Hayette Gatfaoui 
email: hgatfaoui@gmail.com
  
Diversifying portfolios of U.S. stocks with crude oil and natural gas: A regime-dependent optimization with several risk measures

Keywords: Copula, Energy commodity, Portfolio optimization, Stock market, Tail risk. JEL codes: C16, C32, D81

We build a portfolio encompassing U.S. crude oil, natural gas and stocks to study the diversification power of energy commodities. Such diversification power depends on the joint dependence structure of the three types of assets. According to Gatfaoui (2016a), the dependence structure is time-varying because individual asset returns exhibit several variance regimes. We identify the corresponding regime-specific multivariate copulas, and incorporate them to wellchosen risk measures. Specifically, we minimize the portfolio's variance, semi-variance and tail risk, in the presence and the absence of constraints on the portfolio's expected return and/or stock investment. First, the return constraint reduces the performance of the optimal portfolio. Second, the regime-specific portfolio optimization implements an enhanced active management strategy over the whole sample period. Finally, the tail-risk optimal portfolio offers the most interesting risk-return tradeoff. However, variance and semi-variance optimal portfolios can also be considered in the absence of a return constraint.

Introduction

Energy commodities are of interest to both the government and several parties acting in financial markets. From the viewpoint of countries and governments, energy prices are crucial to the economic development, and raise concerns about energy vulnerability (e.g. energy shortages and costs). Energy price uncertainty, such as price upsurges, can severely impair energy firms as well as energy consumers, and therefore economic activity. From the viewpoint of financial markets, commodity and commodity derivatives markets are useful to energy producers and consumers as well as portfolio managers. They play an important role in related risk-sharing processes. As a result, energy commodities have become an asset class, which is widely used for diversification, hedging or speculation prospects (de Roon et al., 2000;[START_REF] Gorton | Facts and Fantasies about Commodity Futures[END_REF][START_REF] Jorion | Firm Value and Hedging: Evidence from U.S. Oil and Gas Producers[END_REF]. According to the United States (U.S.) Commodity Futures Trading Commission,1 the notional value of commodity index investments has evolved from $39.6/$11.4

Billion on December 31 st , 2007 to $33.9/$14.3 Billion on January 31 st , 2013 with respect to WTI crude oil and natural gas markets.2 Moreover, energy and financial markets are known to interact to a large extent, and exhibit a joint dependency [START_REF] Barsky | Oil and the Macroeconomy Since the 1970s[END_REF][START_REF] Hamilton | Historical Causes of Postwar Oil Shocks and Recessions[END_REF][START_REF] Kilian | Not All Oil Price Shocks are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market[END_REF].

The proposed research tackles the interaction between the U.S. stock, natural gas, and crude oil markets as well as its significance to portfolio management. Specifically, energy markets are known to interact with the stock market, so that crude oil and natural gas commodity assets play a diversifying role in stock portfolios. The incorporation of such commodity assets into stock portfolios contributes to mitigate the loss risk of the resulting portfolios. However, such diversifying role depends on the dependence structure between crude oil, natural gas and stocks.

We aim at studying how the dependence structure between U.S. crude oil, natural gas and stocks evolves over time, and its impact on the diversifying role of commodity assets in stock portfolios.

For this purpose, we consider a portfolio composed of the U.S. natural gas and crude oil as well as the Standard and Poor's 500 index (as a portfolio proxy for U.S. large-cap stocks), from January 1997 to October 2017. The Standard and Poor's 1500, Standard and Poor's MidCap 400 and Standard and Poor's SmallCap 600 indexes are also considered as a proxy of the U.S. global, midcap and small-cap stock markets respectively. Thus, we study the diversifying role of energy commodities in global, large-cap, mid-cap and small-cap stock portfolios. We build our study on the findings of Gatfaoui (2016a). The author studies the three-dimensional dependence structure between the U.S. stock, crude oil, and natural gas markets from January 1997 to January 2013. Her findings highlight that the three markets exhibit structural changes/breaks over time, so that the U.S. stock, crude oil, and natural gas returns display all several variance regimes (e.g. alternating periods of low, medium and high variance of returns). Because of these multiple variance regimes, the resulting multivariate dependence structure is time-varying, and exhibits regime switches (i.e.

individual variance regimes translate into numerous multivariate variance regimes). Therefore, the three-dimensional dependence structure between U.S. crude oil, natural gas and stocks is described by different copula functions across variance regimes. Such representative copulas exhibit numerous tail dependences (i.e. none, symmetric, upper and lower tail dependence across regimes), and various asset correlations (i.e. alternating positive and negative correlations over time). In this light, tail dependency is of huge significance to portfolio risk managers because it describes the dependence between the extreme returns of portfolio assets. For example, when the three-dimensional dependence structure exhibits positive lower tail dependence, the extreme negative returns of all asset components are positively correlated. Thus, the portfolio's risk of loss is substantial, and risk mitigation can become ineffective.

Our contributions extend previous study to portfolio management, and cover a larger time window. In particular, we scrutinize practical implications for portfolio optimization across variance regimes. First, we use the methodology of Gatfaoui (2016a) to identify the regimeswitching dependence structure between U.S. crude oil, natural gas and Standard and Poor's 500 index returns over time. Such study yields optimal three-dimensional copula representations, which are specific to the detected variance regimes. Findings highlight successive upper, nonexistent, and symmetric tail dependence over the sample horizon (i.e. Gumbel, Gaussian and Student T copulas respectively). Tail dependency is of huge significance to portfolio risk managers since it highlights the joint dependence between the extreme returns of the portfolio's assets. In particular, the nature of the multivariate dependence structure drives the portfolio's performance over the investment horizon. Second, we build a portfolio composed of the U.S. crude oil, natural gas and Standard and Poor's 500 index (as a stock portfolio proxy). Using the regime-specific copulas, we determine the optimal composition of the three-asset portfolio over each variance regime. The optimal portfolio composition is obtained while minimizing various risk measures, such as variance, semi-variance and tail risk. Then, we compare the attributes and performance of the measure-specific optimal portfolios across regimes. We are thus able to gauge the diversifying role of commodities as a function of the dependence structure and the risk metrics in use (i.e. regime-specific diversification performance). Moreover, the same study is also undertaken three more times while replacing successively Standard and Poor's 500 index with Standard and Poor's 1500, MidCap 400 and SmallCap 600 indexes. In this light, our added value is threefold. First, we propose a better way to identify a reduced number of variance regimes over a larger time window.

Second, we employ the regime-switching dependence structure between crude oil, natural gas and Standard and Poor's 500 index (or Standard and Poor's 1500, MidCap 400, SmallCap 600 index) to study the diversifying role of commodities in stock portfolios. We assess the diversifying role of commodities in global market, large-cap, mid-cap and small-cap stock portfolios. Third, considering a portfolio composed of U.S. crude oil, natural gas and stocks, we use the timevarying dependence structure of the three asset components to determine the optimal portfolio composition across variance regimes. For this purpose, we consider several risk measures and various minimization constraints. The risk measures under consideration consist of the variance, semi-variance (e.g. downside variance) and tail risk (i.e. probability of underperforming a specified return threshold). All risk metrics are computed while incorporating the regime-specific multivariate copulas across the referenced variance regimes. And, portfolio optimization is implemented while minimizing these risk measures. Thus, we exploit the diversification power of energy commodities while minimizing the portfolio's (loss) risk. Such regime-specific analysis allows for implementing an active portfolio management strategy, which handles a potential dependence between the extreme returns of portfolio assets. An efficient strategy should rely on tail risk minimization. However, it can also rely on variance and semi-variance minimization in the absence of constraint on the portfolio's expected return. Lastly, the diversification power of energy commodities is often the most effective for SPMidCap 400 stock index portfolios.

The remainder of the paper is organized as follows. Section 2 summarizes the literature review. Section 3 introduces stock (i.e. SP500) and energy market data, and recalls data attributes. This section displays key statistics, and describes regime-specific multivariate dependencies (i.e. copula functions). Using the identified dependence structures, section 4 implements portfolio optimization under various risk management schemes. We focus on stock portfolios, which are diversified with holdings in both natural gas and crude oil assets. A performance diagnostic scrutinizes the risk and return tradeoff of corresponding optimal portfolios, and therefore the diversifying effectiveness of commodity assets. Section 6 extends the previous study to U.S. global market, mid-cap and small-cap stock portfolios. Finally, section 7 concludes and proposes possible future extensions.

Literature review

We introduce acknowledged links between the U.S. stock market, crude oil and natural gas.

We also highlight the recent role of energy commodities as portfolio diversifiers.

Index commodity trading favors the integration of stock and commodity markets [START_REF] Domanski | Financial investors and commodity markets[END_REF][START_REF] Silvennoinen | Financialization, crisis and commodity correlation dynamics[END_REF][START_REF] Tang | Index investment and financialization of commodities[END_REF]. It also enforces comovements between stock and commodity prices. Such pattern supports the reported price/return correlation between these two asset classes, and within the commodity asset class [START_REF] Eckaus | The Oil Price Really is a Speculative Bubble[END_REF][START_REF] Falkowski | Financialization of commodities[END_REF][START_REF] Kilian | Not All Oil Price Shocks are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market[END_REF][START_REF] Kilian | The Impact of Oil Price Shocks on the U.S. Stock Market[END_REF][START_REF] Parsons | Black Gold and Fool's Gold: Speculation in the Oil Futures Market[END_REF][START_REF] Pindyck | Volatility in Natural Gas and Oil Markets[END_REF].3 However, reported relationships are time-varying (Aloui et al., 2014;[START_REF] Brigida | The switching relationship between natural gas and crude oil prices[END_REF]Gatfaoui, 2016a). Crude oil and natural gas prices are cointegrated so that they exhibit a long-run equilibrium from which they depart in the short run [START_REF] Brigida | The switching relationship between natural gas and crude oil prices[END_REF][START_REF] Hartley | The relationship between crude oil and natural gas prices: The role of the exchange rate[END_REF][START_REF] Miller | Crude Oil and Stock Markets: Stability, Instability, and Bubbles[END_REF][START_REF] Villar | The Relationship between Crude Oil and Natural Gas Prices, Energy Information Administration[END_REF]. Crude oil and natural gas prices do indeed decouple in the short term whereas they couple in the longer term [START_REF] Brown | What drives natural gas prices?[END_REF][START_REF] Gatfaoui | Capturing Long-Term Coupling and Short-Term Decoupling Crude Oil and Natural Gas Prices[END_REF][START_REF] Hartley | The relationship between crude oil and natural gas prices: The role of the exchange rate[END_REF][START_REF] Ramberg | The weah tie between natural gas and oil prices[END_REF]. As a result, crude oilspecific shocks need more or less time to contaminate natural gas prices. Such feature opens the door to potential market-timing strategies on the commodity market. Hence, incorporating crude oil and natural gas commodities into an investment portfolio can make sense. And, commodities can help mitigate the resulting portfolio's risk.

