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CONSTRUCTION OF ASYMMETRIC CHUDNOVSKY ALGORITHMS WITHOUT
DERIVATED EVALUATION FOR MULTIPLICATION IN FINITE FIELDS

STÉPHANE BALLET, NICOLAS BAUDRU, ALEXIS BONNECAZE, AND MILA TUKUMULI

Abstract.
The Chudnovsky and Chudnovsky algorithm for the multiplication in extensions of finite fields provides

a bilinear complexity which is uniformly linear with respect to the degree of the extension. Recently, Ran-
driambololona has generalized the method, allowing asymmetry in the interpolation procedure and leading
to new upper bounds on the bilinear complexity. In this article, we first translate this generalization into
the language of algebraic function fields. Then, we propose a strategy to effectively construct asymmetric
algorithms using places of higher degrees and without derivated evaluation. Finally, we provide examples of
three multiplication algorithms along with their Magma implementation: in F1613 using only rational places,
in F45 using also places of degree two, and in F25 using also places of degree four.

Keywords: Multiplication algorithm, bilinear complexity, interpolation on algebraic curve, finite field.

1. Introduction

Let q be a prime power, Fq the finite field with q elements and Fqn the degree n extension of Fq. Among
all algorithms of multiplications in Fqn , those based on Chudnovsky-Chudnovsky method [18] are known to
provide the lowest bilinear complexity. This method is based on interpolation on algebraic curves defined
over a finite field and provides a bilinear complexity which is linear in n. The original algorithm (called here
CCMA) uses only points of degree 1, with multiplicity 1. Ballet and Rolland [8, 10] and Arnaud [1] improved
the algorithm introducing interpolation at points of higher degree or higher multiplicity. The symmetry of
the CCMA construction involves 2-torsion points that represent an obstacle to the improvement of upper
bilinear complexity bounds. To eliminate this difficulty, Randriambololona [23] allowed asymmetry in the
interpolation procedure, and then Pieltant and Randriambololona [22] derived new bounds, uniform in q,
of the bilinear complexity. Unlike symmetric constructions, no effective implementation of this asymmetric
construction has been done yet. In this article, we construct explicitly such multiplication algorithms for
finite extensions of finite fields.

1.1. Multiplication algorithm and tensor rank. Let q be a prime power, Fq the finite field with q ele-
ments and Fqn the degree n extension of Fq. The multiplication of two elements of Fqn is an Fq-bilinear appli-
cation from Fqn×Fqn onto Fqn . Then it can be considered as an Fq-linear application from the tensor product
Fqn ⊗Fq Fqn onto Fqn . Consequently, it can also be considered as a tensor Tm of Fqn? ⊗Fq Fqn

? ⊗Fq Fqn where
? denotes the dual. When Tm is written

(1) Tm =

r∑
i=1

x?i ⊗ y?i ⊗ ci,

where the r elements x?i as well as the r elements y?i are in the dual Fqn? of Fqn while the r elements ci are
in Fqn , the following holds for any x, y ∈ Fqn :

x · y =

r∑
i=1

x?i (x)y?i (y)ci.

The decomposition (1) is not unique.

Definition 1.1. Every expression

x · y =

r∑
i=1

x?i (x)y?i (y)ci

defines a bilinear multiplication algorithm U of bilinear complexity µ(U) = r. Such an algorithm is said
symmetric if xi = yi for all i.

Definition 1.2. The minimal number of summands in a decomposition of the tensor Tm of the multiplication
is called the bilinear complexity (resp. symmetric bilinear complexity) of the multiplication and is denoted
by µq(n) (resp. µsymq (n)):

µq(n) = min
U
µ(U)
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where U is running over all bilinear multiplication algorithms (resp. all bilinear symmmetric multiplication
algorithms) in Fqn over Fq.

1.2. Known results. In 1979, Winograd proved [28] that optimal multiplication algorithms realizing the
lowest bilinear bound belong to the class of interpolation algorithms. Then, in 1988, Chudnovsky and
Chudnovsky introduced a method [18] to prove the linearity [4] of the bilinear complexity of the multiplication
in finite extensions of a finite field. In doing so, they proposed the first known multiplication algorithm using
interpolation on non trivial algebraic curves over Fq. This original algorithm, that we call in this article
CCMA, only uses points of degree 1, with multiplicity 1. Later, several studies focused on the qualitative
improvement of this algorithm (for example [8, 1, 17]) allowing interpolation at points of higher degree, or
with higher multiplicity. In parallel, improvements of upper bounds (for example [7, 12]) and asymptotic
upper bounds (for example [26, 11]) of the bilinear complexity were obtained.

