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1. Introduction 

Energy commodities are of interest to both the government and several parties acting in 

financial markets. From the viewpoint of countries and governments, energy prices are crucial to 

the economic development, and raise concerns about energy vulnerability (e.g. energy shortages 

and costs). Energy price uncertainty, such as price upsurges, can severely impair energy firms as 

well as energy consumers, and therefore economic activity. From the viewpoint of financial 

markets, commodity and commodity derivatives markets are useful to energy producers and 

consumers as well as portfolio managers. They play an important role in related risk-sharing 

processes. As a result, energy commodities have become an asset class, which is widely used for 

diversification, hedging or speculation prospects (de Roon et al., 2000; Gorton and Rouwenhorst, 

2006; Jin and Jorion, 2006). According to the United States (U.S.) Commodity Futures Trading 

Commission,1 the notional value of commodity index investments has evolved from $39.6/$11.4 

Billion on December 31st, 2007 to $33.9/$14.3 Billion on January 31st, 2013 with respect to WTI 

crude oil and natural gas markets.2 Moreover, energy and financial markets are known to interact 

to a large extent, and exhibit a joint dependency (Barsky and Kilian, 2004; Hamilton, 1985; Kilian, 

2009). 

The proposed research tackles the interaction between the U.S. stock, natural gas, and 

crude oil markets as well as its significance to portfolio management. Specifically, energy markets 

are known to interact with the stock market, so that crude oil and natural gas commodity assets 

play a diversifying role in stock portfolios. The incorporation of such commodity assets into stock 

portfolios contributes to mitigate the loss risk of the resulting portfolios. However, such 

diversifying role depends on the dependence structure between crude oil, natural gas and stocks. 

We aim at studying how the dependence structure between U.S. crude oil, natural gas and stocks 

evolves over time, and its impact on the diversifying role of commodity assets in stock portfolios. 

For this purpose, we consider a portfolio composed of the U.S. natural gas and crude oil as well as 

the Standard and Poor’s 500 index (as a portfolio proxy for U.S. large-cap stocks), from January 

1997 to October 2017. The Standard and Poor’s 1500, Standard and Poor’s MidCap 400 and 

Standard and Poor’s SmallCap 600 indexes are also considered as a proxy of the U.S. global, mid-

cap and small-cap stock markets respectively. Thus, we study the diversifying role of energy 

commodities in global, large-cap, mid-cap and small-cap stock portfolios. We build our study on 

the findings of Gatfaoui (2016a). The author studies the three-dimensional dependence structure 

between the U.S. stock, crude oil, and natural gas markets from January 1997 to January 2013. Her 

                                                           
1 http://www.cftc.gov  
2 The notional value has recently fallen to $27/$8.9 Billion on June 30th, 2015. 
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findings highlight that the three markets exhibit structural changes/breaks over time, so that the 

U.S. stock, crude oil, and natural gas returns display all several variance regimes (e.g. alternating 

periods of low, medium and high variance of returns). Because of these multiple variance regimes, 

the resulting multivariate dependence structure is time-varying, and exhibits regime switches (i.e. 

individual variance regimes translate into numerous multivariate variance regimes). Therefore, the 

three-dimensional dependence structure between U.S. crude oil, natural gas and stocks is described 

by different copula functions across variance regimes. Such representative copulas exhibit 

numerous tail dependences (i.e. none, symmetric, upper and lower tail dependence across 

regimes), and various asset correlations (i.e. alternating positive and negative correlations over 

time). In this light, tail dependency is of huge significance to portfolio risk managers because it 

describes the dependence between the extreme returns of portfolio assets. For example, when the 

three-dimensional dependence structure exhibits positive lower tail dependence, the extreme 

negative returns of all asset components are positively correlated. Thus, the portfolio’s risk of loss 

is substantial, and risk mitigation can become ineffective.    

Our contributions extend previous study to portfolio management, and cover a larger time 

window. In particular, we scrutinize practical implications for portfolio optimization across 

variance regimes. First, we use the methodology of Gatfaoui (2016a) to identify the regime-

switching dependence structure between U.S. crude oil, natural gas and Standard and Poor’s 500 

index returns over time. Such study yields optimal three-dimensional copula representations, 

which are specific to the detected variance regimes. Findings highlight successive upper, 

nonexistent, and symmetric tail dependence over the sample horizon (i.e. Gumbel, Gaussian and 

Student T copulas respectively). Tail dependency is of huge significance to portfolio risk managers 

since it highlights the joint dependence between the extreme returns of the portfolio’s assets. In 

particular, the nature of the multivariate dependence structure drives the portfolio’s performance 

over the investment horizon. Second, we build a portfolio composed of the U.S. crude oil, natural 

gas and Standard and Poor’s 500 index (as a stock portfolio proxy). Using the regime-specific 

copulas, we determine the optimal composition of the three-asset portfolio over each variance 

regime. The optimal portfolio composition is obtained while minimizing various risk measures, 

such as variance, semi-variance and tail risk. Then, we compare the attributes and performance of 

the measure-specific optimal portfolios across regimes. We are thus able to gauge the diversifying 

role of commodities as a function of the dependence structure and the risk metrics in use (i.e. 

regime-specific diversification performance). Moreover, the same study is also undertaken three 

more times while replacing successively Standard and Poor’s 500 index with Standard and Poor’s 

1500, MidCap 400 and SmallCap 600 indexes. In this light, our added value is threefold. First, we 
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propose a better way to identify a reduced number of variance regimes over a larger time window. 

Second, we employ the regime-switching dependence structure between crude oil, natural gas and 

Standard and Poor’s 500 index (or Standard and Poor’s 1500, MidCap 400, SmallCap 600 index) 

to study the diversifying role of commodities in stock portfolios. We assess the diversifying role of 

commodities in global market, large-cap, mid-cap and small-cap stock portfolios. Third, 

considering a portfolio composed of U.S. crude oil, natural gas and stocks, we use the time-

varying dependence structure of the three asset components to determine the optimal portfolio 

composition across variance regimes. For this purpose, we consider several risk measures and 

various minimization constraints. The risk measures under consideration consist of the variance, 

semi-variance (e.g. downside variance) and tail risk (i.e. probability of underperforming a 

specified return threshold). All risk metrics are computed while incorporating the regime-specific 

multivariate copulas across the referenced variance regimes. And, portfolio optimization is 

implemented while minimizing these risk measures. Thus, we exploit the diversification power of 

energy commodities while minimizing the portfolio’s (loss) risk. Such regime-specific analysis 

allows for implementing an active portfolio management strategy, which handles a potential 

dependence between the extreme returns of portfolio assets. An efficient strategy should rely on 

tail risk minimization. However, it can also rely on variance and semi-variance minimization in the 

absence of constraint on the portfolio’s expected return. Lastly, the diversification power of energy 

commodities is often the most effective for SPMidCap 400 stock index portfolios. 

The remainder of the paper is organized as follows. Section 2 summarizes the literature 

review. Section 3 introduces stock (i.e. SP500) and energy market data, and recalls data attributes. 

This section displays key statistics, and describes regime-specific multivariate dependencies (i.e. 

copula functions). Using the identified dependence structures, section 4 implements portfolio 

optimization under various risk management schemes. We focus on stock portfolios, which are 

diversified with holdings in both natural gas and crude oil assets. A performance diagnostic 

scrutinizes the risk and return tradeoff of corresponding optimal portfolios, and therefore the 

diversifying effectiveness of commodity assets. Section 6 extends the previous study to U.S. 

global market, mid-cap and small-cap stock portfolios. Finally, section 7 concludes and proposes 

possible future extensions.  

 

2. Literature review 

We introduce acknowledged links between the U.S. stock market, crude oil and natural gas. 

We also highlight the recent role of energy commodities as portfolio diversifiers.  
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Index commodity trading favors the integration of stock and commodity markets (Domanski 

and Heath, 2007; Silvennoinen and Thorp, 2013; Tang and Xiong, 2012). It also enforces 

comovements between stock and commodity prices. Such pattern supports the reported 

price/return correlation between these two asset classes, and within the commodity asset class 

(Eckaus, 2008; Falkowski, 2011; Kilian, 2009; Kilian and Park, 2009; Parsons, 2010; Pindyck, 

2004).3 However, reported relationships are time-varying (Aloui et al., 2014; Brigida, 2014; 

Gatfaoui, 2016a). Crude oil and natural gas prices are cointegrated so that they exhibit a long-run 

equilibrium from which they depart in the short run (Brigida, 2014; Hartley and Medlock, 2014; 

Miller and Ratti, 2009; Villar and Joutz, 2006). Crude oil and natural gas prices do indeed 

decouple in the short term whereas they couple in the longer term (Brown and Yücel, 2008; 

Gatfaoui, 2016b; Hartley and Medlock, 2014; Ramberg and Parsons, 2012). As a result, crude oil-

specific shocks need more or less time to contaminate natural gas prices. Such feature opens the 

door to potential market-timing strategies on the commodity market. Hence, incorporating crude 

oil and natural gas commodities into an investment portfolio can make sense. And, commodities 

can help mitigate the resulting portfolio’s risk. 

As regards risk mitigation prospects, commodity markets present some interests to market 

participants. Nowadays, their role as efficient portfolio diversifiers is strongly acknowledged 

(Goergiev, 2001; Jensen et al., 2000; Satyanarayan and Varangis, 1996). For example, futures on 

commodities help diversify equity portfolios. They contribute to reduce risk, and potentially 

improve portfolios’ returns (Hensel and Ankrim, 1993; Lee and Leuthold, 1985). Incidentally, 

commodity markets exhibit a negative (and close to zero) correlation with stock markets (Harvey 

and Erb, 2006). Such negative or null correlation provides equity portfolios with diversification 

rewards (Conover et al., 2010). Commodities also contribute to improve the expected return of any 

conventional investment portfolio, which comprises stocks, bonds and cash (Bekkers et al., 2009). 

Thus, adding commodities to investment portfolios contributes to decrease (stabilize) portfolio 

volatility, and to stabilize (increase) corresponding returns (Conover et al., 2010; Christopherson et 

al., 2004; Harvey and Erb, 2006; Kim et al., 2011). In particular, they contribute to decrease the 

loss risk of portfolios (Daigler et al., 2017). 