As regards risk mitigation prospects, commodity markets present some interests to market participants. Nowadays, their role as efficient portfolio diversifiers is strongly acknowledged (Goergiev, 2001;[START_REF] Jensen | Efficient use of commodity futures in diversified portfolios[END_REF][START_REF] Satyanarayan | Diversification benefits of commodity assets in global portfolios[END_REF]. For example, futures on commodities help diversify equity portfolios. They contribute to reduce risk, and potentially improve portfolios' returns [START_REF] Hensel | Commodities in asset allocation: A real-asset alternative to real estate?[END_REF][START_REF] Lee | The stock market and the commodity futures market: Diversification and arbitrage potential[END_REF]. Incidentally, commodity markets exhibit a negative (and close to zero) correlation with stock markets [START_REF] Harvey | The strategic and tactical value of commodity futures[END_REF]. Such negative or null correlation provides equity portfolios with diversification rewards [START_REF] Conover | Is now the time to add commodities to your portfolio[END_REF]. Commodities also contribute to improve the expected return of any conventional investment portfolio, which comprises stocks, bonds and cash [START_REF] Bekkers | Strategic asset allocation: determining the optimal portfolio with ten asset classes[END_REF]. Thus, adding commodities to investment portfolios contributes to decrease (stabilize) portfolio volatility, and to stabilize (increase) corresponding returns [START_REF] Conover | Is now the time to add commodities to your portfolio[END_REF][START_REF] Christopherson | Optimal allocation of commodity trading advisors in an international stock, bond and hedge fund portfolio[END_REF][START_REF] Harvey | The strategic and tactical value of commodity futures[END_REF][START_REF] Kim | Dependence Structure of the Commodity and Stock Markets, and Relevant Multi-Spread Strategy[END_REF]. In particular, they contribute to decrease the loss risk of portfolios [START_REF] Daigler | Spicing Up a Portfolio with Commodity Futures: Still a Good Recipe?[END_REF].

Including commodities into investment portfolios provides further benefits, specifically when equity markets are resilient and inflation is large. Commodity futures are negatively correlated with equity/bond returns, whereas they are positively correlated with changes in both expected inflation and unexpected inflation (Zvi and Rosanky, 1980;[START_REF] Gorton | Facts and Fantasies about Commodity Futures[END_REF]. Thus, commodities offer a hedge against unexpected inflation (at least in the long run) because they are real assets [START_REF] Greer | Commodity indexes for real return[END_REF][START_REF] Hensel | Commodities in asset allocation: A real-asset alternative to real estate?[END_REF][START_REF] Kaplan | GSCI collateralised futures as a hedging and diversification tool for institutional investors: An update[END_REF]. However, the diversification benefits of commodities vary over time. The diversification's effectiveness is sensitive to the financial market's disturbances (i.e. stressed market times; [START_REF] Büyükşahin | Commodities and equities: Ever a "Market of One"?[END_REF][START_REF] Cheung | Diversification benefits of commodity futures[END_REF]. Besides, the business cycle also influences such relationship [START_REF] Chevallier | Economic regimes and commodity markets as an asset class[END_REF][START_REF] Chevallier | Commodity markets through the business cycle[END_REF]. For example, the diversification power of commodities vanishes when the correlation between stock and commodity markets is strong [START_REF] Silvennoinen | Financialization, crisis and commodity correlation dynamics[END_REF].

Energy and stock market data

We summarize the statistical features and key attributes of crude oil, natural gas, and Standard and Poor's index time series.

Dataset and properties

We consider daily logarithmic returns from January 8, 1997 to October 30, 2017 (i.e. 5249 observations per series), so that we extend the study of Gatfaoui (2016a) commodity bubbles. Such disturbances impact the causal connections and dependencies between 4 We compared crude oil and natural gas spot prices to the corresponding futures prices of contracts with the shortest maturities. To this end, we have implemented two tests. First, a test of mean equality checked if the log-returns of commodity spot prices and the log-returns of corresponding futures prices were equal over the studied time period. Specifically, it investigated if the differentials between commodity log-returns and futures log-returns were equal to zero, on an average basis. The null assumption stipulates that differentials of log-returns are equal to zero. Unreported results show that we fail to reject the null assumptions, so that the log-returns of commodity spot prices are equal to the log-returns of corresponding futures prices, on an average basis. Second, we focused on the time series behavior of spot prices and futures prices. To this end, we have implemented the linear regression of the differentials between commodity and futures log-returns on futures log-returns, while including an intercept. If commodity and futures logreturns are the same, both the intercept and the slope coefficients should be zero. At a five percent test level, unreported results show that the intercept and slope coefficients are not significantly different from zero for both crude oil and natural gas. Such pattern shows that commodity log-returns and futures log-returns behave in a similar way. Thus, using log-returns of either commodity spot prices or futures prices should yield the same results. commodity and stock markets. And, they can potentially trigger structural changes in such relationships.

Analogously to Gatfaoui (2016a), we report skewed, leptokurtic, non-Gaussian, but meanstationary 5 returns (see appendix). Moreover, crude oil, natural gas and SP500 index returns exhibit structural changes. 6 The F and WDmax(5) statistics of Bai andPerron (2003a, 2003b) and [START_REF] Qu | Estimating and Testing Structural Changes in Multivariate Regressions[END_REF] support five structural breaks (see appendix). The reported five breakpoints allow for identifying six periods (see Table in appendix, andTable 1 below). First, mean percentage returns generally exhibit a unique regime since they are very close to zero. 7 Moreover, an unreported paired t-test of mean equality shows that SP500, crude oil and natural gas return series exhibit the same mean return over each reported period. Second, the six reported periods summarize into various variance/volatility (i.e. standard deviation) regimes according to the robust variance test of [START_REF] Brown | Robust tests for the equality of variances[END_REF], [START_REF] Conover | A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data[END_REF][START_REF] Levene | Robust tests for equality of variances[END_REF]. 8 For example, the six periods summarize into four possible variance regimes for SP500 returns (see Figure 1). The four variances regimes consist of a very low (VL), low (L), medium (M) and high (H) regime. Variance regimes are specific to each return series (see Table 1), and are classified in, at least, three categories such as low, medium and high, according to the robust variance test. At most, five categories can be disentangled such as very low, low, medium, high and very high. Such classification depends on the estimated levels of period-specific standard deviations. When there are more than three variance regimes, we compare the period-specific levels to each other so as to match five possible variance classes. Obtained results confirm at most four variance regimes. 2). In particular, crude oil and natural gas returns are significantly and slightly positively correlated over periods 2 to 4, while crude oil and SP500 returns are significantly and positively correlated over periods 4 to 6. However, natural gas and SP500 returns are insignificantly correlated across the six periods.

Thus, the relationship between U.S. energy commodity and stock market returns is time-varying, and its nature changes across periods, and therefore regimes. 

Multivariate dependence structures across variance regimes

Consider a set of three real variables X, Y, and Z, which evolve randomly. In the present case, random variables X, Y and Z correspond to the returns of SP500 (X=R SP500 ), crude oil (Y=R Oil ) and natural gas (Z=R Gas ) respectively. These three random variables can evolve jointly over time, and therefore exhibit a correlation risk within an asset portfolio composed of SP500, crude oil and natural gas. In particular, the positive correlation of extreme negative returns is of high significance for risk management and risk mitigation prospects (i.e. managing lower tail dependency). When the extreme negative returns of all the portfolio's assets are positively correlated, the resulting portfolio returns are negative (i.e. extreme investment losses, due to lower tail dependence). Alternatively, the portfolio's risk of loss can be mitigated when the extreme negative returns of the portfolio's assets are not all positively correlated. Therefore, such potential correlation risk requires studying the dependence structure of these three assets' returns, which build a set of three real random variables (X, Y, Z) = (R SP500 , R Oil , R Gas ). According to Sklar's theorem (1959), the dependence structure can be gauged with either the related multivariate cumulative distribution function or the corresponding copula function as follows:

, , = Pr ≤ , ≤ , ≤ = , , = , , (1) 
where F(.) is the three-dimensional cumulative distribution function of SP500, crude oil and natural gas returns ; C(.) is the corresponding three-dimensional copula function ; (u,v,w), which reduces the risk of model error.

At the univariate level, the reported six periods summarize into up to four variance regimes for each return series. Across these six periods, or equivalently, across corresponding variance regimes, the joint dependence structure between crude oil, natural gas and SP500 returns is investigated through copula representations. The set of possible representations consists of the Clayton, Frank, Gauss, Gumbel and Student T copulas, which are displayed in the appendix. These five copulas handle various tail behaviors (i.e. non existing, symmetric, lower or upper tail dependence; [START_REF] Cherubini | Copula Methods in Finance[END_REF][START_REF] Embrechts | Modeling dependence with copulas and applications to risk management[END_REF][START_REF] Gatfaoui | Investigating the dependence structure between credit default swap spreads and the U.S. financial market[END_REF][START_REF] Malevergne | Testing the Gaussian Copula Hypothesis for Financial Assets Dependences[END_REF][START_REF] Mcneil | Quantitative Risk Management: Concepts, Techniques and Tools[END_REF][START_REF] Patton | Copula-based models for financial time series[END_REF][START_REF] Sklar | Random variables, joint distribution functions and copulas[END_REF]. Thus, we consider threedimensional dependence structures, which investigate the dependency between extreme return values (see Table 3).

Copula parameters are estimated with the maximum pseudo-likelihood procedure using a bootstrap method [START_REF] Chen | Estimation of Copula-Based Semiparametric Time Series Models[END_REF][START_REF] Genest | Goodness-of-fit Tests for Copulas: A Review and a Power Study[END_REF]. The adequacy of the five copulas is gauged through a robust Cramer-von-Mises goodness-of-fit test (i.e. Rosenblatt's SnC statistics of [START_REF] Genest | Goodness-of-fit Tests for Copulas: A Review and a Power Study[END_REF], which is performed at a five percent significance level. And, the optimal copula is selected based on the Akaike (AIC), Schwarz (SIC) and Hannan-Quinn (HQIC) 9 The copula function is unique provided that univariate cumulative distribution functions are continuous.

information criteria, when several copula representations are appropriate over a given period.

When some discrepancies happen between all the criteria, 10 we favor the AIC criterion [START_REF] Brooks | Introductory Econometrics for Finance[END_REF][START_REF] Tsay | Analysis of financial time series[END_REF]. Table 3 displays the optimal copulas and their respective parameters.

Obviously, the joint dependence structure of SP500, crude oil and natural gas returns exhibits six variance regimes. (2016a), the balance between the variance regimes of crude oil, natural gas and SP500 drives tail dependence over time. As a result, the joint dependence structure between the three assets is regime-switching. Hence, a diversified portfolio composed of SP500 index, crude oil and natural gas assets needs to get reallocated across regimes to mitigate (tail) risk. Such feature favors a regime-specific portfolio management since portfolio rebalancing should operate over each regime. We will focus on an in-sample analysis in order to understand how the joint dynamics of SP500, crude oil and natural gas returns impacts active portfolio management across regimes.

