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SUMMARY

The nucleolus is the site of rRNA gene transcription,
rRNA processing, and ribosome biogenesis. How-
ever, the nucleolus also plays additional roles in the
cell. We isolated nucleoli using fluorescence-acti-
vated cell sorting (FACS) and identified nucleolus-
associated chromatin domains (NADs) by deep seq-
uencing, comparingwild-type plants and null mutants
for the nucleolar protein NUCLEOLIN 1 (NUC1). NADs
are primarily genomic regions with heterochromatic
signatures and include transposable elements (TEs),
sub-telomeric regions, and mostly inactive protein-
coding genes. However, NADs also include active
rRNA genes and the entire short arm of chromosome
4 adjacent to them. In nuc1 null mutants, which alter
rRNAgene expression andoverall nucleolar structure,
NADsare altered, telomereassociationwith thenucle-
olus is decreased, and telomeres become shorter.
Collectively, our studies reveal roles for NUC1 and
the nucleolus in the spatial organization of chromo-
somes as well as telomere maintenance.

INTRODUCTION

An important aspect of transcriptional regulation is the modifica-

tion of gene accessibility to transcription factors and RNA

polymerases. Gene accessibility depends on local chromatin

structure but also on the nuclear context and subnuclear locali-

zation of a gene. In recent years, local chromatin structure and its

effect on gene expression has been extensively studied, with

genome-wide approaches defining the chromatin contexts for

each gene (Filion et al., 2010; Kharchenko et al., 2011; Roudier

et al., 2011; Roy et al., 2010; Wang et al., 2008) and identifying

chromatin states that correlate with gene activity (Bickmore
1574 Cell Reports 16, 1574–1587, August 9, 2016 ª 2016 The Author
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and van Steensel, 2013; Sequeira-Mendes and Gutierrez,

2015). However, nuclear context is also important in that the po-

sition of a gene with respect to nuclear pores, the nuclear lamina,

or the nucleolus as well as its inter- or intrachromosome interac-

tions with other loci can affect its transcriptional regulation (Bick-

more and van Steensel, 2013).

In mammalian cells, large portions of the genome associate

with the nuclear lamina at the periphery of the nucleus and are

identified as lamina-associated domains (LADs). LADs are

essentially composed of regions with silent chromatin signatures

and can represent up to 35% of the nuclear genome (Guelen

et al., 2008). Chromosome regions can also associate with the

nucleolus, the largest nuclear body. The nucleolus forms as a

direct consequence of ribosome biogenesis, but it is also impli-

cated in stress sensing, cell-cycle progression, viral replication,

and ribonucleoprotein (RNP) biogenesis (Boisvert et al., 2007;

Boulon et al., 2010; Pederson, 2011). Nucleolus-associated

chromatin domains (NADs) represent several megabases of

the human genome from all 23 chromosomes, typically regions

displaying silent chromatin signatures (Németh et al., 2010;

van Koningsbruggen et al., 2010). Comparison of NADs and

LADs has revealed substantial overlap. Interestingly, LADs that

do not relocate to the nuclear periphery after mitosis often asso-

ciate instead with the nucleolus (Kind et al., 2013, 2015). An

important aspect of the nucleolus is that it creates a large domain

within the nucleus from which RNA polymerase II (RNA Pol II) is

absent (Schubert and Weisshart, 2015). There is no membrane

or physical barrier separating the nucleolus from the nucleo-

plasm, suggesting that nucleolar chromatin bears modifications

that are refractory to Pol II transcription. Indeed, mutations in

chromatin modifiers that localize and act (in part) in the nucle-

olus, such as Arabidopsis HISTONE DEACETYLASE 6, result in

Pol II detection in the nucleolus as well as Pol II association

with rRNA genes, which are usually transcribed only by Pol I (Ear-

ley et al., 2010). In plant cells, neither LADs nor NADs have been

identified so far. Importantly, plants lack genes orthologous to

those encoding nuclear lamins in other eukaryotes. However,
s.
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little nuclei (LINC) (also called CRWN) proteins share some char-

acteristics with lamins, including coiled-coil domains (Dittmer

et al., 2007). However, an association between this complex

and chromatin has not yet been demonstrated.

The relationship between rRNA gene transcription and organi-

zation and the nucleolus has been studied extensively (Benoit

et al., 2013; Grummt and Längst, 2013; McStay and Grummt,

2008; Tucker et al., 2010). In each cell, active and inactive

rRNA genes coexist, and their ratio varies depending on the

needs of the cell. Most silent copies of rRNA genes are excluded

from the nucleolus, where RNA polymerase I is located, but they

relocate into the nucleolus in mutants that disrupt silencing

(Pontvianne et al., 2013).

rRNA genes are arranged in tandem arrays (known as nucle-

olus organizer regions [NORs]) that span millions of base pairs.

Because silenced rRNA genes comprise a NOR on a different

chromosome from active rRNA genes in Arabidopsis thaliana

(ecotype Col-0), changes in rRNA gene activity that are

accompanied by changes in their subnuclear localization

(Pontvianne et al., 2013) are predicted to affect chromosome

organization within the nucleus, at least locally. Using a tech-

nique that allows us to isolate nucleoli from plant tissue using

fluorescence-activated cell sorting (FACS) combined with

deep sequencing, we now report the identification of genomic

NADs in the cell nuclei of A. thaliana leaves. We show that

NADs other than rRNA genes are mainly composed of trans-

posable elements (TEs) but that NADs also contain genes

that are weakly expressed or unexpressed. Analyses of

NADs in the nucleolin 1 (nuc1) mutant, which disrupts rRNA

gene silencing at the inactive NOR and alters nucleolar struc-

ture, reveals that NAD composition changes in nuc1 versus

wild-type nuclei. Interestingly, nuc1 mutants also display

shortened telomeres, and telomerase activity is detected in

immunoprecipitated NUC1 fractions, revealing an effect link-

ing the nucleolar protein NUC1 with telomere maintenance.