Including commodities into investment portfolios provides further benefits, specifically when 

equity markets are resilient and inflation is large. Commodity futures are negatively correlated 

with equity/bond returns, whereas they are positively correlated with changes in both expected 

inflation and unexpected inflation (Zvi and Rosanky, 1980; Gorton and Rouwenhorst, 2006). Thus, 

commodities offer a hedge against unexpected inflation (at least in the long run) because they are 
                                                           
3 For example, the speculative bubble has engendered oil price spikes during the financial crisis. 
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real assets (Greer, 2006; Hensel and Ankrim, 1993; Kaplan and Lummer, 1997). However, the 

diversification benefits of commodities vary over time. The diversification's effectiveness is 

sensitive to the financial market’s disturbances (i.e. stressed market times; Büyükşahin et al., 2010; 

Cheung and Miu, 2010). Besides, the business cycle also influences such relationship (Chevallier 

and Ielpo, 2013; Chevallier et al., 2014). For example, the diversification power of commodities 

vanishes when the correlation between stock and commodity markets is strong (Silvennoinen and 

Thorp, 2013).  

 

3. Energy and stock market data 

We summarize the statistical features and key attributes of crude oil, natural gas, and Standard 

and Poor’s index time series. 

3.1.  Dataset and properties 

We consider daily logarithmic returns from January 8, 1997 to October 30, 2017 (i.e. 5249 

observations per series), so that we extend the study of Gatfaoui (2016a) by four years and nine 

months. Returns are considered on a percentage basis. The data consist of Henry Hub Gulf Coast 

Natural Gas Spot Price (Gas) from the U.S. Energy Information Administration, the WTI crude oil 

Fixed Order Book price (Oil) from West Texas Intermediate exchange, and Standard and Poor’s 

500 index close (SP500) from Thomson Reuters.4 The selected sample window encompasses 

several market disturbances. Disturbances refer to the 1997 Asian crisis, the 1998 LTCM hedge 

fund default, the 2000-2002 dotcom bubble, the May 2005 U.S. credit crisis, the 2006 Amaranth 

hedge fund collapse, and the 2007-2009 subprime mortgage market crisis as well as the 2000s 

commodity bubbles. Such disturbances impact the causal connections and dependencies between 

                                                           
4 We compared crude oil and natural gas spot prices to the corresponding futures prices of contracts with the shortest 
maturities. To this end, we have implemented two tests. First, a test of mean equality checked if the log-returns of 
commodity spot prices and the log-returns of corresponding futures prices were equal over the studied time period. 
Specifically, it investigated if the differentials between commodity log-returns and futures log-returns were equal to 
zero, on an average basis. The null assumption stipulates that differentials of log-returns are equal to zero. Unreported 
results show that we fail to reject the null assumptions, so that the log-returns of commodity spot prices are equal to 
the log-returns of corresponding futures prices, on an average basis. Second, we focused on the time series behavior of 
spot prices and futures prices. To this end, we have implemented the linear regression of the differentials between 
commodity and futures log-returns on futures log-returns, while including an intercept. If commodity and futures log-
returns are the same, both the intercept and the slope coefficients should be zero. At a five percent test level, 
unreported results show that the intercept and slope coefficients are not significantly different from zero for both crude 
oil and natural gas. Such pattern shows that commodity log-returns and futures log-returns behave in a similar way. 
Thus, using log-returns of either commodity spot prices or futures prices should yield the same results. 
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commodity and stock markets. And, they can potentially trigger structural changes in such 

relationships. 

Analogously to Gatfaoui (2016a), we report skewed, leptokurtic, non-Gaussian, but mean-

stationary5 returns (see appendix). Moreover, crude oil, natural gas and SP500 index returns 

exhibit structural changes.6 The F and WDmax(5) statistics of Bai and Perron (2003a, 2003b) and 

Qu and Perron (2007) support five structural breaks (see appendix). The reported five breakpoints 

allow for identifying six periods (see Table  in appendix, and Table 1 below). First, mean 

percentage returns generally exhibit a unique regime since they are very close to zero.7 Moreover, 

an unreported paired t-test of mean equality shows that SP500, crude oil and natural gas return 

series exhibit the same mean return over each reported period. Second, the six reported periods 

summarize into various variance/volatility (i.e. standard deviation) regimes according to the robust 

variance test of Brown and Forsythe (1974), Conover et al. (1981), and Levene (1960).8 For 

example, the six periods summarize into four possible variance regimes for SP500 returns (see 

Figure 1). The four variances regimes consist of a very low (VL), low (L), medium (M) and high 

(H) regime. Variance regimes are specific to each return series (see Table 1), and are classified in, 

at least, three categories such as low, medium and high, according to the robust variance test. At 

most, five categories can be disentangled such as very low, low, medium, high and very high. Such 

classification depends on the estimated levels of period-specific standard deviations. When there 

are more than three variance regimes, we compare the period-specific levels to each other so as to 

match five possible variance classes. Obtained results confirm at most four variance regimes. 

  

Table 1: Structural changes in return series and variance regimes 

Period Statistics Gas Oil SP500 

1 

Mean -0.0376 0.0074 0.0876* 

Std. Dev. 3.9817 2.5620 1.2267 

Regime M H M 

2 

Mean 0.0941 0.0063 -0.0642 

Std. Dev. 5.8587 2.8193 1.4377 

Regime H H H 

                                                           
5 Returns are stationary according to the five percent unit root test of Phillips-Perron. 
6 The structural break test is detailed in the appendix. 
7 Recall that returns are in percent so that, for example, a significant mean return of 0.1182% represents a very small 
value on a level basis (i.e. 0.001182). 
8 Results are available upon request. The test is implemented at a five percent level. 
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3 

Mean 0.0489 0.1182* 0.0235 

Std. Dev. 4.3625 2.0882 0.8516 

Regime M M L 

4 

Mean -0.1325 -0.0551 -0.0037 

Std. Dev. 4.3288 3.1446 1.8905 

Regime M H H 

5 

Mean -0.0020 0.0023 0.0556* 

Std. Dev. 3.9550 1.4889 0.8931 

Regime L L L 

6 

Mean -0.0349 -0.0585 0.0402 

Std. Dev. 3.5187 2.6156 0.7793 

Regime L H VL 

Note: Std. Dev. stands for standard deviation while Regime refers to the variance/volatility regime of asset 

returns. The variance regime can be very low (VL), low (L), medium (M) or high (H). Period 1 runs from 

1/08/1997 to 3/24/2000, period 2 runs from 3/27/2000 to 5/20/2003, period 3 runs from 5/21/2003 to 

7/16/2008, period 4 runs from 7/17/2008 to 8/29/2011, period 5 runs from 8/30/2011 to 10/13/2014, and 

period 6 runs from 10/14/2014 to 10/30/2017. 
* Significant at a five percent Student t test level. 

 

 

Figure 1: Variance regimes of SP500 index returns 
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Over the six periods, SP500, crude oil and natural gas return series exhibit different nonparametric 

correlations, as represented by Kendall’s tau. Such concordance measure illustrates the joint 

dependence structure between asymmetric and fat-tailed time series (see Table 2). In particular, 

crude oil and natural gas returns are significantly and slightly positively correlated over periods 2 

to 4, while crude oil and SP500 returns are significantly and positively correlated over periods 4 to 

6. However, natural gas and SP500 returns are insignificantly correlated across the six periods. 

Thus, the relationship between U.S. energy commodity and stock market returns is time-varying, 

and its nature changes across periods, and therefore regimes. 

Table 2: Kendall’s tau 

Period Start End Oil and gas Oil and SP500 Gas and SP500 

1 1/08/1997 3/24/2000 0.0049 -0.0098 -0.0223 

2 3/27/2000 5/20/2003 0.0908* -0.0009 0.0025 

3 5/21/2003 7/16/2008 0.0623* -0.0234 -0.0058 

4 7/17/2008 8/29/2011 0.0499* 0.3146* 0.0136 

5 8/30/2011 10/13/2014 0.0330 0.2833* -0.0058 

6 10/14/2014 10/30/2017 -0.0137 0.1955* -0.0152 

* Significant at a five percent two-tailed test level. 

 

3.2.  Multivariate dependence structures across variance regimes 

Consider a set of three real variables X, Y, and Z, which evolve randomly. In the present case, 

random variables X, Y and Z correspond to the returns of SP500 (X=RSP500), crude oil (Y=ROil) and 

natural gas (Z=RGas) respectively. These three random variables can evolve jointly over time, and 

therefore exhibit a correlation risk within an asset portfolio composed of SP500, crude oil and 

natural gas. In particular, the positive correlation of extreme negative returns is of high 

significance for risk management and risk mitigation prospects (i.e. managing lower tail 

dependency). When the extreme negative returns of all the portfolio’s assets are positively 

correlated, the resulting portfolio returns are negative (i.e. extreme investment losses, due to lower 

tail dependence). Alternatively, the portfolio’s risk of loss can be mitigated when the extreme 

negative returns of the portfolio’s assets are not all positively correlated. Therefore, such potential 
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correlation risk requires studying the dependence structure of these three assets’ returns, which 

build a set of three real random variables (X, Y, Z) = (RSP500, ROil, RGas). According to Sklar’s 

theorem (1959), the dependence structure can be gauged with either the related multivariate 

cumulative distribution function or the corresponding copula function as follows:  

���, �, �� = Pr�� ≤ �,  ≤ �, � ≤ �� = �������, �����, ������ = ���, �, ��			(1) 

where F(.) is the three-dimensional cumulative distribution function of SP500, crude oil and 

natural gas returns ; C(.) is the corresponding three-dimensional copula function ;9  Pr(.) is the 

probability operator ; x, y, and z are real numbers representing the realizations of random variables 

X, Y and Z ; FX(.)=FSP500(.), FY(.)=FOil(.) and FZ(.)=FGas(.) are the univariate cumulative 

distribution functions of SP500, crude oil and natural gas returns respectively ;  u=FX(x)=Pr(X ≤ x), 

v=FY(y)=Pr(Y ≤ y) and w=FZ(z)=Pr(Z ≤ z) are positive numbers which lie between 0 and 1. The 

interest of copula functions relies on the fact that they can avoid specifying univariate cumulative 

distribution functions. Copula functions can rather focus on the joint empirical dependence 

structure C(u,v,w), which reduces the risk of model error. 

 

At the univariate level, the reported six periods summarize into up to four variance regimes for 

each return series. Across these six periods, or equivalently, across corresponding variance 

regimes, the joint dependence structure between crude oil, natural gas and SP500 returns is 

investigated through copula representations.  The set of possible representations consists of the 

Clayton, Frank, Gauss, Gumbel and Student T copulas, which are displayed in the appendix. These 

five copulas handle various tail behaviors (i.e. non existing, symmetric, lower or upper tail 

dependence; Cherubini et al., 2004; Embrechts et al., 2003; Gatfaoui, 2010; Malevergne and 

Sornette, 2003; McNeil et al., 2005; Patton, 2009; Sklar, 1973). Thus, we consider three-

dimensional dependence structures, which investigate the dependency between extreme return 

values (see Table 3). 

