
HAL Id: hal-02115599
https://hal.science/hal-02115599v1

Submitted on 4 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Continuous vs. Discrete Asynchronous Moves: A
Certified Approach for Mobile Robots

Thibaut Balabonski, Pierre Courtieu, Robin Pelle, Lionel Rieg, Sébastien
Tixeuil, Xavier Urbain

To cite this version:
Thibaut Balabonski, Pierre Courtieu, Robin Pelle, Lionel Rieg, Sébastien Tixeuil, et al.. Continuous
vs. Discrete Asynchronous Moves: A Certified Approach for Mobile Robots. 7th International Confer-
ence on NETworked sYStems (NETYS 2019), Jun 2019, Marrakech, Morocco. pp.93-09, �10.1007/978-
3-030-31277-0_7�. �hal-02115599�

https://hal.science/hal-02115599v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Continuous vs. Discrete Asynchronous Moves:
a Certified Approach for Mobile Robots⋆

Thibaut Balabonski,1 Pierre Courtieu,2 Robin Pelle,1 Lionel Rieg,3

Sébastien Tixeuil,4,5 and Xavier Urbain6,7

1 LRI, CNRS UMR 8623, Université Paris-Sud, Université Paris-Saclay
2 CÉDRIC – Conservatoire national des arts et métiers

3 Université Grenoble Alpes, Grenoble INP, VERIMAG, 38000 Grenoble, France
4 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, FR-75005, France

5 Institut Universitaire de France
6 Université Claude Bernard Lyon-1, LIRIS CNRS UMR 5205, Université de Lyon

7 Contact author: xavier.urbain@liris.cnrs.fr

Abstract Oblivious Mobile Robots have been studied both in continuous Euc-
lidean spaces, and discrete spaces (that is, graphs). However the obtained literature
forms distinct sets of results for the two settings. In our view, the continuous model
reflects well the physicality of robots operating in some real environment, while
the discrete model reflects well the digital nature of autonomous robots, whose
sensors and computing capabilities are inherently finite.
We explore the possibility of bridging results between the two models. Our ap-
proach is certified using the COQ proof assistant and the Pactole framework, which
we extend to the most general asynchronous model without compromising its
genericity. Our extended framework is then used to formally prove the equivalence
between atomic moves in a discrete space (the classical “robots on graphs” model)
and non-atomic moves in a continuous unidimensional space when robot vision
sensors are discrete (robots move in straigth lines between positions, but their
observations are at source and destination positions only), irrespective of the prob-
lem being solved. Our effort consolidates the integration between the model, the
problem specification, and its proof that is advocated by the Pactole framework.

Keywords: Formal Proof · Proof Assistant · Coq · Mobile Autonomous Robots ·
Distributed Algorithms

1 Introduction

Networks of mobile robots captured the attention of the distributed computing com-
munity, as they promise new application (rescue, exploration, surveillance) in potentially
harmful environments. Originally introduced in 1999 by Suzuki and Yamashita [40], the
model has been refined since by many authors while growing in popularity (see [28]
for a comprehensive textbook). From a theoretical point of view, the interest lies in

⋆ A preliminary brief announcement of this work appears in SSS 2018 [2].
This work was partially supported by Project CoPRAH of the Fédération Informatique de Lyon,
and the CNRS PEPS INS2I project DiDASCaL.

xavier.urbain@liris.cnrs.fr

characterising, for each of these various refinements, the exact conditions that enable
solving a particular task.

In the model we consider, all robots are anonymous and operate using the same
embedded program through repeated Look-Compute-Move cycles. In each cycle, a robot
first “looks” at its environment and obtains a snapshot containing some information about
the locations of all robots, expressed in the robot’s own self-centred coordinate system,
whose scale and orientation might not be consistent with the other robots’ coordinate
systems (or even with the same robot’s coordinate system from a previous cycle). Then
the robot “computes” a destination, still in its own coordinate system, based only on
the snapshot it just obtained (which means the robot is oblivious, in the sense that its
behaviour is independent of the past history of execution). Finally the robot “moves”
towards the computed destination.

Different levels of synchronisation between robots have been considered. The weak-
est [28] (and most realistic) is the asynchronous model (ASYNC), where each robot
performs its Look, Compute and Move actions at its own pace, which may not be consist-
ent with that of other robots. The strongest [40] is the fully synchronous model (FSYNC),
where all robots perform simultaneously and atomically all of these three steps. An
intermediate level [40] is called semi-synchronous (SSYNC), where the computation is
organised in rounds and only a subset of the robots are active at any given round; the
active robots in a round performing exactly one atomic Look-Compute-Move cycle.

The general model is agnostic to the shape of the space where the robots operate,
which can be the real line, a two dimensional Euclidean space, a discrete space (a.k.a. a
graph), or even another space with a more intricate topology. To date, two independent
lines of research focused on (i) continuous Euclidean spaces, and (ii) graphs, studying
different sets of problems and using distinct algorithmic techniques.