Given the diversifying role of commodities, we will consider a stock portfolio, which we immunize with energy commodities, such as crude oil and natural gas. Such commodity investment allows for benefiting from a direct exposure to commodity price changes. Moreover, including crude oil and natural gas commodities benefits from the short-term decoupling and longterm coupling of corresponding prices. It allows for capturing the market-timing strategies, which result from the regime-switching nature of stock, crude oil and natural gas markets.

Portfolio optimization

The dynamic nature of natural gas, crude oil and U.S. stock markets' dependencies causes shifts in their joint risk across reported regimes. In particular, interdependencies between U.S.

commodity and stock markets drive the risk-sharing process, such as volatility spillovers. Such feature has significant implications for risk mitigation and portfolio management (i.e. dynamic asset allocation process and related optimization practice; [START_REF] Buckley | Portfolio optimization when asset returns have the Gaussian mixture distribution[END_REF]. The portfolio's risk exposure and performance are altered because the time variation in risk needs to be reckoned.

As an example, we consider a portfolio composed of U.S. stocks, which are diversified with holdings in both natural gas and crude oil assets. The investment portfolio under consideration comprises the SP500 index as well as natural gas and crude oil commodities. Such portfolio strategy exploits the hedging role of energy commodities against the liquidity risk of equity markets, among others. The optimal portfolio composition, or equivalently, the portfolio allocation profile is determined while minimizing the portfolio's risk exposure (e.g. limiting the risk of underperformance) over a given investment horizon. The investment horizon consists of a specific variance regime. In this light, we consider several risk measures, among which the variance of the portfolio's return, and the portfolio's downside risk such as semi-variance and tail risk [START_REF] Mansini | Twenty years of linear programming based portfolio optimization[END_REF][START_REF] Kolm | 60 years of portfolio optimization: Practical challenges and current trends[END_REF]. Corresponding portfolio optimization exploits previous copula representations as a robust tool [START_REF] Kakouris | Robust Portfolio Optimization with Copulas[END_REF]. In particular, we handle the asymmetry in returns, which is a significant issue to both portfolio selection [START_REF] Harvey | Conditional skewness in asset pricing tests[END_REF][START_REF] Kraus | Skewness preference and the valuation of risk assets[END_REF][START_REF] Samuelson | The fundamental approximation theorem of portfolio analysis in terms of means, variances and higher moments[END_REF], and portfolio decision making [START_REF] Barberis | Stocks as lotteries: The implications of probability weighting for security prices[END_REF][START_REF] Mitton | Equilibrium underdiversification and the preference for skewness[END_REF].

Variance minimization

We consider an investor whose wealth is devoted to a portfolio composed of the SP500, crude oil and natural gas assets. We label w 1 , w 2 and w 3 those parts of wealth, which are respectively invested in each of the three assets. As formerly introduced by [START_REF] Markowitz | Portfolio Selection[END_REF][START_REF] Markowitz | Portfolio Selection: Efficient Diversification of Investments[END_REF], the investor seeks a mean-variance efficient portfolio. Under a given return target, which represents the desired average portfolio performance over the investment horizon, the efficient portfolio's risk, which is measured by its return's variance, is minimized. Assuming that the investor dedicates all of his/her wealth to the portfolio, the portfolio's weights sum to unity. Hence, the investor needs to solve for the following optimization problem in order to determine his/her optimal portfolio (i.e. the best portfolio's allocation, subject to the performance constraint):

( ) [ ] 1 2 3 min . . 1 P P Var R E R r s t w w w  =  + + =  (2)
where R P = w 1 R SP500 + w 2 R Oil + w 3 R Gas is the portfolio's return, and ] is the expectation operator), r is the targeted average return, and Var(R P ) is the variance of the portfolio's return. When weights are positive (and, specifically, between 0 and 1), no short sale is allowed, while short selling is allowed under negative weights. When returns follow a Gaussian probability distribution, a simple solution to the optimization problem exists [START_REF] Lintner | The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets[END_REF][START_REF] Markowitz | Portfolio Selection[END_REF]Sharpe, 1964). But, asset returns are far from being Gaussian because of their tail fatness and asymmetry properties. Moreover, their dynamic joint behaviors across reported regimes often deviate from the Gaussian setting.

E[R P ] = w 1 E[R SP500 ] + w 2 E[R Oil ] + w 3 E[R Gas ] is its average counterpart (E[.
Let w and R be the vectors of weights and asset returns respectively. The portfolio's return rewrites as R P = w' R where w' = (w 1 w 2 w 3 ) is the transpose of vector w. Thus, the variance of the portfolio's return depends on the variance of the return vector R, and the joint dependence structure of the three portfolio constituents. As a result, the variance of the portfolio's return can rewrite as a function of the optimal copula, which describes the joint dependence structure of SP500, crude oil and natural gas returns. And, we can solve for optimization problem (1) while rewriting the components of the portfolio's variance Var(R

P ) = E[R P ²] -(E[R P ])² as follows: [ ] ( ) ( ) ( ) ( ) ( ) [ ] 3 1 1 1 1 500 2 3 0,1
, ,
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, ,
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where F R (.) is the empirical cumulative distribution function of random variable R (i.e. a given return series; see [START_REF] Deheuvels | La Fonction de Dépendance Empirique et ses Propriétés, un Test Non Paramétrique d'indépendance[END_REF], and F R -1 (.) is its inverse counterpart, and c(u,v,w) is the relevant copula density function (i.e. optimal copula representation). By so doing, we handle potential departures from normality, when computing the variance risk measure. We consider four possible cases while solving for the optimization problem above-mentioned (see Table 4). Such cases are compared to a benchmark portfolio, which consists of a naïve portfolio, or equivalently, an equally-weighted portfolio. 11 First, cases 1 and 2 assume a fixed target return (i.e. the investor's objective of average portfolio performance), whereas cases 3 and 4 let the optimization procedure determine the target return. The two latter cases are useful to study the feasibility of the optimization problem, and help correct for a too ambitious, or unrealistic target of portfolio performance. Under cases 1 and 2, the target return is equal to the naïve portfolio's performance plus a proportion of its absolute performance. In particular, the target return is set to the naïve portfolio's average return plus 0.5 times (i.e. fifty percent of) the absolute value of the naïve portfolio's average return. Hence, the optimal portfolio is required to outperform the naïve portfolio. Under cases 1 and 2, the optimization process yields the optimal portfolio's weights under a fixed target return. As an extension, cases 3 and 4 yield both the optimal portfolio's weights and corresponding optimal target return. The latter optimization cases help study the portfolio's risk-return tradeoff under the chosen risk measure.

11 The naïve portfolio is an equally-weighted portfolio, which comprises SP500 index, and crude oil and natural gas commodities (i.e. each weight is equal to one-third). 

2 is free w 3 is free r is fixed 2 w 1 lies in [0,1] w 2 is free w 3 is free r is fixed 3 w 1 is free w 2 is free w 3 is free r is free 4 w 1 lies in [0,1]
w 2 is free w 3 is free r is free Note: The weights w 1 , w 2 and w 3 are the parts of wealth, which are respectively invested in SP500, crude oil and natural gas.

Second, cases 2 and 4 constrain the investment (w 1 ) in SP500 to lie between 0 and 1, while w 2 and w 3 weights (i.e. commodity investments) are unconstrained. Under such setting, the investor necessarily holds the SP500 index in his/her portfolio, and diversifies the index with (short/long) positions in commodity investments. Allowing negative values for w 2 and w 3 weights exploits the hedging effectiveness of commodities with respect to SP500. Specifically, diversification possibilities vanish in the presence of positive dependencies, so that the portfolio requires short sales to hedge against such positive interlinkages (particularly, when the desired target return is high).

We also introduce the upside potential ratio (UPR) as a performance indicator, which writes as

UPR = E[max(R P -r,0)] / (E[min(R P -r,0) 2 ]) 1/2 .
It is the ratio of the upper partial moment of order one to the square root of the lower partial moment of order 2. Over a given investment horizon, the UPR is the ratio of all excess gains (with respect to the benchmark return r) to the downside risk [START_REF] Sortino | The Dutch Triangle[END_REF]). In the UPR, lower partial moments measure the downside risk [START_REF] Jarrow | Downside Loss Aversion and Portfolio Management[END_REF][START_REF] Unser | Lower Partial Moments as Measures of Perceived Risk: An Experimental Study[END_REF].

Minimizing downside risk: Semi-variance and tail risk

So far, portfolio managers worry more about the downside risk (i.e. risk of negative returns, or risk of underperforming a return target) than the symmetric risk measure proposed by the variance.

In this light, the square root of the variance, or equivalently, the standard deviation is an absolute risk measure, which lacks information or risk representativeness in the presence of asymmetric returns. As an extension, several downside risk measures such as the semi-variance and tail risk have been proposed (Alexander, 1998;[START_REF] Steinbach | Markowitz Revisited: Mean-Variance Models in Financial Portfolio Analysis[END_REF]. Downside risk measures help set up an optimal hedge, which offers protection against exposures to the risk of loss [START_REF] Conlon | Downside Risk and the Energy Hedger's Horizon[END_REF].The semi-variance focuses on the portfolio's returns, which underperform a fixed target return r. These underperforming returns lie below the targeted performance r (e.g. a benchmark return, which illustrates the minimum acceptable average return; [START_REF] Markowitz | Portfolio Selection: Efficient Diversification of Investments[END_REF]. In practice, the semi-variance measures the variance of the negative values of the difference (R P -r) between the portfolio's return and its targeted performance. Thus, the semi-variance symbolizes a measure of regret because it focuses on the failure to reach the target return. Under such setting, the portfolio optimization process applies to a new risk measure, which consists of the semi-variance.

The optimal portfolio's composition is then determined while minimizing the downside risk [START_REF] Lari-Lavassani | Dynamic Mean Semi-variance Portfolio Selection[END_REF].

Semi-variance optimization:

Assuming the targeted portfolio's performance to be r, the semi-variance writes as SemiVar (R P ) =

Var[Min(0, R P -r)] and the new optimization problem rewrites:

( ) ( ) { } ( ) ( ) [ ] 2 2 1 2 3 min min 0, 0,
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where F R (.) is the empirical cumulative distribution function of random variable R (i.e. a given return series; see [START_REF] Deheuvels | La Fonction de Dépendance Empirique et ses Propriétés, un Test Non Paramétrique d'indépendance[END_REF], and F R -1 (.) is its inverse counterpart, and c(u,v,w) is the relevant copula density function (i.e. optimal copula representation). By so doing, we handle unfavorable deviations of the optimal portfolio's return from the targeted performance level, while accounting for empirical return behaviors.