Copula parameters are estimated with the maximum pseudo-likelihood procedure using a 

bootstrap method (Chen and Fan, 2006; Genest et al., 2009). The adequacy of the five copulas is 

gauged through a robust Cramer-von-Mises goodness-of-fit test (i.e. Rosenblatt’s SnC statistics of 

Genest et al., 2009), which is performed at a five percent significance level. And, the optimal 

copula is selected based on the Akaike (AIC), Schwarz (SIC) and Hannan-Quinn (HQIC) 

                                                           
9 The copula function is unique provided that univariate cumulative distribution functions are continuous. 
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information criteria, when several copula representations are appropriate over a given period. 

When some discrepancies happen between all the criteria,10 we favor the AIC criterion (Brooks, 

2008; Tsay, 2005). Table 3 displays the optimal copulas and their respective parameters. 

Obviously, the joint dependence structure of SP500, crude oil and natural gas returns exhibits six 

variance regimes. 

  

Table 3: Optimal dependence structures across variance regimes 

Period* 
Regime**  

SP500/Oil/Gas 
Copula Tail Parameter(s)*** 

1 M/H/H Gumbel Upper θ = 1.5510 

2 H/H/H Gaussian None ρ  = � 1 0.0334 −0.01330.0334 1 0.0906−0.0133 0.0906 1 " 

3 L/M/L Gaussian None ρ  = � 1 −0.0478 −0.0035−0.0478 1 0.0631−0.0035 0.0631 1 " 

4 H/H/M T Symmetric ρ  = � 1 0.3611 0.08200.3611 1 0.09870.0820 0.0987 1 " ν = 6 

5 L/L/L T Symmetric 
ρ  = � 1 0.4206 −0.00790.4206 1 0.0522−0.0079 0.0522 1 " ν = 

25 

6 VL/H/L T Symmetric ρ  = � 1 0.3388 −0.07320.3388 1 0.0181−0.0732 0.0181 1 " ν = 9 

* Period 1 runs from 1/08/1997 to 3/24/2000, period 2 runs from 3/27/2000 to 5/20/2003, period 3 runs from 

5/21/2003 to 7/16/2008, period 4 runs from 7/17/2008 to 8/29/2011, period 5 runs from 8/30/2011 to 10/13/2014, 

and period 6 runs from 10/14/2014 to 10/30/2017. 
**  Variance regime of univariate returns can be very low (VL), low (L), medium (M) or high (H). 
***  ρ is a 3×3 correlation matrix between SP500, crude oil and natural gas returns respectively. Correlation 

parameters exhibit various signs. Moreover, ν is the degree of freedom of the Student T copula and θ is the 

correlation parameter of the Gumbel copula. 

 

During the first period, SP500 variance regime drives tail dependence. Over the remaining 

periods, the variance regimes of energy commodities drive the dependence structures. The stock 
                                                           
10 Discrepancies happen over period 2 where SIC and HQIC favor the Clayton copula while AIC favors the Gaussian 
copula. 
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market disturbances of late 90s and early 2000s coincide with upper tail dependence. Tail 

dependency challenges portfolio management because it refers to comovements between the low 

and/or high extreme returns of SP500 index, crude oil and natural gas. According to Gatfaoui 

(2016a), the balance between the variance regimes of crude oil, natural gas and SP500 drives tail 

dependence over time. As a result, the joint dependence structure between the three assets is 

regime-switching. Hence, a diversified portfolio composed of SP500 index, crude oil and natural 

gas assets needs to get reallocated across regimes to mitigate (tail) risk. Such feature favors a 

regime-specific portfolio management since portfolio rebalancing should operate over each 

regime. We will focus on an in-sample analysis in order to understand how the joint dynamics of 

SP500, crude oil and natural gas returns impacts active portfolio management across regimes. 

   

Given the diversifying role of commodities, we will consider a stock portfolio, which we 

immunize with energy commodities, such as crude oil and natural gas. Such commodity 

investment allows for benefiting from a direct exposure to commodity price changes. Moreover, 

including crude oil and natural gas commodities benefits from the short-term decoupling and long-

term coupling of corresponding prices. It allows for capturing the market-timing strategies, which 

result from the regime-switching nature of stock, crude oil and natural gas markets. 

 

4. Portfolio optimization  

The dynamic nature of natural gas, crude oil and U.S. stock markets’ dependencies causes 

shifts in their joint risk across reported regimes. In particular, interdependencies between U.S. 

commodity and stock markets drive the risk-sharing process, such as volatility spillovers. Such 

feature has significant implications for risk mitigation and portfolio management (i.e. dynamic 

asset allocation process and related optimization practice; Buckley et al., 2008). The portfolio’s 

risk exposure and performance are altered because the time variation in risk needs to be reckoned. 

As an example, we consider a portfolio composed of U.S. stocks, which are diversified with 

holdings in both natural gas and crude oil assets. The investment portfolio under consideration 

comprises the SP500 index as well as natural gas and crude oil commodities. Such portfolio 

strategy exploits the hedging role of energy commodities against the liquidity risk of equity 

markets, among others. The optimal portfolio composition, or equivalently, the portfolio allocation 

profile is determined while minimizing the portfolio’s risk exposure (e.g. limiting the risk of 

underperformance) over a given investment horizon. The investment horizon consists of a specific 



13 
 

variance regime. In this light, we consider several risk measures, among which the variance of the 

portfolio’s return, and the portfolio’s downside risk such as semi-variance and tail risk (Mansini et 

al., 2014; Kolm et al., 2014). Corresponding portfolio optimization exploits previous copula 

representations as a robust tool (Kakouris and Rustem, 2014). In particular, we handle the 

asymmetry in returns, which is a significant issue to both portfolio selection (Harvey and Siddique, 

2000; Kraus and Litzenberger, 1976; Samuelson, 1970), and portfolio decision making (Barberis 

and Huang, 2008; Mitton and Vorkink, 2007). 

 

4.1.  Variance minimization 

We consider an investor whose wealth is devoted to a portfolio composed of the SP500, crude 

oil and natural gas assets. We label w1, w2 and w3 those parts of wealth, which are respectively 

invested in each of the three assets. As formerly introduced by Markowitz (1952, 1959), the 

investor seeks a mean-variance efficient portfolio. Under a given return target, which represents 

the desired average portfolio performance over the investment horizon, the efficient portfolio’s 

risk, which is measured by its return’s variance, is minimized. Assuming that the investor 

dedicates all of his/her wealth to the portfolio, the portfolio’s weights sum to unity. Hence, the 

investor needs to solve for the following optimization problem in order to determine his/her 

optimal portfolio (i.e. the best portfolio’s allocation, subject to the performance constraint): 

( )
[ ]

1 2 3

min

. .
1

P

P

Var R

E R r
s t

w w w

 =
 + + =

 (2) 

where RP = w1 RSP500 + w2 ROil + w3 RGas is the portfolio’s return, and E[RP]  = w1 E[RSP500]  + w2 

E[ROil]  + w3 E[RGas]  is its average counterpart (E[.]  is the expectation operator), r is the targeted 

average return, and Var(RP) is the variance of the portfolio’s return. When weights are positive 

(and, specifically, between 0 and 1), no short sale is allowed, while short selling is allowed under 

negative weights. When returns follow a Gaussian probability distribution, a simple solution to the 

optimization problem exists (Lintner, 1965; Markowitz, 1952; Sharpe, 1964). But, asset returns are 

far from being Gaussian because of their tail fatness and asymmetry properties. Moreover, their 

dynamic joint behaviors across reported regimes often deviate from the Gaussian setting.  

Let w and R be the vectors of weights and asset returns respectively. The portfolio’s return rewrites 

as RP = w’ R where w’ = (w1 w2 w3) is the transpose of vector w. Thus, the variance of the 

portfolio’s return depends on the variance of the return vector R, and the joint dependence 



14 
 

structure of the three portfolio constituents. As a result, the variance of the portfolio’s return can 

rewrite as a function of the optimal copula, which describes the joint dependence structure of 

SP500, crude oil and natural gas returns. And, we can solve for optimization problem (1) while 

rewriting the components of the portfolio’s variance Var(RP) = E[RP ²]  – (E[RP] )² as follows: 

[ ] ( ) ( ) ( )( ) ( )
[ ]3

1 1 1
1 500 2 3

0,1

, ,P SP Oil GasE R w F u w F v w F w c u v w dudvdw− − −= + +∫∫∫  (3) 

and 

( ) ( ) ( )( ) ( )
[ ]3

22 1 1 1
1 500 2 3

0,1

, ,P SP Oil GasE R w F u w F v w F w c u v w du dvdw− − −  = + +  ∫∫∫  (4) 

where FR(.) is the empirical cumulative distribution function of random variable R (i.e. a given 

return series; see Deheuvels, 1979), and FR 
-1(.) is its inverse counterpart, and c(u,v,w) is the 

relevant copula density function (i.e. optimal copula representation). By so doing, we handle 

potential departures from normality, when computing the variance risk measure. We consider four 

possible cases while solving for the optimization problem above-mentioned (see Table 4). Such 

cases are compared to a benchmark portfolio, which consists of a naïve portfolio, or equivalently, 

an equally-weighted portfolio.11 First, cases 1 and 2 assume a fixed target return (i.e. the investor’s 

objective of average portfolio performance), whereas cases 3 and 4 let the optimization procedure 

determine the target return. The two latter cases are useful to study the feasibility of the 

optimization problem, and help correct for a too ambitious, or unrealistic target of portfolio 

performance. Under cases 1 and 2, the target return is equal to the naïve portfolio’s performance 

plus a proportion of its absolute performance. In particular, the target return is set to the naïve 

portfolio’s average return plus 0.5 times (i.e. fifty percent of) the absolute value of the naïve 

portfolio’s average return. Hence, the optimal portfolio is required to outperform the naïve 

portfolio. Under cases 1 and 2, the optimization process yields the optimal portfolio’s weights 

under a fixed target return. As an extension, cases 3 and 4 yield both the optimal portfolio’s 

weights and corresponding optimal target return. The latter optimization cases help study the 

portfolio’s risk-return tradeoff under the chosen risk measure. 

 

                                                           
11 The naïve portfolio is an equally-weighted portfolio, which comprises SP500 index, and crude oil and natural gas 
commodities (i.e. each weight is equal to one-third). 



15 
 

Table 4: Optimization constraints and portfolio parameters 

Case # Minimize subject to (un)constrained weights and target return 

1 w1 is free w2 is free w3 is free r is fixed 
2 w1 lies in [0,1] w2 is free w3 is free r is fixed 

3 w1 is free w2 is free w3 is free r is free 

4 w1 lies in [0,1] w2 is free w3 is free r is free 
Note: The weights w1, w2 and w3 are the parts of wealth, which are respectively invested in SP500, crude 

oil and natural gas. 