RESULTS

Identification of NADs in A. thaliana

DNA staining using the fluorescent dye DAPI allows the visual-

ization of nuclear DNA and its distribution within the nucleus. In

nuclei of 3-week-old A. thaliana leaves, bright DAPI-intensive

signals correspond to chromocenters that include the highly

compacted peri-centromeric heterochromatin of the ten chro-

mosomes. On the other hand, euchromatin is less compact,

and therefore the DAPI signal is less intense. DAPI staining

of nuclei also allows one to identify the nucleolus, which ap-

pears as a black cavity in the nucleus because of a 3-fold

lower concentration of DNA in the nucleolus compared with

the surrounding nucleoplasm (excluding centromeres) (Fig-

ure 1A; see fluorescence intensity plot). To characterize this

nucleolar DNA, we took advantage of a method that we

recently developed for the purification of nucleoli by a modi-

fied FACS approach. In this protocol, a nucleolar protein,

Fibrillarin, is fused to yellow fluorescent protein (FIB2:YFP)

and stably expressed in wild-type Col-0 plants to specifically

mark nucleoli (Figure 1A; Pontvianne et al., 2013). Nucleoli

liberated from sonicated nuclei are then isolated by fluores-
cence-activated nucleolar sorting (FANoS). Purified, sorted

nucleoli stained by DAPI allow detection of nucleolar DNA

(Figure 1B). As in the nucleoplasm, nucleolar DNA is not homo-

geneously distributed in the nucleolus, and thus stronger

DAPI-stained signals are visible in some regions. Because

the nucleolus forms around actively transcribed rRNA genes,

rRNA genes are detected in nucleolar DNA, as expected, using

DNA fluorescence in situ hybridization (FISH) and a probe

flanking the transcription initiation site of rRNA genes (Fig-

ure 1B; see 45S rDNA signals). Interestingly, rDNA FISH sig-

nals do not completely overlap with DAPI-stained nucleolar

DNA, suggesting that nucleolar DNA does not consist solely

of rRNA genes.

To determine the sequence of nucleolar DNA, two samples

consisting of 106 nucleoli and two samples of 5 3 105 nuclei

from 3-week-old plant leaves were isolated. The nuclear or

nucleolar DNA was then purified and sequenced, and reads

were mapped to the Arabidopsis TAIR10 reference genome.

To identify genomic regions present in the nucleolus, we

compared read densities of nuclear or nucleolar DNA for

each of the two replicates. The nuclear fraction served as an

input control to evaluate the relative enrichment of genomic re-

gions in the nucleolar DNA. Genomic regions with a nucleolar

versus nuclear (No/N) fold enrichment ratio greater than 2 in

both replicates were considered NADs (Figure 1C). Excluding

rRNA genes, NADs represent 4.2% of the genome (�5.7 Mb).

Around 30% of NADs correspond to genes, 35% correspond

to TEs, and the rest correspond to intergenic regions

(Figure 1D).

The No/N fold enrichment ratio was plotted along each of the

five chromosomes in 100-kb windows to scan for genomic re-

gions associated with the nucleolus (Figure 1E). In A. thaliana,

45S rRNA genes are arranged in tandem repeat arrays in

NORs located on the left arms of chromosomes 2 and 4 (Fig-

ure 1E, NOR2 and NOR4). In A. thaliana leaves, only NOR4

associates with the nucleolus and is actively transcribed,

whereas NOR2 is inactive and is excluded from the nucleolus

(Chandrasekhara et al., 2016; Fransz et al., 2002; Pontvianne

et al., 2013). This genomic configuration and selective expres-

sion of 45S rRNA genes is reflected in the enrichment of

NADs along the left arm of chromosome 4 and their near

absence from the left arm of chromosome 2 (Figure 1E). In

fact, the entire left arm of chromosome 4 (or Chr4S for ‘‘chro-

mosome 4 short arm’’), including its pericentromeric and

centromeric regions, associates with the nucleolus (Figure 1E).

In contrast, the left arm of chromosome 2 behaves like chromo-

somes 1, 3, and 5, which do not harbor NORs. Subtelomeric re-

gions from all five chromosome pairs are also enriched in the

nucleolus, consistent with previous work demonstrating telo-

mere clustering at the periphery of the nucleolus (Armstrong

et al., 2001).

NADsAre Enriched in Inactive ChromatinMarks and TEs
We took advantage of published epigenomic data to charac-

terize the types of chromatin that associate with NADs. Among

the nine chromatin states defined based on their histone marks

and histone variant content (Sequeira-Mendes et al., 2014),

and presented in Figure S1A, we found that four were statistically
Cell Reports 16, 1574–1587, August 9, 2016 1575
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Figure 1. Identification of NADs in

A. thaliana

(A) One z stack of a DAPI-stained (blue) nucleus

from an A. thaliana leaf expressing the Fib2:YFP

(green) marker. The white line segment indicates

positions traversing the nucleus where DAPI signal

intensity was plotted as a function of distance

along the segment (profile below). Scale bars,

5 mm.

(B) Confocal images of two FACS-isolated nucleoli

where DNA is stained by DAPI (blue), the Fib2:YFP

marker delimits the nucleolus (green), and rRNA

genes are detected by DNA FISH (rDNA, red).

Scale bars, 2 mm.

(C) Cartoon depicting the strategy used to isolate

and sequence total nuclear (Nu) and specifically

nucleolar (No) DNA to identify NADs by deep

sequencing.

(D) Bar plot displaying the proportion of different

types of sequences in NADs (bottom) relative to the

entire genome (top).