Tail risk optimization:

The tail risk focuses on the probability of underperforming a given return threshold (e.g.

worst-case study or analysis of bad scenarios; [START_REF] Dowd | After VaR: The Theory, Estimation, and Insurance Applications of Quantile-Based Risk Measures[END_REF]. Under such setting, the investor is risk averse, and hates losses, specifically extreme losses. He/she focuses on more or less extreme scenarios, under which his/her portfolio performs very poorly. In particular, the optimal portfolio allocation seeks to minimize the likelihood that the portfolio's return underperforms the chosen threshold (i.e. minimize the probability of a more or less extreme bad scenario). We focus on extreme bad scenarios, under which the bad return target (i.e. worst envisaged critical threshold) consists of the five percent quantile of SP500 index return. We label such quantile q 5% . Under this setting, the investor seeks to minimize the probability that the portfolio's return belongs to the lower tail of SP500 returns' distribution (i.e. the five percent lowest values of SP500 returns) over the investment horizon. Such view requires the optimal portfolio to outperform SP500 index during disturbed market times, so that energy market investments hedge extreme exposures to stock market risk (i.e. extreme negative SP500 returns).

Assuming the targeted portfolio's performance to be r, tail risk writes as λ(q 5% ) = Pr(R P ≤ q 5% ), and the optimization problem rewrites:

( ) ( ) [ ] 5% 5% 1 2 3 min min Pr
. . 1 
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where Pr(.) is the probability operator, ( ) (.) is the empirical cumulative distribution function of random variable R (i.e. a given return series; see [START_REF] Deheuvels | La Fonction de Dépendance Empirique et ses Propriétés, un Test Non Paramétrique d'indépendance[END_REF], and F R -1 (.) is its inverse counterpart, and c(u,v,w) is the relevant copula density function (i.e. optimal copula representation for u, v, and w between 0 and 1). By so doing, we handle the optimal portfolio's downside risk because we target a reduced probability of unfavorable scenarios λ(q 5% ) = Pr(R P -q 5% ≤ 0), and we account for empirical return behaviors.
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Optimal portfolios' attributes and performance

We introduce the results of portfolio optimization, among which portfolio allocations, optimal portfolios' performance, and related performance diagnostics. All optimization processes employ the Davidon-Fletcher-Powell method, with a 10 -4 accuracy of gradient calculations [START_REF] Davidon | Variable Metric Method for Minimization[END_REF][START_REF] Fletcher | A Rapidly Convergent Descent Method for Minimization[END_REF].

Variance optimization results

Table 6 displays all the optimization results while With respect to case 1, the optimal portfolio allocation yields no short sales of any asset component over all regimes. Case 2 further constrains the holdings (w 1 ) in SP500 index to lie between zero and unity. Therefore, under case 2, short sales of SP500 become forbidden. Under such case, the optimal portfolio allocation yields also no short sales of any asset component over all regimes. Moreover, the optimal portfolio exhibits a higher degree of exposure to crude oil over regimes 1, 2 and 3, while it exhibits a higher degree of exposure to SP500 index over the remaining regimes. Such features result from the joint dependence structures of portfolio constituents over previous regimes. Strikingly, cases 3 and 4 are alike because the optimal weights of SP500 are always positive and very close in the presence and the absence of short sales. The only exception consists of regime 1, over which, SP500 weight is above one for case 3 and decreases below one for case 4. The optimal portfolio attributes negative weights to both natural gas over regime 1 and crude oil over regime 6. And, the weight constraint of case 4 decreases the magnitude of the investment in natural gas. Moreover, the optimal portfolio exhibits a higher degree of exposure to SP500 over all regimes. Finally, when switching from case 1 to case 2, the optimal portfolio's performance often remains constant as sketched by the stability of the upside potential ratio (UPR). However, when switching from case 3 to case 4, the optimal portfolio's performance often experiences a very small drop. Adding a weight constraint to w 1 lowers more or less the optimal portfolio's performance. 

Semi-variance optimization results

With respect to cases 1 and 2, the optimal portfolio allocation yields no short sales of any asset component over all regimes. Optimal weights exhibit close values across both cases. Moreover, the optimal portfolio exhibits a higher degree of exposure to crude oil over regimes 1, 2 and 3, while it exhibits a higher degree of exposure to SP500 index over the remaining regimes. Such features result from the joint dependence structures of portfolio constituents over previous regimes. Amazingly, cases 3 and 4 are alike because the optimal weights of SP500 are always positive and similar in the presence and the absence of short sales. The optimal portfolio attributes negative weights to both natural gas over regime 1 and crude oil over regime 6. Furthermore, the optimal portfolio exhibits a higher degree of exposure to SP500 over all regimes. Lastly, when switching from case 1 to case 2, the optimal portfolio's performance often experiences a small increase as sketched by the noticeable rise of the upside potential ratio (UPR). Adding a weight constraint to w 1 raises more or less the optimal portfolio's performance. However, when switching from case 3 to case 4, the optimal portfolio's performance often remains constant. 

Tail risk optimization results

Under cases 1 and 2, the optimal portfolio allocation yields no short sales of any asset component over all regimes. Besides, the optimal portfolio exhibits a higher degree of exposure to crude oil over regimes 1, 2 and 3, while it exhibits a higher degree of exposure to SP500 index over the remaining regimes. Such features result from the joint dependence structures of portfolio constituents over previous regimes. Outstandingly, cases 3 and 4 are alike because the optimal weights of SP500 are always positive and very close in the presence and the absence of short sales.

The only exception consists of regime 1, over which, SP500 weight is slightly above one for case 3

and falls marginally below one for case 4. The optimal portfolio attributes negative weights to both natural gas over regime 1 and crude oil over regime 6. And, the weight constraint of case 4 lessens marginally the magnitude of the investment in natural gas. Additionally, the optimal portfolio exhibits a higher degree of exposure to SP500 over all regimes. Lastly, when switching from case 1 to case 2, the optimal portfolio's performance often remains steady as outlined by the constancy of the upside potential ratio (UPR). Nevertheless, when switching from case 3 to case 4, the optimal portfolio's performance often experiences a minor upsurge. Adding a weight constraint to w 1 strengthens moderately the optimal portfolio's performance.

Comparing weights' signs across risk measures and optimization constraints

When switching from case 1 to case 2 (i.e. under a return constraint coupled first with, and then, without SP500 short sales), the signs of optimal weights persist under all risk measures. Few negative signs appear when switching from case 1 to case 3, and from case 2 to case 4 (i.e. when relaxing the constraint on the expected return of the optimal portfolio). Negative weights prevail only for crude oil over regime 6, and natural gas over regime 1. Therefore, without a constraint on its expected return, the optimal portfolio allows few short sales. Under all risk measures and without the return constraint, the positive correlation between SP500 index and either crude oil or natural gas, as well as the high variance regime of crude oil (over period 6) and natural gas (over period 1) drive the persisting negative weights. Moreover, the Gumbel dependence structure (i.e.

positive correlation, and upper tail dependence) yields stronger negative weights than the Student T dependence structure (positive correlation, and no tail dependence). 

Comparing optimal portfolios and performance diagnostics

We first compare the compositions of optimal portfolios through a well-chosen distance measure. Then, we undertake a performance diagnostic based on cumulative returns and expected maximum drawdowns. The annualized cumulative return reflects the performance of optimal portfolios, whereas the expected maximum drawdown represents a measure for optimal portfolios' risk.

The potential heterogeneity, or equivalently, dissimilarity of obtained optimal portfolios is assessed through a well-chosen distance measure, across the 6 referenced periods of time.

Analogously to Fulga (2016), 12 we consider the L 1 -norm as a distance measure. We define the average distance measure as the following dissimilarity index (DI):

=> ?, @ = , A B ∑ 2 D -2 E 0 A 2F, (10) 
where the number of constituent assets n is equal to 3, and j and k represent a pair of cases among the four possible cases (i.e. four different optimal portfolios). Setting j equal to k is equivalent to calculate the dissimilarity index of the same portfolio. In such situation, we have 2 D -2 E = 0 whatever the considered asset i. As a result, the dissimilarity index is zero. Besides, the larger the dissimilarity index is, the more heterogeneous and dissimilar portfolios become. Since cases 1 and 2 are very close, we assimilate case 2 to case 1, so that finally we consider only 3 cases. 13 As reported in Table 9, optimal portfolios are generally heterogeneous under all risk measures.

However, the optimal portfolios of cases 3 and 4 become homogenous over regimes 1, 2, 3, 4 and 5 under the semi-variance measure. Such findings coincide with previous results because cases 3 and 4 exhibit the same optimal weights, except over regime 6. Over regime 6, the optimal portfolio's distribution across crude oil and natural gas is slightly different but still close enough under both cases. Such marginal discrepancy results from the difference in the joint dependence structure between regimes 1 (i.e. Gumbel copula) and 6 (i.e. Student T copula). Moreover, variance and tail-risk optimal portfolios are generally close under cases 3 and 4.

12 The author defines a dissimilarity index for a two-asset portfolio whose weights lie only between 0 and 1. Hence, the dissimilarity index is bounded between 0 and 1. 13 The average distance between case 1 and case 2 is very small (when not equal to zero) under the variance, semivariance and tail risk measures respectively. As regards cumulative returns, Table 10 displays the best-performing optimal portfolios across risk measures, over each listed period, whereas Table 11 displays annualized cumulative returns across cases. Table 11 presents the cumulative returns over the whole sample period, under each case.

Table 10 displays the best-performing portfolio, which presents the highest annualized cumulative return across the three risk measures, over a given period. The optimal portfolios offering the highest period-specific annualized cumulative returns result from variance, semi-variance and tail risk minimization in 8.33%, 37.50% and 54.17% of situations respectively. The optimal portfolios resulting from tail risk minimization often outperform, when the joint distribution of asset returns follows a Student T copula. However, they also outperform under case 4, when the optimal return and weights are jointly gauged over each regime. The optimal portfolios resulting from semivariance minimization frequently offer the best annualized cumulative returns, when SP500, crude oil and natural gas returns jointly follow either a Gaussian or a Gumbel copula. In the remainder of situations, variance optimal portfolios outperform. Additionally, the cumulative returns in Table 11 reflect the performance of a period-specific portfolio rebalancing strategy, across the four possible cases. Under any given case, portfolio optimization/rebalancing occurs over each regime within the sample period,14 and the same optimization criterion applies to each regime. Such regime-specific active portfolio management captures the portfolio's structural changes over time, namely the time-varying dependence structure of its assets. Tail-risk optimal portfolios outperform under cases 3 and 4, when the expected return is unconstrained. Conversely, the optimal portfolios resulting from the semi-variance minimization outperform under cases 1 and 2, when the expected return is fixed (i.e. when a performance target is imposed). Finally, the positive weight constraint on SP500 index lowers the performance of variance and tail-risk optimal portfolios under case 4.

