolic: DD′′ > 0.

– Elliptic: DD′′ < 0.

– Exceptional: D′′ = 0.

3.2.5. Small time classification of extremals. Construction of semi-normal

forms.

In this section, we present the basic results and techniques from singu-

larity theory initiated in [16, 22] to analyze small time extremals curves,

which will be the basic tool to analyze the optimal control problem. It is

the construction of semi-normal form using the action of the pseudo-group

of diffeomorphisms or symplectomorphisms, combined with specific feedback

transformations.
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Classification of regular extremals.

Notations: we denote by σ+ (resp. σ−) a bang arc with constant control

u = +1 (resp. −1) and σs is the singular arc. We denote σ1σ2 an arc σ1

followed by σ2. The surface Σ : p · G(q) = 0 is called switching surface and

let Σ′ ⊂ Σ given by: p · G(q) = p · [G,F ](q) = 0. If z(t) = (q(t), p(t)) is an

extremal curve on [0, tf ], we note Φ(t) = p(t) ·G(q(t)) the switching function

(which codes the switching times). Differentiating twice with respect to time

one gets:

Φ̇(t) = p(t) · [G,F ](q(t)) , (26)

Φ̈(t) = p(t) · ([[G,F ], F ](q(t)) + u(t) [[G,F ], G](q(t))). (27)

From this calculus we deduce.

Ordinary switching time. A time t ∈]0, tf [ is called an ordinary switching

time and z(t) ∈ Σ an ordinary switching point if Φ(t) = 0 and Φ̇(t) 6= 0.

Clearly we have.

Lemma 5. In the ordinary case, near z(t) every extremal solution projects

onto σ+σ− if Φ̇ < 0 and σ−σ+ if Φ̇ > 0.

Fold case. If Φ(t) = Φ̇(t) = 0, then z(t) ∈ Σ′. The situation is more intricate

and is technically complicated to analyze, see [22] for the details. Let u =

ε, ε = ±1 and Φ̈ε(t) = p(t) · ([[G,F ], F ](q(t)) + ε[[G,F ], G](q(t))). If Φ̈ε(t) 6=

0 for ε = ±1, the point z(t) is called a fold point and we have three cases

assuming Σ′ is a regular surface of codimension two.

Case 1: parabolic case: Φ̈+(t)Φ̈−(t) > 0.

Case 2: hyperbolic case: Φ̈+(t) > 0 and Φ̈−(t) < 0.
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Case 3: elliptic case: Φ̈+(t) < 0 and Φ̈−(t) > 0.

Denote by us(t) the singular control given by

p(t) · ([[G,F ], F ](q(t)) + us(t)[[G,F ], G](q(t))) = 0.

From the above classification, we deduce. In the hyperbolic or elliptic

case, through z(t) if p(t)·[[G,F ], G](q(t)) 6= 0 there exists a singular extremal

which is strictly admissible that is |us(t)| < 1. Moreover we are in the

hyperbolic case (resp. elliptic) if this quantity is > 0 (resp. < 0). In the

parabolic case, it can be absent (for instance in the linear case: F (q) = Aq,

G(q) = b) or not admissible that is |us(t)| > 1.

One has

Theorem 4. In the neighborhood of z(t) every extremal projects onto:

• In the parabolic case: σ+σ−σ+ or σ−σ+σ−.

• In the hyperbolic case: σ±σsσ±.

• In the elliptic case: every extremal is bang-bang, i.e. of the form σ+σ−

σ+σ− . . . but the number of switches is not uniformly bounded.

Note that the elliptic case opens the road to the so-called Fuller phe-

nomenon [23, 18] where a connection with a singular arc can be realized but

with an infinite number of switches.

The general tool to analyze this situation is the concept of semi-normal

form and we shall make a simplified presentation using the planar case. Also

this will lead to extensions which will be crucial in our next section of clas-

sifications of extremals near a manifold of codimension one.

22



Introducing semi-normal forms. We consider a 2D-system: q̇ = F (q) +

uG(q), q = (x, y). We note C : det(F,G) = 0 the collinearity set and

we restrict our system to U : R2 \ C. Using the previous computations,

singular trajectories are located on S : det(G, [G,F ]) = 0. The direction

of the adjoint vector p is obtained with p · G = 0 and using the previous

notation the singular control is us = −D′/D. One picks a reference singular

curve σs(t). In a C0-neighborhood of this curve we can choose coordinates

q = (x, y) such that: σ : t→ (t, 0) and G = ∂
∂y

. This leads to the following

semi-normal form:

ẋ = 1 + εy2 + . . . , ẏ = (u− us(x)) + . . . ,

where the terms . . . are not relevant in our study. Note if we relax the bound

|u| ≤ 1, we get the limit problem so that us(x) can be set to 0 using a

feedback transformation.