 

Second, cases 2 and 4 constrain the investment (w1) in SP500 to lie between 0 and 1, while w2 and 

w3 weights (i.e. commodity investments) are unconstrained. Under such setting, the investor 

necessarily holds the SP500 index in his/her portfolio, and diversifies the index with (short/long) 

positions in commodity investments. Allowing negative values for w2 and w3 weights exploits the 

hedging effectiveness of commodities with respect to SP500. Specifically, diversification 

possibilities vanish in the presence of positive dependencies, so that the portfolio requires short 

sales to hedge against such positive interlinkages (particularly, when the desired target return is 

high).  

We also introduce the upside potential ratio (UPR) as a performance indicator, which writes as 

UPR = E[max(RP-r,0)] / (E[min(RP-r,0)2])1/2. It is the ratio of the upper partial moment of order 

one to the square root of the lower partial moment of order 2. Over a given investment horizon, the 

UPR is the ratio of all excess gains (with respect to the benchmark return r) to the downside risk 

(Sortino et al. 1999). In the UPR, lower partial moments measure the downside risk (Jarrow and 

Zhao, 2006; Unser, 2000).  

 

4.2.  Minimizing downside risk: Semi-variance and tail risk 

So far, portfolio managers worry more about the downside risk (i.e. risk of negative returns, or 

risk of underperforming a return target) than the symmetric risk measure proposed by the variance. 

In this light, the square root of the variance, or equivalently, the standard deviation is an absolute 

risk measure, which lacks information or risk representativeness in the presence of asymmetric 

returns. As an extension, several downside risk measures such as the semi-variance and tail risk 

have been proposed (Alexander, 1998; Steinbach, 2001). Downside risk measures help set up an 

optimal hedge, which offers protection against exposures to the risk of loss (Conlon and Cotter, 

2013).The semi-variance focuses on the portfolio’s returns, which underperform a fixed target 
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return r. These underperforming returns lie below the targeted performance r (e.g. a benchmark 

return, which illustrates the minimum acceptable average return; Markowitz, 1959). In practice, 

the semi-variance measures the variance of the negative values of the difference (RP-r) between 

the portfolio’s return and its targeted performance. Thus, the semi-variance symbolizes a measure 

of regret because it focuses on the failure to reach the target return. Under such setting, the 

portfolio optimization process applies to a new risk measure, which consists of the semi-variance.  

The optimal portfolio’s composition is then determined while minimizing the downside risk (Lari-

Lavassani and Li, 2003). 

 

Semi-variance optimization: 

Assuming the targeted portfolio’s performance to be r, the semi-variance writes as SemiVar (RP) = 

Var[Min(0, RP-r)]  and the new optimization problem rewrites: 

( ) ( ){ } ( )( )
[ ]

22

1 2 3

min min 0, 0,

. .
1

P P P

P

SemiVar R E Min R r E Min R r

E R r
s t

w w w

 = − − −   

 =
 + + =

 (5) 

with 

 

( ) ( ) ( ) ( )( ) ( )
[ ]3

1 1 1
1 500 2 3

0,1

0, 0, , ,P SP Oil GasE Min R r Min w F u w F v w F w r c u v w du dv dw− − −− = + + −   ∫∫∫  (6) 

and 

 

( ){ } ( ) ( ) ( )( ){ } ( )
[ ]3

22 1 1 1
1 500 2 3

0,1

0, 0, , ,P SP Oil GasE Min R r Min w F u w F v w F w r c u v w du dv dw− − − − = + + −
  ∫∫∫  (7) 

 

where FR(.) is the empirical cumulative distribution function of random variable R (i.e. a given 

return series; see Deheuvels, 1979), and FR 
-1(.) is its inverse counterpart, and c(u,v,w) is the 

relevant copula density function (i.e. optimal copula representation). By so doing, we handle 
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unfavorable deviations of the optimal portfolio’s return from the targeted performance level, while 

accounting for empirical return behaviors. 

 

Tail risk optimization: 

 The tail risk focuses on the probability of underperforming a given return threshold (e.g. 

worst-case study or analysis of bad scenarios; Dowd and Blake, 2006). Under such setting, the 

investor is risk averse, and hates losses, specifically extreme losses. He/she focuses on more or 

less extreme scenarios, under which his/her portfolio performs very poorly. In particular, the 

optimal portfolio allocation seeks to minimize the likelihood that the portfolio’s return 

underperforms the chosen threshold (i.e. minimize the probability of a more or less extreme bad 

scenario). We focus on extreme bad scenarios, under which the bad return target (i.e. worst 

envisaged critical threshold) consists of the five percent quantile of SP500 index return. We label 

such quantile q5%. Under this setting, the investor seeks to minimize the probability that the 

portfolio’s return belongs to the lower tail of SP500 returns’ distribution (i.e. the five percent 

lowest values of SP500 returns) over the investment horizon. Such view requires the optimal 

portfolio to outperform SP500 index during disturbed market times, so that energy market 

investments hedge extreme exposures to stock market risk (i.e. extreme negative SP500 returns). 

Assuming the targeted portfolio’s performance to be r, tail risk writes as λ(q5%) = Pr(RP ≤ q5%), 

and the optimization problem rewrites: 

( ) ( )
[ ]

5% 5%

1 2 3

min min Pr

. .
1

P

P

q R q

E R r
s t

w w w

λ = ≤

 =
 + + =

 (8) 

 

with 

λ�'(%� = Pr�*+	≤	'(%� = Pr��,	*-+(.. 	+ 	�0	*123 	+ �4	*567	≤	'(%�															= Pr��,	�-+(..8, ���	+	�0�1238,��� 		+ �4�5678, ���		≤	'(%�
															= ∭ :��, �, ��	;�	;�	;�<

     (9) 

where Pr(.) is the probability operator, ( ) ( ) ( ) ( ){ }3
1 1 1

1 500 2 3 5%, , 0,1 SP Oil GasI u v w w F u w F v w F w q− − − = ∈ + + ≤  , 

FR(.) is the empirical cumulative distribution function of random variable R (i.e. a given return 

series; see Deheuvels, 1979), and FR 
-1(.) is its inverse counterpart, and c(u,v,w) is the relevant 
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copula density function (i.e. optimal copula representation for u, v, and w between 0 and 1). By so 

doing, we handle the optimal portfolio’s downside risk because we target a reduced probability of 

unfavorable scenarios λ(q5%) = Pr(RP - q5% ≤ 0), and we account for empirical return behaviors. 

 

5. Optimal portfolios’ attributes and performance 

We introduce the results of portfolio optimization, among which portfolio allocations, optimal 

portfolios’ performance, and related performance diagnostics. All optimization processes employ 

the Davidon-Fletcher-Powell method, with a 10-4 accuracy of gradient calculations (Davidon, 

1991; Fletcher and Powell, 1963). 

5.1.  Variance optimization results 

Table 6 displays all the optimization results while Table 5 displays relevant results for the 

naïve portfolio (i.e. benchmark portfolio). 

Table 5: Annualized attributes of the naïve portfolio 

Regime 

 

Average return Target return r Standard 

Deviation 

Skewness Excess 

kurtosis 

UPR 

1 4.9770 7.5573 26.0663 0.3753 0.2499 53.3530 
2 3.1131 4.7056 36.4667 0.3474 5.7293 49.9564 

3 17.5000 27.3620 26.7941 0.1425 -1.6984 54.2171 

4 -14.9532 -7.7780 33.4830 0.2667 0.6758 47.1784 

5 4.4484 6.7460 23.9701 1.1925 -0.2358 50.8039 

6 -4.4027 -2.2261 24.5136 0.0492 -1.6352 52.0842 
Note: All data are displayed on a percentage basis, and r = Naïve average return + 0.5 × |Naïve average return|. UPR 

stands for upside potential ratio. Period 1 runs from 1/08/1997 to 3/24/2000, period 2 runs from 3/27/2000 to 

5/20/2003, period 3 runs from 5/21/2003 to 7/16/2008, period 4 runs from 7/17/2008 to 8/29/2011, period 5 runs from 

8/30/2011 to 10/13/2014, and period 6 runs from 10/14/2014 to 10/30/2017.  

 

With respect to case 1, the optimal portfolio allocation yields no short sales of any asset 

component over all regimes. Case 2 further constrains the holdings (w1) in SP500 index to lie 

between zero and unity. Therefore, under case 2, short sales of SP500 become forbidden. Under 

such case, the optimal portfolio allocation yields also no short sales of any asset component over 

all regimes. Moreover, the optimal portfolio exhibits a higher degree of exposure to crude oil over 

regimes 1, 2 and 3, while it exhibits a higher degree of exposure to SP500 index over the 

remaining regimes. Such features result from the joint dependence structures of portfolio 
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constituents over previous regimes. Strikingly, cases 3 and 4 are alike because the optimal weights 

of SP500 are always positive and very close in the presence and the absence of short sales. The 

only exception consists of regime 1, over which, SP500 weight is above one for case 3 and 

decreases below one for case 4. The optimal portfolio attributes negative weights to both natural 

gas over regime 1 and crude oil over regime 6. And, the weight constraint of case 4 decreases the 

magnitude of the investment in natural gas. Moreover, the optimal portfolio exhibits a higher 

degree of exposure to SP500 over all regimes. Finally, when switching from case 1 to case 2, the 

optimal portfolio’s performance often remains constant as sketched by the stability of the upside 

potential ratio (UPR). However, when switching from case 3 to case 4, the optimal portfolio’s 

performance often experiences a very small drop. Adding a weight constraint to w1 lowers more or 

less the optimal portfolio’s performance. 
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5.2. Downside risk optimization 

Table 7 displays the results of semi-variance optimization while Table 8 introduces the 

results of tail risk optimization.  