Banning short sales prevents the hedging role of energy commodities, specifically over regimes 2 and 4 (see Figure 2). As an example, Figure 2 displays the annualized percentage cumulative returns of optimal portfolios across regimes. During periods 2 and 4, the SP500 index exhibits a stronger correlation with crude oil than with natural gas in absolute value. Moreover, all asset returns exhibit more or less high variance regimes. Such patterns alter the optimal portfolio's performance. As regards drawdowns, the maximum drawdown represents the maximum loss that a portfolio can experience in value or percentage (i.e. percentage drawdown), over a given period of time (e.g. investment horizon). It is measured as the difference between a peak and a nadir value of the portfolio. The maximum drawdown depends on the portfolio's average return and returns' fluctuations. The expected maximum drawdown represents the expected value of the maximum drawdown. Specifically, the expected maximum drawdown is computed while assuming the portfolio's cumulative returns to follow a Brownian motion (e.g. a random walk). Under such assumption, cumulative returns exhibit a constant drift over time with random deviations from such drift [START_REF] Magdon-Ismail | On the Maximum Drawdown of a Brownian Motion[END_REF]. The expected maximum drawdown depends positively on both the investment horizon and return volatility, but negatively on the portfolio's expected return.

Table 12 displays the expected maximum drawdowns of optimal portfolios over the whole sample, and under the four considered cases. The expected maximum drawdowns reflect the risk of optimally rebalanced portfolios under the considered cases. Under all cases, tail-risk optimal portfolios exhibit the lowest expected maximum drawdowns, whatever the constraints on the expected return or SP500 weight. The strongest loss scenario happens under cases 1 and 2, when both the expected return of the optimal portfolio is fixed, and the semi-variance is the risk measure. The weakest loss scenario happens under cases 3 and 4, when the expected return of the optimal portfolio is unconstrained, and tail risk is the risk measure. Thus, the constraint on the expected return reinforces the expected maximum drawdown. Such effect is slightly magnified when we add a positivity constraint to SP500 weight in tail-risk optimal portfolios. However, cumulative losses slightly lessen, when SP500 weight forbids short sales for remaining portfolios.

When risk is measured by the expected maximum drawdown, and performance is measured by the annualized cumulative return, the tail-risk optimal portfolio offers therefore the most interesting risk-return tradeoff under cases 3 and 4. Analogously, the semi-variance optimal portfolio offers the most interesting risk-return tradeoff under case 3, while being close to the variance optimal portfolio under case 4 and semi-variance optimal portfolios under cases 3 and 4 (see Figure 3). The tradeoff focuses on higher cumulative returns with lower cumulative losses (i.e. increasing profits while reducing risk). For comparison purposes, we also carry out the active management strategy, which results from Table 10. Over each regime, we build/rebalance the portfolio according to the most favorable risk minimization setting. Under each case and over each regime, we select the best-performing portfolio among the three measure-specific (i.e. variance, semi-variance or tail-risk) optimal portfolios. Such methodology allows for building superoptimal portfolios over the whole sample period. Superoptimal portfolios are thus optimally rebalanced across regimes and risk measures.

Table 13 displays the risk and return attributes of the superoptimal portfolios. The annualized cumulative returns and expected maximum drawdowns of these superoptimal portfolios are close to the ones in Table 11 and Table 12 (see Figure 4). Due to the difficulty to forecast dependence structures and suitable risk minimization, investors can rely on previous findings since optimal and superoptimal portfolios offer close risk-return tradeoffs. As a result, active portfolio managers should build tail-risk optimal portfolios in the absence of a return constraint. Without such constraint, they can also build either variance or semi-variance optimal portfolios, depending on the joint dependence structure of assets. Under such scheme, the positivity constraint on SP500 weight slightly reduces the portfolios' performance. Finally, active portfolio managers should build tail-risk optimal portfolios in the presence of a return constraint. 

Extension to global, mid-cap and small-cap stock portfolios

The study above-mentioned scrutinizes the diversification power of commodities in large-cap portfolios, as represented by the Standard and Poor's 500 index (SP500). Expanding on such a study, we replace successively SP500 index with Standard and Poor's 1500 (SP1500), Standard and Poor's MidCap 400 (SPMid400) and Standard and Poor's SmallCap600 (SPSmall600)

indexes. Thus, we are able to gauge the diversifying role of crude oil and natural gas in global market (SP1500), mid-cap (SPMid400) and small-cap (SPSmall600) stock portfolios.

Variance regimes and optimal copulas

Unreported results exhibit five structural breaks for each series of index returns, so that we end with six periods. Strikingly, SP1500 index exhibits the same periods as SP500 index. As regards SPMid400 and SPSmall600 indexes, the first three periods are not identical to but exhibit a nonnegligible overlapping fraction with the ones of SP500 index. Besides, the three last periods are the same as the ones of SP500 index. During the first three index-specific periods, the periodspecific standard deviations of crude oil and natural gas returns are very close to their counterparts over the SP500-specific periods (see supplementary material). Moreover, over the six referenced periods of each stock index under consideration (i.e. across the index-specific periods), unreported zero-mean equality and robust variance equality tests highlight a unique zero-mean regime and various variance regimes for all stock and commodity return series. As a result, each set of a given stock index, crude oil and natural gas returns exhibits six different three-dimensional variance regimes. Such variance regimes are very close across stock indexes over corresponding periods (see Table 14, Table 15 andTable 16). Finally, Table 14, Table 15 and Table 16 display also the optimal copula representations across the six referenced variance regimes of each stock index.

Such copulas are selected based on the Akaike (AIC) information criterion and the robust Cramervon-Mises goodness-of-fit test (i.e. Rosenblatt's SnC statistics of [START_REF] Genest | Goodness-of-fit Tests for Copulas: A Review and a Power Study[END_REF]. Strikingly, SP1500 index portfolio exhibits the same behaviour as SP500 index portfolio. And, SPMid400 and SPSmall600 index portfolios exhibit the same dependence structures as SP500 index portfolio over their last four variance regimes (i.e. from period 3 to period 6). However, they exhibit different dependence structures over their first two variance regimes. Specifically, the dependence structure between SPMid400/SPSmall600 index, crude oil and natural gas exhibits symmetric tail dependence over the first variance regime with a Student T copula. Differently, the dependence structure between SPMid400/SPSmall600 index, crude oil and natural gas exhibits lower/no tail dependence over the second variance regime with a Clayton/Frank copula respectively. Results emphasize therefore the regime-switching dependence structure of all three-asset portfolios (i.e.

diversified global, mid-cap and small-cap stock portfolios) over the sample period. Expanding on the similarities and discrepancies between the dependence structures of stock index portfolios, we will assess the impact of such patterns on the optimization and performance of diversified stock portfolios. We expect that the commodity-based diversification process of SP1500 index, as a global stock portfolio proxy, will exhibit similar characteristics as the ones of SP500 index, as a large-cap stock portfolio proxy. Indeed, SP500 index is usually employed as a stock market proxy and its behavior is very close to the one of SP1500 index (see supplementary material). A priori, we also expect the diversification scheme of SPMid400 and SPSmall600

indexes to be close enough to the one of SP500 index from period 3 to period 6 (i.e. over the last four variance regimes). However, we expect more or less strong discrepancies over periods 1 and 2 (i.e. over the first two variance regimes).

Optimal portfolios' weights and attributes

We introduce the optimal portfolios' weights and their respective risk and performance attributes, under the three considered optimization schemes (i.e. variance, semi-variance and tail risk optimal portfolios). The performance metrics consists of the annualized cumulative return while the risk metrics consists of the expected maximum drawdown.

As regards optimal portfolios' allocations, Figure 5 to Figure 13 display variance, semi-variance and tail risk optimal weights across variance regimes, for each diversified stock portfolio (i.e. SP1500, SPMid400 and SPSmall600 indexes, which are diversified with holdings in crude oil and natural gas assets). With respect to SP1500 index, the optimal weights under cases 1 and 2 are close in general. The same comment applies to cases 3 and 4, except over period 1 under the variance and tail risk optimization schemes. Since the portfolio's allocation to the stock index goes beyond 100% under case 3, the constraint on SP1500 weight under case 4, which bounds the stock index allocation to 100%, contributes to increase the portfolio's allocation to crude oil. Moreover, whatever the optimization scheme, the optimal portfolio yields natural gas short sales over period 1, when the portfolio's expected return is jointly gauged with optimal weights. With respect to SPMid400 and SPSmall600 indexes, the optimal weights of cases 1 and 2 on the one hand, and of cases 3 and 4 on the other hand, are also close in general. The only exception applies to period 2 under cases 1 and 2, whatever the optimization scheme (except tail risk optimization for SPSmall600 index). Focusing on SPMid400 index, switching from case 1 to case 2 (i.e. bounding the stock index allocation between 0 and 1, under a fixed target return) reduces the stock index allocation of the portfolio to zero. Thus, diversification disappears since the optimal portfolio drops the stock investment and encompasses only (or mainly) energy commodities. Moreover, such scenario increases broadly the portfolio's allocation to crude oil, while yielding significant natural gas short sales. Focusing on SPSmall600 index, switching from case 1 to case 2 similarly reduces to zero (or almost zero) the stock index weight. However, the portfolio's investment in SPSmall600 index under case 1 is reallocated to crude oil under case 2. Furthermore, any optimization scheme yields both crude oil short sales and a large portfolio exposure to natural gas under case 2. Finally, apart from the scenarios above-mentioned, most of the optimal portfolios' weights are positive whatever the optimization scheme and stock index under consideration.

Nonetheless, the optimal weights of SPMid400 and SPSmall600 index portfolios often differ nonnegligibly from the ones of SP500 index portfolio. But, the optimal weights of SP1500 index portfolio are close to the ones of SP500 index portfolio. As regards optimal portfolios' attributes, Figure 14 to Figure 16 display the risk and return attributes of optimal portfolios over the whole sample period, and for all the stock indexes under consideration (see supplementary material for numerical details). The figures plot the annualized cumulative return against the expected maximum drawdown (as a risk measure). Obviously, general conclusions are similar to the ones of SP500 index study. Under all cases and across all stock indexes, tail-risk optimal portfolios exhibit the lowest expected maximum drawdowns and $highest cumulative returns, whatever the constraints on the expected return or stock index weight.

The strongest loss scenarios happen under cases 1 and 2, when the expected return of the optimal portfolio is fixed. In particular, the worst loss and cumulative return scenarios occur for SPMid400 index portfolio under case 2, the lowest values being reached when the risk measure is the tail risk.

Strikingly, cumulative returns become negative under cases 1 and 2 for SPSmall600 index portfolio, and under case 2 for SPMid400 index portfolio. Such results emphasize thus the strong negative impact of the constraints on the stock index weight and the portfolio's expected return.

The magnitude of the negative impact is the largest under case 2 for mid-cap portfolios. Therefore, portfolio optimization should avoid any return and, more specifically, stock weight constraints when it targets to diversify small/mid-cap stock portfolios with energy commodity assets.