Clearly the optimality status of the reference singular arc can be imme-

diately deduced from this form. If ε < 0, we are in the hyperbolic case and

the singular direction is time minimizing in a C0-neighborhood of the refer-

ence singular extremal and time minimizing in the elliptic case. The adjoint

vector is oriented with the convention p · F > 0 and we deduce the standard

turnpike phenomenon characteristic of the hyperbolic situation, that is, pro-

vided |us| ≤ 1, the optimal policy is of the form σ±σsσ±. (Note it is valid

not only for small time). It is represented on Fig.2 in the (q, p) space. Of

course, this situation doesn’t cover the various situations encountered in the

applications. One important case being the saturation phenomenon where

|us| = 1, which will be discussed later.

Next we shall introduce the bridge phenomenon.
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u = +1

u = −1

singularΣ′

p ·G(q) < 0

p ·G(q) > 0

Figure 2: Fold case in the hyperbolic case in dimension 2 and the turnpike phenomenon

Connecting singular arcs: the bridge phenomenon. The aim of this para-

graph is to analyze the connection between singular extremals, extending

the previous classification. For the sake of the tutorial aspect we shall use a

planar semi-normal form.

Definition 4. A bridge is a bang arc σb connecting two singular arcs σ1
s , σ

2
s

so that σ1
sσ

bσ2
s is an admissible extremal curve.

Birth of the model. We consider the (limit) model:

ẋ = u, ẏ = 1− x2y

so that σ : (0, t) is a singular arc which is hyperbolic if y > 0 and elliptic if

y < 0. Using the notation q̇ = F + uG, singular trajectories are located on

S : det(G, [G,F ])(q) = 0 = {xy = 0}. Hence we have a ramification at (0, 0)

between two singular lines: the vertical axis which can be followed with the

control us = 0 and the horizontal axis which can be followed by the ”u =∞”

control.

To get our model we must bend this axis to make it tractable with a

singular control us →∞ when going to 0. This leads to the following.
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The (symmetric) bridge model. One takes

F = (1− x2y)
∂

∂y
, G = −(y − 1)

∂

∂x
+ x

∂

∂y
. (28)

The solutions of G are circles contained on (0, 1), note a parameter λ

can be introduced using 1 → λ. Also one takes the bound |u| ≤ 1, but an

additional parameter is |u| ≤M . Lie brackets computations give us.

Lemma 6. The singular set S : {q; det(G, [G,F ])(q) = 0} is the union of

the vertical axis (Oy) and the algebraic curve defined by: l(x, y) = x2(1 −

2y) + 2y3 − 4y2 + 2y + 1 = 0.

The equation l(x, y) = 0 is equivalent to x = ±
√

2y3−4y2+2y+1

2y−1
. The

intersection with the vertical axis x = 0 is (O, y0), y0 ' −0.297157.

We represent on Fig.3 the two singular trajectories: the set l = 0 denoted

L and the vertical axis (Oy) denoted L′.

D ·D′′<0

D ·D′′>0
y0

L

L′

y

x

det(
G,

[G
,F

])
=

0

Figure 3: (Oy) and L are two singular trajectories for the system (28) represented by two

continuous lines. The filled regions are the points where D ·D′′ > 0.

Further computations lead to.

Proposition 3. The vertical singular line L′ is hyperbolic for y > y0 and

elliptic for y < y0. The singular line L is hyperbolic and the singular control
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along L ∩ {x ≤ 0} is given by:

us(q) = −D
′(q)

D(q)
=
A

B

where A = −8y7 + 30y6 − 44y5 + 38y4 − 27y3 + 15y2 − 6y + 2 and B =√
(2y − 1)(2y3 − 4y2 + 2y + 1) (8y3 − 15y2 + 9y − 3).

We represent on Fig.4 this singular control showing in particular the

existence of two saturating points |u| = 1.

-1.0 -0.8 -0.6 -0.4

1.0

1.2

1.4

1.6

Figure 4: Singular control us for x < 0. There exists two saturating points.

To conclude, this leads to construct a bridge using a simple numeric sim-

ulation, see Fig.5, and an extremal solution which projects onto σ−σLσ
b
+σL′ ,

see Fig.6.

Note that time minimality can be analyzed using standard discussion,

moreover mathematical estimates can be obtained near (O, y0), making λ→

+∞ and M → +∞, see Fig.7 for the effect of λ→ +∞ so that y0 → 0 and

L tends to the horizontal axis.

Remark 4 (Geometric remark). Interaction between the two singular curves

is coded by the singularities of the flow q̇ = F (q)− D′(q)
D(q)

G(q) since D′+usD =

0. It can be analyzed using a time reparametrization using the dynamics:
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Figure 5: Time evolution of an extremal for the problem (28) of reaching the origin in

minimal time starting from (x(0), y(0)) = (−1,−1).

Figure 6: Trajectory associated to the extremal of Fig.5. σb
+ is a bridge connecting two

switching points of the singular set and the singular control saturates at the point Ssat.