 

Semi-variance optimization results 

With respect to cases 1 and 2, the optimal portfolio allocation yields no short sales of any asset 

component over all regimes. Optimal weights exhibit close values across both cases. Moreover, 

the optimal portfolio exhibits a higher degree of exposure to crude oil over regimes 1, 2 and 3, 

while it exhibits a higher degree of exposure to SP500 index over the remaining regimes. Such 

features result from the joint dependence structures of portfolio constituents over previous 

regimes. Amazingly, cases 3 and 4 are alike because the optimal weights of SP500 are always 

positive and similar in the presence and the absence of short sales. The optimal portfolio attributes 

negative weights to both natural gas over regime 1 and crude oil over regime 6. Furthermore, the 

optimal portfolio exhibits a higher degree of exposure to SP500 over all regimes. Lastly, when 

switching from case 1 to case 2, the optimal portfolio’s performance often experiences a small 

increase as sketched by the noticeable rise of the upside potential ratio (UPR). Adding a weight 

constraint to w1 raises more or less the optimal portfolio’s performance. However, when switching 

from case 3 to case 4, the optimal portfolio’s performance often remains constant. 
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Tail risk optimization results  

Under cases 1 and 2, the optimal portfolio allocation yields no short sales of any asset 

component over all regimes. Besides, the optimal portfolio exhibits a higher degree of exposure to 

crude oil over regimes 1, 2 and 3, while it exhibits a higher degree of exposure to SP500 index 

over the remaining regimes. Such features result from the joint dependence structures of portfolio 

constituents over previous regimes. Outstandingly, cases 3 and 4 are alike because the optimal 

weights of SP500 are always positive and very close in the presence and the absence of short sales. 

The only exception consists of regime 1, over which, SP500 weight is slightly above one for case 3 

and falls marginally below one for case 4. The optimal portfolio attributes negative weights to both 

natural gas over regime 1 and crude oil over regime 6. And, the weight constraint of case 4 lessens 

marginally the magnitude of the investment in natural gas. Additionally, the optimal portfolio 

exhibits a higher degree of exposure to SP500 over all regimes. Lastly, when switching from case 

1 to case 2, the optimal portfolio’s performance often remains steady as outlined by the constancy 

of the upside potential ratio (UPR). Nevertheless, when switching from case 3 to case 4, the 

optimal portfolio’s performance often experiences a minor upsurge. Adding a weight constraint to 

w1 strengthens moderately the optimal portfolio’s performance.  

 

Comparing weights’ signs across risk measures and optimization constraints 

 When switching from case 1 to case 2 (i.e. under a return constraint coupled first with, and 

then, without SP500 short sales), the signs of optimal weights persist under all risk measures. Few 

negative signs appear when switching from case 1 to case 3, and from case 2 to case 4 (i.e. when 

relaxing the constraint on the expected return of the optimal portfolio). Negative weights prevail 

only for crude oil over regime 6, and natural gas over regime 1. Therefore, without a constraint on 

its expected return, the optimal portfolio allows few short sales. Under all risk measures and 

without the return constraint, the positive correlation between SP500 index and either crude oil or 

natural gas, as well as the high variance regime of crude oil (over period 6) and natural gas (over 

period 1) drive the persisting negative weights. Moreover, the Gumbel dependence structure (i.e. 

positive correlation, and upper tail dependence) yields stronger negative weights than the Student 

T dependence structure (positive correlation, and no tail dependence). 
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5.3. Comparing optimal portfolios and performance diagnostics 

We first compare the compositions of optimal portfolios through a well-chosen distance 

measure. Then, we undertake a performance diagnostic based on cumulative returns and expected 

maximum drawdowns. The annualized cumulative return reflects the performance of optimal 

portfolios, whereas the expected maximum drawdown represents a measure for optimal portfolios’ 

risk. 

The potential heterogeneity, or equivalently, dissimilarity of obtained optimal portfolios is 

assessed through a well-chosen distance measure, across the 6 referenced periods of time. 

Analogously to Fulga (2016),12 we consider the L1-norm as a distance measure. We define the 

average distance measure as the following dissimilarity index (DI): 

=>�?, @� = ,
AB∑ ��2D − �2E�0A2F,  (10) 

where the number of constituent assets n is equal to 3, and j and k represent a pair of cases among 

the four possible cases (i.e. four different optimal portfolios). Setting j equal to k is equivalent to 

calculate the dissimilarity index of the same portfolio. In such situation, we have �2D − �2E = 0 

whatever the considered asset i. As a result, the dissimilarity index is zero. Besides, the larger the 

dissimilarity index is, the more heterogeneous and dissimilar portfolios become.  Since cases 1 and 

2 are very close, we assimilate case 2 to case 1, so that finally we consider only 3 cases.13 As 

reported in Table 9, optimal portfolios are generally heterogeneous under all risk measures. 

However, the optimal portfolios of cases 3 and 4 become homogenous over regimes 1, 2, 3, 4 and 

5 under the semi-variance measure. Such findings coincide with previous results because cases 3 

and 4 exhibit the same optimal weights, except over regime 6. Over regime 6, the optimal 

portfolio’s distribution across crude oil and natural gas is slightly different but still close enough 

under both cases. Such marginal discrepancy results from the difference in the joint dependence 

structure between regimes 1 (i.e. Gumbel copula) and 6 (i.e. Student T copula). Moreover, 

variance and tail-risk optimal portfolios are generally close under cases 3 and 4.     

 

 

                                                           
12 The author defines a dissimilarity index for a two-asset portfolio whose weights lie only between 0 and 1. Hence, 
the dissimilarity index is bounded between 0 and 1. 
13 The average distance between case 1 and case 2 is very small (when not equal to zero) under the variance, semi-
variance and tail risk measures respectively.  
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Table 9: Dissimilarity index across periods and risk measures  

 Risk 

Measure 
Pairs j-k**  1 2 3 4 5 6 

V
ar

ia
nc

e
 1/2*-3 28.7185 21.5337 28.6190 0.5941 14.6059 20.9317 

1/2*-4 24.6528 20.9699 28.3667 0.5297 13.7980 20.9317 

3-4 4.1429 0.6821 0.2561 0.1342 0.8079 0.0000 

S
em

i-
va

ria
nc

e
 1/2*-3 24.0203 21.9498 28.1793 0.3133 13.7997 20.6479 

1/2*-4 24.0203 21.9497 28.1793 0.3134 13.7997 20.7028 

3-4 0.0000 0.0000 0.0000 0.0008 0.0000 0.2507 

T
ai

l r
is

k 1/2*-3 26.2021 19.6545 27.6619 2.9777 15.4141 22.0288 

1/2*-4 25.6952 19.1625 27.3867 2.0687 14.9699 21.6441 

3-4 0.5134 0.5035 0.2880 0.9193 1.0745 0.4580 
* Cases 1 and 2 are similar so that they reduce to one case. 
**  Comparison between case j and case k. 

Note: Period 1 runs from 1/08/1997 to 3/24/2000, period 2 runs from 3/27/2000 to 

5/20/2003, period 3 runs from 5/21/2003 to 7/16/2008, period 4 runs from 7/17/2008 to 

8/29/2011, period 5 runs from 8/30/2011 to 10/13/2014, and period 6 runs from 

10/14/2014 to 10/30/2017. 

 

As regards cumulative returns, Table 10 displays the best-performing optimal portfolios across risk 

measures, over each listed period, whereas Table 11 displays annualized cumulative returns across 

cases. Table 11 presents the cumulative returns over the whole sample period, under each case. 

Table 10 displays the best-performing portfolio, which presents the highest annualized cumulative 

return across the three risk measures, over a given period. The optimal portfolios offering the 

highest period-specific annualized cumulative returns result from variance, semi-variance and tail 

risk minimization in 8.33%, 37.50% and 54.17% of situations respectively. The optimal portfolios 

resulting from tail risk minimization often outperform, when the joint distribution of asset returns 

follows a Student T copula. However, they also outperform under case 4, when the optimal return 

and weights are jointly gauged over each regime. The optimal portfolios resulting from semi-

variance minimization frequently offer the best annualized cumulative returns, when SP500, crude 

oil and natural gas returns jointly follow either a Gaussian or a Gumbel copula. In the remainder of 

situations, variance optimal portfolios outperform. Additionally, the cumulative returns in Table 

11 reflect the performance of a period-specific portfolio rebalancing strategy, across the four 
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possible cases. Under any given case, portfolio optimization/rebalancing occurs over each regime 

within the sample period,14 and the same optimization criterion applies to each regime. Such 

regime-specific active portfolio management captures the portfolio’s structural changes over time, 

namely the time-varying dependence structure of its assets. Tail-risk optimal portfolios outperform 

under cases 3 and 4, when the expected return is unconstrained. Conversely, the optimal portfolios 

resulting from the semi-variance minimization outperform under cases 1 and 2, when the expected 

return is fixed (i.e. when a performance target is imposed). Finally, the positive weight constraint 

on SP500 index lowers the performance of variance and tail-risk optimal portfolios under case 4. 

Banning short sales prevents the hedging role of energy commodities, specifically over regimes 2 

and 4 (see Figure 2). As an example, Figure 2 displays the annualized percentage cumulative 

returns of optimal portfolios across regimes. During periods 2 and 4, the SP500 index exhibits a 

stronger correlation with crude oil than with natural gas in absolute value. Moreover, all asset 

returns exhibit more or less high variance regimes. Such patterns alter the optimal portfolio’s 

performance. 

 

Table 10: Best-performing portfolios with highest annualized cumulative returns  

Period Case 1 Case 2 Case 3 Case 4 

1 SV SV V TR 

2 SV SV SV TR 

3 SV SV TR TR 

4 TR TR TR TR 

5 SV TR TR TR 

6 V SV TR TR 

Note: V, SV and TR stand for variance, semi-variance 
and tail risk. Period 1 runs from 1/08/1997 to 3/24/2000, 
period 2 runs from 3/27/2000 to 5/20/2003, period 3 runs 
from 5/21/2003 to 7/16/2008, period 4 runs from 
7/17/2008 to 8/29/2011, period 5 runs from 8/30/2011 to 
10/13/2014, and period 6 runs from 10/14/2014 to 
10/30/2017. 

 

 

                                                           
14 We focus on an in-sample study to understand the dynamics of the three asset components, and its impact on the 
portfolio’s performance across regimes. 
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Table 11: Annualized cumulative returns of optimal portfolios across cases (%) 

Measure/Case 1 2 3 4 

Variance 4.0485 4.0485 5.7087 5.1362 

Semi-variance 4.0760 4.0706 4.9593 4.9638 

Tail Risk 3.9622 3.9622 6.2263 6.0248 

Note: Highest cumulative returns are in bold. 

 

 

Figure 2: Cumulative returns of optimal portfolios under a positive SP500 weight constraint  

Note: Annualized percentage cumulative returns. 

As regards drawdowns, the maximum drawdown represents the maximum loss that a portfolio can 

experience in value or percentage (i.e. percentage drawdown), over a given period of time (e.g. 

investment horizon). It is measured as the difference between a peak and a nadir value of the 

portfolio. The maximum drawdown depends on the portfolio’s average return and returns’ 

fluctuations. The expected maximum drawdown represents the expected value of the maximum 

drawdown. Specifically, the expected maximum drawdown is computed while assuming the 

portfolio’s cumulative returns to follow a Brownian motion (e.g. a random walk). Under such 

assumption, cumulative returns exhibit a constant drift over time with random deviations from 

such drift (Magdon-Ismail et al., 2004). The expected maximum drawdown depends positively on 

both the investment horizon and return volatility, but negatively on the portfolio’s expected return. 