Conversely, the weakest loss scenarios happen under cases 3 and 4, when the expected return of the optimal portfolio is unconstrained, the lowest values being reached when tail risk is the risk measure. As a result, when risk is measured by the expected maximum drawdown, and performance is measured by the annualized cumulative return, tail-risk optimal portfolios offer the most interesting risk-return tradeoff under cases 3 and 4. However, the risk-return tradeoff of variance and semi-variance optimal portfolios is generally close to the one of tail risk optimal portfolios under cases 3 and 4. The best tradeoff focuses on higher cumulative returns, coupled with lower cumulative losses (i.e. increasing profits while reducing risk). Finally, focusing on the diversifying power of crude oil and natural gas in stock portfolios, optimally diversified mid-cap stock portfolios (i.e. SPMid400) outperform optimally diversified global, large-cap and small-cap stock portfolios under cases 1, 3 and 4. Differently, optimally diversified global stock portfolios (i.e. SP1500) outperform optimally diversified large-cap, mid-cap and small-cap stock portfolios under case 2. Such findings probably result from the balance between the volatility of constituting stocks and that one of crude oil and natural gas assets, in association with the portfolio's dependence structure. It is well known that the smaller the capitalization of stocks is, the larger the volatility of stock returns becomes (see supplementary material for example). 

Building superoptimal portfolios

We carry out successively the following active management strategy for SP1500, SPMid400

and SPSmall600 stock index portfolios. Over each regime, we rebalance the portfolio according to the most favorable risk minimization setting (i.e. variance, semi-variance or tail-risk optimal weights). Specifically, over a given variance regime, we select the optimal portfolio with the highest cumulative return across the three considered risk measures. Such methodology allows for building superoptimal portfolios over the whole sample period. Hence, superoptimal portfolios are optimally rebalanced across regimes and risk measures (see supplementary material for details about the selected optimal portfolios across regimes and stock indexes).

Focusing on the risk-return profile of superoptimal portfolios, the general conclusions are the same as the ones for optimal portfolios (see Figure 17 to Figure 19). In particular, superoptimal portfolios under cases 3 and 4 outperform superoptimal portfolios under cases 1 and 2, whatever the stock index under consideration. Thus, the constraint on the portfolio's expected return impairs the performance of optimal portfolios. Such negative impact is stronger for SPMid400 index portfolio under case 2, and SPSmall600 index portfolio under cases 1 and 2. Under the cases above-mentioned, the respective optimal portfolios attempting to diversify SPMid400 and SMSmall600 indexes yield short sales in one of the energy commodities over regime 2. During such regime, optimal portfolios (and therefore superoptimal portfolios) experience significant negative annualized cumulative returns. In order to rank superoptimal portfolios, we build a risk adjusted performance measure that we call the adjusted annualized cumulative return (AACR). The AACR is the ratio of the annualized cumulative return (ACR) to the expected maximum drawdown (EMDD), which is expressed in absolute value. Figure 20 illustrates such risk adjusted performance measure for all the stock indexes under consideration (see also supplementary material to get corresponding numerical values). Obviously, the superoptimal portfolio diversifying SPMid400 index outperforms all other superoptimal portfolios under cases 1, 2 and 3. However, the superoptimal portfolio diversifying SP1500 index outperforms all other superoptimal portfolios under case 2 (though the AACR of SP500 index portfolio is close to that one of SP1500 index portfolio). 

Conclusion

We consider the joint behavior of energy commodity prices and the U.S. stock market index over time. The SP1500/SP500/SPMid400/SPSmall600 indexes as well as crude oil and natural gas prices exhibit structural changes with various variance regimes. As a result, the joint dependence structure of any U.S. stock market index and the two energy commodities is unstable over time. Such feature has significant implications for investors building portfolios with these three types of assets, and requires a regime-specific analysis. In this light, we examine the implications of such regime-dependency for portfolio optimization. We minimize various risk measures after accounting for regime-specific dependence structures. The dependence structures handle the asymmetry in asset returns and tail dependency. The risk criteria consist of variance, and two downside risk measures such as semi-variance and tail risk. Moreover, we consider several minimization schemes while setting or discarding constraints on the portfolio's expected return and stock index weight. We examine optimal portfolios while analyzing their degrees of similarity, their annualized cumulative returns as a performance indicator, and their expected maximum drawdowns as a risk measure.

The positive weight constraint on the stock index reduces the performance of the optimal portfolio over given regimes. Besides, optimal portfolios are heterogeneous and dissimilar across regimes and risk minimization schemes. We also build optimal portfolios, which we rebalance across regimes, and analyze their risk-return tradeoff over the whole sample period. Under each risk minimization scheme, the expected maximum drawdown serves as a risk measure while the annualized cumulative return gives insights about performance. Under a constraint on the expected return of the optimal portfolio, the tail-risk optimal portfolio offers the most interesting risk-return tradeoff (i.e. lowest risk and highest return). Analogously, the tail-risk optimal portfolio offers the most interesting risk-return tradeoff without constraint on the expected return. However, variance optimal portfolios, and then semi-variance optimal portfolios can also be considered in the absence of a return constraint. Finally, the diversification power of energy commodities is often the most effective for SPMidCap 400 index (i.e. mid-cap stock portfolios' diversification), since it generally reduces the expected maximum drawdown and increases the annualized cumulative return of corresponding portfolios. As a consequence, optimization results handle regime-dependency since they depict the joint risk structure of portfolio constituents over time. They capture the price uncertainty of both constituent assets and resulting portfolio over time, and highlight the efficiency of an active portfolio management strategy. Future research should exploit such findings, and attempt to forecast the upcoming portfolio scenarios. Potential research extensions rely on a scenario analysis, which faces two major challenges. First, the analysis needs to predict the upcoming variance regimes of constituent assets, and then those of the portfolio. Second, such approach needs to identify the plausible dependence structures over the forthcoming variance regimes. For example, such scenario analysis can exploit the plurality of past variance regimes and corresponding dependence structures. It could also rely on the link between the stock market and the business cycle, which can be forecasted to a large extent. Such link is also specific to both the capitalizations of stocks and their corresponding industry.
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Appendix A.

We display relevant theoretical background and statistical results in this section.

A.1. Descriptive statistics of returns

We display the descriptive statistics of return data over the whole sample and its six referenced periods. The Phillips-Perron unit root test (without trend and without intercept) is also provided. 

A.2. Structural break test

We focus on the joint dynamics of SP500, crude oil and natural gas returns, and look for structural changes, or equivalently, breaks in such joint dynamics. Given that we target to diversify a stock portfolio, as represented by SP500, with two energy commodities such as crude oil and natural gas, we consider the linear regression of SP500 returns on both crude oil and natural gas returns. The regression is undertaken with the Heteroskedastic and Autocorrelation Consistent covariance (HAC) method15 as well as residuals' prewhitening with automatic lag selection (Hannan-Quinn criterion).

Investigating sudden changes in such relationship, we scrutinize changes in all regression parameters (i.e. intercept and slopes) as well as in the residuals' distribution across possible regimes. In particular, residuals follow a Gaussian distribution with a zero mean and different standard deviations across regimes. Since we allow for shifts in the regression's intercept, it is equivalent to consider structural breaks in mean, while shifts in standard deviations account for structural breaks in variance.

In line with Bai andPerron (2003a, 2003b), and [START_REF] Qu | Estimating and Testing Structural Changes in Multivariate Regressions[END_REF], we consider the following specification:16 R SP500,t = α i + β 1,i × R Oil,t + β 2,i × R Gas,t + ε t,i where R SP500,t , R Oil,t and R Gas,t are the returns of SP500, crude oil and natural gas respectively at time t, α i is the regression's intercept while β 1,i and β 2,i are the regression's slopes over a given regime i, and ε t,i are regression residuals at time t under a regime i.

We assume a number m of breaks so that the data sample splits into (m+1) periods, which are defined as follows:

Period 1 = {1,…,T 1 } Period i = {T i-1 +1,…,T i } Period m+1 = {T m +1,…,T} where the index i lies between 2 and m, and T i is a breakpoint indicating the end of period i.

The standard deviation σ i of residuals' distribution can change across any period i. Thus, we test for possible changes in mean returns α i and corresponding standard deviations σ i over the whole sample.

We investigate the existence of up to m=5 breaks so as to end with a maximum of m+1=6 periods or regimes. At a five percent test level, the reported F and WDmax(5) statistics , , ; N = exp h-i -ln _ + -ln _ + -ln where ρ and ρ -1 are a three-dimension matrix and its inverse respectively, |ρ| is the determinant of the correlation matrix, Γ(.) is the Gamma function, ξ is the vector (ξ 1 , ξ 2 , ξ 3 ) of the inverse univariate Student 17 cumulative distribution function, which applies to each element u, v, w, and finally ξ t is the transposed vector of ξ.

  by four years and nine months. Returns are considered on a percentage basis. The data consist of Henry Hub Gulf Coast Natural Gas Spot Price (Gas) from the U.S. Energy Information Administration, the WTI crude oil Fixed Order Book price (Oil) from West Texas Intermediate exchange, and Standard and Poor's 500 index close (SP500) from Thomson Reuters. 4 The selected sample window encompasses several market disturbances. Disturbances refer to the 1997 Asian crisis, the 1998 LTCM hedge fund default, the 2000-2002 dotcom bubble, the May 2005 U.S. credit crisis, the 2006 Amaranth hedge fund collapse, and the 2007-2009 subprime mortgage market crisis as well as the 2000s
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 2 Figure 2: Cumulative returns of optimal portfolios under a positive SP500 weight constraint Note: Annualized percentage cumulative returns.

Figure 3 :

 3 Figure 3: Risk-return tradeoff of optimal portfolios over the whole sample periodNote: Data are expressed in percent, and cumulative returns are annualized. The size of the bubbles represents the ratio of the cumulative return to the expected maximum drawdown. V, SV and TR stand for variance, semi-variance and tail risk. The number after the acronym represents the case under consideration. For example, TR4 stands for tail risk measure under case 4.
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 4 Figure 4: Risk-return tradeoff of superoptimal portfolios over the whole sample period Note: Data are expressed in percent, and cumulative returns are annualized. The size of the bubbles represents the ratio of the cumulative return to the expected maximum drawdown.
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 5 Figure 5: Variance optimal weights for SP1500 index portfolio
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 6 Figure 6: Semi-variance optimal weights for SP1500 index portfolio
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 78 Figure 7: Tail risk optimal weights for SP1500 index portfolio
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 91011 Figure 9: Semi-variance optimal weights for SPMid400 index portfolio
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 1213 Figure 12: Semi-variance optimal weights for SPSmall600 index portfolio

Figure 14 :

 14 Figure14: Risk-return tradeoff of optimal portfolios over the whole sample period for SP1500 index portfolio Note: Data are expressed in percent, and cumulative returns are annualized. The size of the bubbles represents the ratio of the cumulative return to the expected maximum drawdown. V, SV and TR stand for variance, semi-variance and tail risk. The number after the acronym represents the case under consideration. For example, TR4 stands for tail risk measure under case 4.