(E) Chromosome plots displaying the relative

enrichment of a given genomic segment in the

nucleolus of wild-type Col-0. The y axis displays

the fold change ratio No/N. Each dot represents a

100-kb window. Nucleolus-enriched genomic re-

gions above the threshold (red dotted line) are

shown in red.
enriched in NADs (Figure 2A). This includes chromatin states 8

and 9, which show an enrichment for CG methylation, and for

the silent chromatin marks histone H3 lysine 9 dimethylation

and histone H3 lysine 27 monomethylation (H3K9me2 and

H3K27me1, respectively) (Sequeira-Mendes et al., 2014). Chro-

matin states 8 and 9 are typically associated with TEs and inter-

genic regions. In addition, chromatin states 4 and 5, which are

characterized by high levels of H3 lysine 27 trimethylation

(H3K27me3), are also enriched in NADs. Although almost no

genes (other than TEs) are present in chromatin states 8 and 9,

some are present in chromatin states 4 and 5. We therefore

analyzed the relative expression of polyA+ RNA from NAD genes

in these different chromatin states to establish a possible corre-

lation betweenNADs and gene expression (Durut et al., 2014). All

four of the chromatin states that are enriched in NADs (4, 5, 8,

and 9) correspond to genomic regions depleted in actively tran-
1576 Cell Reports 16, 1574–1587, August 9, 2016
scribed genes (Figures 2B and S1B; Se-

queira-Mendes et al., 2014).

Because NADs are enriched in TEs, we

examined the relative contribution of each

TE superfamily to NADs. 3,640 TEs were

identified with a No/N fold enrichment ra-

tio greater than 2 (NAD-TEs, Data S1). In

general, no TE superfamily is particularly

enriched (Figure 2C). DNA/Mariner,

DNA/Pogo, DNA/Tc1, and pseudo-LINE

elements are slightly overrepresented,

whereas LTR/Copia or SINE superfam-

ilies are underrepresented. The biased

presence of particular TE superfamilies

in NADs is probably a consequence of

their relative abundance in peri-centromeric or knob regions

(Figure 2D).

Description of the Genes Present in NADs
Although a large portion of NAD loci correspond to TEs, there are

also many genes. Using the Araport11 annotation database and

excluding 317 Araport11-referenced TEs and rRNA genes, a to-

tal of 907 genes were identified as NAD genes, which represent

around 3% of all genes (Data S2). The relative position of NAD

genes along all five chromosomes follows the general distribu-

tion of NADs, being enriched in subtelomeric regions and in

the short arm of chromosome 4 (Figure 3A). NAD gene distribu-

tion among eukaryotic orthologous groups of proteins (KOG) re-

vealed that most types of KOGs are represented among NAD

genes, with only a slight enrichment for the ‘‘cell mobility’’ cate-

gory. However, only 21 genes belong to this particular category,



*

*

*

*

*

*
*

*

*

30

20

10

50

40

30

20

10

0G
en

e 
ex

pr
es

si
on

 (
R

PK
M

)
Pr

op
or

tio
n 

of
 s

eq
ue

nc
e 

(%
)

All genome

NADs

1     2     3     4      5     6     7      8     9
chromatin states

0

R
C

/H
el

itr
on

LT
R

/G
yp

sy

L
IN

E
/L

1
L

IN
E

?

D
N

A
/P

og
o

D
N

A
/M

uD
R

D
N

A
/H

A
T

D
N

A
/H

ar
bi

ng
er

D
N

A
/E

n-
Sp

m
D

N
A

SI
N

E
U

na
ss

ig
ne

d

LT
R

/C
op

ia

pr
op

or
tio

n 
of

 T
E

 f
am

ili
es

 
in

 N
A

D
s 

(%
)

CA

D

Chr 1 Chr 2 Chr 3 Chr 4 Chr 5

All TEs

NAD-TEs

B

2

1

D
N

A
/M

ar
in

er

D
N

A
/T

c1

R
at

hE
-c

on
s

Figure 2. Epigenetic Characteristics of NADs

(A) Histogram representing the relative enrichment of each chromatin state in NADs compared with the entire reference genome.

(B) Box plot representing the relative expression of NAD genes present in each category of the chromatin state. RPKM, reads per kb per million mapped reads.

(C) Histogram displaying the relative proportions of each TE superfamily in NADs. The red dotted line represents the 13 expected enrichment.

(D) Distribution of all TEs (blue) and NAD TEs (violet) along all five chromosomes.
and the 4.7% proportion observed here is only due to the asso-

ciation of one gene and is therefore not considered significant.

Genes implicated in ‘‘translation, ribosomal structure, and

biogenesis,’’ and which are thus linked to nucleolar function,

are not enriched among NAD genes either. However, two other

categories of genes are particularly enriched: pseudogenes

and tRNA genes (Figure 3B). Among the 915 pseudogenes refer-

enced in the A. thaliana genome, 72 (7.9%) are present in NAD

genes. Moreover, 7.2% of tRNA genes belong to NADs. Interest-

ingly, almost all tRNA isoacceptor types are present in NADs,

with the exception of tRNA-His, which is the smallest tRNA

gene family in A. thaliana (Figure 3D). The global distribution of

pre-tRNA genes among the ten chromosome arms shows that

31%are clustered on the short arm of chromosome 2 (Figure S2).

Because RNA pol II is not observed in the nucleolus, we ex-

pected that predicted pol II-transcribed genes that are among

NAD genes would likely be unexpressed or expressed at low

levels. Global nuclear gene and NAD gene expression analyses

did indeed reveal a bias in expression that supports this hypoth-

esis (Figure 3C).