27



det(G,F ) = 0

d
et(G

,[G
,F

])
=

0

L

D ·D′′ < 0

D ·D′′ < 0

D ·D′′ > 0

Figure 7: (Oy) and L corresponding singular trajectories for the system (28) where G is

replaced by G = −(y − λ) ∂
∂x + x ∂

∂y and λ = 200. The dash-dotted curve corresponds to

the collinearity set. The filled regions are the points where D ·D′′ > 0.

q̇ = D(q)F (q) − D′(q)G(q), with singular equilibrium in D = D′ = 0. This

geometric remark is crucial for the extension to the non planar case.

4. Time minimal synthesis near the terminal manifold

The basic technical study applicable to chemical batch reactions was de-

veloped in the series of papers [7, 11, 10, 9, 24]. The problem is the following.

Consider the system: q̇ = F (q) + uG(q), |u| ≤ 1 with terminal manifold

N = f−1(0) where f : Rn → R is a submersion. One consider the following

local problem: take q0 ∈ N , compute, in a small neighborhood U of q0 (the

size of U is not a priori known), the optimal closed control u∗(q) to steer

(staying in U) from q ∈ N to N ∩ U , in minimum time. Such a problem is

called the local time minimal synthesis, with terminal manifold. Note that

a lot of central work in this area was done in the 80′s, see [31, 25, 13] when
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the terminal manifold is a point, to classify in small dimension the optimal

synthesis in relation with the Lie algebraic structure of (F,G) at the given

point q0. If all those contributions are valuable in our study, we shall make

the computation explicit in the case where the terminal manifold N : f = 0

is of codimension one and using also different tools, that is the construction

of semi-normal forms for the action of the pseudo-group G formed by local

diffeomorphism and feedback transformation u→ −u (so that σ+ and σ− can

be exchanged). This technique is coming from singularity theory, see [26] for

a useful introduction of this area. Note we shall work in the Ck−category,

where k ≥ 1 will not be precised and the semi-normal form is related to a

semi-algebraic stratification on the jets spaces of (F,G,N). One needs to

introduce some definitions and concepts.

4.1. Notations and definitions

Note that for chemical systems N : c1 = d and the chemical species

are such that c1(0) < d. Hence, denotes in general N⊥ = {(p, v); p · v =

0,∀v ∈ TqN}. Let n be the normal to N oriented as the outward normal to

N (using the chemical model). Let z = (q, p) be a BC-extremal, t ∈ [tf , 0],

tf < 0 (since we integrate backwards from the terminal manifold). A time

s is called switching time if s belongs to the closure of the switching time

on [tf , 0] (in the general setting, switches can accumulate due to the Fuller

phenomenon [23]). We shall denote by K the switching points and by W the

set of switching points for minimizing curves. If W is stratified, a stratum

is of the first kind if the optimal trajectories are tangent and of the second

kind if they are transverse. The splitting locus L is the set of points where

the optimal control is not unique and the cut locus C is the closure of the set
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of points where the optimal trajectory loses its optimality. The reader can

refer to [3], [14] and [31] for the details and results about the concepts in the

frame of semi-analytic geometry.

Next one needs concepts from singularity theory.

Concepts and definitions. F,G and N are in the Cw-category, N = f−1(0), f

submersion. The set of triplet (F,G, f) is endowed with C∞-Whitney topol-

ogy. We denote by jkF (q0) (resp. jkG(q0), jkf(q0)) the k-jet of F (resp. G,

f) that is the Taylor expansion at order k. We say that the system (G,F, f)

has at q0 a singularity of codimension i if jkF (q0), jkG(q0), jkf(q0) ∈ Σi := a

semi-algebraic submanifold of codimension i in the jet space.

Taking a point q0 with a singularity of codimension i, an unfolding is a

C0-change of coordinates φ near q0 such that (small) time minimal synthesis

is described by a system ˙̄x = F (x̄, λ) + uG(x̄, λ) , |u| ≤ 1, x̄ ∈ Rn−m and λ

is a parameter.

4.2. Local syntheses

We shall present the main step to compute the time minimal synthesis

and thanks to the concept of unfoldings we shall restrict our study to the

3-dimensional case, which is also the situation corresponding to our test bed

cases. The system is written q̇ = F (q) + uG(q), |u| ≤ 1 and let q = (x, y, z)

be the coordinates. The terminal manifold is N and we suppose that the

problem is flat that is G being identified to ∂
∂z

and G is tangent everywhere

to N . If n is normal to N , outwardly oriented, we introduce the following to

stratify the terminal manifold.

• S: singular locus defined by {q ∈ N ; n · [G,F ](q) = 0},
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• E : exceptional locus defined by {q ∈ N ; n · F (q) = 0}.

Note that since the problem is flat: n ·G(q) = 0 if q ∈ N , that is N⊥ ⊂ Σ :

switching surface.

4.2.1. Generic case

Take q0 ∈ N, q0 /∈ S, q0 /∈ E , then (n, q0) is an ordinary switching point

and according to section 3.2.5, near q0 every BC-extremal is of the form σ+

if n · [G,F ](q0) < 0 and of the form σ− if n · [G,F ](q0) > 0. This gives the

local synthesis.

4.2.2. Generic hyperbolic singular case

One can take q0 = 0 and we make the following assumptions at 0.