Figure 15 :

 15 Figure 15: Risk-return tradeoff of optimal portfolios over the whole sample period for SPMid400 index portfolioNote: Data are expressed in percent, and cumulative returns are annualized. The size of the bubbles represents the ratio of the absolute cumulative return to the expected maximum drawdown. V, SV and TR stand for variance, semivariance and tail risk. The number after the acronym represents the case under consideration. For example, TR4 stands for tail risk measure under case 4.

Figure 16 :

 16 Figure16: Risk-return tradeoff of optimal portfolios over the whole sample period for SPSmall600 index portfolio Note: Data are expressed in percent, and cumulative returns are annualized. The size of the bubbles represents the ratio of the absolute cumulative return to the expected maximum drawdown. V, SV and TR stand for variance, semivariance and tail risk. The number after the acronym represents the case under consideration. For example, TR4 stands for tail risk measure under case 4.

Figure 17 :

 17 Figure 17: Risk-return tradeoff of superoptimal portfolios over the whole sample period, for SP1500 index portfolio Note: Data are expressed in percent, and cumulative returns are annualized. The size of the bubbles represents the ratio of the cumulative return to the expected maximum drawdown.

Figure 18 :

 18 Figure 18: Risk-return tradeoff of superoptimal portfolios over the whole sample period, for SPMid400 index portfolio Note: Data are expressed in percent, and cumulative returns are annualized. The size of the bubbles represents the ratio of the absolute cumulative return to the expected maximum drawdown.

Figure 19 :

 19 Figure 19: Risk-return tradeoff of superoptimal portfolios over the whole sample period, for SPSmall600 index portfolio Note: Data are expressed in percent, and cumulative returns are annualized. The size of the bubbles represents the ratio of the absolute cumulative return to the expected maximum drawdown.

Figure 20 :

 20 Figure 20: Risk adjusted annualized cumulative returns (AACR) of superoptimal portfolios

  ρ be a correlation matrix, ν a degree of freedom and u, v, w in [0,1], the Student T copula density writes:

Table 1 : Structural changes in return series and variance regimes

 1 

	Period	Statistics	Gas	Oil	SP500
		Mean	-0.0376	0.0074	0.0876 *
	1	Std. Dev.	3.9817	2.5620	1.2267
		Regime	M	H	M
		Mean	0.0941	0.0063	-0.0642
	2	Std. Dev.	5.8587	2.8193	1.4377
		Regime	H	H	H
	5 Returns are stationary according to the five percent unit root test of Phillips-Perron.	
	6 The structural break test is detailed in the appendix.		
	7 Recall that returns are in percent so that, for example, a significant mean return of 0.1182% represents a very small
	value on a level basis (i.e. 0.001182).			
	8 Results are available upon request. The test is implemented at a five percent level.	

* Significant at a five percent Student t test level.

Table 2 :

 2 Kendall's tau 

	Period	Start	End	Oil and gas Oil and SP500 Gas and SP500
	1	1/08/1997	3/24/2000	0.0049	-0.0098	-0.0223
	2	3/27/2000	5/20/2003	0.0908 *	-0.0009	0.0025
	3	5/21/2003	7/16/2008	0.0623 *	-0.0234	-0.0058
	4	7/17/2008	8/29/2011	0.0499 *	0.3146 *	0.0136
	5	8/30/2011	10/13/2014	0.0330	0.2833 *	-0.0058
	6	10/14/2014 10/30/2017	-0.0137	0.1955 *	-0.0152

* Significant at a five percent two-tailed test level.

Table 3 :

 3 Optimal dependence structures across variance regimes market disturbances of late 90s and early 2000s coincide with upper tail dependence. Tail dependency challenges portfolio management because it refers to comovements between the low and/or high extreme returns of SP500 index, crude oil and natural gas. According to Gatfaoui

	Period *	Regime ** SP500/Oil/Gas	Copula	Tail	Parameter(s) ***
	1 2 3 4 5 6	M/H/H H/H/H L/M/L H/H/M L/L/L VL/H/L	Gumbel Gaussian Gaussian T T T	Upper None None Symmetric Symmetric Symmetric ρ = ρ = ρ = ρ = ρ = -0.0732 0.0181 θ = 1.5510 1 0.0334 -0.0133 0.0334 1 0.0906 -0.0133 0.0906 1 1 -0.0478 -0.0035 " -0.0478 1 0.0631 -0.0035 0.0631 1 " 1 0.3611 0.0820 0.3611 1 0.0987 0.0820 0.0987 1 " ν = 6 1 0.4206 -0.0079 0.4206 1 0.0522 -0.0079 0.0522 " ν = 1 25 1 0.3388 -0.0732 0.3388 1 0.0181 1 " ν = 9

Table 4 :

 4 Optimization constraints and portfolio parameters

	Case #	Minimize subject to (un)constrained weights and target return
	1	w 1 is free	w

  Pr , * -+(.. + 0 * 123 + 4 * 567 ≤ ' (%

	= Pr , -+(.. 8, = ∭ : , ,	+ 0 123 8, ; ; ;	+ 4 567 8,	≤ ' (%

<

Table 5 :

 5 Annualized attributes of the naïve portfolio

	Regime	Average return Target return r Standard	Skewness Excess	UPR
				Deviation		kurtosis	
	1	4.9770	7.5573	26.0663	0.3753	0.2499	53.3530
	2	3.1131	4.7056	36.4667	0.3474	5.7293	49.9564
	3	17.5000	27.3620	26.7941	0.1425	-1.6984	54.2171
	4	-14.9532	-7.7780	33.4830	0.2667	0.6758	47.1784
	5	4.4484	6.7460	23.9701	1.1925	-0.2358	50.8039
	6	-4.4027	-2.2261	24.5136	0.0492	-1.6352	52.0842
	stands for upside potential ratio. Period 1 runs from 1/08/1997 to 3/24/2000, period 2 runs from 3/27/2000 to
	5/20/2003, period 3 runs from 5/21/2003 to 7/16/2008, period 4 runs from 7/17/2008 to 8/29/2011, period 5 runs from
	8/30/2011 to 10/13/2014, and period 6 runs from 10/14/2014 to 10/30/2017.		

Note: All data are displayed on a percentage basis, and r = Naïve average return + 0.5 × |Naïve average return|. UPR

Table 6 :

 6 Optimal portfolios' attributes under variance minimization Regime All data are displayed on a percentage basis. The target return r corresponds to the average annual return of the optimal portfolio during each regime. UPR stands for upside potential ratio. Period 1 runs from 1/08/1997 to 3/24/2000, period 2 runs from 3/27/2000 to 5/20/2003, period 3 runs from 5/21/2003 to 7/16/2008, period 4 runs from 7/17/2008 to 8/29/2011, period 5 runs from 8/30/2011 to 10/13/2014, and period 6 runs from 10/14/2014 to 10/30/2017. The weights w Table 7 displays the results of semi-variance optimization while Table 8 introduces the results of tail risk optimization.

	Case 2	w 2 w 3 r fixed UPR	43.7289 19.0360 4.9770 53.3530	46.4076 31.3190 3.1131 49.9564	74.9944 3.1160 17.5000 54.2171	15.0690 15.8874 -14.9532 47.1784	40.9890 10.7566 4.4484 50.8039	36.6339 17.2042 -4.4027 52.0842	Case 4	w 2 w 3 Optimal r UPR	6.4368 -3.4506 24.6431 50.8893	20.5325 5.8291 -9.7774 54.6916	14.8826 2.9899 10.2228 52.6580	14.8415 14.8950 -7.4504 46.8876	13.6869 7.1543 11.7037 49.5595	-0.9118 5.7389 9.7984 47.6769	1 , w 2 and w 3 are the parts of wealth, which are respectively
	Optimization scheme	UPR w 1 ∈ [0,1]	53.3530 37.2351	49.9564 22.2734	54.2171 21.8896	47.1784 69.0436	50.8039 48.2544	52.0842 46.1619		UPR w 1 ∈ [0,1]	51.3954 97.0138	54.8351 73.6384	52.5433 82.1275	46.8992 70.2635	49.4845 79.1588	47.6769 95.1729	
		r fixed	4.9770	3.1131	17.5000	-14.9532	4.4484	-4.4027		Optimal r	28.0626	-9.9691	10.0879	-7.4416	12.0010	9.7984	
	Case 1	w 3	19.0360	31.3190	3.1160	15.8874	10.7566	17.2042	Case 3	w 3	-9.1003	5.9753	2.8799	14.9943	6.9434	5.7389	
		w 1 w 2	1 37.2351 43.7289	2 22.2734 46.4076	3 21.8896 74.9944	4 69.0436 15.0690	5 48.2544 40.9890	6 46.1619 36.6339	Regime w 1 w 2	1 107.1391 1.9612	2 75.0067 19.0179	3 82.7173 14.4028	4 70.4852 14.5205	5 80.9683 12.0882	6 95.1729 -0.9118	invested in SP500, crude oil and natural gas.

Note:

Table 7 :

 7 Optimal portfolios' attributes under semi-variance minimization Regime

	Optimization scheme	Case 1 Case 2	w 1 w 2 w 3 r fixed UPR w 1 ∈ [0,1] w 2 w 3 r fixed UPR	1 38.5997 39.9306 21.4698 4.9770 50.8893 38.7320 39.5622 21.7058 4.9770 53.2855	2 20.4390 49.7168 29.8442 3.1131 54.6916 21.1408 48.4508 30.4084 3.1131 50.0969	3 21.9608 75.0205 3.0187 17.5000 52.6580 21.8629 74.9845 3.1526 17.5000 54.2184	4 68.4463 16.0630 15.4906 -14.9532 46.8876 68.8777 15.3450 15.7772 -14.9532 47.1619	5 48.2560 41.2908 10.4531 4.4484 49.5595 48.2531 40.7498 10.9971 4.4484 50.7819	6 46.2581 36.9408 16.8011 -4.4027 47.6769 45.9604 35.9909 18.0486 -4.4027 52.0636	Regime Case 3 Case 4 w 1 w 2 w 3 Optimal r UPR w 1 ∈ [0,1] w 2 w 3 Optimal r UPR	1 97.2283 6.3275 -3.5558 24.7125 50.9020 97.2283 6.3276 -3.5558 24.7125 50.9020	2 74.1240 20.3229 5.5531 -9.9114 54.7228 74.1239 20.3230 5.5531 -9.9114 54.7228	3 81.7608 15.2660 2.9733 10.3232 52.7207 81.7608 15.2660 2.9733 10.3232 52.7207	4 67.6903 16.3265 15.9832 -7.9583 47.2738 67.6899 16.3283 15.9819 -7.9581 47.2735	5 79.1601 13.9791 6.8608 11.7036 49.5560 79.1601 13.9792 6.8608 11.7036 49.5560	6 94.5320 -0.2629 5.7309 9.6216 47.6865 94.4778 -0.7655 6.2877 9.6432 47.8286	UPR stands for upside	potential ratio. Period 1 runs from 1/08/1997 to 3/24/2000, period 2 runs from 3/27/2000 to 5/20/2003, period 3 runs from 5/21/2003 to 7/16/2008, period 4 runs from 7/17/2008 to	1 , w 2 and w 3 are the parts of wealth, which are respectively 8/29/2011, period 5 runs from 8/30/2011 to 10/13/2014, and period 6 runs from 10/14/2014 to 10/30/2017. The weights w	invested in SP500, crude oil and natural gas.