Effect of NOR Positioning and Nucleolus Structure on
NAD Composition
In wild-type A. thaliana leaves, only NOR4 interacts with the

nucleolus, whereas NOR2, composed of inactive rRNA genes,

is excluded from the nucleolar periphery. In null mutants for the

NUCLEOLIN 1 gene (nuc1), NOR2 and NOR4 both associate

with the nucleolus, and the NOR2 rRNA genes that are normally
silenced during development in wild-type leaves fail to silence

(Earley et al., 2010; Pontvianne et al., 2010). VAR1 designates

a class of rRNA genes that represent 50% of the entire set of

rRNA genes. Because VAR1 rRNA genes are present at the inac-

tive NOR2, they are excluded from the nucleolus, which explains

the lack of VAR1 gene expression inwild-type Col-0 (Chandrase-

khara et al., 2016; Pontvianne et al., 2010). However, we previ-

ously demonstrated that VAR1 rRNA genes are expressed in

nuc1 mutants (Pontvianne et al., 2010). Here we show that

VAR1 rRNA genes indeed associate with the nucleolus in the

nuc1 mutant by using PCR analyses of FACS-isolated nuclear

or nucleolar DNA (Figure 4A). To test the effect of NOR2 associ-

ation with the nucleolus on NAD composition, we isolated and

sequenced the DNA from FACS-isolated nuclei or nucleoli of

nuc1. In wild-type Col-0, chromosome 4 harbors the largest pro-

portion of NADs because of the association of Chr4S with the

nucleolus, followed by chromosome 2 (Figure 1). However, in

nuc1, the short arms of both chromosomes 2 and 4 (Chr2S

and Chr4S) associate with the nucleolus (Figure 4B). This obser-

vation correlates with the transcriptionally active state of both

NOR2 and NOR4 in nuc1 (Figure 4A).

The pericentromeric and centromeric regions of chromo-

somes 1, 3, and 5 become enriched in nuc1 mutant NADs (Fig-

ures 4C and S3). However, Modullo, the Drosophila mela-

nogaster homolog of nucleolin, is required for centromere

sequestration at the periphery of the nucleolus (Padeken et al.,

2013) so that centromere association with Arabidopsis nucleoli

might be expected to decrease rather than increase in nuc1
Cell Reports 16, 1574–1587, August 9, 2016 1577
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Figure 3. Description of NAD Genes
(A) Distribution of all genes and NAD genes along all five chromosomes.

(B) Histogram displaying the relative enrichment of NAD genes in each cluster of orthologous groups (COGs) among pseudogenes and tRNA genes. The dotted

line represents the 13 expected enrichment.

(C) Dot plot revealing the relative expression of all genes or NAD genes in 3-week-old leaves.

(D) Histogram displaying the relative enrichment of each class of tRNA genes in NADs. An asterisk indicates that the enrichment is statistically demonstrated.
mutants. Because centromeric chromocenters are easily de-

tected by DAPI staining, we assessed their relative positions

with respect to the nucleolus in wild-type Col-0 and in nuc1

mutant nuclei from 3-week-old leaves (Figure 4D). In addition,

immunolocalization using an antibody recognizing the centro-

meric Histone 3 (cenH3) were used to validate centromere

distribution. Consistent with the NAD analyses, centromeres

associate more strongly with the nucleolus in nuc1 relative to

wild-type (p < 2.2e�16) (Figure 4D). In 16%of the nuclei, a strong

DAPI-stained signal can be detected inside Col-0 nucleoli; by

contrast, more than 72% of nuc1 nucleoli harbor these hetero-

chromatin signatures (p < 2.2e�16) (Figure 4D). The altered

centromere positioning in nuc1 mutant nuclei suggests, as in

D. melanogaster, a role for NUC1 in heterochromatin distribution

but in an opposing way.
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NAD Gene Depletion in the nuc1 Mutant
822 NAD TEs (Data S3) and 117 NAD genes (Data S4) can be

identified in nuc1 with a No/N fold enrichment ratio greater

than 2. Their distribution along the five chromosomes (Figure 5A)

is quite different from that seen in wild-type Col-0 (Figure 3A).

Although 65% of Col-0 NAD genes were distributed on chromo-

some 4, only 20% of nuc1 NAD genes are present on this chro-

mosome. By contrast, 13% of Col-0 NAD genes were found on

chromosome 2, but this proportion increased to 46% in the

nuc1 mutant. Nonetheless, the NAD gene pool between wild-

type Col-0 and nuc1 overlaps significantly because 80% of

nuc1 NAD genes are also NAD genes in Col-0 (Figure 5B). To

further characterize NAD genes that strongly associate with the

nucleolus, we identified NAD genes in either wild-type Col-0 or

nuc1 that have an No/N fold enrichment ratio greater than 3
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(A) PCR detection of rRNA gene variant types in DNA of purified nuclei (N) or nucleoli (No) of wild-type (Col-0) or nuc1 plants.

(B) Chromosome plots displaying the relative enrichment of the genomic sequence as 100-kb windows in the nucleolus on each five chromosomes in the nuc1

mutant.

(C) DAPI-stained nuclei fromWTCol-0 (left) or from nuc1 plants (right). The green signal represents the fluorescence obtained from the anti-cenH3 antibody. Scale

bars, 5mm.

(D) Box plot showing the relative proportion of nucleolus-associated centromeres (CEN) in WT Col-0 or the nuc1 mutant. The analysis was performed on 100

nuclei/sample.
(Figure 5C). In both cases, about 100 NAD genes were identified,

and 51 were shared in both genotypes. Among these common

loci are tRNA genes (8) and pseudogenes (21), demonstrating

their strong, reproducible association with the nucleolus, even

in the nuc1 mutant context, where nucleolar structure is disrup-

ted (Pontvianne et al., 2007).