Table 12 displays the expected maximum drawdowns of optimal portfolios over the whole sample, 

and under the four considered cases. The expected maximum drawdowns reflect the risk of 
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optimally rebalanced portfolios under the considered cases. Under all cases, tail-risk optimal 

portfolios exhibit the lowest expected maximum drawdowns, whatever the constraints on the 

expected return or SP500 weight. The strongest loss scenario happens under cases 1 and 2, when 

both the expected return of the optimal portfolio is fixed, and the semi-variance is the risk 

measure. The weakest loss scenario happens under cases 3 and 4, when the expected return of the 

optimal portfolio is unconstrained, and tail risk is the risk measure. Thus, the constraint on the 

expected return reinforces the expected maximum drawdown. Such effect is slightly magnified 

when we add a positivity constraint to SP500 weight in tail-risk optimal portfolios. However, 

cumulative losses slightly lessen, when SP500 weight forbids short sales for remaining portfolios. 

When risk is measured by the expected maximum drawdown, and performance is measured by the 

annualized cumulative return, the tail-risk optimal portfolio offers therefore the most interesting 

risk-return tradeoff under cases 3 and 4. Analogously, the semi-variance optimal portfolio offers 

the most interesting risk-return tradeoff under case 3, while being close to the variance optimal 

portfolio under case 4 and semi-variance optimal portfolios under cases 3 and 4 (see Figure 3). The 

tradeoff focuses on higher cumulative returns with lower cumulative losses (i.e. increasing profits 

while reducing risk).  

Table 12: Expected maximum drawdowns of optimal portfolios across cases (%) 

Measure/Case 1 2 3 4 

Variance 150.3851 150.3851 100.4680 94.0043 

Semi-variance 158.5003 157.6532 95.1536 95.1503 

Tail Risk 144.3803 144.3812 92.8681 93.6813 
Note: Lowest expected maximum drawdowns are in bold. 

 

  

Figure 3: Risk-return tradeoff of optimal portfolios over the whole sample period 

Note: Data are expressed in percent, and cumulative returns are annualized. The size of the bubbles represents the ratio 
of the cumulative return to the expected maximum drawdown. V, SV and TR stand for variance, semi-variance and 
tail risk. The number after the acronym represents the case under consideration. For example, TR4 stands for tail risk 
measure under case 4.  
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For comparison purposes, we also carry out the active management strategy, which results from 

Table 10. Over each regime, we build/rebalance the portfolio according to the most favorable risk 

minimization setting. Under each case and over each regime, we select the best-performing 

portfolio among the three measure-specific (i.e. variance, semi-variance or tail-risk) optimal 

portfolios. Such methodology allows for building superoptimal portfolios over the whole sample 

period. Superoptimal portfolios are thus optimally rebalanced across regimes and risk measures. 

Table 13 displays the risk and return attributes of the superoptimal portfolios. The annualized 

cumulative returns and expected maximum drawdowns of these superoptimal portfolios are close 

to the ones in Table 11 and Table 12 (see Figure 4). Due to the difficulty to forecast dependence 

structures and suitable risk minimization, investors can rely on previous findings since optimal and 

superoptimal portfolios offer close risk-return tradeoffs. As a result, active portfolio managers 

should build tail-risk optimal portfolios in the absence of a return constraint. Without such 

constraint, they can also build either variance or semi-variance optimal portfolios, depending on 

the joint dependence structure of assets. Under such scheme, the positivity constraint on SP500 

weight slightly reduces the portfolios’ performance. Finally, active portfolio managers should 

build tail-risk optimal portfolios in the presence of a return constraint. 

 

Table 13: Attributes of superoptimal portfolios across cases (%) 

Case 1 2 3 4 

Annualized cumulative Return 4.0803 4.0746 6.6555 6.0248 

Expected maximum drawdown 118.1443 118.2476 70.1571 69.6141 

 

 

Figure 4: Risk-return tradeoff of superoptimal portfolios over the whole sample period 

Note: Data are expressed in percent, and cumulative returns are annualized. The size of the bubbles represents the ratio 
of the cumulative return to the expected maximum drawdown.  
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6. Extension to global, mid-cap and small-cap stock portfolios 

The study above-mentioned scrutinizes the diversification power of commodities in large-cap 

portfolios, as represented by the Standard and Poor’s 500 index (SP500). Expanding on such a 

study, we replace successively SP500 index with Standard and Poor’s 1500 (SP1500), Standard 

and Poor’s MidCap 400 (SPMid400) and Standard and Poor’s SmallCap600 (SPSmall600) 

indexes. Thus, we are able to gauge the diversifying role of crude oil and natural gas in global 

market (SP1500), mid-cap (SPMid400) and small-cap (SPSmall600) stock portfolios. 

6.1. Variance regimes and optimal copulas 

Unreported results exhibit five structural breaks for each series of index returns, so that we end 

with six periods. Strikingly, SP1500 index exhibits the same periods as SP500 index. As regards 

SPMid400 and SPSmall600 indexes, the first three periods are not identical to but exhibit a non-

negligible overlapping fraction with the ones of SP500 index. Besides, the three last periods are 

the same as the ones of SP500 index. During the first three index-specific periods, the period-

specific standard deviations of crude oil and natural gas returns are very close to their counterparts 

over the SP500-specific periods (see supplementary material). Moreover, over the six referenced 

periods of each stock index under consideration (i.e. across the index-specific periods), unreported 

zero-mean equality and robust variance equality tests highlight a unique zero-mean regime and 

various variance regimes for all stock and commodity return series. As a result, each set of a given 

stock index, crude oil and natural gas returns exhibits six different three-dimensional variance 

regimes. Such variance regimes are very close across stock indexes over corresponding periods 

(see Table 14, Table 15 and Table 16). Finally, Table 14, Table 15 and Table 16 display also the 

optimal copula representations across the six referenced variance regimes of each stock index. 

Such copulas are selected based on the Akaike (AIC) information criterion and the robust Cramer-

von-Mises goodness-of-fit test (i.e. Rosenblatt’s SnC statistics of Genest et al., 2009). Strikingly, 

SP1500 index portfolio exhibits the same behaviour as SP500 index portfolio. And, SPMid400 and 

SPSmall600 index portfolios exhibit the same dependence structures as SP500 index portfolio over 

their last four variance regimes (i.e. from period 3 to period 6). However, they exhibit different 

dependence structures over their first two variance regimes. Specifically, the dependence structure 

between SPMid400/SPSmall600 index, crude oil and natural gas exhibits symmetric tail 

dependence over the first variance regime with a Student T copula. Differently, the dependence 

structure between SPMid400/SPSmall600 index, crude oil and natural gas exhibits lower/no tail 

dependence over the second variance regime with a Clayton/Frank copula respectively. Results 
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emphasize therefore the regime-switching dependence structure of all three-asset portfolios (i.e. 

diversified global, mid-cap and small-cap stock portfolios) over the sample period.   

Table 14: Period-specific variance regimes and optimal copulas for SP1500 index portfolio 

Period Start End 
Regime 

SP1500/Oil/Gas 
Copula Tail 

1 01/08/1997 03/24/2000 LM/H/M Gumbel Upper 

2 03/27/2000 05/20/2003 M/H/H Gaussian None 

3 05/21/2003 07/16/2008 L/M/M Gaussian None 

4 07/17/2008 08/29/2011 H/H/M T Symmetric 

5 08/30/2011 10/13/2014 L/L/L T Symmetric 

6 10/14/2014 10/30/2017 VL/H/L T Symmetric 

Note: The variance regime of index returns can be very low (VL), low (L), low-medium (LM), 

medium (M), or high (H). The low-medium variance regime is an intermediate state, which lies 

between the low and the medium regimes. The very low variance regime is the lowest variance level, 

which is observed across the referenced periods. 

Table 15: Period-specific variance regimes and optimal copulas for SPMid400 index portfolio 

Period Start End 
Regime 

SPMid400/Oil/Gas 
Copula Tail 

1 01/08/1997 05/23/2001 M/H/M T Symmetric 

2 05/24/2001 04/29/2005 M/H/H Clayton Lower 

3 05/02/2005 07/16/2008 L/M/M Gaussian None 

4 07/17/2008 08/29/2011 H/H/M T Symmetric 

5 08/30/2011 10/13/2014 L/L/L T Symmetric 

6 10/14/2014 10/30/2017 VL/H/L T Symmetric 

Note: The variance regime of index returns can be very low (VL), low (L), medium (M), or high (H).

The very low variance regime is the lowest variance level, which is observed across the referenced 

periods. 
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Table 16: Period-specific variance regimes and optimal copulas for SPSmall600 index portfolio 

Period Start End 
Regime 

SPSmall600/Oil/Gas 
Copula Tail 

1 01/08/1997 09/21/2001 M/H/M T Symmetric 

2 09/24/2001 02/02/2005 M/H/H Frank None 

3  02/03/2005 07/16/2008 LM/M/M Gaussian None 

4 07/17/2008 08/29/2011 H/H/M T Symmetric 

5 08/30/2011 10/13/2014 LM/L/L T Symmetric 

6 10/14/2014 10/30/2017 L/H/L T Symmetric 

Note: The variance regime of index returns can be low (L), low-medium (LM), medium (M), or high 

(H). The low-medium variance regime is an intermediate state, which lies between the low and the 

medium regimes. 

 

Expanding on the similarities and discrepancies between the dependence structures of stock 

index portfolios, we will assess the impact of such patterns on the optimization and performance of 

diversified stock portfolios. We expect that the commodity-based diversification process of 

SP1500 index, as a global stock portfolio proxy, will exhibit similar characteristics as the ones of 

SP500 index, as a large-cap stock portfolio proxy. Indeed, SP500 index is usually employed as a 

stock market proxy and its behavior is very close to the one of SP1500 index (see supplementary 

material). A priori, we also expect the diversification scheme of SPMid400 and SPSmall600 

indexes to be close enough to the one of SP500 index from period 3 to period 6 (i.e. over the last 

four variance regimes). However, we expect more or less strong discrepancies over periods 1 and 2 

(i.e. over the first two variance regimes).  

 

6.2. Optimal portfolios’ weights and attributes 

We introduce the optimal portfolios’ weights and their respective risk and performance 

attributes, under the three considered optimization schemes (i.e. variance, semi-variance and tail 

risk optimal portfolios). The performance metrics consists of the annualized cumulative return 

while the risk metrics consists of the expected maximum drawdown. 
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As regards optimal portfolios’ allocations, Figure 5 to Figure 13 display variance, semi-variance 

and tail risk optimal weights across variance regimes, for each diversified stock portfolio (i.e. 