• The tangent space to N at 0 is G(0), [G,F ](0).

• The set of points L where [G,F ] is tangent to N is a simple curve

passing to 0 and transverse to G.

• D(0) and D′′(0) are non zero.

With those assumptions, through 0, there exists a single BC-extremal

denoted σ̂ transverse to N . Near 0 one can make the following normalization

(that is using adapted coordinates): G being identified to ∂
∂z

, L to the axis

(Oy) and σ̂ can be identified to: t0 : t → (t, 0, 0) with image being the

(Ox)-axis. Note that the target is identified to x = 0. The system is written
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as:

ẋ = 1 +
∑
i+j>0

aij(x)yizj

ẏ = 1 +
∑
i+j>0

bij(x)yizj

ż = (u− û(x)) +
∑
i+j>0

cij(x)yizj

where û(x) is the singular control associated to σ̂. One further normalization

leads to take [G,F ]|σ̂ = [G,F ](0). Here we obtain a semi-normal form:

ẋ = 1 + a(x)z2 + 2b(x)yz + c(x)y2 + ε1

ẏ = d(x)y + e(0)z + ε2

ż = (u− û(x)) + f(x)y + g(0)z + ε3

with b(0) = 0, e(0) 6= 0 and ε1 (resp. ε2, ε3) are terms of order ≥ 3 (resp.

≥ 2) in y, z.

Computing, one has n · [F,G](0) = 2a(0). We assume:

• a(0) < 0 (hence the singular arc is hyperbolic) and moreover û(0) ∈

]− 1,+1[ that is the singular arc is strictly admissible.

Hence (q0, n) is an hyperbolic fold point and using 3.2.5 an extremal near

such a point is σ±σsσ±. Moreover arcs σ+ and σ− are defined on [tf , 0]

such that σ+(0), σ−(0) near q0 are σ+ in the domain z < 0 and σ− in

the domain z > 0 and are not intersecting since ż ∼ (u − û(0)), hence:

z(t) = (ε − û(0)) t + s, s = z(0) and ε = ±1. Using the normalization, one

can evaluate the switches of BC-arc σ+ and σ− for t < 0. One has:

p1(t) = 1 + o(1), p2(t) = o(1),

ṗ3(t) ∼ −2a(0)p1 + (ε− û(0)) z + . . . .
(29)
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Hence, we have p3(t) ∼ −2 a(0)t ((ε− û(0)) t/2 + s) + o(s, t). Using εs < 0,

one gets that p3(t) is not vanishing for t < 0. Hence we deduce the following

which gives the C0-unfolding.

Proposition 4. Under arc assumptions near 0, the optimal synthesis is de-

scribed by the model: ẋ = 1+a(0)z2, ẏ = 0, ż = (u− û(0)) and is represented

in each invariant plane y = constant by Fig.8.

σ−

σ−

σ−

σs

N ∩ y = constant

σ+

σ+

σ+

Figure 8: Hyperbolic case. |û(0)| < 1.

Assume now that û(0) /∈] − 1,+1[ then P = (q0, n) is a parabolic fold

point and the synthesis can be again deduced from our normalizations. Each

extremal is bang-bang with at most two switchings, and one is located at the

terminal point on N .

Using the previous estimates one can compute the optimal switching locus

W− near N and the optimal synthesis is represented on Fig.9 in an invariant

plane y = constant.

Saturate case. One shall briefly present the transition between the hyperbolic

and parabolic case due to the saturation of the control |û(0)| = 1, see [10]
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σ−

W−
σ+

σ0
+

σ+

0
N ∩ y =constant

Figure 9: Parabolic case: û(0) ∈]− 1, 1[.

σ− N

σ+

σs

N
σ−

σ− σ−

σ+
σ+

σ+

σs

σ−
W+

K+

N
σ−

σ−

σ+

σ+

σs

y = constant < 0 y = 0 y = constant > 0

Figure 10: Saturation case: Case 1: ûx(0) > 0.

for a complete study. From our previous analysis the model is:

ẋ = 1 + a(x)z2 + 2b(x)yz + c(x)y2

ẏ = d(x)y + c(0)z

ż = (u− 1)− ûxx− ûyy

with a(0) < 0, b 6= 0 and ûx = ∂û
∂x

(0), ûy = ∂û
∂y

(0) and ûx, ûy are generically

non zero and we may assume ûy > 0. Computations lead to the two cases

represented in Figs.10-11.

Note that the existence of two syntheses is discriminated by vanishing

(case 2) and the vanishing (case 1) of the singular curve.
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W+ N

σs

σ+

σ+
σ+

σ−
σ−

σ−

σ−
σ−

σ−

σ−
σ−

σ− N

σ+

W+

σ−

σ−

σ−

σ+

W+

N

y = constant < 0, v0 < vsat y = 0, v0 = vsat y = constant > 0, v0 > vsat

Figure 11: Saturation case: Case 2: ûx(0) < 0.