Because RNA pol II is generally not detected in the nucleolus,

we hypothesized that the physical association of NAD genes
with the nucleolus may reflect their transcriptional status. We

thus took advantage of the fact that several hundred NAD genes

detected in the wild-type no longer associate with the nucleolus

in the nuc1 mutant to see whether loss of nucleolar localization

correlates with their activity. RNA deep sequencing analyses of

Col-0 versus the nuc1mutant from 3-week-old leaves were per-

formed in triplicate, allowing us to identify 100 upregulated

genes in the nuc1 mutant (Figure 5C). Among these 100
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upregulated genes, four are NAD genes in the wild-type but not

in the nuc1 mutant. Three of these four genes, which are all on

chromosome 4, are shown in Figures 5D–5F; they encode for a

P loop nucleoside triphosphate hydrolase (AT4G05380), a

WRKY transcription factor (AT4G01720), and a pseudogene

(AT4G08093), respectively. Note that only genes considered up-

regulated in nuc1 by the software Cuffdiff were taken into

consideration here. However, more transcripts can be detected

in the same region of Chr4S, where nucleolar association in nuc1

is weaker than in the wild-type (Figure S4). These observations

reinforce a possible link between gene activity and nucleolus

association.
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Nucleolar Clustering of Telomeres Is Disrupted in the
nuc1 Mutant
In nuc1mutants, nucleolar organization is disrupted (Pontvianne

et al., 2007). Because previous studies have shown that Arabi-

dopsis telomeres cluster at the periphery of the nucleolus (Arm-

strong et al., 2001; Fransz et al., 2002), nucleolar disruption in

nuc1 might alter telomere positioning, potentially influencing

the association of linked chromosomal loci with the nucleolus.

In the global distribution of NADs along all five chromosomes

(Figure 1E), a convex pattern is observed, meaning that sub-te-

lomeric regions are largely enriched in the nucleolus. Interest-

ingly, the sub-telomeric nucleolar association is lower in the
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Figure 6. Telomere Nucleolar Clustering Is

Affected in the nuc1 Mutant

(A) Chromosome plot displaying the relative

enrichment of the genomic sequence as 100-kb

windows in the nucleolus on each five chromo-

somes of the nuc1 mutant versus WT Col-0.

(B and C) DNA FISH analyses using a telomere-

specific probe (red signal) on DAPI-stained nuclei

(blue) from WT Col-0 (B) or nuc1 plants (C).

(D) Box plot showing the proportion of nucleolus-

associated telomeres in WT Col-0 (from 62 nuclei)

and the nuc1mutant (from 68 nuclei). The asterisk

indicates that the enrichment is statistically

demonstrated.
nuc1mutant compared with wild-type Col-0, especially for chro-

mosomes 1, 3, and 5 (Figure 4B). This observation is confirmed

by analysis of the relative enrichment in the nucleolus of genomic

regions in the nuc1 mutant compared with wild-type Col-0 (Fig-

ure 6A). The latter distribution pattern is concave, demonstrating

the enrichment of the centromeric and pericentromeric regions

as NADs, but also the depletion of sub-telomeric regions, in

the nuc1 mutant.

The deep sequencing data strongly suggest that nucleolar

clustering of telomeres is affected in the nuc1 mutant. To test

this hypothesis with a different method, we conducted DNA

FISH analyses of the telomere distribution in wild-type Col-

0 and nuc1 leaf nuclei by using telomere-specific probes (Figures

6B–6D; Figure S5). As expected, FISH signals tend to associate

with the nucleolus in wild-type Col-0 nuclei (Figure 6B). However,

a significant decrease in telomere association with the nucleolus

is observed in the nuc1 mutant (Figure 6C), with quantification

revealing an 83% telomere-nucleolus association in wild-type

Col-0 versus 53% in the nuc1 mutant (Figure 6D). Importantly,

telomeres that do not associate with the nucleolus in nuc1 do

not appear to be clustered in an alternative nucleoplasmic

subcompartment.
Cell Re
Mutations inNUC1Cause Telomere
Shortening on All Chromosome
Arms
The biological function of telomere

nucleolar clustering remains unknown,

but we reasoned that it could have an ef-

fect on telomere maintenance. The anal-

ysis of terminal chromosome restriction

fragments (TRFs) allows one to deter-

mine global telomere size. We used this

technique to determine telomere size

distributions in wild-type Col-0 and

nuc1 mutants. In addition, telomere size

was analyzed in a mutant for the NUC2

gene, which encodes another nucleolin-

like protein whose function differs from

NUC1 (Durut et al., 2014). In addition,

telomere size was analyzed in mutants

for genes encoding FASCIATA1 (fas1-4)

and FASCIATA2 (fas2-4), which mediate

replication-dependent histone deposi-

tion and whose disruption strongly reduces telomere size

(Mozgová et al., 2010). Compared with wild-type Col-0, a

significant TRF length reduction was observed in both nuc1

mutant alleles, comparable with that observed in fas1 and

fas2 mutants (Figure 7A). However, no difference is observed

between wild-type Col-0, the nuc2 mutant, or the comple-

mented nuc2 mutant, demonstrating the specific effect of the

nuc1 mutations.

We previously demonstrated the importance of NUC1 on

rRNA gene regulation, which occurs in NOR2 and NOR4 (Pont-

vianne et al., 2010, 2007). In A. thaliana, the terminal rRNA genes

from NOR2 and NOR4 are directly capped by telomere repeats

(Copenhaver and Pikaard, 1996). To determine whether telo-

meres of NOR-bearing chromosomes are differentially affected,

we used a PCR-based method called primer extension telomere

repeat amplification (PETRA) (Heacock et al., 2004) on multiple

chromosome arms (Figures 7B–7E). In agreement with the data

from TRF, telomeres on all studied chromosome arms display

an �30% loss of length in the nuc1 mutants compared with

wild-type Col-0, which is equivalent to the loss observed in

fas1 and fas2 mutants. Together, these observations demon-

strate that telomeres from all chromosome arms are shortened
ports 16, 1574–1587, August 9, 2016 1581



in nuc1 and thus are not dependent on the presence of rRNA

genes near the affected telomere.