SP1500, SPMid400 and SPSmall600 indexes, which are diversified with holdings in crude oil and 

natural gas assets). With respect to SP1500 index, the optimal weights under cases 1 and 2 are 

close in general. The same comment applies to cases 3 and 4, except over period 1 under the 

variance and tail risk optimization schemes. Since the portfolio’s allocation to the stock index goes 

beyond 100% under case 3, the constraint on SP1500 weight under case 4, which bounds the stock 

index allocation to 100%, contributes to increase the portfolio’s allocation to crude oil. Moreover, 

whatever the optimization scheme, the optimal portfolio yields natural gas short sales over period 

1, when the portfolio’s expected return is jointly gauged with optimal weights. With respect to 

SPMid400 and SPSmall600 indexes, the optimal weights of cases 1 and 2 on the one hand, and of 

cases 3 and 4 on the other hand, are also close in general. The only exception applies to period 2 

under cases 1 and 2, whatever the optimization scheme (except tail risk optimization for 

SPSmall600 index). Focusing on SPMid400 index, switching from case 1 to case 2 (i.e. bounding 

the stock index allocation between 0 and 1, under a fixed target return) reduces the stock index 

allocation of the portfolio to zero. Thus, diversification disappears since the optimal portfolio 

drops the stock investment and encompasses only (or mainly) energy commodities. Moreover, 

such scenario increases broadly the portfolio’s allocation to crude oil, while yielding significant 

natural gas short sales. Focusing on SPSmall600 index, switching from case 1 to case 2 similarly 

reduces to zero (or almost zero) the stock index weight. However, the portfolio’s investment in 

SPSmall600 index under case 1 is reallocated to crude oil under case 2. Furthermore, any 

optimization scheme yields both crude oil short sales and a large portfolio exposure to natural gas 

under case 2. Finally, apart from the scenarios above-mentioned, most of the optimal portfolios’ 

weights are positive whatever the optimization scheme and stock index under consideration. 

Nonetheless, the optimal weights of SPMid400 and SPSmall600 index portfolios often differ non-

negligibly from the ones of SP500 index portfolio. But, the optimal weights of SP1500 index 

portfolio are close to the ones of SP500 index portfolio.   
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Figure 5: Variance optimal weights for SP1500 index portfolio 

 

 

Figure 6: Semi-variance optimal weights for SP1500 index portfolio 

 

 

Figure 7: Tail risk optimal weights for SP1500 index portfolio 
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Figure 8: Variance optimal weights for SPMid400 index portfolio 

 

 

Figure 9: Semi-variance optimal weights for SPMid400 index portfolio 

 

 

Figure 10: Tail risk optimal weights for SPMid400 index portfolio 
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Figure 11: Variance optimal weights for SPSmall600 index portfolio 

 

 

Figure 12: Semi-variance optimal weights for SPSmall600 index portfolio 

 

 

Figure 13: Tail risk optimal weights for SPSmall600 index portfolio 
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As regards optimal portfolios’ attributes, Figure 14 to Figure 16 display the risk and return 

attributes of optimal portfolios over the whole sample period, and for all the stock indexes under 

consideration (see supplementary material for numerical details). The figures plot the annualized 

cumulative return against the expected maximum drawdown (as a risk measure). Obviously, 

general conclusions are similar to the ones of SP500 index study. Under all cases and across all 

stock indexes, tail-risk optimal portfolios exhibit the lowest expected maximum drawdowns and 

$highest cumulative returns, whatever the constraints on the expected return or stock index weight. 

The strongest loss scenarios happen under cases 1 and 2, when the expected return of the optimal 

portfolio is fixed. In particular, the worst loss and cumulative return scenarios occur for SPMid400 

index portfolio under case 2, the lowest values being reached when the risk measure is the tail risk. 

Strikingly, cumulative returns become negative under cases 1 and 2 for SPSmall600 index 

portfolio, and under case 2 for SPMid400 index portfolio. Such results emphasize thus the strong 

negative impact of the constraints on the stock index weight and the portfolio’s expected return. 

The magnitude of the negative impact is the largest under case 2 for mid-cap portfolios. Therefore, 

portfolio optimization should avoid any return and, more specifically, stock weight constraints 

when it targets to diversify small/mid-cap stock portfolios with energy commodity assets. 

Conversely, the weakest loss scenarios happen under cases 3 and 4, when the expected return of 

the optimal portfolio is unconstrained, the lowest values being reached when tail risk is the risk 

measure. As a result, when risk is measured by the expected maximum drawdown, and 

performance is measured by the annualized cumulative return, tail-risk optimal portfolios offer the 

most interesting risk-return tradeoff under cases 3 and 4. However, the risk-return tradeoff of 

variance and semi-variance optimal portfolios is generally close to the one of tail risk optimal 

portfolios under cases 3 and 4. The best tradeoff focuses on higher cumulative returns, coupled 

with lower cumulative losses (i.e. increasing profits while reducing risk). Finally, focusing on the 

diversifying power of crude oil and natural gas in stock portfolios, optimally diversified mid-cap 

stock portfolios (i.e. SPMid400) outperform optimally diversified global, large-cap and small-cap 

stock portfolios under cases 1, 3 and 4. Differently, optimally diversified global stock portfolios 

(i.e. SP1500) outperform optimally diversified large-cap, mid-cap and small-cap stock portfolios 

under case 2. Such findings probably result from the balance between the volatility of constituting 

stocks and that one of crude oil and natural gas assets, in association with the portfolio’s 

dependence structure. It is well known that the smaller the capitalization of stocks is, the larger the 

volatility of stock returns becomes (see supplementary material for example).  
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Figure 14: Risk-return tradeoff of optimal portfolios over the whole sample period for SP1500 

index portfolio 

Note: Data are expressed in percent, and cumulative returns are annualized. The size of the bubbles represents the ratio 
of the cumulative return to the expected maximum drawdown. V, SV and TR stand for variance, semi-variance and 
tail risk. The number after the acronym represents the case under consideration. For example, TR4 stands for tail risk 
measure under case 4.  

 

 

 

 

 

Figure 15: Risk-return tradeoff of optimal portfolios over the whole sample period for SPMid400 

index portfolio 

Note: Data are expressed in percent, and cumulative returns are annualized. The size of the bubbles represents the ratio 
of the absolute cumulative return to the expected maximum drawdown. V, SV and TR stand for variance, semi-
variance and tail risk. The number after the acronym represents the case under consideration. For example, TR4 stands 
for tail risk measure under case 4.  
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Figure 16: Risk-return tradeoff of optimal portfolios over the whole sample period for 

SPSmall600 index portfolio 

Note: Data are expressed in percent, and cumulative returns are annualized. The size of the bubbles represents the ratio 
of the absolute cumulative return to the expected maximum drawdown. V, SV and TR stand for variance, semi-
variance and tail risk. The number after the acronym represents the case under consideration. For example, TR4 stands 
for tail risk measure under case 4.  

 

 

6.3. Building superoptimal portfolios 

We carry out successively the following active management strategy for SP1500, SPMid400 

and SPSmall600 stock index portfolios. Over each regime, we rebalance the portfolio according to 

the most favorable risk minimization setting (i.e. variance, semi-variance or tail-risk optimal 

weights). Specifically, over a given variance regime, we select the optimal portfolio with the 

highest cumulative return across the three considered risk measures. Such methodology allows for 

building superoptimal portfolios over the whole sample period. Hence, superoptimal portfolios are 

optimally rebalanced across regimes and risk measures (see supplementary material for details 

about the selected optimal portfolios across regimes and stock indexes). 

Focusing on the risk-return profile of superoptimal portfolios, the general conclusions are the 

same as the ones for optimal portfolios (see Figure 17 to Figure 19). In particular, superoptimal 

portfolios under cases 3 and 4 outperform superoptimal portfolios under cases 1 and 2, whatever 

the stock index under consideration. Thus, the constraint on the portfolio’s expected return impairs 

the performance of optimal portfolios. Such negative impact is stronger for SPMid400 index 

portfolio under case 2, and SPSmall600 index portfolio under cases 1 and 2. Under the cases 

above-mentioned, the respective optimal portfolios attempting to diversify SPMid400 and 

SMSmall600 indexes yield short sales in one of the energy commodities over regime 2. During 

such regime, optimal portfolios (and therefore superoptimal portfolios) experience significant 

negative annualized cumulative returns. 
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Figure 17: Risk-return tradeoff of superoptimal portfolios over the whole sample period, for 

SP1500 index portfolio 

Note: Data are expressed in percent, and cumulative returns are annualized. The size of the bubbles represents the ratio 
of the cumulative return to the expected maximum drawdown.  
 

 

Figure 18: Risk-return tradeoff of superoptimal portfolios over the whole sample period, for 

SPMid400 index portfolio 

Note: Data are expressed in percent, and cumulative returns are annualized. The size of the bubbles represents the ratio 
of the absolute cumulative return to the expected maximum drawdown.  

 

 

Figure 19: Risk-return tradeoff of superoptimal portfolios over the whole sample period, for 

SPSmall600 index portfolio 

Note: Data are expressed in percent, and cumulative returns are annualized. The size of the bubbles represents the ratio 
of the absolute cumulative return to the expected maximum drawdown.  
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In order to rank superoptimal portfolios, we build a risk adjusted performance measure that we 

call the adjusted annualized cumulative return (AACR). The AACR is the ratio of the annualized 

cumulative return (ACR) to the expected maximum drawdown (EMDD), which is expressed in 

absolute value. Figure 20 illustrates such risk adjusted performance measure for all the stock 

indexes under consideration (see also supplementary material to get corresponding numerical 

values). Obviously, the superoptimal portfolio diversifying SPMid400 index outperforms all other 

superoptimal portfolios under cases 1, 2 and 3. However, the superoptimal portfolio diversifying 

SP1500 index outperforms all other superoptimal portfolios under case 2 (though the AACR of 

SP500 index portfolio is close to that one of SP1500 index portfolio). 