E0 σ−

N

E0

σ−
N

σ−

Case 1: v0 < v− Case 2: v0 > v−

Figure 12: Local synthesis near E0 = E ∩ (v = v0) in the leaf v = v0 when α > 1.

4.2.3. The exceptional case

The exceptional case corresponds either to bad controllability properties

of the system, related to singular arcs or bad accessibility property of the

target. We made a concise presentation related to our study for chemical

systems, see [24] for the details.

The generic case. It is a situation with (minimal) contact one of bang arcs

with the target manifold. In this case, restricting to a planar case thanks to

the concept of unfoldings we have two cases represented on Fig.12 obtained

by obvious topological analysis. We note E0 the point where arcs σ+, σ− are

tangent. In the case 2, the black domain represents the set of the domain

with no optimal trajectory.
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c1

v

Eσ−
σ−

σ−

σ−
σ−
σ−

E−

A1
v−O

Figure 13: Contact order 2. Non accessible points: grey region, E−: accessible. Local

synthesis near E−.

σ+

σ+
σ+

O

c1

v
A1

E+

E

Figure 14: Contact order 2. Non accessible points: grey region, E+: non accessible.

Local synthesis near E+.

The codimension one case. The situation is more intricate, since we cannot

use a planar invariant foliation. We have several cases corresponding to two

situations.

Situation 1. Bang arc with a contact of order two with the target at a point

of E . We have two cases represented on Fig.13-14.

Situation 2. It concerns E ∩ S which is a singular arc tangent to N and

according to our classification it concerns a singular exceptional arc.

This complicated case is discussed in [24].
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5. Application to the two test bed cases

5.1. The case A
k1−→ B

k2−→ C

The system q̇ = F (q) + uG(q), using the coordinates q = (x, c2, v), x =

ln c1 takes the form

ẋ = −v

ċ2 = vex − βvαc2

v̇ = u

(30)

and in the coordinates q = (x, y, v) y = c2/c1 one gets

ẋ = −v

ẏ = v − βvαy + vy

v̇ = u.

(31)

It is integrated on [tf , 0] together with the adjoint equation:

ṗ = −p
(
∂F

∂q
(q) + u

∂G

∂q
(q)

)
.

Without losing any generality one may assume |u| ≤ 1.

5.1.1. Lie brackets computations

One uses the coordinates q = (x, y, v) and we get:

F (q) = −v ∂
∂x

+ (v − βvαy + vy) ∂
∂y

, G(q) = ∂
∂v

,

[G,F ](q) = ∂
∂x

+ (−1 + αβvα−1y − y) ∂
∂y

,

[[G,F ] , F ] (q) = (α− 1)βvα ∂
∂y

,

[[G,F ] , G] (q) = α(α− 1)βvα−2y ∂
∂y

.
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5.1.2. Singular arcs

Recall

D(q) = det(G(q), [G,F ](q), [[G,F ] , G] (q)) ,

D′(q) = det(G(q), [G,F ](q), [[G,F ] , F ] (q)) ,

D′′(q) = det(G(q), [G,F ](q), F (q)).

(32)

and the singular control is defined by: D′(q) + us(q)D(q) = 0.

Hence,

Lemma 7. We have D(q) = α(α− 1)βvα−2y, D′(q) = (α− 1)βvα, D′′(q) =

(α− 1)βvαy, so that,

1) The singular control is given by us = −v2/(αy) and is negative. More-

over v decreases along a singular arc. The singular control saturates at

S : v2/(αy) = 1

2) The singular trajectories are hyperbolic.

One needs also

Lemma 8. Let z(·) = (q(·), p(·)) be a BC-extremal on [tf , 0] in the coor-

dinates q = (x, c2, 0) so that p(0) = (0, 1, 0). Then at any t < 0 one has

p1(t) > 0 and p2(t) > 0.

Proof. The adjoint equation gives

ṗ1 = −p2ve
x, ṗ2 = p2βv

α

and the result follows.

Lemma 9. Along a BC-singular extremal one has with α > 1, ċ2 > 0 and c2

increases.
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Proof. From Lemma 8, in the coordinates q = (x, c2, 0), one has p1(t) > 0

and p2(t) > 0 for any t < 0 and eventually p1(0) = 0, p2(0) = 1. Using

p · [G,F ](q) = 0 we get the relation:

p1 = p2(c1 − αβvα−1c2)

and for t < 0, p1 > 0, p2 > 0, hence we obtain

c1 − αβvα−1c2 > 0 (33)

and we have

ċ2 = v(c1 − βvα−1c2). (34)

Since α > 1, (33) implies that the right member of (34) is positive. The

result is also true at the final time if (eventually) c2 belongs to c2 = d since

the intersection E ∩ S = ∅ with E : n · F (q) = 0, S : n · [G,F ](q) = 0.

5.1.3. Properties of the switching function

In this section we use the coordinates q = (x, y, v) and we consider the

switching function: Φ(t) = p(t) ·G(q(t)) along an extremal z(·) = (q(·), p(·))

on [tf , 0]. Computing one has:

Lemma 10. If z(·) is smooth, one has Φ̈(t) = p2(t)(α− 1)βvα−2 (v2 + uαy).