The fact that telomeres tend to associate less frequently with

the nucleolus and are shorter in nuc1 mutants compared with

thewild-type indicates that NUC1 is somehow important for telo-

mere biology. It remains unknown if these effects are due to

NUC1 disruption, nucleolus disorganization, or both. To test

whether NUC1 interacts directly or indirectly with the telome-

rase, a telomere repeat amplification protocol (TRAP) was per-

formed using immunoprecipitated NUC1 (Figure 7F). Immuno-

precipitation (IP) was performed using an anti-FLAG antibody

and protein extracts of WT Col-0 or nuc1mutant complemented

with a transgene encoding NUC1 fused to a FLAG epitope tag

under the control of its own promoter (NUC1-FLAG) (Pontvianne

et al., 2010). Telomerase activity is markedly stronger in the

NUC1-FLAG coIP sample (Figure 7F, left, FLAG-IP) compared

with the background signal observed in the Col-0 plant. These

data suggest that NUC1 interacts with and coIPs telomerase ac-

tivity, suggesting a role of NUC1 in telomere biology.

DISCUSSION

The Effect of NOR-Nucleolus Associations on Nuclear
Architecture
In mammalian cells, the nuclear distribution of DNA is governed

by individual chromosome territories (Gibcus and Dekker, 2013).

Although chromosome territories can be seen inA. thaliana cells,

their distribution in the nucleus is stochastic, with the exception

of NOR-bearing chromosomes 2 and 4 (Pecinka et al., 2004).

NOR4, composed of rRNA gene variants VAR2 and VAR3, asso-

ciates with the nucleolus (Pontvianne et al., 2013). We demon-

strate here that NOR4 and the entirety of Chr4S, including

centromeric and pericentromeric regions, associates with the

nucleolus. Consequently, this entire region represents a specific

territory or subnuclear compartment. Interestingly, data ob-

tained by chromosome conformation capture indicate that this

region acts as an interaction insulator (Feng et al., 2014; Grob

et al., 2013). Our results suggest that nucleolus association

may be the basis for this insulation.

Coincident with NOR2 rRNA gene expression in certain

mutant backgrounds, the NOR2 genomic region becomes asso-

ciated with the nucleolus. Failure to silence NOR2 rRNA genes

occurs in mutants for genes encoding factors implicated in

rRNA gene dosage control, such as mutants for histone modi-

fiers (Earley et al., 2010; Pontvianne et al., 2012) as well as

nuc1 (Pontvianne et al., 2007, 2010). As observed for NOR4 in

wild-type Col-0, NOR2 rRNA gene expression correlates with

its nucleolar association but also the nucleolar association of

Chr2S, including its centromeric and pericentromeric region.

Whether NOR2 rRNA gene nucleolar association leads to this

change in nuclear organization or whether NUC1 influences

this organization remains to be tested.

AlthoughChr4S and/or Chr2S associate with the nucleolus un-

der certain conditions, not all genes present in these genomic re-

gions are necessarily associated with the nucleolus. Loops

emanating from Chr4S and oriented within the interior of the

nucleus probably exist, allowing actively expressed genes to ac-

cess a nearby nuclear environment compatible with active gene
1582 Cell Reports 16, 1574–1587, August 9, 2016
expression, as described previously (Feng et al., 2014; Fransz

et al., 2002).

Pol II-Transcribed Genes Are Present in NADs
Our data have allowed the comprehensive identification of ge-

netic loci that associate with the nucleolus (NADs), including

many genes (NAD genes). The majority of NADs correspond

to repeat elements such as TEs that are transcriptionally

silenced by repressive histone modifications and DNA methyl-

ation (Ito and Kakutani, 2014). Whether the association of these

loci with the nucleolus participates in transcriptional repression

is an open question. However, because only a fraction of TEs

associate with the nucleolus, being in a NAD is certainly not a

prerequisite for silencing. Our data also demonstrate the

presence of genes other than TEs in NADs. In the human nucle-

olus-associated genome, genes encoding for olfactory recep-

tors or transcription factors were found to be enriched in NAD

genes (Németh et al., 2010; van Koningsbruggen et al., 2010).

In our data, the most enriched non-rRNA gene loci are pseudo-

genes. Because they potentially encode truncated or non-func-

tional proteins, keeping them silent is perhaps the best way to

prevent a potential deleterious effect of their expression. Impor-

tantly, pseudogenes remain highly enriched in the nucleolus of

nuc1 mutant cells, although nucleolar structure is greatly dis-

rupted (Figure 5).

Genes encoding pre-tRNAs are also significantly enriched

in the nucleolus. Although this association has never been

described in plant cells, previous reports showed a nucleolar as-

sociation of tRNA genes in yeast and human cells (Németh et al.,

2010; Thompson et al., 2003). Interestingly, the presence of a

nearby tRNA genewas shown to antagonize pol II RNA transcrip-

tion in yeast because of its clustering near or in the nucleolus

(Wang et al., 2005). This phenomenon is known as tRNA gene-

mediated silencing and involves the proteins MOD5 and Con-

densin (Haeusler et al., 2008; Pratt-Hyatt et al., 2013). However,

we show here that several hundred functional genes associate

with NADs, and only a small portion have a tRNA gene nearby.

Other mechanisms to explain tRNA gene nucleolar association

may exist. Whether their association with the nucleolus is biolog-

ically relevant remains unknown, but because RNA pol II is

depleted in the nucleolus, sequestration of genes to NADs likely

reflects a chromatin status or location not conducive to pol II

transcription. This hypothesis is reinforced by the observation

that NAD genes are typically silent or expressed at low levels

but also by the fact that some genes that were NAD genes in

Col-0, but not in nuc1, became significantly upregulated in

nuc1 (Figure 5). These observations reinforce a possible link be-

tween gene silencing and nucleolus association.