1.1 Continuous vs. discrete spaces

The core problem to solve in the context of mobile robot networks that operate in
bidimensional continuous spaces is pattern formation, where robots starting from distinct
initial positions have to form a given geometric pattern. Arbitrary patterns can be formed
when robots have memory [40, 13] or common knowledge [29], otherwise only a
subset of patterns can be achieved [42, 30, 45]. Forming a point as the target pattern
is known as gathering [40, 17, 37, 3, 16], where robots have to meet at a single point
in space in finite time, not known beforehand. The problem is generally impossible to
solve [40, 17, 37] unless the setting is fully synchronous [3] or robots are endowed with
multiplicity detection [16]. Recently, researchers considered tridimensional Euclidean
spaces [44, 43, 41], where robots must solve plane formation, that is, land on a common
plane (not determined beforehand) in finite time. It turns out that robots cannot form a
plane from most of the semi-regular polyhedra, while they can form a plane from every
regular polyhedron (except a regular icosahedron). In the context of robots operating on
graphs, typical problems are terminating exploration [15, 35, 21, 23, 26, 27, 22], where
robots must explore all nodes of a given graph and then stop moving forever, exclusive
perpetual exploration [5, 20, 9, 11, 10], where robots must explore all nodes of a graph
forever without ever colliding, exclusive searching [19, 20, 8], where robots must capture

2

an intruder in the graph without colliding, and gathering [20, 32, 33, 34, 12], where
robots must meet at a given node in finite time, not determined beforehand.

Although some of the studied problems overlap (e.g. gathering), the algorithmic
techniques that enable solving problems are substantially different. On the one hand,
robots operating in continuous spaces may typically use fractional distance moves
to another robot, or non-straight moves in order to make the algorithm progress, two
options that are not possible in the discrete model. On the other hand, in the asynchronous
continuous setting, a robot may be seen by another robot as it is moving, hence at some
arbitrary position between its source and destination point within a cycle, something that
is impossible to observe in the discrete setting. Indeed, all aforementioned works for
robots on graph consider that their moves are atomic, even in the ASYNC setting, which
may seem unrealistic to a practitioner.

1.2 Related works

Designing and proving mobile robot protocols is notoriously difficult. Formal methods
encompass a long-lasting path of research that is meant to overcome errors of human ori-
gin. Unsurprisingly, this mechanised approach to protocol correctness was successively
used in the context of mobile robots [10, 21, 7, 1, 36, 17, 6, 38, 3, 39, 4].

In the discrete setting, model-checking proved useful to find bugs (usually in the
ASYNC setting) in existing literature [7, 24, 25] and formally check the correctness of
published algorithms [21, 7, 38]. Automatic program synthesis [10, 36] can be used to
obtain automatically algorithms that are “correct-by-design”. However, those approaches
are limited to small instances with few robots. Generalising to an arbitrary number of
robots with similar approaches is doubtful as Sangnier et al. [39] proved that safety and
reachability problems become undecidable in the parameterised case.

When robots move freely in a continuous bidimensional Euclidean space, to the
best of our knowledge the only formal framework available is the Pactole framework.8

Pactole enabled the use of higher-order logic to certify impossibility results [1, 17, 4] as
well as certifying the correctness of algorithms [18, 3], possibly for an arbitrary number
of robots (hence in a scalable manner). Pactole was recently extended by Balabonski
et al. [4] to handle discrete spaces as well as continuous spaces, thanks to its modular
design. However, to this paper, Pactole only allowed one to express specifications and
proofs with the FSYNC and SSYNC models.

1.3 Our contribution

In this paper, we explore the possibility of establishing a first bridge between the continu-
ous movements and observation vs. discrete movements and observation in the context
of autonomous mobile robots. Our position is that the continuous model reflects well the
physicality of robots operating in some environment, while the discrete model reflects
well the digital nature of autonomous robots, whose sensors and computing capabilities
are inherently finite. For this purpose, we consider that robots make continuous, non

8 http://pactole.lri.fr

3

http://pactole.lri.fr

atomic moves, but only sense in a discrete manner the position of robots. Our approach
is certified using the COQ proof assistant and the Pactole framework.

In more details, we first extend the Pactole framework to handle the ASYNC model,
preserving its modularity by keeping the operating space and the robots algorithm both
abstract. This permits to retain the same formal framework for both continuous and
discrete spaces, and the possibility for mobile robots to be faulty (even possibly malicious
a.k.a. Byzantine). Then, as an application of the new framework, we formally prove the
equivalence between atomic moves in a discrete space (the classical model for robots
operating on graphs) and non-atomic moves in a continuous unidimensional space when
robot vision sensors are discrete (that is, robots are only able to see another robot on a
node when they perform the Look phase, but robots can move anywhere on a straight
line between two adjacent nodes), irrespective of the problem being solved. Our effort
consolidates the integration between the model, the problem specification, and its proof
that is advocated by the Pactole framework.

Pactole and the formal developments of this work are available at https://pactole.liris.cnrs.fr.

2 The asynchronous Look-Compute-Move model

The complete lack of synchronisation makes reasoning in the ASYNC model particularly
error prone. Nevertheless, being the most realistic model, it is widely used in the literature.
In this section, we describe how to include the ASYNC model in the Pactole framework.

The formalisation of the Look-Compute-Move model in Pactole for FSYNC and
SSYNC has been described in [1, 18, 3]. We briefly recall what we need here, and
emphasise what characterises the ASYNC model.

2.1 Configurations

Locations. The notion of location is a parameter of the Pactole framework and is left
abstract in this section, as it depends on the nature of the space in which the robots
operate. In Section 3, we present two different spaces based on graphs, one in which the
robots are only located on vertices of the graph, and the other in which the robots can
also be located on edges.