The first known effective finite field multiplication through interpolation on algebraic curves was proposed
by Shokrollahi and Baum [14]. They used the Fermat curve x3+y3 = 1 to construct a multiplication algorithm
over F44 with 8 bilinear multiplications. In [5], Ballet proposed one over F16n where n ∈ [13, 14, 15], using
the hyperelliptic curve y2 + y = x5 of genus 2, with 2n + 1 bilinear multiplications. Notice that these
aforementioned two algorithms only used rational points, with multiplicity 1. In 2009, Cenk and Özbudak
proposed in [17] an explicit elliptic multiplication algorithm in F39 with 26 bilinear multiplications. To this
end, they used the elliptic curve y2 = x3 + x + 2, combining the ideas of using points of higher degree and
higher multiplicity. In fact, few studies have been devoted to the effective construction of Chudnovsky type
algorithms, and in particular when the degree of extensions reaches cryptographic size. In 2013, Ballet et
al. [3] detailed a multiplication algorithm in F357 with 234 bilinear multiplications using the elliptic curve
y2+2x3+2x2+1 = 0 with points of degree at most 4 and multiplicity at most 3. In 2015, Atighehchi et al. [2]
proposed a model allowing parallel computation, in which an ingenious use of normal bases provides efficient
algorithms for both multiplication and exponentiation. They detailed an implementation in the finite field
F1613 using the hyperelliptic curve y2 + y = x5 of genus 2. In 2012, Riandriambololona [23] introduced an
asymmetric algorithm which generalizes the Chudnovsky algorithm and leads to better bounds, uniform in q,
of the bilinearity. When the genus g of the curve is equal to 1, it is known [3] that an asymmetric algorithm can
always be symmetrized (i.e. there always exists a symmetric version of an asymmetric algorithm). However,
for greater values of g, it may not be the case. Thus, it is of interest to know an effective construction of this
asymmetric algorithm. So far, no effective implementation has been proposed for such an algorithm. In this
article, we detail a strategy to effectively construct asymmetric algorithms with higher degree but without
derivated evaluation.

1.3. Organization of the paper and new results. In Section 1, we define the bilinear complexity of
the multiplication in any extension of finite field and we recall the main known related results. In Section
2, we give an explicit translation of the generalization of CCMA given by Randriambololona [23, Theorem
3.5]. Then in Section 3, by defining a new design of this algorithm, we give a strategy of construction and
implementation. In particular, thanks to a suitable representation of the Riemann-Roch spaces, we present
the first construction of asymmetric effective algorithms of multiplication in finite fields. These algorithms
are tailored to hardware implementation and they allow computations to be parallelized while maintaining a
low number of bilinear multiplications. In Section 4, we give an analysis of the not asymptotical complexity
of this algorithm. Finally, in Sections 5, 6, and 7, we give examples with the finite field F1613 using only
rational places, F45 using also places of degree two and F25 using also places of degree four.

2. Multiplication algorithms of type Chudnovsky : Generalization of Randriambololona

In this section we present a generalization of Chudnovsky type algorithms, introduced in [23, Theorem
3.5] by Randriambololona, which is possibly asymmetric. Since our aim is to describe explicitly the effective
construction of this asymmetric algorithm, we transform the representation of this algorithm, initially made in
the abstract geometrical language, in the more explicit language of algebraic function fields. A comprehensive
course on algebraic function fields can be found in [27]. Only the elementary terminology used along this
paper is introduced.

Let F/Fq be an algebraic function field over the finite field Fq of genus g(F ). We denote by P1(F/Fq) the
set of places of degree one of the algebraic function field F/Fq and by N1(F/Fq) its cardinality. If D is a
divisor, L(D) denotes the Riemann-Roch space associated to D. We denote by OQ the valuation ring of the
place Q and by FQ its residue class field OQ/Q which is isomorphic to Fqdeg Q where degQ is the degree of
the place Q.

In the framework of algebraic function fields, the result [23, Theorem 3.5] of Randriambololona can be
stated as in Theorem 2.1. Note that we do not take into account derivated evaluations, since we are not
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interested in asymptotic results. It means that we describe this asymmetric algorithm with the divisor
G = P1 + · · ·+ PN where the Pi are pairwise disctinct closed points of degree degPi = di.