Regulation by nucleolar sequestration is known to control

certain protein functions, especially during stress conditions. In

mammalian cells, rDNA intergenic transcripts accumulate in

the nucleolus after heat shock and provoke the nucleolar

sequestration of nuclear proteins like the DNAmethyltransferase

DNMT1, the proteasome factor SUG1, or POLD1, a key factor of

DNA replication (Audas et al., 2012a, 2012b). A similar mecha-

nism may exist to regulate transcription by a phenomenon

that could be named transcriptional regulation by nucleolar

sequestration.
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Figure 7. NUC1 Interacts with Telomerase, and Its Disruption Induces Telomere Shortening

(A) TRF analyses of telomere length in two WT Col-0 replicates, two nuc1mutant alleles, the nuc2-2 or complemented nuc2mutant, as well as in the fas1-4 and

fas2-4 mutant.

(B–E) PETRA analyses of telomere length in two nuc1mutant alleles, two replicates of WT Col-0, as well as in fas1-4 and fas2-4mutants. Chromosome-specific

probes were used to detect the telomere of the left arm of chromosome 3 (B), the right arm of chromosome 4 (C), as well as the left (D) or right (E) arm of

chromosome 5.

(F) Telomerase activity was analyzed in fractions obtained during the IP-TRAP experiment using pNUC1-NUC1-FLAG-tagged and WT Col-0 plants. Total input,

total protein extract prior to IP; unbound, unbound faction after the capture by ANTI-FLAGmagnetic beads; 1st wash, first wash of the fraction bound tomagnetic

beads with buffer W; 2nd wash, second wash of the fraction bound to magnetic beads with buffer W; FLAG-IP, a fraction specifically bound to magnetic beads;

denatured, reaction with denatured total protein extract (5 min, 95�C); �, reaction with buffer W.
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Telomere Maintenance and/or Protection Require Their
Physical Association with the Nucleolus
In A. thaliana, telomeres tend to associate with the nucleolus

(Armstrong et al., 2001; Fransz et al., 2002; Roberts et al.,

2009). Consequently, we expect subtelomeric regions to be

near the nucleolus, as shown previously by DNA FISH (Schubert

et al., 2012). Our data demonstrate that at least 100 kb of each

region flanking the telomeres strongly associate with the nucle-

olus. This association may have an effect on genes present in

these regions. 39% of highly enriched NAD genes in Col-0 (No/

N > 3) are distributed in these subtelomeric regions, whereas

they represent less than 1% of the genome. The biological func-

tion of telomere nucleolar clustering remains unknown, but some

studies have indicated a link between telomere biology and the

nucleolus (reviewed in Dvo�rá�cková et al., 2015; Pederson,

1998; Schubert et al., 2014)). In human cells, the telomerase

reverse transcriptase (TERT), which catalyzes reverse transcrip-

tion of the telomerase RNA template into telomeric repeats, is

activated in the nucleolus during S phase (Jády et al., 2006;

Lee et al., 2014; Tomlinson et al., 2006). In A. thaliana, a prefer-

ential nucleolar accumulation of telomere repeat-binding (TRB)

MYB-like proteins was shown (Dvorácková et al., 2010). In addi-

tion, the telomerase RNA-binding protein dyskerin, AtNAP57/

CBF5, and AtTERT accumulate in the plant nucleolus (Kannan

et al., 2008; Lermontova et al., 2007).

NAD identification in the nuc1 mutant revealed a decrease in

telomere-nucleolus association. At the same time, we demon-

strate that telomeres are shortened in the nuc1mutant. Previous

work demonstrated the important role of nucleolin in rRNA orga-

nization and biogenesis (reviewed in Durut and Sáez-Vásquez,

2015)). However, all telomeres are affected in nuc1, so the prox-

imity of rRNA genes on a NOR-bearing chromosome cannot

explain telomere shortening. Subnucleolar structures show pro-

found changes in nuc1 mutants, such as the loss of fibrillar cen-

ters (FCs), reductions in the dense fibrillar component (DFC), as

well as an alteration of the granular component (GC) (Pontvianne

et al., 2007). FCs, DFCs, and GCs are subnucleolar structures

that are conserved in most eukaryotes and that reflect various

steps of ribosome biogenesis (reviewed in Stępi�nski, 2014; Thiry

and Lafontaine, 2005). The nucleolar disorganization observed in

nuc1 mutants reflects the effect of these mutations on rRNA

gene regulation. But nuc1 mutants also affect non-ribosomal

nucleolar functions. CoIP TRAP experiments indeed argue in

favor of a direct role of NUC1 in telomere biology. Whether

NUC1 interacts directly or indirectly with the telomerase holoen-

zyme will have to be demonstrated by additional experiments. In

addition, we cannot conclude whether telomere shortening is a

cause or a consequence of telomere mislocalization. However,

telomere clustering is not specific to A. thaliana. In budding

yeast, telomeres cluster in foci at the nuclear periphery in cycling

cells (Meister and Taddei, 2013). In quiescent cells, a lack of car-

bon source is followed by telomeres clustering into a unique

focus in the center of the nucleus (Guidi et al., 2015). Although

we do not have direct evidence to show it, these data argue in

favor of a model where telomere shortening is a consequence

of telomere mislocalization, probably because of the absence

of NUC1. Combined with previous studies, our work strongly

suggests a role for the nucleolus in the biology of telomeres.
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EXPERIMENTAL PROCEDURES

