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ABSTRACT 
 
The ascidian neural plate consists of a defined number of identifiable cells organized in a grid of 

rows and columns, representing a useful model to investigate the molecular mechanisms controlling 

neural patterning in chordates. Distinct anterior brain lineages are specified via unique 

combinatorial inputs of signalling pathways with Nodal and Delta-Notch signals patterning along 

the medial-lateral axis and FGF/MEK/ERK signals patterning along the anterior-posterior axis of 

the neural plate. The Ciona Gsx gene is specifically expressed in the a9.33 cells in the row 

III/column 2 position of anterior brain lineages, characterised by a combinatorial input of Nodal-

OFF, Notch-ON and FGF-ON. Here, we identify the minimal cis-regulatory element (CRE) of 

376bp, which can recapitulate the early activation of Gsx. We show that this minimal CRE responds 

in the same way as the endogenous Gsx gene to manipulation of FGF- and Notch-signalling 

pathways and to overexpression of Snail, a mediator of Nodal signals, and Six3/6, which is required 

to demarcate the anterior boundary of Gsx expression at the late neurula stage. We reveal that 

sequences proximal to the transcription start site include a temporal regulatory element required for 

the precise transcriptional onset of gene expression. We conclude that sufficient spatial and 

temporal information for Gsx expression is integrated in 376bp of non-coding cis-regulatory 

sequences.  

 

Keywords: ascidian, Ciona, Gsx, transcriptional regulation, promoter, neural patterning, para-hox 
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INTRODUCTION 
 
The swimming larva of ascidians (Tunicata) possesses a distinctive chordate body plan featuring a 

central notochord with an overlying central nervous system (CNS). Its tripartite CNS forms by 

neurulation and is made up of an anterior sensory vesicle, a trunk ganglion and a caudal nerve cord. 

Overall, it contains around 330 cells, two thirds of which are within the sensory vesicle, thus 

forming one of the simplest chordate larval nervous systems (Cole and Meinertzhagen, 2004; 

Meinertzhagen et al., 2004).  

 What makes ascidian embryos so appealing is that CNS formation proceeds with a restricted 

number of identifiable cells, whose invariant cell lineages and fate maps are well documented (Cole 

and Meinertzhagen, 2004; Nicol and Meinertzhagen, 1988; Nishida, 1987) (reviewed in (Hudson, 

2016)). Each neural plate cell is produced by a series of stereotypical divisions, has its own specific 

identity and can be easily recognized, thus permitting a level of accuracy not currently applicable to 

any other chordate model (Cole and Meinertzhagen, 2004; Navarrete and Levine, 2016; Nicol and 

Meinertzhagen, 1988; Nishida, 1987).  

 At the 8-cell stage, four founder lineages are born: the a- and b- animal lineages and the A- 

and B- vegetal lineages. Three of these lineages, A-, a- and b-, contribute to the CNS. At neural 

plate stage, cells are aligned in a grid-like organization, such that at the late gastrula stage (stage 12 

or ‘6-row stage’ (Hotta et al., 2007)), the neural plate consists of six rows and eight columns of 

regularly aligned cells (Figure 1, top right). Along the anterior-posterior axis, the posterior-most 

two rows (I-II) of the neural plate are of A-lineage origin and generate the posterior part of the 

sensory vesicle as well as the ventral and lateral trunk ganglion and tail nerve cord. The anterior 

four rows (III-VI) are of a-lineage origin. Of these, only rows III and IV contribute to the CNS, 

generating the anterior part of the sensory vesicle, the ascidian ‘brain’, as well as contributing to the 

oral siphon (Cole and Meinertzhagen, 2004; Nishida, 1987; Taniguchi and Nishida, 2004; Veeman 

et al., 2010). Along the medial-lateral axis, cells are arranged in four bilateral pairs of columns. 

Column 1 is the medial most pair of columns, and the lateral-most column is column 3 for the 

anterior a-lineage derived part of the neural plate and column 4 for the posterior A-lineage derived 

part of the neural plate. Several b-lineage cells bordering the neural plate generate the dorsal roof of 

the neural tube.  

 The molecular events leading to individual cell specification have also been studied in detail 

(reviewed in (Hudson, 2016)). Unique molecular signatures, characterized by specific combinations 

of gene expression, have been described for most neural plate cells. A particular combinatorial 

action of three signalling pathways, Nodal, Delta2/Notch and FGF/MEK/ERK, defines each of the 

distinct cell identities that make up rows I and II of the neural plate (Hudson et al., 2007; Hudson 
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and Yasuo, 2005; Imai et al., 2006; Mita and Fujiwara, 2007). More recently, it has been shown that 

very similar molecular mechanisms also operate during patterning of the row III anterior brain 

precursors of the neural plate. These studies indicate that, like in the A-lineage derived neural plate, 

Nodal and Delta-Notch are involved in medio-lateral patterning, while FGF/MEK/ERK signalling is 

required for anterior-posterior patterning of the a-lineage derived neural plate (Esposito et al., 2017; 

Haupaix et al., 2014; Racioppi et al., 2014).  

 In this study, we aimed to address how these patterning mechanisms lead to specific gene 

activation. To this end, we focused on the Gsx gene, which is specifically activated in the a9.33 cell 

pair, residing in the row III/column 2 position of anterior sensory vesicle lineages at the 6-row 

neural plate stage (Figure 1). Gsx expression is maintained in both daughter cells of a9.33 (a10.66 

and a10.65) at the neurula stage, when additional expression is also observed in medial (column 1) 

cells (a10.73) (Figure 1). By the late neurula and early tailbud stages, expression is also observed in 

posterior sensory vesicle precursors of A-lineage origin. We present our analysis of the cis-

regulatory sequences that can recapitulate early activation of the Ciona Gsx gene. We identified a 

376bp minimal element required for the activation of Gsx in the a9.33 pairs and their progeny at the 

neurula stage. Our analysis suggests that the fine spatial and temporal regulation of Gsx expression 

involves activating MEK/ERK and Notch, and repressing Snail and Six3/6 regulatory inputs. 

 

RESULTS 

 

Isolation of the Gsx regulatory region 

In this study, we indiscriminately used two very similar ascidian species for our electroporation 

assays, Ciona robusta and Ciona intestinalis (formerly Ciona intestinalis types A and B 

respectively). At the late gastrula stage (stage 12, approximately 6.5 hours of development at 18°C; 

Figure 1, top), the embryo has a neural plate made of 6-rows of cells called, from posterior to 

anterior, row I to VI. At the mid-neurula stage (stage 15, approximately 8 hours of development at 

18°C; Figure 1, second row), row III cells have divided into row IIIa (anterior) and row IIIp 

(posterior) (Hotta et al., 2007). 