Note: All data are displayed on a percentage basis. The target return r corresponds to the average annual return of the optimal portfolio during each regime.

Table 8 :

 8 Optimal portfolios' attributes under tail risk minimization Regime

	Optimization scheme	Case 1 Case 2	w 1 w 2 w 3 r fixed UPR w 1 ∈ [0,1] w 2 w 3 r fixed UPR	1 37.5780 42.7744 19.6476 4.9770 53.3577 37.5784 42.7732 19.6484 4.9770 53.3577	2 26.6922 38.4362 34.8716 3.1131 49.2614 26.6918 38.4371 34.8712 3.1131 49.2615	3 22.4035 75.1831 2.4133 17.5000 54.2006 22.4034 75.1831 2.4135 17.5000 54.2006	4 69.9444 13.5696 16.4859 -14.9532 47.2637 69.9441 13.5701 16.4857 -14.9532 47.2637	5 48.2561 41.3106 10.4333 4.4484 50.8310 48.2561 41.3106 10.4333 4.4484 50.8310	6 44.7445 32.1112 23.1443 -4.4027 51.7256 44.7446 32.1114 23.1441 -4.4027 51.7257	Regime Case 3 Case 4 w 1 w 2 w 3 Optimal r UPR w 1 ∈ [0,1] w 2 w 3 Optimal r UPR	1 101.2054 3.6705 -4.8759 25.9161 51.0800 99.9999 4.5831 -4.5830 25.5655 51.0285	2 74.4249 20.0048 5.5702 -9.9566 54.7550 73.1956 20.7048 6.0996 -9.6513 54.6653	3 80.8393 16.2623 2.8984 10.5824 52.9028 80.1528 16.7465 3.1007 10.7256 53.0532	4 77.2168 10.4179 12.3654 -6.1397 45.9563 74.9676 11.6353 13.3971 -6.6049 46.3109	5 83.5798 12.1009 4.3193 12.4294 49.3941 81.6571 11.5057 6.8372 12.1143 49.4583	6 97.8905 -2.5446 4.6541 10.4770 47.4107 96.8546 -2.3995 5.5448 10.2493 47.6478	UPR stands for upside	potential ratio. Period 1 runs from 1/08/1997 to 3/24/2000, period 2 runs from 3/27/2000 to 5/20/2003, period 3 runs from 5/21/2003 to 7/16/2008, period 4 runs from 7/17/2008 to	1 , w 2 and w 3 are the parts of wealth, which are respectively 8/29/2011, period 5 runs from 8/30/2011 to 10/13/2014, and period 6 runs from 10/14/2014 to 10/30/2017. The weights w	invested in SP500, crude oil and natural gas.

Note: All data are displayed on a percentage basis. The target return r corresponds to the average annual return of the optimal portfolio during each regime.

Table 9 :

 9 Dissimilarity index across periods and risk measures

	Risk Measure	Pairs j-k **	1	2	3	4	5	6
	Variance	1/2 * -3 28.7185 21.5337 28.6190 0.5941 14.6059 20.9317 1/2 * -4 24.6528 20.9699 28.3667 0.5297 13.7980 20.9317 3-4 4.1429 0.6821 0.2561 0.1342 0.8079 0.0000
	Semi-	variance	1/2 * -3 24.0203 21.9498 28.1793 0.3133 13.7997 20.6479 1/2 * -4 24.0203 21.9497 28.1793 0.3134 13.7997 20.7028 3-4 0.0000 0.0000 0.0000 0.0008 0.0000 0.2507
	Tail risk	1/2 * -3 26.2021 19.6545 27.6619 2.9777 15.4141 22.0288 1/2 * -4 25.6952 19.1625 27.3867 2.0687 14.9699 21.6441 3-4 0.5134 0.5035 0.2880 0.9193 1.0745 0.4580
	Note: Period 1 runs from 1/08/1997 to 3/24/2000, period 2 runs from 3/27/2000 to
	5/20/2003, period 3 runs from 5/21/2003 to 7/16/2008, period 4 runs from 7/17/2008 to
	8/29/2011, period 5 runs from 8/30/2011 to 10/13/2014, and period 6 runs from
	10/14/2014 to 10/30/2017.					

* Cases 1 and 2 are similar so that they reduce to one case. ** Comparison between case j and case k.

Table 10 :

 10 Best-performing portfolios with highest annualized cumulative returns

	Period Case 1 Case 2 Case 3 Case 4
	1	SV	SV	V	TR
	2	SV	SV	SV	TR
	3	SV	SV	TR	TR
	4	TR	TR	TR	TR
	5	SV	TR	TR	TR
	6	V	SV	TR	TR
	Note: V, SV and TR stand for variance, semi-variance
	and tail risk. Period 1 runs from 1/08/1997 to 3/24/2000,
	period 2 runs from 3/27/2000 to 5/20/2003, period 3 runs
	from 5/21/2003 to 7/16/2008, period 4 runs from
	7/17/2008 to 8/29/2011, period 5 runs from 8/30/2011 to
	10/13/2014, and period 6 runs from 10/14/2014 to
	10/30/2017.				

Table 11 :

 11 Annualized cumulative returns of optimal portfolios across cases (%)

	Measure/Case	1	2	3	4
	Variance	4.0485 4.0485 5.7087 5.1362
	Semi-variance 4.0760 4.0706 4.9593 4.9638
	Tail Risk	3.9622 3.9622 6.2263 6.0248

Note: Highest cumulative returns are in bold.

Table 12 :

 12 Expected maximum drawdowns of optimal portfolios across cases (%)

	Measure/Case	1	2	3	4
	Variance	150.3851 150.3851 100.4680 94.0043
	Semi-variance 158.5003 157.6532	95.1536 95.1503
	Tail Risk	144.			

3803 144.3812 92.8681 93.6813

  

Note: Lowest expected maximum drawdowns are in bold.

Table 13 :

 13 Attributes of superoptimal portfolios across cases (%)

	Case	1	2	3	4
	Annualized cumulative Return	4.0803	4.0746	6.6555	6.0248
	Expected maximum drawdown	118.1443 118.2476 70.1571 69.6141

Table 14 :

 14 Period-specific variance regimes and optimal copulas for SP1500 index portfolio

	Period	Start	End	Regime SP1500/Oil/Gas	Copula	Tail
	1	01/08/1997 03/24/2000	LM/H/M	Gumbel	Upper
	2	03/27/2000 05/20/2003	M/H/H	Gaussian	None
	3	05/21/2003 07/16/2008	L/M/M	Gaussian	None
	4	07/17/2008 08/29/2011	H/H/M	T	Symmetric
	5	08/30/2011 10/13/2014	L/L/L	T	Symmetric
	6	10/14/2014 10/30/2017	VL/H/L	T	Symmetric

Note: The variance regime of index returns can be very low (VL), low (L), low-medium (LM), medium (M), or high (H). The low-medium variance regime is an intermediate state, which lies between the low and the medium regimes. The very low variance regime is the lowest variance level, which is observed across the referenced periods.

Table 15 :

 15 Period-specific variance regimes and optimal copulas for SPMid400 index portfolio

	Period	Start	End	Regime SPMid400/Oil/Gas	Copula	Tail
	1	01/08/1997 05/23/2001	M/H/M	T	Symmetric
	2	05/24/2001 04/29/2005	M/H/H	Clayton	Lower
	3	05/02/2005 07/16/2008	L/M/M	Gaussian	None
	4	07/17/2008 08/29/2011	H/H/M	T	Symmetric
	5	08/30/2011 10/13/2014	L/L/L	T	Symmetric
	6	10/14/2014 10/30/2017	VL/H/L	T	Symmetric
	Note: The variance regime of index returns can be very low (VL), low (L), medium (M), or high (H).

The very low variance regime is the lowest variance level, which is observed across the referenced periods.

Table 16 :

 16 Period-specific variance regimes and optimal copulas for SPSmall600 index portfolio

	Period	Start	End	Regime SPSmall600/Oil/Gas	Copula	Tail
	1	01/08/1997 09/21/2001	M/H/M	T	Symmetric
	2	09/24/2001 02/02/2005	M/H/H	Frank	None
	3	02/03/2005 07/16/2008	LM/M/M	Gaussian	None
	4	07/17/2008 08/29/2011	H/H/M	T	Symmetric
	5	08/30/2011 10/13/2014	LM/L/L	T	Symmetric
	6	10/14/2014 10/30/2017	L/H/L	T	Symmetric

Note: The variance regime of index returns can be low (L), low-medium (LM), medium (M), or high (H). The low-medium variance regime is an intermediate state, which lies between the low and the medium regimes.

Table A . 1 :

 A1 Descriptive statistics about U.S. energy commodity and stock market returns

	Statistics	Gas	Oil	SP500
	Mean	-0.0050	0.0138	0.0234
	Median	0.0000	0.0621	0.0559
	Std. Dev.	4.3911	2.4733	1.2116
	Skewness	0.5843	-0.0928	-0.2311
	Kurtosis	23.6372	7.4910	11.0103
	Jarque-Bera 93,445.0960 4,418.7093 14,080.2268
	Nobs	5249	5249	5249

Note: Std. Dev. stands for standard deviation and Nobs stands for the number of observations (i.e. sample size).

Table A .2:

 A Unit root test of energy commodity and stock index returns PP stands for the Phillips-Perron statistics, and the probability reports corresponding p-value.

	Statistics	Gas	Oil	SP500
	PP	-70.0377	-74.3348	-78.5123
	Probability	0.0001	0.0001	0.0001
	Note:			

http://www.cftc.gov

The notional value has recently fallen to $27/$8.9 Billion on June

th , 2015. 

For example, the speculative bubble has engendered oil price spikes during the financial crisis.

We focus on an in-sample study to understand the dynamics of the three asset components, and its impact on the portfolio's performance across regimes.

It is robust to heteroskedasticity and autocorrelation in regression residuals.

A pure structural change model.
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advocate five breaks so that we need to consider 6 periods (see Table A 

Let ρ be a correlation matrix and u, v, w in [0,1], the Gaussian copula density writes:

Where exp(.) is the exponential function, ρ and ρ -1 are a three-dimension matrix and its inverse respectively, |ρ| is the determinant of the correlation matrix, ξ is the vector of the inverse standard univariate Gaussian cumulative distribution function, which is applied to each element u, v, w, and finally ξ t is the transposed vector of ξ. A three-dimension identity matrix I (i.e. with unit diagonal terms and zero elsewhere) is also employed.

Let θ >0 be a positive correlation parameter and u, v, w in [0,1], the Frank copula writes:

, , ; N = - Journal, 1(1), 1-7. 17 The Student T distribution has ν degree(s) of freedom.