Plant Materials and Growth Conditions

Seeds corresponding to the nuc1-1 and nuc1-2 (referenced to as nuc1

throughout the manuscript) plants lines (SALK_053590 and SALK_002764,

respectively) were reported previously reported(Pontvianne et al., 2007,

2010) and are available through the Nottingham Arabidopsis Stock Centre

(NASC). Seeds of the nuc2-2 mutant (SALK GABI_178D01) and nuc2:NUC2

complemented line were described in Durut et al. (2014). Third generations

of the knockout mutants fas1-4 (SAIL_662_D10) and fas2-4 (SALK_033228)

are used in Figure 7 and were described in Exner et al. (2006). For FANoS,

wild-type Col-0 expressing the FIB2:YFP fusion protein was described in Pont-

vianne et al. (2013). The nuc1-2 plants were crossed with Col-0 FIB2:YFP to

introgress the nucleolar marker in the nuc1-2mutant background. All plant ma-

terial used here was grown in control growth chambers on soil at 21�C with a

daylight period of 16 hr/day.

Nuclear and Nucleolar DNA Preparation and Sequencing

1 g of leaves from 3-week-old FIB2:YFP plants were fixed for 20 min in 4%

formaldehyde in Tris buffer (10 mM Tris-HCl [pH 7.5], 10 mM EDTA, and

100 mM NaCl) and washed twice for 10 min in ice-cold Tris buffer. Washed

leaves were minced with a razor blade in 1 ml of 45 mM MgCl2, 20 mM

3-(N-morpholino)propanesulfonic acid (MOPS; pH 7.0), 30 mM sodium citrate,

and 0.1% Triton X-100. The homogenate was filtered through 30-mm mesh

(PARTEC CellTrics) and subjected to FACS to sort nuclei or sonicated using

a Bioruptor (three 5-min pulses, mediumpower; Diagenode) to liberate nucleoli

that were then sorted by FANoS. Sorting of nuclei or nucleoli was triggered by

the FIB2:YFP signal using a BD FACS Aria II. Sorted nuclei or nucleoli were

treated with RNase A and proteinase K prior to purification and concentration

using the ChIP DNA Clean & Concentrator kit (Zymo Research). DNA libraries

were generated via the Nextera XT DNA sample preparation kit (Illumina)

according to the manufacturer’s instructions and were then subjected to

high-throughput paired-end 23 125 nt sequencing on a Hiseq 2500 apparatus

(Illumina). Around 40 million clusters were recovered from the sequencing for

each sample.

Cytogenetic Analyses

DNA FISH and DAPI-stained nucleus analyses were performed using nuclei

from leaves of 3- or 4-week-old plants as described previously (Pontvianne

et al., 2012). The 45S rRNA gene probe was generated by PCR on total

genomic DNA from the Col-0 wild-type and corresponds to the region flanking

the 45S rRNA gene transcription initiation site (from �223 to +243). The telo-

mere-specific probe was generated by PCR on total genomic DNA from the

Col-0 wild-type with the primers 5Telo (TTTAGGGTTTAGGGTTTAGGGTT

TAGGGTTTAGGG) and 3Telo (CCCTAAACCCTAAACCCTAAACCCTAAAC

CCTAAA) prior to its labeling with digoxigenin-11-UTP (Roche). Immunolocal-

ization experiments were performed as described previously (Durut et al.,

2014) using the antibody anti-cenH3 (HTR12 NBP1-18694, Novus Biologicals).

Evaluation of Telomere Lengths using TRF and PETRA Analyses

Nucleon Phytopure genomic DNA extraction kits (Illustra) were used for DNA

extraction according to the manufacturer’s protocol from 3-week-old rosette

leaves. 500 ng of genomic DNAwas analyzed either by TRF analysis or PETRA.

The TRF analysis was performed according to R�ucková et al. (2008), and sam-

ples were digested by MseI (New England Biolabs). For the PETRA method

(Vespa et al., 2007), chromosome-specific primers for 3L, 4R, 5L, and 5R,

described in Heacock et al. (2004), were used. Samples from both types of

analysis were then separated by 0.8% agarose gel electrophoresis, followed

by Southern hybridization with the [32P]-labeled telomeric probe TR4C

(CCCTAAA)4.

IP-TRAP

For IP-TRAP, see the Supplemental Experimental Procedures.

Bioinformatic and Statistical Analyses

For each library, 30–50 million reads were obtained, with 85%–90% of the ba-

ses displaying a Q score ofR 30, with a mean Q score of 38, as assessed with



Fastqc. Thereafter, filtering out of reads corresponding to chloroplastic, mito-

chondrial, and rRNA genes was performed with bowtie2 (Langmead and Salz-

berg, 2012). The remaining reads were mapped against the TAIR 10_genome

with bowtie2 in sensitive local mode and no mismatch. TEs were analyzed

according to the annotation published in Flutre et al. (2011). Quantification

by 100-kb windows was made with bedtools software (http://bedtools.

readthedocs.org/en/latest/). Regions with a fold change No/N superior to 2

are tagged ‘‘differentially covered’’ (DC). The data are presented in Data S5.

Total RNA was extracted from three pools of 3-week-old Arabidopsis plant

leaf tissues of wild-type Col-0 or nuc1 mutant using TRIzol reagent (MRC).

Sequencing was performed by the Montpellier GenomiX (MGX) facility (Mont-

pellier) using a Hiseq 2000 to generate 1 3 51-bp-long reads. Illumina reads

from non-stranded, polyA+ RNA deep sequencing libraries were aligned to

the A. thaliana TAIR10-annotated genome reference using Tophat2, Cufflinks,

Cuffmerge, and Cuffdiff (Langmead and Salzberg, 2012).

The Z test calculation for two population proportions was used to determine

whether the data differ between wild-type Col-0 and the nuc1 mutant in Fig-

ures 2A, 3D, 4E, and 6D.
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