 The precise and specific activation of Gsx in the a9.33 pair of cells in row III at the neural 

plate stage prompted us to explore the mechanisms involved in its transcriptional regulation. A 

genomic fragment of about 3.9 kb (-3857 to +11 of the first base of the KH2012:KH.C2.917 

transcript model (Satou et al., 2008) was cloned from a Ciona robusta cosmid library and placed 

upstream of LacZ (pGsx[-3857,+11]>LacZ). Electroporation of this plasmid DNA revealed that the 

3.9kb region was sufficient to recapitulate endogenous Gsx expression from the neural plate stage 
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(Figure 1). LacZ reporter gene expression could be detected by in situ hybridisation in the a9.33 pair 

of cells. At neurula stage, like endogenous Gsx, pGsx[-3857,+11]-driven LacZ expression was 

detected in medial row III cells as well as the a9.33 daughters. pGsx[-3857,+11]-driven LacZ 

expression continues to mirror endogenous Gsx gene expression at the late neurula and early tailbud 

stages, with expression expanding posteriorly into the A-line-derived posterior sensory vesicle 

precursors at these stages (Figure 1). Using detection of β-galactosidase enzymatic activity, a much 

simpler assay, we obtained similar results, but with a time delay in the onset of detection, 

presumably due to the time taken to translate a sufficient level of β-galactosidase protein. β-

galactosidase enzymatic activity could be detected from the neurula stage, when a9.33 has divided 

into a10.66 and a10.65. In the following studies, we chose to focus on the simpler β-galactosidase 

activity assay at the neurula stage, as a proxy for gene activation at the neural plate stage. 

 We set out to identify the minimal cis-regulatory element that was sufficient to drive neurula 

stage β-galactosidase activity in the a9.33 daughters. We conducted a 5’ deletion analysis of pGsx[-

3857, +11] to generate pGsx[-1905, +11], pGsx[-829, +11], pGsx[-636, +11], pGsx[-365, +11], 

pGsx[-297, +11], pGsx[-256, +11], pGsx[-193, +11], pGsx[-120, +11] (Figure 2). Constructs 

pGsx[-1905, +11] to pGsx[-256, +11] drove β-galactosidase activity in the a9.33 daughters, often 

with reduced activity compared to the pGsx[-3857, +11] construct, whereas the pGsx[-193, +11] 

and pGsx[-120 +11] constructs did not drive a detectable level of β-galactosidase activity (Figure 

2). This suggests that critical cis-regulatory elements required to drive neural plate expression are 

present between positions -256 and -193bp upstream of the transcription start site. Consistent with 

this idea, removing the -278- to -121 sequences from the pGsx[-3857, +11] construct (pGsx[-3857, 

-279][-120, +11]) resulted in the loss of transgene activity (Supplementary Figure 1). 

 Focusing on the sequences around the [-256, -193] domain, we carried out various 

overlapping window deletions in order to further define the essential elements for correct neural 

plate expression (Figure 3A). Individual fragments were cloned upstream of the Brachyury minimal 

promoter (bpBra) (Bertrand et al., 2003). Ectopic “mesenchyme” (mesenchyme plus additional 

unidentified internal cells) activity was frequently observed when using bpBra. Neural expression, 

however, was never observed with bpBra alone (3 independent experiments, total n= 952). Hence, 

for the following analysis, only neural expression was considered (Figure 3B). The constructs 

pGsx[-297, -100]bpBra, pGsx[-297, -176]bpBra, pGsx[-256, -100]bpBra and pGsx[-365, -

236]bpBra exhibited β-galactosidase activity at the neurula stage, whereas constructs pGsx[-256, -

176]bpBra, pGsx[-297, -236]bpBra and pGsx[-193, -100]bpBra drove very weak or no β-

galactosidase activity (Figure 3B). As pGsx[-365, -236]bpBra and pGsx[-256, -100]bpBra are both 

active, despite a very small region of overlap, this suggests the presence of multiple positive inputs. 
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In support of the idea that no single region of the upstream sequences is critical for activation in 

neural cells, a systematic 20bp window deletion analysis between the -256 to -100 regions of the 

pGsx[-297, -100]bpBra construct did not result in loss of transgene activity (Supplementary Figure 

2).  

 Interestingly, this analysis also suggested that there may be some negative control elements 

located in the part of the sequence closest to the transcription start site. Electroporation of constructs 

lacking these elements resulted in lateral (column 3, green in Figure 3B-C) and/or anterior (into row 

IV precursors, blue in Figure 3B-C) ectopic expansion of β-galactosidase staining. The pGsx[-365, -

236]bpBra construct gave a particularly striking increase in anterior expansion into row IV cells 

(Figure 3B lower graph, C). The smaller fragment constructs (pGsx[-297, -236]bpBra and pGsx[-

256, -176]bpBra) only drove very weak neural expression, making any conclusion on ectopic 

activity difficult (Figure 3B).  

 In conclusion, partial deletions around the [-256, -193] sequences identify two types of 

regulatory inputs. Since the pGsx[-365, -236]bpBra and pGsx[-256, -100]bpBra constructs were 

both active, we conclude that the -365 to -100 sequences mediate multiple positive inputs with no 

single region essential for neural expression (Figure 3; Supplementary Figure 2). The -235 to +11 

sequences likely contains repressive elements, which act to restrict Gsx expression to row III and 

column 2 (Figure 3). Thus, we consider that the entire -365 to +11 sequences contain important 

elements to drive accurate expression of Gsx in the neural plate of wild-type embryos and used the 

pGsx[-365+11] construct for subsequent experiments. 

 

Evidence for a FGF/MEK/Ets-Elk signalling response elements in the -365 to +11 regulatory 

sequences 

Focusing on the [-365, +11] sequences identified above, we next tested whether experimental 

manipulations affecting endogenous Gsx expression similarly affect reporter gene expression driven 

by pGsx[-365, +11]. In Ciona, FGF-ERK signalling is essential for both the initial neural induction 

at the 32-cell stage (Bertrand et al., 2003; Hudson et al., 2003) and the subsequent anterior-posterior 

patterning of the CNS (Haupaix et al., 2014; Hudson et al., 2007; Racioppi et al., 2014; Wagner and 

Levine, 2012). In particular, differential activation of FGF/ERK signals between rows III and IV 

takes place, with ERK active in row III cells where it promotes row III gene expression and 

represses row IV gene expression (Haupaix et al., 2014; Racioppi et al., 2014). This signalling 

pathway could thus be required for Gsx expression.  

To confirm this, we treated embryos from the early gastrula stage with the pharmacological 

agent U0126, an inhibitor of the MAP kinase kinase, MEK1/2. This resulted in a strong reduction in 
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Gsx expression (Figure 4A). We next tested whether the pGsx[-365, +11] construct contained a 

MEK-ERK response element by treating embryos electroporated with this construct with U0126 at 

the early gastrula stage. Similar to endogenous Gsx expression, transgene activity driven by pGsx[-

365, +11] was completely suppressed by U0126 treatment (Figure 4B). 