If z(·) is a BC-extremal, p2(t) > 0 on [tf , 0]. Hence if u = +1 (resp. −1),

Φ̈(t) is strictly convex (resp. concave) if α > 1 (resp. α < 1).

Corollary 1. If σ+ is BC arc on [t1, t2] and if t2 is a switching time then t1

cannot be a switching time.

Proof. Assume t1, t2 be switching times. Then one must have

Φ̇(t1) ≥ 0 and Φ̈(t2) ≤ 0.
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A contradiction since Φ̈(t) 6= 0 from Lemma 10.

Lemma 11. Let σ− be an extremal on [t2, t3]. Assume ẏ(t2) > 0 then ẏ(t) > 0

for t ≥ t2, assuming α > 1.

Proof. One has:

ẏ = v
(
1− βvα−1y + y

)
and assume there exists τ ′, ẏ(t) > 0 for t < τ ′, ẏ(τ ′) = 0 and ẏ(τ) < 0 for

[τ ′, τ ]. Differentiating and evaluating at τ ′ one has

ÿ(τ ′) = v
(
−(α− 1)βyvα−2v̇ + 1

)
with v̇ = −1 along σ−. Hence since α > 1, ÿ(τ ′) > 0. A contradiction.

Lemma 12. A sequence σsσ− with non empty subarc cannot exist for a BC-

extremal if α > 1.

Proof. Assume such a sequence exists with σs on [t1, t2] and σ− on [t2, t3].

One has the relations:

Φ(t2) = Φ̇(t2) = 0, Φ(t3) = 0.

Since Φ(t2) = Φ(t3) = 0, from Rolle’s theorem, there exists t2 < t′2 < t3 such

that Φ̇(t′2) = 0.

Using Rolle’s theorem again with Φ̇(t2) = Φ̇(t′2), there exists t2 < t′′2 < t′2

such that Φ̈(t′′2) = 0.

Note that from Lemma 7 and Lemma 10 one has along σ−:

Φ̈(t) =
p2(t)(α− 1)βvα−2

αy
(−1− us)

with us = −v2/(αy).
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Hence if Φ̈(t′′2) = 0 one has us(t
′′
2) = −1 and σ− meets the saturating set

S : us = −1.

At the junction time t2 between σs and σ−, one has us(t2) ≥ −1, ċ2(t2) > 0

from Lemma 9 and along σ− : ẏ = ċ2/c1 + c2/c1 v ≥ 0 and v̇ < 0.

Moreover along σ−, sign Φ̈(t) = sign (−1−us), since ẏ ≥ 0, v̇ ≤ 0, −1−us
is a decreasing function of time.

Since Φ̈(t2) ≤ 0 it turns out that for t ∈]t2, t3[ one has Φ̈(t2) < 0.

This contradicts Φ̈(t′′2) > 0 for t′′2 > t2.

From Corollary 1 and Lemma 12 we deduce.

Theorem 5 (α > 1). Every optimal trajectory has at most two swtichings

and is of the form σ+σ−σs where each arc of the sequence can be empty.

5.1.4. Local optimal synthesis near N , the case α < 1

It will be easily follows from the classification of Section 4.1. We represent

on Fig.15 the stratification of the terminal manifold by S : n · [G,F ](q) = 0

and E : n · F (q) = 0.
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ES

u = +1

E+

A1O
v

c1

Figure 15: Stratification of the terminal manifold N for α < 1. Non-accessible points are

in the filled region and on the dotted-line of E .

The optimal policy near N is σ+. Using Lemma 10, Corollary 1 we

conclude:

Theorem 6. In the case α < 1, the optimal policy is σ+.

5.1.5. Local optimal synthesis near N , the case α > 1

Again we use the classification of Section 4.1 but the situation is more

intricate. It is represented on Fig.16 and we refer to Section 4.1 for the

corresponding figures.

• Singular hyperbolic arcs reaching the manifold are on S and we have a

saturating point where us = −1.

• The boundary of the accessibility set is associated to E , with E− acces-

sible.

The global optimal policy follows from Theorem 5: an optimal trajectory

being of the form σ+σ−σs where each arc of the sequence can be empty. It
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E−
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S

E

v

u = −1

parabolic

hyperbolic

u = +1

v−

Figure 16: Stratification of the manifold N for α > 1. Non-accessible points are in the

filled region and on the dotted-line of E and points on E− are accessible.

can be numerically obtained, integrating backwards on [tf , 0] using the local

synthesis resolution of our analysis.

• Near a point E0 6= E− of E , the optimal synthesis is described by a C0

invariant foliation F : (v = v0) the leaves of which are given by Fig.12;

near E− there is no such foliation and the synthesis is given by Fig.13.

• Near the point Ssat of S, the optimal synthesis is given by Fig.11.