Let us define the following Hadamard product in Fql1 × Fql2 × · · · × FqlN , where the li’s denote positive
integers, by (u1, . . . , uN )� (v1, . . . , vN ) = (u1v1, . . . , uNvN ).

Theorem 2.1. Let F/Fq be an algebraic function field of genus g over Fq. Suppose there exists a place Q of
degree n. Let P = {P1, . . . , PN} be a set of N places of arbitrary degree not containing the place Q. Suppose
there exist two effective divisors D1, D2 of F/Fq such that:

(i) The place Q and the places of P are not in the support of the divisors D1 and D2.
(ii) The natural evaluation maps Ei for i = 1, 2 defined as

Ei :

{
L(Di) −→ Fqn ' FQ
f 7−→ f(Q)

are surjective.
(iii) The natural evaluation map

T :

{
L(D1 +D2) −→ Fqdeg P1 × Fqdeg P2 × · · · × Fqdeg PN

f 7−→ (f(P1), f(P2), . . . , f(PN ))

is injective.
Then for any two elements x, y in Fqn , we have:

xy = EQ ◦ T−1|Im T

(
T ◦ E−11 (x)� T ◦ E−12 (y)

)
,

where EQ denotes the canonical projection from the valuation ring OQ of the place Q in its residue class field
FQ, ◦ the standard composition map, T−1|Im T the restriction of the inverse map of T on the image of T , E−1i
the inverse map of the restriction of the map Ei on the quotient group L(Di)/ kerEi and � the Hadamard
product in Fqdeg P1 × Fqdeg P2 × · · · × Fqdeg PN ; and

µq(n) ≤
N∑
i=1

µq(degPi).

Remark 2.2. The condition D1 = D2 (modulo the group of principal divisors) is not a sufficient condition to
have a symmetric algorithm. Indeed, note that even if D1 = D2 then this algorithm can be not symmetric in
the sens of Definition (1.1) if it uses places of degree strictly greater than one and if the bilinear multiplications
in the residue class fields of these places are not computed (via the operation �) with a symmetric algorithm.
However, for simplicity, we will say that an algorithm of type Chudnovsky is symmetric when D1 = D2

(modulo the group of principal divisors). Indeed, the interest of such an asymmetric algorithm is to avoid the
problem of 2-torsion elements in the divisor class group of the algebraic function field F/Fq in order to have
more flexibility in the choice of the algebraic function field F/Fq since the conditions (ii) and (iii) become
easier to satisfy (cf. [23, Remark 3.7]).

Note also that in this presentation, we require that the divisors D1 and D2 are positive divisors in contrast
to Theorem 3.5 in [23]. Indeed, in our context of effective construction, it is important to have L(Di) ⊆
L(D1 +D2), which is the case if the divisors D1 and D2 are positive divisors (cf. Remark 3.1).

Finally, for simplicity, we will use the same representation for Fqdeg Pi and Fqdeg Pj when degPi = degPj .
Actually, we could only suppose that the products in Fqdeg Pi and Fqdeg Pj use bilinear multiplication algorithms
having the same bilinear complexity.

3. Effective algorithm

3.1. Method and strategy of implementation. The construction of the algorithm is based on the choice
of the place Q of degree n, the effective divisors D1 and D2 of degree n+ g − 1, the bases of spaces L(D1),
L(D2) and L(D1 +D2) and the basis of the residue class field FQ of the place Q.

In practice, following the ideas of [4], we take as a divisor D1 one place of degree n+ g − 1. This has the
advantage to solve both the problem of the support of divisor D1 and the problem of the effectivity of the
divisor D1. For the same reasons, the divisor D2 is also chosen as a place of degree n+ g − 1. Furthermore,
we require additional properties described below.

3.2. Finding good places D1, D2 and Q. In order to obtain the good places, we draw them at random
and check that they satisfy the required conditions. We proceed as follows:

(1) We draw at random an irreducible polynomial Q(x) of degree n in Fq[X] and check that this poly-
nomial is:
(a) Primitive.
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(b) Totally decomposed in the algebraic function field F/Fq (which implies that there exists a place
Q of degree n above the polynomial Q(x)).

(2) We choose a place Q of degree n among the places of F/Fq lying above the polynomial Q(x).
(3) We draw at random a place D1 of degree n+ g− 1 and check that D1 −Q is a non-special divisor of

degree g − 1 i.e. dimL(D1 −Q) = 0.
(4) We draw at random a place D2 of degree n+ g− 1 and check that D2 −Q is a non-special divisor of

degree g − 1 i.e. dim(D2 −Q) = 0.