Configurations associate a conformation to a robot. In the original Pactole model, robots
were mapped to locations only. To reflect in ASYNC the lack of synchronisation and of
uniformity of robot actions, and to add generality to the model, we enrich configurations
to map a robot id to a conformation (RobotConf) consisting of the current location,
and information about movement: namely source and target locations. We can also add
other information relating to individual robots such as their speeds or internal states.
This allows for some robots to move while others are looking or computing. Note that
integrating more information into the configuration does not give the robots extra power:
they only “see” a configuration through their sensors, the result being what we call a
spectrum in the sequel (see below).

4

https://pactole.liris.cnrs.fr

Record Info : Type := { source: Location ; target: Location}.
Record RobotConf := { loc :> Location; robot_info: Info }.
Definition configuration := identifier→ RobotConf.

We may now consider robots to be in two possible states summarised in Fig. 1: an
Idle state and a Moving state. An idle robot is ready to start a new cycle with a simple
Look/Compute action performing the usual Look and Compute phases. Merging these
two actions is justified by the fact that the computation is based on the snapshot taken
during the Look action only, thus its result cannot be changed by any other event taking
place after the Look action. A robot is considered to be moving whenever its current and
target locations are different, and becomes idle again when it reaches its target location
(thus an idle robot that decides not to move stays idle).

Idle Moving

Look/Compute

Move

MoveLook/Compute

Figure 1. States and actions of the robots

Spectra and Robograms. We call the embedded program the robots use to define their
moves a robogram. It consists of a function pgm that simply returns a destination location
when given a perception (spectrum) of the environment and the robot’s perception of its
current location. Spectra inhabit an arbitrary type that is part of the description of the
model and contributes to its genericity. Indeed, depending on the robots’ capabilities, the
perception usually contains less information that the complete configuration: anonymous
robots cannot see names, they may lack detection of multiplicity, frames of reference may
not be shared, vision can be limited, etc. In the case of ASYNC in particular, the robots
generally do not perceive the additional information describing the ongoing movements
of other robots. The forbidden information is pruned from the configuration, using the
function Spect.from_config which returns a spectrum, to be given as input to the
robogram’s pgm.

Depending on the space considered, the destination returned may be restricted, e.g.,
to locations that are close enough to the starting location. The pack of theses possible
constraints with the declaration of the function pgm constitutes what we call a robogram.

Record robogram := { pgm: Spect.t → Location.t → Location.t;
(* + constraints *) }.

2.2 ASYNC executions
For all synchronisation models, an execution is a sequence of configurations, each of
which is deduced from the previous one, based on the robogram and on a scheduler

5

(called a demon) that assigns a change (or not) of conformation to each robot and which
is considered as an adversary. To mimic this behaviour, our formal model does not
introduce any extra information: execution steps are completely characterised through a
transition function by: (i) the current configuration, (ii) the demon’s choices for the step
(a demonic action), and (iii) the considered protocol. Executions are simply streams of
consecutive configurations for that function.

Demonic actions. Formally, each demonic action can request a moving robot to travel
further towards its target, or an idle robot to initiate a new move. In each of these cases
the demon provides its choices through the action: either the distance travelled along an
ongoing move for a Move action, or a frame of reference for the perception of a robot
for a Look/Compute action.

Inductive action {A} :=
| Move (dist: A) (* moving distance *)
| LookCompute (Location.t → Iso.t). (* change frame of ref *)

This choice (Move or LookCompute) is performed by the function step. When relevant,
demonic actions also relocate Byzantine robots in an arbitrary way (the regular states
and actions being per se irrelevant for these robots).

We have no control on the choices made by the demon, which is why we call it an
adversary. It must nonetheless still make meaningful choices, which we model by the
following constraint: only idle robots (that is, robots that are at their target location) may
receive an order to look and compute.

step_LookCompute : ∀ robot robot_conf ref_change,
step robot robot_conf = LookCompute ref_change
→ robot_conf.loc = robot_conf.robot_info.target

Transition function. One obtains successive configurations by running the robogram
according to the current demonic action and configuration. This is done by the function
round computing new conformations (RobotConf) in a configuration, for each robot
identifier r, according to a demonic action da:

1. If r is Byzantine, it is relocated directly by da on LookCompute actions, and ignores
Move ones.

2. Else, if r carries further its ongoing move (Move action), its current location is
updated to the location it reached during this move (the way this reached location
is computed may depend on the underlying space). In the diagram in Fig. 1, this
corresponds to:

– the Move transition from Moving to Idle when r reaches its target location,
– the Move loop around Moving when r does not reach its target location,
– a Move loop (not shown) around Idle if r was already at its target location.

3. Else, a new target location is defined as follows:
(a) The local frame of reference provided by da is used to convert the configuration

according to the relevant local point of view,
(b) The resulting local configuration is transformed into a spectrum using from_config,

6

(c) The obtained spectrum is passed as a parameter to the robogram, which returns
the target location.

(d) The target location is converted from the local frame to the global one.
The robot’s conformation is updated with the obtained location as new target, and
with the current location as new source. In the diagram in Fig. 1, this corresponds to:

– the Look/Compute transition from Idle to Moving when r’s current and target
locations are different,

– the Look/Compute loop around Idle when r’s current and target location are
equal.

To define a full execution, the function execute rbg d config iterates round
starting from configuration config, using robogram rbg and demon d. Note that a step
in an ASYNC execution does not always imply a change in the multiset of inhabited
locations, as some robots may undergo a change of state only.