 Several recent studies show that, during Ciona embryogenesis, members of the ETS family 

of transcription factors (Ets1/2 and Elk1/3/4) act as downstream effectors of FGF/ERK signalling 

(Bertrand et al., 2003; Davidson et al., 2006; Gainous et al., 2015; Squarzoni et al., 2011). To 

investigate the role of Ets/Elk in Gsx gene activation, we expressed constitutive repressor or 

activator forms of Ets1/2 (Ets:WRPW and Ets:VP16, respectively) or Elk1/3/4 (Elk:WRPW and 

Elk:VP64, respectively) throughout the neural plate using the Zic-r.b promoter, which is active in 

the a-neural lineages at the 6-row neural plate stage (Abitua et al., 2012; Gainous et al., 2015; 

Wagner and Levine, 2012). Expression of repressor forms of both Elk and Ets led to a reduction of 

endogenous Gsx expression (Figure 4C, F). By contrast, overexpression of activator forms did not 

affect the spatial pattern of Gsx expression. Overexpression of Ets and Elk fusion proteins had a 

similar effect on the ß-galactosidase activity driven by pGsx[-365, +11] (Figure 4D, E).  

Taken together, these data show that Ets family transcription factors, most likely mediating 

FGF/MEK/ERK signals, are required for Gsx gene activation and that the Gsx [-365 to +11] 

sequences contain elements mediating this activation. Consistent with this idea, bioinformatic 

analyses of these sequences revealed several potential Ets family transcription factor binding sites 

(Supplementary Figure 3). We conclude that the Gsx gene is most likely activated directly by the 

FGF/MEK/ERK signalling pathway in row III via Ets family members.  

 

Evidence for Delta/Notch response elements in the -365 to +11 regulatory sequences  

Previous data show that Delta-Notch signalling is required to promote Gsx expression in column 2 

of the ascidian neural plate (Esposito et al., 2017). Inhibition of the Notch signalling pathway 

resulted in a strong reduction of Gsx expression, whereas overexpression of Delta-like had the 

opposite effect, promoting ectopic Gsx expression in column 1 cells. In order to test whether the [-

365, +11] sequences contained a Notch response element, we treated pGsx[-365, +11] 

electroporated embryos with DAPT (an inhibitor of gamma-secretase, which is required for Notch 

receptor processing) to block the pathway. Treatment of embryos with DAPT from the early 

gastrula stage resulted in reduction of neural β-galactosidase activity (Figure 5A). We conclude that 

the Gsx -365 to +11 sequences contain the information necessary to respond to Notch signalling. 

While our bioinformatic analysis revealed a site at -205 with a perfect match to the consensus 

binding site of Su(H) (TGGGAA, on the reverse strand), the transcription factor that mediates 
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Notch signalling (Fortini and Artavanis-Tsakonas, 1994), removal of this sequence in the deletion 

construct D3 did not result in loss of neural activity of the construct, suggesting that this binding 

site is not critical (Supplementary Figure 2). 

 

Evidence for a Snail response element in the 365 to +11 regulatory sequences  

We recently showed that the transcription factor Snail (Nieto, 2002) is involved in the repression of 

Gsx in column 3 cells at the 6-row neural plate stage (Esposito et al., 2017). Like endogenous Gsx, 

β-galactosidase activity driven by pGsx[-365, +11] was strongly reduced when co-electroporated 

with pEtr>Snail (Figure 5B), suggesting that elements responsible for Snail-mediated repression are 

present within the -365 to +11 sequences. Indeed, a bioinformatic search for potential Snail binding 

sites conserved between Ciona robusta and Ciona savigni (Supplementary Figure 3), as well as a 

ChIP-chip analysis of Snail (Kubo et al., 2010) suggests that Snail may interact directly with the 

Gsx upstream sequences. Interestingly, the predicted binding site with highest affinity for Snail 

maps close to the TSS around -11, which is removed in pGsx[-297, -100]bpBra, a construct driving 

lateral expansion of β-galactosidase activity (Figure 3). 

 

Evidence for Six response elements in the -365 to +11 regulatory sequences 

In the previous section, we showed that removal of the [-235, +11] sequences in pGsx[-365, -

236]bpBra resulted in anterior expansion of β-galactosidase activity to row IV (Figure 3). One 

potential explanation for this observation is the presence of a repressor in row IV cells that interacts 

with sequences within the [-235, +11] region. The Six family members of homeodomain 

transcription factors can form composite transcription factors that can activate or repress 

transcription of downstream targets depending on the cellular context (Kumar, 2009). Six3/6 is the 

single Ciona orthologue of Six3 and Six6 paralogues of vertebrate Six genes (Wada et al., 2003). 

Six3/6 is a very good candidate to repress Gsx expression in row IV as it is specifically expressed in 

row IV cells from the 6-row neural plate stage, just anterior to endogenous Gsx expression (Imai et 

al., 2004). The two other Ciona Six gene class members, Six1/2 and Six4/5, are not expressed in row 

IV cells (Imai et al, 2004). In order to address if Six3/6 might play a role in Gsx gene regulation, we 

first tested whether Six3/6 overexpression could repress endogenous Gsx expression. We 

overexpressed Six3/6 throughout the neural plate from the early gastrula stage, using pEtr>Six3/6. 

This resulted in downregulation of Gsx expression at the neurula stage, suggesting a potential link 

between Six3/6 and Gsx (Figure 6A). In contrast, morpholino (MO)-mediated knockdown of Six3/6 

resulted in ectopic Gsx expression in row IV cells at the late neurula stage (Figure 6C). We used 

two different morpholino oligonucleotides designed to block translation, both of which generated 
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the same phenotype (Figure 6C; Supplementary Figure 4A). We also confirmed that both MOs 

successfully blocked translation of a reporter gene with corresponding target sequences by injecting 

each MO with the Six3/6 upstream regulatory sequences driving Venus (pSix3/6>Venus). While 

YFP protein was detected in the anterior CNS of larvae injected with pSix3/6>Venus alone, co-

injection of pSix3/6>Venus with either Six3/6-MO resulted in strong reduction of YFP protein 

levels (Supplementary Figure 4B). Thus, overexpression of Six3/6 results in repression of Gsx, 

whereas inhibition of Six3/6 results in ectopic expression of Gsx in row IV cells.  

 We next tested whether the [-365, +11] sequences contained a Six3/6-response element. Co-

electroporation of pGsx[-365, +11]>LacZ with pEtr>Six3/6 caused a strong decrease of β-

galactosidase activity at the neurula stage, suggesting that the [-365, +11] sequences may contain 

binding sites for Six3/6 (Figure 6B). In support of a direct role for Six3/6 in Gsx repression in 

anterior neural cells, we found multiple predicted Six transcription factor binding sites within the [-

365, +11] sequences (Supplementary Figure 3).  

 Finally, we tested the hypothesis that the [-235, +11] sequences, removed in pGsx[-365, -

236]bpBra, were acting as a Six3/6-response element. In other words, whether removal of this 

potential Six response element was the reason that ectopic anterior transgene activity was observed 

with the pGsx[-365, -236]bpBra construct. If these sequences acted as the Six3/6 response element, 

then we predicted that removal of them would render the construct insensitive to Six3/6 

overexpression. However, this was not the case, co-electroporation of pEtr>Six3/6 and pGsx[-365, -

236]bpBra revealed that Six3/6 was still able to strongly suppress the transgene activity, suggesting 

that the [-235, +11] sequences are not acting as the sole Six3/6-response element (Figure 6D).  

 

Evidence for a temporal response element in the -235 to +11 regulatory sequences 

Both FGF and Notch signals are required for Gsx expression in a9.33 cells at the neural plate stage. 