Remark 3.1. Clearly, our method relies on the existence of the places Q, D1 and D2 as defined above and
such that D1 −Q and D2 −Q are non-special divisors of degree g − 1.

A sufficient condition of existence of Q relies on the existence of at least one place of degree n given by
the following inequality [27, Corollary V.2.10 (c)]:

2g + 1 ≤ q
n−1
2

(
q

1
2 − 1

)
.

Then, we are sure of the existence of a non-special divisor of degree g − 1 when q ≥ 4 [6]. The larger q
is, the larger the probability to draw a non-special divisor of degree g − 1 becomes (Proposition 5.1 [13]),
but not necessarily as a difference of two places: this is an open problem. However, looking for non-special
divisors of degree g − 1 as a difference of two places has many advantages.

Most of all, this solves easily the problem of the support of divisors D1 and D2 (condition (i) of Theorem
2.1) as well as the problem of the effectivity of these divisors. Indeed, in our context of construction, it is
important to have L(Di) ⊆ L(D1 + D2), which is the case if the divisors D1 and D2 are effective divisors.
However, the property to have simultaneously an effective divisor (with the required properties) without
having given places in its support is difficult to obtain theoretically because the method of the support moving
(cf. [21]), which is a direct consequence of Strong Approximation Theorem (cf. [27, Proof of Theorem I.6.4]),
has the drawback to imply the loss of effectivity.

Furthermore, in practice, it is easy to find Q and the divisors Di satisfying the required properties since
there exist many such places in our context. However, it is not true in the general case. For instance, this
fails when we consider an elliptic curve with only one rational point since for any elliptic curve, there exists
a non-special divisor of degree g − 1 = 0 if and only if the divisor class number h is > 1, i.e. N1 ≥ 2 (cf. [6,
Section 3.2]).

3.3. Choosing good bases of the spaces.

3.3.1. The residue field FQ. In Subsection 3.2, we chose a place Q of degree n lying above a primitive
polynomial Q(x) in Fq[X]. Then we identify the residue class field FQ with Fqn and set as representation
basis of Fqn the canonical basis BQ = (1, α, α2, ..., αn−1) generated by a root α of Q(x). Note that if we wish
to use a normal basis as a representation basis, it is convenient to find a place Q above a normal polynomial
Q(x) and to make a change of basis between the canonical basis and the normal basis (α, αq, αq

2

..., αq
n−1

).
However, even in this case, it is necessary in our algorithm to preserve the canonical basis as basis of the
residue field FQ because we need to have the constant component in the bases of the Riemann-Roch spaces
L(Di) for i ∈ {1, 2} (cf. Section 3.3.2). From now on, we identify Fqn to FQ, as the residue class field FQ of
the place Q is isomorphic to the finite field Fqn .

3.3.2. The Riemann-Roch spaces L(D1) and L(D2). Clearly, the choice of Di, i ∈ {1, 2} and Q of Section 3.2
implies that the maps Ei of Theorem 2.1 are isomorphisms, since deg(Di) = n + g − 1, dimL(Di − Q) = 0
and L(Di − Q) = Ker(Ei). Thereby, we choose as basis of L(Di) the reciprocal image BDi

of the basis
BQ = (φ1, . . . , φn) of FQ by the evaluation map Ei, namely BDi

= (E−1i (φi), . . . , E
−1
i (φn)). Note that by

Section 3.3.1, the choice of the basis of the residue field FQ implies that φ1 = 1 and so E−11 (1) = E−12 (1) = 1.
Let us denote BDi

= (fi,1, ..., fi,n) with fi,1 = 1 for i = 1, 2.

3.3.3. The Riemann-Roch space L(D1 + D2). Note that since D1 and D2 are effective divisors, we have
L(D1) ⊂ L(D1 +D2) and L(D2) ⊂ L(D1 +D2).

Lemma 3.2. Let D1 and D2 be two effective divisors with disjoint supports. Then

L(D1) ∩ L(D2) = Fq.