3 Application: formal equivalence between discrete and continuous
models

In a discrete setting, the simplest possible location type is discrete graphs where robots
can only be located on vertices. A robogram takes as parameters a spectrum (perception)
and a current location based on robots located on vertices, and returns a vertex as
destination location. Travel along an edge is unnoticed as the target vertex is supposed to
be reached instantaneously. Particularly simple, this model is convenient for reasoning;
it may however be considered as rather artificial.

A more realistic point of view is given by continuous models, which take into
account the continuous movements of the robots. We nevertheless restrict ourselves to
discrete observations: each robot is only perceived as being close to some reference
point. As a consequence, the space can still be seen as a graph (the graph of the chosen
reference points) and the robots are always observed on the vertices. The movement of
a robot between two vertices however is now continuous. The corresponding edge is
parameterised by a travel ratio called threshold, which is compared to the position of
a robot along the edge to determine whether the robot is perceived at the source or target
vertex. Computed destinations are still vertices.

We propose formalisations for these two models in our formal framework, and prove
formally their equivalence in the context of oblivious robots with discrete observations,
regardless of their actual observation capabilities.

3.1 Discrete graphs

A formal model for graphs has been provided, and illustrated for SSYNC in [4] to which
we refer for further details. Briefly, a graph is defined as a pair (V, E) of two sets,
the vertices and the edges. Each edge has a source vertex and a target vertex, given by
functions src and tgt respectively. A change of frame of reference is supported by a
graph isomorphism (the type of which is written Iso.t in the formalisation). We want
to extend this model by combining it with the ASYNC aspects presented above.

A graph Graph and a set Names of robots of some size N being given, we provide a
model DGF in which the ASYNC notions described above are blended.

7

Module DGF (Graph : GraphDef)(N : Size)(Names : Robots(N)).

The locations are given by the set V of vertices of the graph.
Given a spectrum, a robogram computes as destination a location that must be

reachable from (i.e., adjacent to) the current location of the robot. It is thus required that
the target is linked through an edge to the current location. This is simply an additional
constraint pgm_range to the definition of a robogram.

A moving robot travelling instantaneously between its source and target locations,
the notion of travel distance degenerates into a Boolean choice: the robot either jumps
to its destination, or stays at its current location. Hence the only effort in defining an
ASYNC discrete graph in our formal model is to instantiate the parameter A in the
definition of the demonic action with bool.

Further note that for technical reasons we will use, in our case study, a version of
these discrete graphs enriched with a field threshold that will remain unused in the
discrete case. This way both kinds of graphs will inhabit the same datatype, thus easing
comparisons.

3.2 Continuous graphs with discrete observations

As in the discrete model, a graph and a set of robots being given, we provide a model
CGF in which both ASYNC and continuous moves are embedded.

Module CGF (Graph : GraphDef)(N : Size)(Names : Robots(N)).

The type of locations is richer, and distinguishes two cases: a robot is either on
a vertex of the graph (OnVertex) or at some position along an edge other than its
source or target (OnEdge). A position along an edge is given by a position ratio p of its
length such that 0 < p < 1 (thus making actual lengths unnecessary in the model). We
represent these ratios using arbitrary reals and a continuous bijection between reals and
the interval]0, 1[.

Inductive location := OnVertex (l : Graph.V)
| OnEdge (e : Graph.E) (p : R).

Discrete observation is understood as a limitation (capability) of the robots’ sensors.
As such, it is naturally included in the spectrum. For example, with anonymous robots
enjoying multiplicity detection, the spectrum of a configuration is based on multisets
of locations, however it does not show robots’ locations with accuracy. Instead, each
robot is seen at the “nearest” vertex: a robot located at some position ratio p along an
edge is perceived at its source if p is less than or equal to the edge threshold, and at
its target otherwise. For this, it is sufficient to use the following projection function in
the construction of a spectrum from a configuration whenever the position of a robot is
looked up.

Definition LocC2D (locC : CGF.Location.t) : DGF.Location.t :=
match locC with

| CGF.OnVertex l ⇒ l
| CGF.OnEdge e p ⇒ if Rle_dec p (Graph.threshold e)

then Graph.src e else Graph.tgt e
end.

8

Thus the type of spectra is exactly the same as in the discrete model. Note that we also
require the returned destination to be a vertex in the additional constraints embedded in
the definition of a robogram.

The parameter provided by the demonic action in a Move transition is more precise
than in the discrete setting: it can be any moving ratio m in the interval [0, 1]. The
transition function then interprets this moving ratio the following way:

– If the robot is on the source vertex of its ongoing move, m = 0 means staying there,
m = 1 means going directly to the destination vertex, and 0 < m < 1 means going
at the corresponding position along the edge between the current vertex and the
destination vertex.

– If the robot is at some position p on an edge, then it goes to the position m+ p on
the same edge. In case m+ p ≥ 1 the robot goes to the target vertex.

– If the robot is already on the destination vertex, then it stays there.

For this model to make sense, the configurations must satisfy the following properties:

– The source and target locations of robots are vertices, with an edge going from the
source to the target.

– If a robot is on a vertex, it is either its source or its target vertex.
– If a robot is on an edge, the latter has the same source and target vertices as the

robot.

These properties are collected in a good_conf property, which is shown to be preserved
by the transition function round.

Lemma good_conf_round: ∀ (config: CGF.Config.t) (rbg: robogram)
(da: DGF.demonic_action),
good_conf config→ good_conf (round rbg da config).

Hence we restrict our initial configurations to configurations in which these properties
hold, and this ensures that the configurations will remain well-formed in any execution.