5.2. The McKeithan scheme and the computational complexity

Recall that the network is T +M B Ck1 k2

k3

k4

and the system q̇ =

F (q) + uG(q), using the coordinates q = (x, y, v), x = [A], y = [B], v = k1

and reduced to the stoichiometric class T +M +A = δ1 and T +M +B = δ2

takes the form

ẋ = −β2xv
α2 − β3xv

α3 − δ3v (x+ y) + δ4v + v (x+ y)2

ẏ = β2xv
α2 − β4yv

α4
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with 0 ≤ x ≤ δ1, 0 ≤ y ≤ δ2, δ3 = δ1 + δ2, δ4 = δ1 δ2, k2 = β2 v
α2 , k3 = β3 v

α3 ,

k4 = β4 v
α4 .

5.3. Lie brackets computations

One gets:

• F =
(
−β2xv

α2 −β3xv
α3 − δ3v(x+ y) + δ4v+ v (x+ y)2

)
∂
∂x

+
(
β2xv

α2 −

β4yv
α4
)
∂
∂y

,

• G = ∂
∂v

,

• [G,F ] =
(
x(α2β2v

α2−1 +α3β3v
α3−1 +δ3)+δ3y−δ4−x2−2xy−y2

)
∂
∂x

+(
α4β4yv

α4−1 − α2β2xv
α2−1

)
∂
∂y

,

• [[G,F ] , G] =
(
x(α2β2(α2−1)vα2−2+α3β3(α3−1)vα3−2)

)
∂
∂x

+
(
yα4β4(α4−

1)vα4−2 − xα2β2(α2 − 1)vα2−2
)
∂
∂y

,

• [[G,F ]F ] =
(
− xvα2β2δ3(α2 − 1) − yvα2β2δ3(α2 − 1) + vα2(α2β2δ4 +

xy(2α2β2−2β2)−β2δ4)+x2(α2β2−β2)vα2+y2(α2β2−β2)vα2+yvα3(β3δ3−

α3β3δ3) + vα3(α3β3δ4 − β3δ4) + x2(β3 − α3β3)vα3 + y2(α3β3 − β3)vα3 +

yvα4(α4β4δ3 − β4δ3) + xy(2β4 − 2α4β4)vα4 + y2(2β4 − 2α4β4)vα4
)
∂
∂x

+(
x(vα2+α3−1(α2β2β3−α3β2β3)+vα2+α4−1(α4β2β4−α2β2β4))+xvα2(α2β2δ3−

β2δ3) + yvα2(α2β2δ3−β2δ3) + vα2(−α2β2δ4 +xy(2β2− 2α2β2) +β2δ4) +

x2(β2 − α2β2)vα2 + y2(β2 − α2β2)vα2
)
∂
∂y

.

5.4. Singular arcs

One has:
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• D(q) = ((α4−1)α4β4yv
α4−3−(α2−1)α2β2xv

α2−3)(α2β2xv
α2+α3β3xv

α3+

δ3v(x + y) − δ4v − vx2 − 2vxy − vy2) + x(α2
2β2v

α2 − α2β2v
α2 + (α3 −

1)α3β3v
α3)(α2β2xv

α2−3 − α4β4yv
α4−3),

• D′(q) = β2v
α2−2(α2β2xv

α2 +α3β3xv
α3 +δ3v(x+y)−δ4v−vx2−2vxy−

vy2)(α2β3xv
α3 −α2β4xv

α4 + (α2− 1)δ3v(x+ y) + δ4(v−α2v)−α2vx
2−

2α2vxy−α2vy
2−α3β3xv

α3+α4β4xv
α4+vx2+2vxy+vy2)+(α2β2xv

α2−1−

α4β4yv
α4−1)((α2−1)β2v

α2(δ4−(x+y)(δ3−x−y))+(α3−1)β3v
α3(y(y−

δ3) + δ4 − x2) + (α4 − 1)β4yv
α4(δ3 − 2(x+ y))),

• D′′(q) = (β2xv
α2−1 − β4yv

α4−1)(α2β2xv
α2 + α3β3xv

α3 + δ3v(x + y) −

δ4v−vx2−2vxy−vy2)− (α2β2xv
α2−1−α4β4yv

α4−1)(β2xv
α2 +β3xv

α3 +

δ3v(x+ y)− δ4v − vx2 − 2vxy − vy2),

and the singular control is given by: us = −D′(q)/D(q).

5.4.1. Stratification of the terminal manifold: x = d

Singular locus. S : n · [G,F ](q) = 0 and x = d with n = (1, 0, 0). It is given

by:

S : α2β2dv
α2−1 + α3β3dv

α3−1 + dδ3 − δ4

− d2 + y(δ3 − 2d)− y2 = 0.
(35)

Denoting by ∆ the discriminant of the polynomial function y 7→ n · [G,F ](q),

a singularity can occur for ∆ = 0.

One has

Lemma 13. Assume αi, βi, δi > 0, i=1,2 and d, v > 0. Then we have ∆ =

(δ1 − δ2)2 + 4d (α2β2v
α2−1 + α3β3v

α3−1) > 0 so that there is no ramification

and S contains at most two real positive branches.
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v

Figure 17: Stratification of the surface x = d for the McKeithan reaction. Dotted line:

elliptic, red line: hyperbolic.