However, these signals are both present at earlier stages of development. Delta-like is expressed in 

lateral b- and A-line neural precursors adjacent to the a-line neural precursors from the 64-cell stage 

(Esposito et al., 2017; Hudson et al., 2007) and ERK1/2 is active in row III/IV mother cells at the 

early gastrula stage (Nishida, 2003; Wagner and Levine, 2012; Yasuo and Hudson, 2007). 

However, Gsx is not activated at this earlier stage, suggesting the presence of a temporal control 

mechanism. 

To identify the cis-regulatory sequences preventing the precocious activation of Gsx, we 

collected embryos electroporated with either pGsx[-365, -236]bpBra or pGsx[-365, +11] every 30 

minutes (at 18°C) from the 6-row neural plate stage. We observed neural β-galactosidase activity in 

pGsx[-365, -236]bpBra embryos at least 30 minutes before we observed any β-galactosidase 
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activity in pGsx[-365, +11] embryos (Figure 7). Taking into account the time-lag of LacZ detection 

(Figure 1), we consider that pGsx[-365, -236]bpBra therefore becomes active prior to the 6-row 

neural plate stage, thus in the row-III/IV mother cells. Consistently, pGsx[-365, -236]bpBra-

electroporated embryos displayed clear ectopic β-galactosidase staining in cells in row IV and 

column 3 (Figure 7). This suggests that the ectopic activity observed in row IV with pGsx[-365, -

236]bpBra is, at least in part, due to the precocious activation of the transgene in the precursor of 

both rows III and IV and that the [-235, +11] sequences include a temporal control element ensuring 

the delayed activation of Gsx solely in row III.  

 

DISCUSSION 
 
It was previously shown that medial-lateral patterning across the developing neural plate, triggered 

by Nodal, is required for the expression of Gsx in column 2 cells of the neural plate (Esposito et al., 

2017). Nodal is involved both in promoting Gsx expression in column 2, via the activation of Delta-

Notch signalling, and inhibiting Gsx expression in column 3, via the activation of the Snail 

repressor. It was also described that differential activation of the ERK signalling pathway patterns 

sibling neural plate cells along the anterior-posterior axis, with its role in Gsx regulation confirmed 

in this study (Figure 4) (Gainous et al., 2015; Haupaix et al., 2014; Hudson et al., 2007; Racioppi et 

al., 2014; Squarzoni et al., 2011). Here, we reveal a role for Six3/6 in restricting Gsx expression to 

row-III precursors at the late neurula stage (Figure 6). 

 In this study, we analysed the cis-regulatory sequences driving Gsx expression in the neural 

plate (Figure 8). We identified a -365 to +11 minimal promoter element, which recapitulated 

endogenous Gsx expression in the neural plate and responded, as endogenous Gsx, to manipulation 

of MEK-ERK-Ets signalling, Notch-signalling and Snail or Six3/6 overexpression. Our extensive 

deletion analysis of a [-365, +11] minimal promoter indicated that Gsx regulation is likely to be 

complex and modular, with no single region essential. This suggests redundancy between individual 

transcription factor binding sites, as was described for Halocynthia Otx cis-regulation (Oda-Ishii et 

al., 2005). The deletion analysis revealed the importance of sequences close to the transcriptional 

start site in limiting expression to the correct cells, including an element mediating temporal control 

(Figure 8).  

 

Activation mechanisms for Gsx expression 

In the neural plate, Nodal induces column 2 gene expression most likely indirectly, via activating 

gene expression of a Delta ligand (Esposito et al., 2017; Hudson et al., 2007). We were able to show 

that the [-365, +11] minimal promoter of Gsx contained a Notch response element. A potential 
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Su(H) consensus binding site was found in these sequences at position -205, although this did not 

appear to be essential for transgene activation (Supplementary Figure 2). This may indicate that 

Notch signalling is acting indirectly on the [-365, +11] minimal promoter of Gsx. 

 The other major positive input for Gsx expression is likely to be the Fibroblast Growth 

Factor (FGF) signalling pathway. This signalling pathway is used repeatedly following anterior-

posterior cell divisions to specify posterior over anterior cell identities in the developing CNS 

(Haupaix et al., 2014; Hudson et al., 2007; Racioppi et al., 2014; Squarzoni et al., 2011; Wagner 

and Levine, 2012). In particular, differential activation of ERK1/2 occurs between a-line sister rows 

III and IV, with ERK1/2 activated in row III and inactive in row IV. This activation of ERK1/2 was 

shown to be required for specification of the a9.49 pair of cells in column 3 of row III and is then 

repeatedly required, following each anterior-posterior oriented cell division, in order for this lineage 

to eventually give rise to the pigmented cells of the ocellus and otolith in the brain (Haupaix et al., 

2014; Racioppi et al., 2014). Recently, it has been shown that two different Ets family transcription 

factors, Ets1/2 and Elk1/3/4, have partially redundant activities in specifying the medial lineages of 

row III (a9.33 and a9.37) (Gainous et al., 2015). Our data supports these previous findings. We 

provide evidence that the MEK/ERK signalling pathway in row III activates Gsx via Ets and Elk 

transcription factors. We show, firstly, that the MEK/ERK signalling pathway is required for the 

activation of endogenous Gsx as well as transgene activation driven by pGsx[-365, +11]. We then 

show that dominant-negative forms of either Ets1/2 or Elk1/3/4 (EtsWRPW; ElkWRPW) are each 

able to repress both Gsx expression and transgene activation by pGsx[-365, +11]. We propose that 

both Ets/Elk factors may directly contribute to Gsx activation. Consistent with this idea, the -365 to 

+11 sequences contain several potential Ets family member binding sites (Supplementary Figure 3). 

 

Repression mechanisms for Gsx expression 

Gsx is repressed in column 3 by Snail transcription factor. When Snail is knocked-down, Gsx is 

ectopically expressed in column 3 at the neural plate stage (Esposito et al., 2017). Similar to 

endogenous Gsx, transgene activity driven by pGsx[-365, +11] is inhibited by overexpression of 

Snail. Consistent with a potential direct role, ChIP-chip analysis detected Snail binding to the 

upstream region of Gsx (Kubo et al., 2010) and potential binding sites were predicted within the -

365 to +11 sequences (Supplementary Figure 3). 

 Previous studies have shown that Six3/6 is specifically expressed in row IV lineages from 

the 6-row neural plate stage (Gainous et al., 2015; Imai et al., 2004). Restriction of Six3/6 

expression to row IV is mediated by differential ERK activation between row III and row IV cells. 

Inhibition of FGF/MEK/ERK signalling leads to loss of row III gene expression (including Gsx) 
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and ectopic activation of Six3/6 in row III (Gainous et al., 2015; Haupaix et al., 2014; Racioppi et 

al., 2014). Six proteins can serve as transcriptional activators or repressors, depending on the 

presence of additional cofactors within the transcriptional complex (Li et al., 2003). Here, we show 

that Six3/6 is required to repress Gsx expression in row IV cells at the neurula stage (Figure 6C). 