3.3 Simulation of the discrete model in the continuous model

To prove that the discrete model and the continuous model with discrete observation are
equivalent for oblivious robots, we show that any given robogram produces the same
executions in both models. We firstly establish in Theorem graph_equivD2C that for
any “discrete” execution, there is a demon such that this execution can take place in the
continuous model with discrete observation context.

First remark that any robogram in one of the models can also be read as a robogram
of the other model, thanks to the following facts:

– the first parameter of a robogram is a spectrum, and the types of spectra are the same
in both models,

– the current position of the robot is always a vertex since the general model assumes
that the robogram is applied only for idle robots, which are located on vertices,

– the destination returned by a robogram is a vertex.

9

Technically the types are different and a translation has to be applied to see a discrete
robogram as continuous or a continuous robogram as discrete, but the translation only
casts l↭ CGF.OnVertex l in both directions.

We define a translation ConfigD2C from discrete to continuous configurations,
and show that this translation relates any execution step in the discrete model with an
execution step of the same robogram in the continuous model. Since for any given
underlying graph the locations of the discrete model are a subset of the locations of
the continuous model, the translation of the configurations is straightforward: mapping
each vertex l to the (continuous) location CFG.OnVertex l. The property then reads
as follows: for any robogram rbg, demonic action da and configuration c in the discrete
model, there is a demonic action da’ in the continuous model such that the diagram in
Fig. 2 is satisfied.

c next_c

c’ next_c’

DGF.round rbg da

ConfigD2CConfigC2D

CGF.round rbg da’

ConfigD2CConfigC2D

Figure 2. Bisimulation

Theorem graph_equivD2C: ∀ (c: DGF.Config.t)(rbg: DGF.robogram)
(da: DGF.demonic_action),

∃ (da’: CGF.demonic_action),
ConfigD2C (DGF.round rbg da c)

≡CGF CGF.round (rbgD2C rbg) da’ (ConfigD2C c).

The proof of this lemma requires to provide a demonic action da’ in the continuous
model, which is again obtained by quite a simple translation of the discrete action da. In
particular, the boolean parameter associated to a move action is canonically translated to
either 0 or 1, and the conversion to the local frame of reference needs not be translated
(since both models have the same underlying graph). Note that, since demonic actions
are associated to constraints (namely step_LookCompute), the definition of a new
demonic action requires a proof that these constraints are satisfied. Once this witness
is provided, the proof amounts to reasoning by cases on the various parameters of the
transition function: is the robot Byzantine or not? is the scheduled action a move or a
new activation? is the parameter of the move true or false?

From this, we deduce that any execution in the discrete model can be simulated in
the continuous model. The reciprocal property, which is more complex, is detailed in the
next section.

10

3.4 Simulation of the continuous model in the discrete model

Configurations in the continuous model can also be translated to configurations in
the discrete model. The translation ConfigC2D uses the location projection function
LocC2D already defined in the description of spectra in the continuous model.

This translation allows us to state a second simulation result, similar to the previous
one but relating continuous executions steps to discrete ones (that is, reading the diagram
in Fig. 2 from bottom to top).

Theorem graph_equivC2D: ∀(c’: CGF.Config.t)(rbg: CGF.robogram)
(da’: CGF.demonic_action),

CGF.good_conf c’→
∃ da, ConfigC2D (CGF.round rbg da’ c’)

≡DGF DGF.round (rbgC2D rbg) da (ConfigC2D c’).

The definition of the witness da is subtler than in the previous lemma. The case
where an idle robot is activated and computes a new destination (LookCompute action) is
straightforward, since again we can use the same isomorphism. The Move case however
cannot be treated using only the information in the continuous action da’: when a
continuous demonic action provides a move ratio, we have to translate it into a boolean
choice describing whether the move will end in the region of the source vertex or in the
region of the target vertex. That is, we have to know whether the movement will pass the
threshold or not. This requires knowing not only the demonic action da’, but also the
configuration c’. The full definition then takes the following form:

Definition daC2D (daC: CGF.demonic_action) (confC: CGF.Config.t):
DGF.demonic_action :=

{| DGF.relocate_byz := fun b ⇒ LocC2D (daC.relocate_byz b);
DGF.step := fun robot robot_conf ⇒
(* Here we assume that {robot_conf} is the projection

of {confC robot} *)
(* Consider the action given by the continuous demon... *)
match daC.step robot (confC robot) with
(* a Look/Compute action is preserved, *)
| CGF.LookCompute ref_change ⇒ DGF.LookCompute ref_change
(* a Move action requires checking the current location

of the robot. *)
| CGF.Move m ⇒
match (confC robot).loc with
(* If the robot is on a vertex, then compare {m} to

the threshold of the edge to target vertex {e}. *)
| CGF.OnVertex _ ⇒

match (Graph.find_edge robot_conf.robot_info.source
robot_conf.robot_info.target)

with
| Some e ⇒ if Rle_dec m (Graph.threshold e)

then DGF.Move false else DGF.Move true
| None ⇒ DGF.Move false

end
(* If the robot is on an edge do the same after adding

11

the current position ratio to {m}. *)
| CGF.OnEdge e p ⇒
if Rle_dec p (Graph.threshold e)
then if Rle_dec (m + p) (Graph.threshold e)

then DGF.Move false else DGF.Move true
else DGF.Move false

end
end |}.