Definition 5. A semi-bridge occurs at a point q ∈ S if n · [[G,F ] , G] (q) = 0.

Computing, a semi-bridge occurs if vα3−α2 = − (α2−1)α2β2
(α3−1)α3β3

.

Exceptional locus. It is given by E : n ·F (q) = 0 and x = d. Computing, one

gets:

E : −β2dv
α2 − β3dv

α3 + d2v − dδ3v

+ y (2dv − δ3v) + δ4v + vy2 = 0.
(36)

The discriminant of the polynomial n·X(q) in y is ∆ = v (4d(β2v
α2 + β3v

α3) + v(δ1 − δ2)2) >

0 and E contains at most two real positive branches.

Fig.17 gives a picture of stratification of x = d for the McKeithan system

with a focus where S is folded.

Outline of the normalization. We choose the coordinates q = (x, y, z), the

point q0 is (0, 0, 0) so that the system q̇ = F (q) +uG(q), |u| ≤ 1 is such that

N : {x = 0}, G = ∂
∂z

and we have the following:

• the set S ∩N : n · [G,F ] (q) = 0, x = 0 is y = z2,
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• the point q0 satisfies n · [[G,F ] , G] (q0) = 0 and n · [[G,F ], F ](q0) 6= 0,

• let σ be the trajectory associated to u = 0 defined on [tf , 0] with

σ(0) = 0. Then F = ∂
∂x |σ.

We write

ẋ = 1 + a y + b yz + c z3 + ε1(x, y),

ẏ = d z + ε2(x, y, z),

ż = u+ ε3(x, y, z)

(37)

where ε1(x, y, z) =
∑

i≥1 ai(x) yi, a1(0) = 0, ε2(x, y, z) =
∑

i+j≥1 bij(x) yizj, b01(0) =

0, ε3(x, y, z) =
∑

i+j≥1 cij(x) yizj.

We have

n · [G,F ](q) = −b y − 3c z2,

n · [[G,F ], G](q0) = 0,

n · [[G,F ], F ](q0) = a d.

Moreover, along S we have D(q) · D′′(q) = −6cd2 z + o(‖z‖) + O(‖x‖) and

the singular control is given by

us(q) =
a d

6 c

1

z
+ o(‖1/z‖) +O(‖x‖).

Since the system (F,G,N) is normalized, we have

b = −3 c 6= 0, d 6= 0, a 6= 0.

Also in a neighborhood of q0 and along S, we can choose c > 0 so that the

set S splits into hyperbolic for z < 0 and elliptic for z > 0.

Fig.18 gives the stratification of N near the q0 for the system (37) where

a = 1, c = 1, b = −3, d = 1 and |u| ≤ 5 and where the terms εi, i = 1, 2, 3

are zeros.
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Figure 18: Stratification of N for the system (37). Green dotted line: elliptic, red line:

hyperbolic, crosses: saturating values of the singular control.

6. Conclusion

In this article, we have presented the mathematical tools from geomet-

ric optimal control to maximize the production of chemical networks using

temperature control with applications to two test-bed cases concerning two

reactions schemes.

A brief recap of the dynamics is presented at constant temperature using

the Feinberg-Horn-Jackson graph and is shown to be simple using the zero

deficiency assumption.

The optimal control problem is analyzed in the frame of singularity theory

and a first crucial step is to make the calculation of the closed loop optimal

control for a time minimal control problem for which the terminal manifold

is of codimension one and for a single input system. A classification of the
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optimal syntheses is presented based on generic assumptions on Lie brackets

relations. It is obtained from on explicit computations using adapted coor-

dinates to simplify the calculations which amount to compute semi-normal

form.

This approach is shown to be relevant to applications, since the clas-

sification can be used for different chemical network. It is tested on two

important schemes for applications: a sequence of two irreversible reactions

and the McKeithan scheme. The classification presented in this article allows

to completely solve the first case and has to be completed to make a complete

analysis of the McKeithan scheme. Such completion is a good exercise for

the reader to check if the tutorial objective of this article is fulfilled.

Additionally, for the first case a complete global solution of the problem

is obtained based on a description of the (global) switching policy. For the

McKeithan network, there is a serious difficulty to fulfill this scope which

is revealed by the complexity of the singular flow, which contains in par-

ticular many singularities. They have to be analyzed in relation with the

bridge phenomenon and the existence of equilibria. This is an important and

challenging mathematical problem.

Note also that the graph structure of the network is not exploited directly

in the optimal problem. It can be an important issue to handle the compu-

tational analysis of the Lie algebra structure associated to the system, which

is crucial to understand the optimal control problem. This paves the road

for further studies to deal in particular with nonzero deficiency network.
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synthèses temps minimales avec cible de codimension un et applications,

Annales de l’I.H.P. Analyse non linéaire 14 no.1 (1997) 55–102.
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