Proof. It is clear that Fq ⊂ L(D1) ∩ L(D2) because the divisors are effective. Suppose that the function
f ∈ L(D1) ∩ L(D2) is such that f /∈ Fq. Then there exist P1 in the support of D1 and P2 in the support of
D2 such that vP1

(f) ≤ −1 and vP2
(f) ≤ −1. But then the function f admits a pole of order at least 1 at P1

and a pole of order at least 1 at P2, which is impossible because the supports are disjoint. So, f ∈ Fq and
the proof is complete. �
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Proposition 3.3. Let D1, D2 and Q be places having the properties described in (3.2). Consider the map
Λ : L(D1 + D2) → FQ such that Λ(f) = f(Q) for f ∈ L(D1 + D2). There exists a vector space M ⊆ ker Λ
of dimension g such that

L(D1 +D2) = L(D1)⊕ Lr(D2)⊕M,

where Lr(D2) is such that
L(D2) = Fq ⊕ Lr(D2)

and ⊕ denotes the direct sum. In particular, if g = 0, thenM = KerΛ is equal to {0}.

Proof. The divisors D1 and D2 which are effective divisors of degree n+ g− 1 have the same dimension n by
Section 3.3.2. Moreover, as deg(D1 +D2) > 2g−2, the divisor D1 +D2 is non-special and dimL(D1 +D2) =
2n+g−1. Hence, dimKerΛ = n+g−1 and by Lemma 3.2, the spaces L(D1) and Lr(D2) consist on a direct

sum of dimension dim

(
L(D1) ⊕ Lr(D2)

)
= 2n − 1. In Section 3.3.2, we have showed that Ker(Ei) = {0}.

Thus, the set L(Di) ∩KerΛ = {0} as well. Hence, there exists a vector space M ⊆ KerΛ of dimension g
which gives the result. �

Hence, we choose as basis of L(D1 +D2) the basis BD1+D2
defined by:

BD1+D2 = (f1, . . . , fn, fn+1, . . . , f2n+g−1)

where BD1 = (f1, . . . , fn) is the basis of L(D1), (fn+1, . . . , f2n−1) is a basis of Lr(D2) such that fn+j =
f2,j+1 ∈ BD2

with BD1
and BD2

defined in Section 3.3.2 and BM = (f2n, . . . , f2n+g−1) is a basis ofM .

3.4. Product of two elements in Fqn . In this section, we use as representation bases of spaces FQ, L(Di)
(i ∈ {1, 2}), L(D1 +D2), the bases defined in Section 3.3. The product of two elements in Fqn is computed by
the algorithm of Chudnovsky and Chudnovsky. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two elements of
Fqn given by their components over Fq relative to the chosen basis BQ. According to the previous notation,
we can consider that x and y are identified to the following elements:

fx =

n∑
i=1

xif1,i ∈ L(D1) and fy =

n∑
i=1

yif2,i ∈ L(D2).

The product fxfy of the two elements fx and fy is their product in the valuation ring OQ. This product
lies in L(D1 + D2) since D1 and D2 are effective divisors. We consider that x and y are respectively
the elements fx and fy embedded in the Rieman-Roch space L(D1 + D2), via respectively the embeddings
Ii : L(Di) −→ L(D1+D2) defined by I1(fx) and I2(fy) as follows. If, fx and fy have respectively coordinates
fxi and fyi in BD1+D2 where i ∈ {1, . . . , 2n + g − 1}, we have: I1(fx) = (fx1 := x1, . . . , fxn := xn, 0, . . . , 0)
and I2(fy) = (fx1 := y1, 0, . . . , 0, fyn+1 := y2, . . . , fy2n−1 := yn, 0, . . . 0). Now it is clear that knowing x (resp.
y) or fx (resp. fy) by their coordinates is the same thing.

Theorem 3.4. Let PMs be the projection of L(D1 +D2) ontoMs = L(D1)⊕Lr(D2) and let Λ be the map
defined as in Proposition (3.3). Then, for any elements x, y ∈ Fqn , the product of x by y is such that

xy = Λ ◦ PMs

(
T−1|Im T

(
T ◦ I1 ◦ E−11 (x)� T ◦ I2 ◦ E−12 (y)

))
,

where ◦ denotes the standard composition map, T−1|Im T the restriction of the inverse map of T on the image
of T , and � the Hadamard product as in Theorem 2.1.