Thus, one of the functions of Six3/6 in Ciona neural development involves repression of more 

posterior neural fates. A role for Six3/6 orthologues in repression of posterior gene expression has 

also been reported in other systems (Lavado et al., 2008; Leclere et al., 2016). Overexpression of 

Six3/6 repressed endogenous Gsx expression as well as transgene activity driven by pGsx[-365, 

+11]. This suggests that the [-365, +11] sequences contain a Six3/6 response element, an idea 

supported by the presence of in silico predicted Six-binding sites conserved between Ciona robusta 

and Ciona savigni (Supplementary Figure 3). 

 Finally, our study uncovered an element close to the transcription start site that is required to 

prevent both precocious and ectopic activation of Gsx. Both activators of Gsx, Delta-like (Notch) 

and FGF/ERK signalling are active during early gastrula stages (3-row neural plate stage), but Gsx 

is not expressed until the mid-gastrula (6-row neural plate) stage. This delay in activation could be 

achieved by the requirement of an additional activator, which is itself not activated until the mid-

gastrula stage, or alternatively by a factor that inhibits Gsx transcription prior to the mid-gastrula 

stage. Our data lend support to the second hypothesis. Removal of the proximal sequences results in 

precocious and ectopic transgene activity. Differential ERK1/2 activation between dividing cells is 

used repeatedly during development, particularly during neural and cardiopharyngeal lineage 

segregations (Haupaix et al., 2014; Racioppi et al., 2014; Razy-Krajka et al., 2018; Stolfi et al., 

2011; Wagner and Levine, 2012), thus late ERK targets need to be prevented from activating 

precociously. Indeed, this problem applies to any reiteratively used signalling pathway. One 

possible mechanism to correctly time gene activation would be a coherent feed forward mechanism 

such that a signal induces early gene targets and these targets are themselves required, together with 

the same activating signal, to activate the subsequent targets. This type of mechanism has been 

described in ascidian development during the specification of the endoderm by β-catenin signalling 

as well as during the specification of cardiopharyngeal mesoderm by FGF-signalling (Hudson et al., 

2016; Razy-Krajka et al., 2018). Another mechanism is the presence of an inhibitory timer 

mechanism, which prevents the inappropriate activation of a target gene in response to an earlier 

activation signal. An example of this strategy was recently revealed in ascidian embryos, during the 

early segregation of brain from palp precursors by differential FGF signalling (Ikeda et al., 2013). 

In this scenario, two Blimp-like Zinc finger proteins (BZ1, BZ2) prevent the precocious FGF-

dependent activation of Zic-r.b in palp/brain precursors prior to their lineage segregation. In the 
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absence of this inhibitory mechanism, brain lineage genes are expressed precociously, at the 

expense of palp/epidermis lineage genes and palps do not form. Furthermore, in the absence of 

BZ1, BZ2 and a third factor, Hes-a, Zic-r.b is activated even earlier in neural precursors in response 

to FGF, at the 32-cell stage. Thus, these factors act as a timer to delay activation of Zic-r.b in 

response to FGF signalling and this delay mechanism is critical for correct lineage segregations. We 

propose that a similar mechanism is taking place to prevent precocious Gsx activation in response to 

FGF at the early gastrula stage in row III/IV precursors prior to their lineage segregation. To 

confirm this hypothesis, it will be essential to identify the factor responsible for this time delay, 

repress its activity and assess if endogenous Gsx becomes precociously activated at earlier stages. 

 

MATERIALS AND METHODS 
 
Embryo experiments and tools 

Adult Ciona intestinalis or Ciona robusta were purchased from the Station Biologique de Roscoff 

(France) or from Stazione Zoologica Anton Dohrn (Italy), respectively. Blastomere names, lineage 

and the fate maps were described previously (Conklin, 1905; Nishida, 1987). Ascidian embryo 

culture and microinjection have been described (Sardet et al., 2011; Yasuo and McDougall, 2018). 

Six3/6-MO-1 (CATATCGCCGCCAGCACGTAACATA) and Six3/6-MO-3 

(CCTTCACTCAACATTGATATTCTGT) were purchased from GeneTools LLC and injected into 

unfertilised eggs at a concentration of 0.75-1mM. In preliminary experiments with Six3/6-MO-1, 

ectopic expression of Gsx was not observed until late neurula stage (stage 15.5-16; approximately 8 

hours and 20 minutes after fertilisation at 18°C). Therefore, embryos shown in Figure 6C were 

fixed at this stage. The electroporation protocol was based on Christiaen et al. (Christiaen et al., 

2009). We used 50µg of circular plasmid DNA in 250µl of 0.6M mannitol. This solution was mixed 

with 100µl of eggs in artificial sea water supplemented with 0.5% BSA. Electroporation was carried 

out at 50V for 16ms using a BTX ECM830 (Harvard apparatus) or a BIO RAD Gene Pulser II. For 

co-electroporation 25µg of each plasmid DNA was used under the same conditions (in this case 

control single electroporations also used 25µg of DNA). All data came from at least two 

independent experiments (i.e. on different batches of embryos). U0126 (Calbiochem) and DAPT 

(Calbiochem) treatments in Ciona have been described previously (Hudson et al., 2003; Hudson 

and Yasuo, 2006).  

 

Unique identifiers of genes analysed 
Gene name Ciona robusta  

Unique gene identity 
Ciona robusta  
Unique gene model identity 



 14

Gsx Cirobu.g00005160 KH2012:KH.C2.917 
Six3/6 Cirobu.g00001582 KH2012:KH.C10.367 
Snail Cirobu.g00005955 KH2012:KH.C3.751 
MEK Cirobu.g00011301 KH2012:KH.L147.22 
ETS1/2 Cirobu.g00001309 KH2012:KH.C10.113 
ELK1/2/4 Cirobu.g00008865 KH2012:KH.C8.247 
Notch Cirobu.g00009697 KH2012:KH.C9.176 
Delta-like Cirobu.g00012743 KH2012:KH.L50.6 

 

Construct preparation 

The electroporation constructs pEtr>Snail, pZic-r-b>Ets1/2, pZic-r.b>Elk1/3/4 have been 

previously described (Abitua et al., 2012; Gainous et al., 2015; Hudson et al., 2015). To make 

pEtr>Six3/6, the open reading frame of Six3/6 was cloned from a cDNA clone (cicl021e08) 

originating from the Ciona gene collection plates (GC11m13) using the following primers: six3/6-

F-attB1 (aaaaagcaggctaccATGGCGGAGACTGTTGCACAGCGCGCCTC) and six3/6-R-attB2 ( 

agaaagctgggTTAGTCTTTCGGGCTCTGACTC) and subcloned into pDONR 221 P1-P2 to 

generate pENTR-L1-Six3/6-L2. This entry clone was mixed with pSP1.72ETR>Rfa in an LR 

reaction to generate pETR>Six3/6. Details on Gateway cloning of ascidian genes are previously 

published (Roure et al., 2007). To make pSix3/6>Venus, the Six3/6 upstream sequences were first 

selected based on (Haeussler et al., 2010). The Six3/6 upstream regulatory sequences were 

amplified from Ciona intestinalis genomic DNA using the following primers: Six3/6-promoter-F : 

ggtcgacggtatcgataACGTCACAATGCAATGTAACGATTC and Six3/6-promoter-R2 : 

CATATCGCTGCCAGCACGTAACATACCTTCACTC). Venus was amplified using the 

following primers: Venus-F3 : GTGCTGGCAGCGATATGGTGAGCAAGGGCGAGG and 

Venus-R : ccgctctagaactagtgTTACTTGTACAGCTCGTCCATG. Regions of overlap between 

Six3/6 and Venus are underlined whereas regions of overlap with the plasmid vector are in small 

case. Amplified DNA was gel purified and mixed with pBluescript SK linearised with HindIII and 

BamHI. DNA was assembled using Gibson Assembly Master Mix (New England Biolabs) 

according to manufacturer’s protocol. pSix3/6>Venus was injected at a concentration of 0.03µg/µl. 