 

 

Figure 20: Risk adjusted annualized cumulative returns (AACR) of superoptimal portfolios 

 

7. Conclusion 

We consider the joint behavior of energy commodity prices and the U.S. stock market 

index over time. The SP1500/SP500/SPMid400/SPSmall600 indexes as well as crude oil and 

natural gas prices exhibit structural changes with various variance regimes. As a result, the joint 

dependence structure of any U.S. stock market index and the two energy commodities is unstable 

over time. Such feature has significant implications for investors building portfolios with these 

three types of assets, and requires a regime-specific analysis. In this light, we examine the 

implications of such regime-dependency for portfolio optimization. We minimize various risk 

measures after accounting for regime-specific dependence structures. The dependence structures 

handle the asymmetry in asset returns and tail dependency. The risk criteria consist of variance, 

and two downside risk measures such as semi-variance and tail risk. Moreover, we consider 

several minimization schemes while setting or discarding constraints on the portfolio’s expected 
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return and stock index weight. We examine optimal portfolios while analyzing their degrees of 

similarity, their annualized cumulative returns as a performance indicator, and their expected 

maximum drawdowns as a risk measure. 

The positive weight constraint on the stock index reduces the performance of the optimal 

portfolio over given regimes. Besides, optimal portfolios are heterogeneous and dissimilar across 

regimes and risk minimization schemes. We also build optimal portfolios, which we rebalance 

across regimes, and analyze their risk-return tradeoff over the whole sample period. Under each 

risk minimization scheme, the expected maximum drawdown serves as a risk measure while the 

annualized cumulative return gives insights about performance. Under a constraint on the expected 

return of the optimal portfolio, the tail-risk optimal portfolio offers the most interesting risk-return 

tradeoff (i.e. lowest risk and highest return). Analogously, the tail-risk optimal portfolio offers the 

most interesting risk-return tradeoff without constraint on the expected return. However, variance 

optimal portfolios, and then semi-variance optimal portfolios can also be considered in the absence 

of a return constraint. Finally, the diversification power of energy commodities is often the most 

effective for SPMidCap 400 index (i.e. mid-cap stock portfolios’ diversification), since it generally 

reduces the expected maximum drawdown and increases the annualized cumulative return of 

corresponding portfolios. As a consequence, optimization results handle regime-dependency since 

they depict the joint risk structure of portfolio constituents over time. They capture the price 

uncertainty of both constituent assets and resulting portfolio over time, and highlight the efficiency 

of an active portfolio management strategy. Future research should exploit such findings, and 

attempt to forecast the upcoming portfolio scenarios. Potential research extensions rely on a 

scenario analysis, which faces two major challenges. First, the analysis needs to predict the 

upcoming variance regimes of constituent assets, and then those of the portfolio. Second, such 

approach needs to identify the plausible dependence structures over the forthcoming variance 

regimes. For example, such scenario analysis can exploit the plurality of past variance regimes and 

corresponding dependence structures. It could also rely on the link between the stock market and 

the business cycle, which can be forecasted to a large extent. Such link is also specific to both the 

capitalizations of stocks and their corresponding industry. 
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Appendix A. 

We display relevant theoretical background and statistical results in this section. 

A.1. Descriptive statistics of returns 

We display the descriptive statistics of return data over the whole sample and its six referenced 
periods. The Phillips-Perron unit root test (without trend and without intercept) is also 
provided. 

 

Table A.1: Descriptive statistics about U.S. energy commodity and stock market returns 

Statistics Gas Oil SP500 
Mean -0.0050 0.0138 0.0234 
Median 0.0000 0.0621 0.0559 
Std. Dev. 4.3911 2.4733 1.2116 
Skewness 0.5843 -0.0928 -0.2311 
Kurtosis 23.6372 7.4910 11.0103 
Jarque-Bera 93,445.0960 4,418.7093 14,080.2268 
Nobs 5249 5249 5249 
Note: Std. Dev. stands for standard deviation and Nobs stands 
for the number of observations (i.e. sample size). 
 

 

Table A.2: Unit root test of energy commodity and stock index returns 

Statistics Gas Oil SP500 
PP  -70.0377 -74.3348 -78.5123 
Probability 0.0001 0.0001 0.0001 
Note: PP stands for the Phillips-Perron statistics, and 
the probability reports corresponding p-value. 
 

A.2. Structural break test 

We focus on the joint dynamics of SP500, crude oil and natural gas returns, and look for 

structural changes, or equivalently, breaks in such joint dynamics. Given that we target to 

diversify a stock portfolio, as represented by SP500, with two energy commodities such as 

crude oil and natural gas, we consider the linear regression of SP500 returns on both crude oil 
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and natural gas returns. The regression is undertaken with the Heteroskedastic and 

Autocorrelation Consistent covariance (HAC) method15 as well as residuals’ prewhitening with 

automatic lag selection (Hannan-Quinn criterion). 

Investigating sudden changes in such relationship, we scrutinize changes in all regression 

parameters (i.e. intercept and slopes) as well as in the residuals’ distribution across possible 

regimes. In particular, residuals follow a Gaussian distribution with a zero mean and different 

standard deviations across regimes. Since we allow for shifts in the regression’s intercept, it is 

equivalent to consider structural breaks in mean, while shifts in standard deviations account for 

structural breaks in variance. 

In line with Bai and Perron (2003a, 2003b), and Qu and Perron (2007), we consider the 

following specification:16 

R
SP500,t

 = α
i
 + β

1,i
 × R

Oil,t
 + β

2,i
 ×  R

Gas,t
 + ε

t,i
 

where R
SP500,t

, R
Oil,t

 and R
Gas,t

 are the returns of SP500, crude oil and natural gas respectively 

at time t, α
i
 is the regression’s intercept while β

1,i
 and β

2,i
 are the regression’s slopes over a 

given regime i, and ε
t,i
 are regression residuals at time t under a regime i. 

We assume a number m of breaks so that the data sample splits into (m+1) periods, which 

are defined as follows: 

Period 1 = {1,…,T1} 

Period i = {T i-1+1,…,Ti} 

Period m+1 = {Tm+1,…,T} 

where the index i lies between 2 and m, and Ti is a breakpoint indicating the end of period i. 

The standard deviation σ
i
 of residuals’ distribution can change across any period i. Thus, we 

test for possible changes in mean returns α
i
 and corresponding standard deviations σ

i
 over the 

whole sample. 

We investigate the existence of up to m=5 breaks so as to end with a maximum of m+1=6 

periods or regimes. At a five percent test level, the reported F and WDmax(5) statistics 

                                                           
15 It is robust to heteroskedasticity and autocorrelation in regression residuals.  
16 A pure structural change model. 
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advocate five breaks so that we need to consider 6 periods (see Table A.3: Structural break 

statistics for m=5 breaks and Table A.4: Identified periods from structural break test). 

 

Table A.3: Structural break statistics for m=5 breaks 

Statistic Computed value Critical value 
WDMax(5) 74.6452 15.5900 
F 39.8322 7.4600 

 

Table A.4: Identified periods from structural break test 

Period Start End 
1 1/8/1997 3/24/2000 
2 3/27/2000 5/20/2003 
3 5/21/2003 7/16/2008 
4 7/17/2008 8/29/2011 
5 8/30/2011 10/13/2014 
6 10/14/2014 10/30/2017 

 

Once the six periods are identified, we investigate further period-specific statistics of SP500 

and energy commodity returns over each period (see Table A.5: Further period-specific 

statistics).  

 

Table A.5: Further period-specific statistics 

Period Statistics Gas Oil SP500 

1 
Skewness 0.1574 0.9613 -0.3957 
Kurtosis 13.1504 8.0607 6.5488 

2 
Skewness 0.5327 -0.6511 0.2434 
Kurtosis 30.9248 7.2352 3.9993 

3 
Skewness 0.1982 -0.2106 -0.1810 
Kurtosis 7.5935 4.5715 5.0162 

4 
Skewness 0.8392 0.1286 -0.2654 
Kurtosis 13.1245 6.8222 9.1034 

5 
Skewness 1.6010 0.0105 -0.1832 
Kurtosis 33.3775 6.1391 5.3221 

6 
Skewness 0.2999 0.2469 -0.3910 
Kurtosis 9.5860 4.7214 6.3684 
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A.3. Copula functions 

The copula functions under consideration are mentioned below as in Gatfaoui (2016a), and 

exhibit the characteristics displayed in Table A.6: Three-dimension copulas and 

characteristics. Recall that the continuous copula C(.) has a density-based representation c(.), 

so that :��, �, �� = GHI�J,K,L�
GJ	GK	GL  for u, v and w in [0,1]. The Gaussian and Student T copulas 

write in their density forms while the remaining copula functions write in their classic forms 

(i.e. cumulative distribution forms).  

Table A.6: Three-dimension copulas and characteristics 

Copula Type Parameter(s) Tail 

Clayton 
Archimedean Correlation  θ 

Lower 

Frank None 

Gumbel Upper 

Gaussian Elliptical Correlation matrix ρ None 

Student T Degree of freedom ν, Correlation matrix ρ Symmetric 

 

Let θ >0  be a positive correlation parameter and u, v, w in [0,1], the Clayton copula writes:  

���, �, �; N� = ,
�JOPQKOPQLOP80�R PS   (11) 

 

Let ρ be a correlation matrix and u, v, w in [0,1], the Gaussian copula density writes: 

:��, �, �; T� = ,
|V|R WS exp [− ,

0 ξ	\�T8, − ]�ξ^ (12) 

Where exp(.) is the exponential function, ρ and ρ -1 are a three-dimension matrix and its inverse 

respectively, |ρ| is the determinant of the correlation matrix, ξ is the vector of the inverse standard 
univariate Gaussian cumulative distribution function, which is applied to each element u, v, w, and 

finally ξ t is the transposed vector of ξ. A three-dimension identity matrix I  (i.e. with unit diagonal 
terms and zero elsewhere) is also employed. 

 

Let θ >0 be a positive correlation parameter and u, v, w in [0,1], the Frank copula writes: 

 ���, �, �; N� = − ,
_ ln b1 + �cOPd8,��cOPe8,��cOPf8,�

�cOP8,�W g (13) 

 

Let θ >1 be a positive correlation parameter and u, v, w in [0,1], the Gumbel copula writes: 
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	���, �, �; N� = exp h−i�− ln ��_ + �− ln ��_ + �− ln�	�_j, _S k  (14) 

 

Let ρ be a correlation matrix, ν a degree of freedom and u, v, w in [0,1], the Student T copula 
density writes: 

 

:��, �, �; T, l� = ,
|V|R WS

mnopHW q[mnoWq^Hn,QRoξ	rVORξqO
opHW

[mnopRW q^HmnoWq∏ t,Qξu	Wo vO
opRWHuwR

  (15) 

where ρ and ρ -1 are a three-dimension matrix and its inverse respectively, |ρ| is the determinant of 

the correlation matrix,  Γ(.) is the Gamma function, ξ is the vector (ξ1, ξ2, ξ3) of the inverse 
univariate Student17 cumulative distribution function, which applies to each element u, v, w, and 

finally ξ t is the transposed vector of ξ.  
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