Proof. Let Fqn be a finite extension of Fq of degree n with the representation defined in Section 3.3.1. For
any two elements x, y ∈ Fqn , there exist two elements fx and fy respectively in L(D1) and L(D2) defined as
in Section 3.3.2 such that E1(fx) = fx(Q) = x and E2(fy) = fy(Q) = y where f(Q) denotes the class of f in
the residue class field FQ of the place Q. Thus,

xy = fx(Q)fy(Q) = (fxfy)(Q)

and so computing the product xy is equivalent to computing the product fxfy. Moreover, since the divisors
D1 and D2 are effective by the assumptions of Theorem 2.1 and Section 3.1, we have < L(D1)L(D2) >⊂
L(D1+D2) where< L(D1)L(D2) > denotes the vector space generated by the products fxfy with fx ∈ L(D1),
fy ∈ L(D2) and so fxfy ∈ L(D1 + D2). Now, the principle of the algorithm is to compute fxfy via the
evaluation map T . In this aim, we represent the elements fx and fy in L(D1 + D2) respectively by I1(fx)
and I2(fy) defined in this section. Then by Theorem 2.1,

h = fxfy = T−1|Im T (T ◦ I1(fx)� T ◦ I2(fy)) and h(Q) = xy.

Then, the proof is complete since h(Q) = Λ ◦ PMs(h). �
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We can now present the setup algorithm and the multiplication algorithm. Note that the setup algorithm
is only done once.

Algorithm 1 Setup algorithm

INPUT: F/Fq, Q,D1, D2, P1, . . . , PN .
OUTPUT: T and T−1.

(1) The representation of the finite field Fq =< a >, where a is a primitive element i.e. a generator of the
associated cyclic group, is fixed.

(2) The function field F/Fq, the place Q, the divisors D1 and D2 and the points P1, . . . , PN are such that
Conditions (ii) and (iii) in Theorem 2.1 are satisfied. In addition, we require that

∑
1≤i≤N degPi =

2n+ g − 1.
(3) Represent Fqn in the canonical basis BQ = {1, α, α2, ..., αn−1}, where Fqn =< α > with α a primitive

element as in Section 3.3.1.
(4) Construct a basis (f1, . . . , fn, fn+1, . . . , f2n+g−1) of L(D1 + D2) where (f1, . . . , fn) is the basis of
L(D1), (f1, fn+1, . . . , f2n−1) the basis of L(D2) and (f2n, . . . , f2n+g−1) the basis of M, defined in
Section 3.3.2.

(5) Compute the matrices T and T−1.
(6) Compute the matrice Λ.

Note that any element z of the field Fqn is known by its components relatively to the canonical basis BQ:
z = (z1, . . . , zn) ∈ Fqn (where zi ∈ Fq). Then, we have two ways to represent z in our algorithm: embedding
z in L(D1 +D2) via I1 ◦ E−11 or via I2 ◦ E−12 . When we want to multiply two elements x and y, we choose
conventionally to represent x by I1 ◦ E−11 (x) and y by I2 ◦ E−12 (y).

Algorithm 2 Multiplication algorithm

INPUT: x = (x1, . . . , xn) and y = (y1, . . . , yn).
OUTPUT: xy.

(1) Compute

 z1,d1
...

zN,dN

 =



z1
...
zn
zn+1

...
z2n+g−1


= T



x1
...
xn
0
...
0


and

 t1,d1
...

tN,dN

 =



t1
...
tn
tn+1

...
t2n+g−1


= T



y1
0
...
0
y2
...
yn
0
...
0



.

where
∑N
i=1 di = 2n+ g − 1 and (zi,j , ti,j) ∈ (Fqdj )2 and (zi, ti) ∈ (Fq)2.

(2) Compute the Hadamard product u = (u1,d1 , . . . , uN,dN ) = (u1, . . . , u2n+g−1), where ui,di = zi,diti,di ,
in Fqd1 × Fqd2 × · · · × FqdN as in Theorem 2.1.

(3) Compute w = (w1, . . . , w2n+g−1) = T−1(u).
(4) Extract w′ = (w1, . . . , w2n−1) (remark that in the previous step we just have to compute the 2n − 1

first components of w).
(5) Return xy=Λ(w′).