 For pGsx[-3857, +11]>LacZ, the Ciona robusta Gsx upstream sequences were identified by 

probing a cosmid library (RZPD 119 (Burgtorf et al., 1998)) with Ciona Gsx cDNA (Hudson and 

Lemaire, 2001). Sequences upstream were then sequenced from the identified cosmid (Ferrier and 

Holland, 2002). Approximately 4kb of sequences upstream of Gsx were then amplified by PCR and 

cloned into psp1.72>LacZ using the primers gsxup-3.9F and gsxR (Supplementary Table 1). 

Comparison of the cosmid derived sequences to the reference genome revealed 98% identity, with a 

55bp insert in the cosmid sequence relative to the reference genome. This sequence corresponds to -

1452 to -1398 of the pGsx[-3857,+11] sequences and is at position KH2012.C2.5509258 in the 
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reference genome.  The Gsx[-3857,+11] cosmid derived sequences are available online (Aniseed, 

https://www.aniseed.cnrs.fr/aniseed/cisreg/show_cisreg?feature_id=14105022). 

 The 5’ deleted constructs pGsx[-1905, +11], pGsx[-829, +11], pGsx[-636, +11], pGsx[-

365, +11], pGsx[-297, +11], pGsx[-256, +11], pGsx[-193, +11], pGsx[-120, +11] were all 

generated by PCR using appropriate primers (see Supplementary Table 1). The 5’ and 3’ deleted 

fragments pGsx[-297, -100], pGsx[-297, -176], pGsx[-256, -100], pGsx[-365, -236], pGsx[-256, -

176], pGsx[-297, -236] and pGsx[-193, -100] were all generated by PCR, using appropriate primers 

(Supplementary Table 2) cloned upstream of the Brachyury minimal promoter into psp1.72-

bpBra>LacZ (Bertrand et al., 2003). pGsx[-3857, -279][-120, +11] was made by PCR 

(Supplementary Table 2). Constructs for the window deletion analysis described in Supplementary 

Figure 2 were carried out using the QuikChange Site-Directed Mutagenesis Kit (Stratagene) using 

the g2905D1-D8 F and R primers on pGsx[-297, -100]bpBra (Supplementary Table 2). All 

constructs were verified by sequencing. 

Gsx construct name based on cosmid sequence Ci-Regulatory Region identifier 
pGsx[-3857, +11] ciinte.REG.KH2012.C2.5506855- 5510677/Gsx 
pGsx[-1905, +11] ciinte.REG.KH2012.C2.5508807- 5510677/Gsx 
pGsx[-829, +11] ciinte.REG.KH2012.C2.5509831-5510677/Gsx 
pGsx[-636, +11] ciinte.REG.KH2012.C2.5510024-5510677/Gsx 
pGsx[-365, +11] ciinte.REG.KH2012.C2.5510302-5510677/Gsx 
pGsx[-297, +11] ciinte.REG.KH2012.C2.5510370- 5510677/Gsx 
pGsx[-256, +11] ciinte.REG.KH2012.C2.5510411- 5510677/Gsx 
pGsx[-193, +11] ciinte.REG.KH2012.C2.5510474- 5510677/Gsx 
pGsx[-120, +11] ciinte.REG.KH2012.C2.5510547-5510677/Gsx 
pGsx[-297, -100] ciinte.REG.KH2012.C2.5510370-5510567/Gsx 
pGsx[-297, -176] ciinte.REG.KH2012.C2.5510370-5510491/Gsx 
pGsx[-256, -100] ciinte.REG.KH2012.C2.5510411-5510567/Gsx 
pGsx[-256, -176] ciinte.REG.KH2012.C2.5510411-5510491/Gsx 
pGsx[-365, -236] ciinte.REG.KH2012.C2.5510302-5510431/Gsx 
pGsx[-297, -236] ciinte.REG.KH2012.C2.5510370-5510431/Gsx 
pGsx[-193, -100] ciinte.REG.KH2012.C2.5510474-5510567/Gsx 
pGsx[-3857, -279][-120, +11] 
 

ciinte.REG.KH2012.C2.5506855-
5510388;5510547-5510677/Gsx 
 
(deleted region 5510389-5510546) 

 
 

In situ hybridization and YFP immunostaining 

Gsx RNA probes were synthesized from the cDNA previously reported (Hudson and Lemaire 

2001). Whole-mount in situ hybridizations were performed as previously described (Hudson and 

Yasuo, 2006; Ristoratore et al., 1999; Wada et al., 1995). For nuclear staining, embryos were 

mounted in Vectashield-DAPI (Vector laboratories). Bright-field and DAPI images were merged 

with Adobe Photoshop. YFP immunostaining (Supplementary Figure 4) was carried out using a 
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Goat-anti-GFP (Rockland immunochemicals 600-101-215; 1/250) followed by Donkey anti-goat 

Alexaflour 555 (A-21432 Thermofischer; 1/250). Confocal analysis of immunostained larvae was 

performed with a Leica SP5 or SP8 microscope and image stacks were produced with Fiji (ImageJ 

2.0.0) software (Schindelin et al., 2012). 

 

Statistical tests 

For statistical tests, contingency tables were made with the total numbers of embryos pooled from 

all experiments for each outcome (positive, negative, weak, ectopic). Fischer’s exact tests or Chi-

square tests were carried out using Prism version 8.0.0 (for MacOS, GraphPad Software, La Jolla 

California USA, www.graphpad.com). All contingency tables can be found in Supplementary 

information (Supplementary Table 3). 

 

In Silico transcription factor binding site searches  

The -365 to +11 regulatory sequence was searched for transcription factor binding sites for 3 

transcription factors using Ciona robusta SELEX-seq data (best cycle as indicated in 

ANISEED)(Brozovic et al., 2018). For each 8-mer in the Ciona robusta and Ciona savignyi 

genomes, we first calculated a raw local affinity for a given transcription factor as the sum of the 

log enrichment scores of the three 6-mers included in each 8-mer. These raw values were 

normalized to decrease their dependency on the global enrichment achieved during SELEX-seq, 

thereby facilitating comparison between factors within and across families. For each transcription 

factor, we plotted the histogram of raw affinity scores for each possible 8-mer (65536) and assigned 

a normalized score of 0 to the 8-mers with a raw score corresponding to the peak of the histogram. 