Again, the proof is by cases on all the parameters of the transition function, which are
more numerous than in the previous case since the definition of the demonic action da’

itself distinguishes many more cases.
These two simulation results, taken together, mean that any execution in any of the

two models (discrete or continuous) can be related to an equivalent execution in the other
model.

4 Concluding Remarks

Our work established the first formal bridge between two previously distinct models
for oblivious mobile robots. From a practical point of view, the formal equivalence we
provide between the discrete model and the continuous model with discrete sensors sheds
new light about what is actually computable in real environments by limited capabilities
robots. Furthermore, our work hints at possible new paths for future research:

– The first issue we plan to tackle is that of realistic sensing models for mobile robots.
Actual robots endowed with omnidirectional 3D visibility sensors typically use a
digital camera with a set of parabolic mirrors [14], which implies that the accuracy of
the localisation of a robot varies with the distance to its target robot. In our modeling,
the threshold for a given edge e is the same for all participating robots, while a
threshold that varies according to the distance of the observing robot to e would
be more realistic. Adding this possibility to our framework is not difficult thanks to
its modularity, but the equivalence proof is then likely to fail in the extended model.

– Another important long-term open question raised by our work is that of model
equivalence beyond oblivious mobile robots. Our approach considers the equivalence
of executions and is hence agnostic with regards to the actual problem being solved; it
also enables Byzantine robots. It would be interesting to consider model equivalences
with other classical distributed computing models (e.g. Problem A in robot model
m with f faulty robots is equivalent to problem B in asynchronous shared memory
model m′ with f ′ faulty processes). A natural candidate case study would be the
Consensus vs. Robot Gathering problem [31].

References
[1] C. Auger, Z. Bouzid, P. Courtieu, S. Tixeuil, and X. Urbain. Certified Impossibility Res-

ults for Byzantine-Tolerant Mobile Robots. In T. Higashino, Y. Katayama, T. Masuzawa,
M. Potop-Butucaru, and M. Yamashita, editors, Stabilization, Safety, and Security of Distrib-
uted Systems - 15th International Symposium (SSS 2013), volume 8255 of Lecture Notes in
Computer Science, pages 178–186, Osaka, Japan, Nov. 2013. Springer-Verlag.

12

[2] T. Balabonski, P. Courtieu, R. Pelle, L. Rieg, S. Tixeuil, and X. Urbain. Brief Announcement:
Continuous vs. Discrete Asynchronous Moves: a Certified Approach for Mobile Robots. In
T. Izumi and P. Kuznetsov, editors, Stabilization, Safety, and Security of Distributed Systems
- 20th International Symposium, (SSS 2018), volume 11201 of Lecture Notes in Computer
Science, Tokyo, Japan, Nov. 2018. Springer-Verlag.

[3] T. Balabonski, A. Delga, L. Rieg, S. Tixeuil, and X. Urbain. Synchronous Gathering Without
Multiplicity Detection: A Certified Algorithm. In B. Bonakdarpour and F. Petit, editors,
Stabilization, Safety, and Security of Distributed Systems - 18th International Symposium,
(SSS 2016), volume 10083 of Lecture Notes in Computer Science, Lyon, France, Nov. 2016.
Springer-Verlag.

[4] T. Balabonski, R. Pelle, L. Rieg, and S. Tixeuil. A foundational framework for certified
impossibility results with mobile robots on graphs. In P. Bellavista and V. K. Garg, editors,
Proceedings of the 19th International Conference on Distributed Computing and Networking,
ICDCN 2018, Varanasi, India, January 4-7, 2018, pages 5:1–5:10. ACM, 2018.

[5] R. Baldoni, F. Bonnet, A. Milani, and M. Raynal. Anonymous graph exploration without
collision by mobile robots. Information Processing Letters, 109(2):98–103, 2008.

[6] B. Bérard, P. Courtieu, L. Millet, M. Potop-Butucaru, L. Rieg, N. Sznajder, S. Tixeuil,
and X. Urbain. Formal Methods for Mobile Robots: Current Results and Open Problems.
International Journal of Informatics Society, 7(3):101–114, 2015. Invited Paper.

[7] B. Bérard, P. Lafourcade, L. Millet, M. Potop-Butucaru, Y. Thierry-Mieg, and S. Tixeuil.
Formal verification of mobile robot protocols. Distributed Computing, 29(6):459–487, 2016.

[8] L. Blin, J. Burman, and N. Nisse. Exclusive graph searching. Algorithmica, 77(3):942–969,
2017.

[9] L. Blin, A. Milani, M. Potop-Butucaru, and S. Tixeuil. Exclusive perpetual ring exploration
without chirality. In N. A. Lynch and A. A. Shvartsman, editors, Distributed Computing,
24th International Symposium (DISC 2010), volume 6343 of Lecture Notes in Computer
Science, pages 312–327, Cambridge, MA, USA, Sept. 2010. Springer-Verlag.

[10] F. Bonnet, X. Défago, F. Petit, M. Potop-Butucaru, and S. Tixeuil. Discovering and assessing
fine-grained metrics in robot networks protocols. In 33rd IEEE International Symposium on
Reliable Distributed Systems Workshops, SRDS Workshops 2014, Nara, Japan, October 6-9,
2014, pages 50–59. IEEE, 2014.