4. Complexity analysis

By Theorem 2.1, the condition (ii) implies dimL(Di) ≥ n. But by Riemann-Roch Theorem, dimL(Di) ≥
−g + 1 + degDi which gives in the least case: degDi ≥ n + g − 1 and so, deg(D1 + D2) ≥ 2n + 2g − 2.
Without loss of generality, we suppose that degDi = n+ g − 1 and so deg(D1 +D2) = 2n+ 2g − 2. In this
case, deg(D1 + D2) ≥ 2g − 1 and then we obtain dimL(D1 + D2) = 2n + g − 1. According to Theorem 2,
Algorithm 2 requires that the natural evaluation map T is injective. A sufficient condition to get injectivity
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is given by the following condition:

(2)
r∑
i|r

iNi > 2n+ 2g − 2

where Ni denotes the number of places of degree i in P and r an integer > 1. Indeed, the kernel of T is
L(D1 + D2 −

∑
P∈P P ) and, under Condition 2, this kernel is trivial since the divisor D1 + D2 −

∑
P∈P P

has negative degree.
In terms of number of multiplications in Fq, the complexity of this multiplication algorithm is as follows:

calculation of z and t needs 2(2n2+ng−n) multiplications, calculation of u needs (2n+2g−2+r) sup1≤i≤r
µq(i)
i

bilinear multiplications and calculation of the 2n − 1 first components of w needs (2n + g − 1)(2n − 1)
multiplications (remark that in Algorithm 2, we just have to compute the 2n − 1 first components of w).
The calculation of xy needs n + g multiplications. The total complexity with respect to the multiplications
is bounded by 8n2 + n(4g − 5) + (2n+ 2g − 2 + r) sup1≤i≤r

µq(i)
i .

The asymptotic analysis of our method needs to consider infinite families of algebraic function fields
defined over Fq with increasing genus (or equivalently of algebraic curves) having the required properties.
The existence of such families follows from that of families of algebraic function fields reaching the Generalized
Drinfeld-Vladut bound of order r (cf. [9]). For example, it is proved in [4] (with rational places i.e. r = 1),
in [8, 10] (with places of degree two i.e. r = 2) and in [7] (with places of degree four i.e. r = 4) from a
specialization of the Chudnovsky type symmetric algorithms on recursive towers of algebraic function fields
of type Garcia-Stichtenoth that the bilinear complexity of the multiplication in any degree n extension of Fq
is uniformly linear in q with respect to n. Good asymptotic bounds are also obtained by using families of
modular Shimura curves [11]. Similarly, Randriambololona improved the uniform (resp. asymptotic) bounds
with an asymmetric algorithm of type Theorem 2.1. Hence, the number of bilinear multiplications of the
algorithm 2.1 is in O(n) when the places used in the algorithm 2.1 have a degree one or two. Moreover,
the genus g of the required curves also necessarily increases in O(n). Consequently, the total number of
multiplications/additions/subtractions of the algorithm 2.1 is in O

(
n2
)
and the total number of bilinear

multiplications is in O
(
n
)
.

Remark 4.1. The general construction of the set-up algorithm involves some random choice of divisors
having prescribed properties over an exponentially large set of divisors. To get a polynomially constructible
algorithm with linear complexity, one needs to construct explicitly (i.e. polynomially) points of corresponding
degrees n on curves of arbitrary genus with many rational points. Unfortunately, so far it is unknown how to
produce such points (cf. [26, Section 4, Remark 5] and [23, Remark 6.6]). Hence, the asymptotic complexity
of such a construction is an open problem. Note that there exists a polynomial time construction of a bilinear
algorithm with linear bilinear complexity for the multiplication of two elements in any extension finite field
[16], but this type of bilinear algorithm is not as performant as algorithms of Chudnovsky type with respect to
the bilinear complexity [16, Section 8], idem for elliptic Chudnovsky type algorithms [3] which are symmetric
with an only quasi-linear bilinear complexity.