The -1 value was assigned to the 0.1% worst 8-mers, while the maximal +1 value was assigned to 

the 0.1% best 8-mers. Values between -1 and 0 and 0 and +1 were scaled linearly. This normalized 

affinity score is allocated to the fourth base of each 8-mer. To focus on the most likely binding sites, 

we identified the summit of each peak, to which the histogram value for this base was allocated. We 

further filtered this dataset to keep only the top 10% of highest peaks.  

 

We expect functional peaks to be conserved across closely related species. To identify conserved 

peaks, we used the ANISEED genome alignments of Ciona robusta and Ciona savignyi obtained by 

running LastZ (v1.02.00) on masked genomes (http://www.bx.psu.edu/~rsharris/lastz/ ; (Harris, 

2007)), with the following parameters (hsp_threshold = 3000; gapped_threshold = 3000; x_drop = 

870; y_drop = 6290; gap_open_penalty = 290; gap_extend_penalty = 20) and the following score 

matrix, computed to improve the alignment between the two species.  
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#        A        C        G       T 

#   A   87   -119   -55   -112 

#   C -119  100   -154  -55 

#   G  -55  -154    100  -119 

#   T -112  -55    -119    87 

 

Matching Ciona robusta and Ciona savignyi peaks, distant by at most 5 bp in the alignment 

between the two species, were considered conserved and allocated the product of the peak values in 

each species.  
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FIGURE LEGENDS 
 
Figure 1 

Comparison of endogenous Gsx expression with transgene expression driven by the upstream 

regulatory sequences of Gsx. Stage of analysis is shown on the left. The left column shows 

endogenous Gsx expression. The middle and right columns are embryos electroporated with pGsx[-

3857, +11]>LacZ. The middle column shows expression of the LacZ reporter gene detected by in 

situ hybridisation against LacZ. The right-hand column shows β- galactosidase detection. Note the 

time lag between LacZ and β-galactosidase detection. A schematic drawing of neural plate cells is 

shown on the right for neural plate and neurula stage embryos, with the Gsx positive cells labelled 

in red. 

 

Figure 2 

5’ deletion analysis of the [-3857, +11] regulatory sequences of Gsx. Top is a schematic 

representation of the [-3857, +11] Gsx regulatory sequences. The graph summarises multiple 

experiments. Shown are the mean and standard deviation of percentages of neurula stage embryos 

positive for β-galactosidase activity in the neural cells. Each construct was electroporated in parallel 

with the control pGsx[-3857, +11] construct. Above each histogram bar is the total number of 

embryos analysed, with the number of independent experiments indicated in the brackets. Statistical 

tests compared each deletion construct (blue bars) to the corresponding control ([-3857, +11] red 

bars). For the statistical tests, contingency tables were made with the proportions of embryos 

positive or negative (Supplementary table 3) and analysed by Fischer’s exact test. ns= non-

significant; ****= P<0.0001. Below the graph are representative embryos for some constructs. The 

blue cells in the embryos electroporated with pGsx[-193, +11] and pGsx[-120, +11] are non-neural 

cells. 

 

Figure 3 

Window deletion analysis around the [-256, -193] sequences. A) Fragments of Gsx upstream 

sequences cloned are indicated with unbroken lines. The black rectangle represents the minimal 

Brachyury promoter (bpBra). Ticks indicate active constructs and crosses inactive constructs. B) 

The construct content (in pGsx[n, n]bpBra) is shown below the bars of the three histograms. The 

graphs summarize multiple experiments. Top: shown are the mean and standard deviation of 

percentages of neurula stage embryos positive for β-galactosidase activity in the neural cells for 

each construct compared to the corresponding control ([-3857, +11] red bars) electroporations 

conducted in parallel. Comparing the proportion of embryos positive or negative relative to the 
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corresponding control (full construct [-3857, +11]) indicates that each construct is significantly 

different (P<0.0001) compared to the full construct (Fischer’s exact test). Above each histogram bar 

is the total number of embryos analysed, with the number of independent experiments indicated in 

the brackets. Middle (green box): the graph shows the mean and standard deviations of the 

percentage of embryos positive for neural β-galactosidase activity (from the top graph) that 

exhibited ectopic lateral β-galactosidase activity. Bottom (blue box); the graph shows the mean and 

standard deviations of the percentage of embryos positive for neural β-galactosidase activity that 

exhibited ectopic anterior β-galactosidase activity. On the middle graph is indicated the total 

number of neural-positive embryos analysed for lateral or anterior expansion of β-galactosidase 

activity. Middle and Bottom graphs: differences in the levels of ectopic expression between certain 

deletion constructs and the corresponding controls (full construct [-3857, +11]) was supported by 

statistical analysis. For the statistical tests, contingency tables were made with the proportions of 

positive embryos exhibiting ectopic or no ectopic activity (Supplementary table 3) and analysed by 

Fischer’s exact test. ns= non-significant; ****= P<0.0001. Statistical tests for [-256, -175], [-297, -

236] and [-193, -100] were not conducted due to low numbers of positive embryos. C) 

Representative embryos showing normal β-galactosidase (left), anterior and lateral expansion 

(middle) and lateral expansion (right). Schematics indicate normal (red) and ectopic (blue for 

anterior and green for lateral) expression. Asterisks indicate ‘mesenchyme’ ectopic activity. 

 

Figure 4 

Role of MEK and Ets family members in Gsx gene regulation. Graphs show the mean and standard 

deviation of percentages of neurula stage embryos positive for β-galactosidase activity in the neural 

cells or for Gsx gene expression, under the conditions indicated. Above each histogram bar is the 

total number of embryos analysed, with the number of independent experiments indicated in the 

brackets. A) Gsx expression following U0126 treatment. B) Neural β-galactosidase activity in 

embryos electroporated with pGsx[-365, +11] and treated with U0126. C) Gsx expression in 

embryos electroporated with pZic-r.b>EtsVP16 or pZic-r.b>EtsWRPW. Each half embryo was 

scored independently. D) Neural β-galactosidase activity in embryos electoporated with pGsx[-365, 

+11] or co-electroporated with pGsx[-365, +11] and pZic-r.b>EtsVP16 or pZic-r.b>EtsWRPW. E) 

Neural β-galactosidase activity in embryos electoporated with pGsx[-365, +11] or co-

electroporated with pGsx[-365, +11] and pZic-r.b>ElkVP64 or pZic-r.b>ElkWRPW. F)  Gsx 

expression in embryos electroporated with pZic-r.b>ElkVP64 or pZic-r.b>ElkWRPW. Statistical 

tests compared each experimental condition (blue bars) to the corresponding controls (red bars). For 

the statistical tests, contingency tables were made with the proportions of embryos positive, 
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negative or weak (Supplementary table 3) and analysed by Fischer’s exact test  (A, B, D, E) or Chi 

square (C, F). ns= non-significant; ****= P<0.0001. In C) pZic-r.b>EtsVP16 embryos were also 

compared to pZic-r.b>EtsWRPW embryos (Fischer’s exact test, P<0.0001). 