[11] F. Bonnet, A. Milani, M. Potop-Butucaru, and S. Tixeuil. Asynchronous exclusive perpetual
grid exploration without sense of direction. In A. F. Anta, G. Lipari, and M. Roy, editors,
Principles of Distributed Systems - 15th International Conference, OPODIS 2011, Toulouse,
France, December 13-16, 2011. Proceedings, volume 7109 of Lecture Notes in Computer
Science, pages 251–265. Springer-Verlag, 2011.

[12] F. Bonnet, M. Potop-Butucaru, and S. Tixeuil. Asynchronous gathering in rings with four
robots. In Ad-hoc, Mobile, and Wireless Networks - 15th International Conference, ADHOC-
NOW 2015, Lille, France, 2016, Lecture Notes in Computer Science. Springer-Verlag,
2016.

[13] Z. Bouzid, S. Dolev, M. Potop-Butucaru, and S. Tixeuil. RoboCast: Asynchronous Com-
munication in Robot Networks. In C. Lu, T. Masuzawa, and M. Mosbah, editors, OPODIS,
volume 6490 of Lecture Notes in Computer Science, pages 16–31, Tozeur, Tunisia, Dec.
2010. Springer-Verlag.

[14] G. Caron, E. M. Mouaddib, and É. Marchand. 3d model based tracking for omnidirectional
vision: A new spherical approach. Robotics and Autonomous Systems, 60(8):1056–1068,
2012.

[15] J. Chalopin, P. Flocchini, B. Mans, and N. Santoro. Network exploration by silent and
oblivious robots. In D. M. Thilikos, editor, Graph Theoretic Concepts in Computer Science -
36th International Workshop, WG 2010, Zarós, Crete, Greece, June 28-30, 2010 Revised
Papers, volume 6410 of Lecture Notes in Computer Science, pages 208–219, 2010.

13

[16] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing by mobile
robots: Gathering. SIAM J. Comput., 41(4):829–879, 2012.

[17] P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain. Impossibility of Gathering, a Certification.
Information Processing Letters, 115:447–452, 2015.

[18] P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain. Certified universal gathering algorithm in R2

for oblivious mobile robots. In C. Gavoille and D. Ilcinkas, editors, Distributed Computing -
30th International Symposium, (DISC 2016), volume 9888 of Lecture Notes in Computer
Science, Paris, France, Sept. 2016. Springer-Verlag.

[19] G. D’Angelo, A. Navarra, and N. Nisse. A unified approach for gathering and exclusive
searching on rings under weak assumptions. Distributed Computing, 30(1):17–48, 2017.

[20] G. D’Angelo, G. D. Stefano, A. Navarra, N. Nisse, and K. Suchan. Computing on rings by
oblivious robots: A unified approach for different tasks. Algorithmica, 72(4):1055–1096,
2015.

[21] S. Devismes, A. Lamani, F. Petit, P. Raymond, and S. Tixeuil. Optimal Grid Exploration by
Asynchronous Oblivious Robots. In A. W. Richa and C. Scheideler, editors, Stabilization,
Safety, and Security of Distributed Systems - 14th International Symposium (SSS 2012),
volume 7596 of Lecture Notes in Computer Science, pages 64–76, Toronto, Canada, Oct.
2012. Springer-Verlag.

[22] S. Devismes, A. Lamani, F. Petit, and S. Tixeuil. Optimal torus exploration by oblivious
robots. In A. Bouajjani and H. Fauconnier, editors, Networked Systems - Third International
Conference, NETYS 2015, Agadir, Morocco, May 13-15, 2015, Revised Selected Papers,
volume 9466 of Lecture Notes in Computer Science, pages 183–199. Springer-Verlag, 2015.

[23] S. Devismes, F. Petit, and S. Tixeuil. Optimal probabilistic ring exploration by semi-
synchronous oblivious robots. Theoretical Computer Science, 498:10–27, 2013.

[24] H. T. T. Doan, F. Bonnet, and K. Ogata. Model checking of a mobile robots perpetual
exploration algorithm. In S. Liu, Z. Duan, C. Tian, and F. Nagoya, editors, Structured
Object-Oriented Formal Language and Method - 6th International Workshop, SOFL+MSVL
2016, Tokyo, Japan, November 15, 2016, Revised Selected Papers, volume 10189 of Lecture
Notes in Computer Science, pages 201–219, 2016.

[25] H. T. T. Doan, F. Bonnet, and K. Ogata. Model checking of robot gathering. In J. Aspnes,
A. Bessani, P. Felber, and J. Leitão, editors, 21st International Conference on Principles of
Distributed Systems, OPODIS 2017, Lisbon, Portugal, December 18-20, 2017, volume 95
of LIPIcs, pages 12:1–12:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[26] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Remembering without memory: Tree
exploration by asynchronous oblivious robots. Theoretical Computer Science, 411(14-
15):1583–1598, 2010.

[27] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Computing without communicating: Ring
exploration by asynchronous oblivious robots. Algorithmica, 65(3):562–583, 2013.

[28] P. Flocchini, G. Prencipe, and N. Santoro. Distributed Computing by Oblivious Mobile Ro-
bots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers,
2012.

[29] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern formation by
asynchronous, anonymous, oblivious robots. Theoretical Computer Science, 407(1-3):412–
447, 2008.

[30] N. Fujinaga, Y. Yamauchi, S. Kijima, and M. Yamashita. Asynchronous pattern formation by
anonymous oblivious mobile robots. In M. K. Aguilera, editor, Distributed Computing - 26th
International Symposium, DISC 2012, Salvador, Brazil, October 16-18, 2012. Proceedings,
volume 7611 of Lecture Notes in Computer Science, pages 312–325. Springer-Verlag, 2012.