 

 

Figure 5  

The pGsx[-365, +11] sequences contain a Snail and Notch response element. Graphs show the 

mean and standard deviation of percentages of neurula stage embryos positive for β-galactosidase 

activity in the neural cells under the conditions indicated. Above each histogram bar is the total 

number of embryos analysed, with the number of independent experiments indicated in the 

brackets. A) Embryos electoporated with pGsx[-365, +11] and treated with DAPT. B) Embryos 

electoporated with pGsx[-365, +11] or co-electroporated with pGsx[-365, +11] and pEtr>Snail. 

Statistical tests compared each experimental condition (blue bars) to the corresponding controls (red 

bars). For the statistical tests, contingency tables were made with the proportions of embryos 

positive or negative (Supplementary table 3) and analysed by Fischer’s exact test. ****= P<0.0001. 

 

Figure 6 

Role of Six3/6 in Gsx gene regulation. A, B, D) Graphs show the mean and standard deviation of 

percentages of neurula stage embryos positive for β-galactosidase activity in the neural cells or for 

Gsx gene expression, under the conditions indicated. Above each histogram bar is the total number 

of embryos analysed, with the number of independent experiments indicated in the brackets. A) Gsx 

expression in embryos electroporated with pEtr>LacZ or pEtr>Six3/6. Each half embryo was 

scored independently. B) Neural β-galactosidase activity in embryos electoporated with pGsx[-365, 

+11] or co-electroporated with pGsx[-365, +11] and pEtr>Six3/6. C) Expression of Gsx in Six3/6-

MO-1 or Six3/6-MO-3 injected embryos. At late neurula stages, ectopic Gsx is visible in anterior 

cells (row IV) of Six3/6-MO injected embryos (red arrows). Numbers indicate total number of 

embryos analysed with numbers in brackets indicating the number of independent experiments. The 

graph shows the proportion of embryos with ectopic row IV Gsx gene expression. D) Neural β-

galactosidase activity in embryos electoporated with the pGsx constructs and pEtr>Six3/6 as 

indicated below. On the right are representative embryos. Statistical tests compared each 

experimental condition to the corresponding controls. For the statistical tests, contingency tables 

were made with the proportions of embryos (where appropriate-positive, negative, weak, ectopic) 

(Supplementary table 3) and analysed by Fischer’s exact test (B, C) or Chi square (A, D). ****= 

P<0.0001. 
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Figure 7 

The [-235, +11] sequences contain a temporal regulatory element. Top: Graph shows the mean and 

standard deviation of percentages of embryos with β-galactosidase activity in the neural cells in 

embryos electoporated with pGsx[-365, +11] or pGsx[-365, -236]bpBra at the 6-row neural plate 

stage, 30 minutes later (+30 minutes) or 60 minutes later (+60 minutes). Above each histogram bar 

is the total number of embryos analysed, with the number of independent experiments indicated in 

the brackets. Below are representative embryos at +30 minutes and +60 minutes time points. Rows 

III and IV and columns 2 and 3 are labelled to show staining patterns. Below each representative 

embryo panel are the respective percentages of positive embryos that displayed ectopic anterior 

(row IV) or lateral (column 3) β-galactosidase activity. Statistical tests compared each experimental 

condition to the corresponding controls. For the statistical tests, contingency tables were made with 

the proportions of embryos positive or negative (Supplementary table 3) and analysed by Fischer’s 

exact test. ns= non-significant; ****= P<0.0001. 

 

Figure 8 

A schematic representation of the cis-regulatory region of Ciona Gsx, summarizing our main 

conclusions. 
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Supplementary Figures 

 

Supplementary Figure 1 

Deletion of the -278 to -121 sequences from the pGsx[-3857, +11] construct. Top is a schematic 

representation of the constructs analysed. The graph shows the mean and standard deviation of 

percentages of neurula stage embryos positive for β-galactosidase activity in the neural cells. Above 

each histogram bar is the total number of embryos analysed, with the number of independent 

experiments indicated in the brackets. The basal promoter was not removed from this construct 

since the Gsx[-120, +11] sequences are able to drive expression of an Otx enhancer (Bertrand et al, 

2003).  

 

Supplementary Figure 2 

A serial window deletion across the -256 to -100 region in pGsx[-297, -100]bpbra>LacZ. A) 

Deleted regions are indicated as Dn (example D1, D2 etc). Positions used in previous deletion 

analysis are indicated.The green bar indicates a perfect match to the Su(H) consensus binding site. 

B) The graph shows the mean and standard deviation of percentages of neurula stage embryos 

positive for β-galactosidase activity in the neural cells. Above each histogram bar is the total 

number of embryos analysed, with the number of independent experiments indicated in the 

brackets. Statistical tests compared each experimental condition (blue bars) to the corresponding 

control (red bar). For the statistical tests, contingency tables were made with the proportions of 

embryos positive or negative (Supplementary table 3) and analysed by Fischer’s exact test. ns= non-

significant; *= P<0.05; ** =P< 0.01; ***= P<0.001; ****= P<0.0001. 

 

Supplementary Figure 3  

In silico predicted binding profiles for 3 different transcription factors, Six3/6, Snail and Ets on the 

region from 5510 to 5511 of chromosome 2, based on SELEX-seq data. The -365 to +11 sequences 

are depicted by the blue box. The first group of tracks (GSX-CI-CS-NORMALIZE_CI-8SELEX) 

attributes to each base a score reflecting the predicted affinity of the TFs to the target DNA, based 

on SELEX-seq 6-mer enrichment counts (see methods). The second group of tracks (GSX-CI-CS-

PEAKS_NORMALIZE_CI-8SELEX) only represents the local maxima (subsequently called peaks) 

of the previous group of tracks. The third group of tracks (GSX-CI-CS-

10PER_PEAKS_NORMALIZE_CI-8SELEX) shows only the top 10% highest peaks. In the fourth 

group of tracks (GSCI-CS-5CONS_10PER), are only kept the peaks conserved between the two 

species (see methods) to which we associated a score value obtained by multiplying the peak 
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heights in both species. The tracks KH2012 transcript model show the position of the Gsx gene. The 

bottom track shows the local score of sequence conservation between Cirobu and Cisavi.   

 

Supplementary Figure 4 

The Six3/6-MOs recognise their target sites. A) Construct used in assay designed to test whether the 

Six3/6-MOs act as sequence specific translational blockers. 2.1kb of the upstream regulatory 

sequences of Six3/6 (blue), containing the two non-overlapping MO target sites, were fused (red) 

with Venus YFP (green). This construct, pSix3/6>Venus, was injected into embryos with or without 

a Six3/6-MO and assayed for YFP protein in the anterior nervous system (B). B) On the left are 

confocal stacks of control (pSix3/6>Venus) and MO-injected (pSix3/6>Venus +MO) larva. The 

proportion of embryos scored for positive, weak (barely detectable) or negative detection of YFP 

protein are indicated on the graph. Fischer’s exact tests compared MO injected embryos to controls. 

****= P<0.0001. 

 

 

Supplementary Table 1 

Primer sequences used to generate the deletion series presented in Figure 2.  

 

Supplementary Table 2 

Primer sequences used to generate the window deletion series presented in Figure 3 and 

Supplementary Figure 2.  

 

Supplementary Table 3 

Contingency tables used for the Fisher’s exact and Chi square statistical tests. 
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