[31] T. Izumi, Z. Bouzid, S. Tixeuil, and K. Wada. Brief Announcement: The BG-Simulation
for Byzantine Mobile Robots. In D. Peleg, editor, DISC, volume 6950 of Lecture Notes in
Computer Science, pages 330–331. Springer-Verlag, 2011.

14

[32] T. Izumi, T. Izumi, S. Kamei, and F. Ooshita. Mobile robots gathering algorithm with local
weak multiplicity in rings. In B. Patt-Shamir and T. Ekim, editors, Structural Information
and Communication Complexity, 17th International Colloquium, SIROCCO 2010, Sirince,
Turkey, June 7-11, 2010. Proceedings, volume 6058 of Lecture Notes in Computer Science,
pages 101–113. Springer-Verlag, 2010.

[33] S. Kamei, A. Lamani, F. Ooshita, and S. Tixeuil. Asynchronous mobile robot gathering
from symmetric configurations without global multiplicity detection. In A. Kosowski
and M. Yamashita, editors, Structural Information and Communication Complexity - 18th
International Colloquium, SIROCCO 2011, Gdansk, Poland, June 26-29, 2011. Proceedings,
volume 6796 of Lecture Notes in Computer Science, pages 150–161. Springer-Verlag, 2011.

[34] S. Kamei, A. Lamani, F. Ooshita, and S. Tixeuil. Gathering an even number of robots in an
odd ring without global multiplicity detection. In B. Rovan, V. Sassone, and P. Widmayer,
editors, Mathematical Foundations of Computer Science 2012 - 37th International Sym-
posium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, volume 7464
of Lecture Notes in Computer Science, pages 542–553. Springer-Verlag, 2012.

[35] A. Lamani, M. G. Potop-Butucaru, and S. Tixeuil. Optimal deterministic ring exploration
with oblivious asynchronous robots. In B. Patt-Shamir and T. Ekim, editors, Structural
Information and Communication Complexity, 17th International Colloquium, SIROCCO
2010, Sirince, Turkey, June 7-11, 2010. Proceedings, volume 6058 of Lecture Notes in
Computer Science, pages 183–196. Springer-Verlag, 2010.

[36] L. Millet, M. Potop-Butucaru, N. Sznajder, and S. Tixeuil. On the synthesis of mobile robots
algorithms: The case of ring gathering. In P. Felber and V. K. Garg, editors, Stabilization,
Safety, and Security of Distributed Systems - 16th International Symposium, (SSS 2014),
volume 8756 of Lecture Notes in Computer Science, pages 237–251, Paderborn, Germany,
Sept. 2014. Springer-Verlag.

[37] G. Prencipe. Impossibility of gathering by a set of autonomous mobile robots. Theoretical
Computer Science, 384(2-3):222–231, 2007.

[38] S. Rubin, F. Zuleger, A. Murano, and B. Aminof. Verification of asynchronous mobile-
robots in partially-known environments. In Q. Chen, P. Torroni, S. Villata, J. Y. Hsu, and
A. Omicini, editors, PRIMA 2015: Principles and Practice of Multi-Agent Systems - 18th
International Conference, Bertinoro, Italy, October 26-30, 2015, Proceedings, volume 9387
of Lecture Notes in Computer Science, pages 185–200. Springer-Verlag, 2015.

[39] A. Sangnier, N. Sznajder, M. Potop-Butucaru, and S. Tixeuil. Parameterized verification of
algorithms for oblivious robots on a ring. In Formal Methods in Computer Aided Design,
Vienna, Austria, Oct. 2017.

[40] I. Suzuki and M. Yamashita. Distributed Anonymous Mobile Robots: Formation of Geomet-
ric Patterns. SIAM Journal of Computing, 28(4):1347–1363, 1999.

[41] Y. Tomita, Y. Yamauchi, S. Kijima, and M. Yamashita. Plane formation by synchronous
mobile robots without chirality. In J. Aspnes, A. Bessani, P. Felber, and J. Leitão, editors,
21st International Conference on Principles of Distributed Systems, OPODIS 2017, Lisbon,
Portugal, December 18-20, 2017, volume 95 of LIPIcs, pages 13:1–13:17. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2017.

[42] M. Yamashita and I. Suzuki. Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theoretical Computer Science, 411(26-28):2433–2453, 2010.

[43] Y. Yamauchi, T. Uehara, S. Kijima, and M. Yamashita. Plane formation by synchronous
mobile robots in the three-dimensional euclidean space. J. ACM, 64(3):16:1–16:43, 2017.

[44] Y. Yamauchi, T. Uehara, and M. Yamashita. Brief announcement: Pattern formation problem
for synchronous mobile robots in the three dimensional euclidean space. In G. Giakkoupis,
editor, Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,
PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 447–449. ACM, 2016.

15

[45] Y. Yamauchi and M. Yamashita. Pattern formation by mobile robots with limited visibility.
In T. Moscibroda and A. A. Rescigno, editors, Structural Information and Communication
Complexity - 20th International Colloquium, SIROCCO 2013, Ischia, Italy, July 1-3, 2013,
Revised Selected Papers, volume 8179 of Lecture Notes in Computer Science, pages 201–212.
Springer-Verlag, 2013.

16

	Continuous vs. Discrete Asynchronous Moves: a Certified Approach for Mobile Robots