5. Multiplication in F16n/F16

Set q = 16 and n = 13, 14, 15. Note that the multiplication algorithms in the extensions of degree
n < 13 are symmetric because they are obtained with rational and elliptic function fields (with the best
possible bilinear complexities of multiplication). Hence, it is only pertinent to consider the multiplication
in extensions of degree ≥ 13 namely with function fields of genus g ≥ 2. From now on, F/Fq denotes the
algebraic function field associated to the hyperelliptic curve X with plane model y2 + y = x5, of genus two.
This curve has 33 rational points, which is maximal over Fq according to the Hasse-Weil bound. We represent
F16 as the field F2(a) = F2[X]/(P (X)) where P (X) is the irreducible polynomial P (X) = X4 +X + 1 and a
denotes a primitive root of P (X) = X4 +X + 1. Let us give the projective coordinates (x : y : z) of rational
points of the curve X:
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P∞ = (0 : 1 : 0) P2 = (0 : 0 : 1) P3 = (0 : 1 : 1)
P4 = (a : a : 1) P5 = (a : a4 : 1) P6 = (a2 : a2 : 1)
P7 = (a2 : a8 : 1) P8 = (a3 : a5 : 1) P9 = (a3 : a10 : 1)
P10 = (a4 : a : 1) P11 = (a4 : a4 : 1) P12 = (a5 : a2 : 1)
P13 = (a5 : a8 : 1) P14 = (a6 : a5 : 1) P15 = (a6 : a10 : 1)
P16 = (a7 : a : 1) P17 = (a7 : a4 : 1) P18 = (a8 : a2 : 1)
P19 = (a8 : a8 : 1) P20 = (a9 : a5 : 1) P21 = (a9 : a10 : 1)
P22 = (a10 : a : 1) P23 = (a10 : a4 : 1) P24 = (a11 : a2 : 1)
P25 = (a11 : a8 : 1) P26 = (a12 : a5 : 1) P27 = (a12 : a10 : 1)
P28 = (a13 : a : 1) P29 = (a13 : a4 : 1) P30 = (a14 : a2 : 1)
P31 = (a14 : a8 : 1) P32 = (1 : a5 : 1) P33 = (1 : a10 : 1)

5.1. Construction of the required divisors.

5.1.1. A place Q of degree n. It is sufficient to take a placeQ of degree n in the rational function field Fq(x)/Fq,
which totally splits in F/Fq. It is equivalent to choose a monic irreducible polynomial Q(x) ∈ Fq[x] of degree
n such that its roots αi in Fqn satisfy TrF2

(α5
i ) = 0 for i = 1, ..., n where the map TrF2

denotes the classical
function Trace over F2 by [20, Theorem 2.25]. In fact, it is sufficient to verify that this property is satisfied
for only one root since a finite field is Galois.

For example, for the extension n = 13, we choose the irreducible polynomial

(3)
Q(x) = x13 + a6x12 + a5x11 + a11x10 + x9 + a12x8+

a7x7 + a7x5 + a2x4 + a11x3 + a8x2 + a6x+ a14.

Let b be a root of Q(x). It is easy to check that TrF2
(b5) = 0, hence the place (Q(x)) of F16(x)/F16 is

totally splitted in the algebraic function field F/Fq, which means that there exist two places of degree n in
F/Fq lying over the place (Q(x)) of F16(x)/F16. For the place Q of degree n in the algebraic function field
F/Fq, we consider one of the two places in F/Fq lying over the place (Q(x)) of F16(x)/F16, namely the orbit
of the F1613-rational point P1i = (αi : βi : 1) where αi is a root of Q(x) and βi = a6α12

i + a13α11
i + aα10

i +
a13α9

i + a8α8
i + aα7

i + a8α6
i + a9α5

i + a5α4
i + a2α2

i + a8αi + a13 for i = 1, ..., 13. Notice that the second place
is given by the conjugated points P2i = (αi : βi + 1 : 1) for i = 1, ..., 13.

5.1.2. The two divisors D1 and D2 of degree n+g-1. For the divisor D1 of degree n+g−1, we choose a place
D1 of degree 14 according to the method used for the place Q. We consider the orbit of the F1614 -rational point
P1
1i = (γi : δi : 1) where γi is a root ofD1(x) = x14+a9x13+a6x12+a7x11+a11x10+a12x9+a10x8+a6x7+a7x6+

a10x5+a14x4+x3+x2+a3x+a and δi = a4γ12i +a8γ11i +a7γ9i +a2γ8i +a3γ7i +a8γ6i +a4γ5i +a14γ4i +γ2i +a6γi+a
3

for i = 1, ..., 14. Notice that the second place is given by the conjugated points T 1
2i = (γi : δi + 1 : 1) for

i = 1, ..., 14.

For the divisor D2 of degree n+ g−1, we choose a place D2 of degree 14 according to the method used for
the place Q. We consider the orbit of the F1614-rational point P2

1i = (γi : δi : 1) where γi is a root of D2(x) =
x14+x2+ax+1 and δi = a5γ12i +a11γ11i +a11γ10i +a8γ9i +a4γ8i +a8γ7i +γ6i +a8γ5i +a2γ4i +a9γ3i +a2γ2i +a2γi+a

7

for i = 1, ..., 14. Notice that the second place is given by the conjugated points T 2
2i = (γi : δi + 1 : 1) for

i = 1, ..., 14.

The place Q and the divisors D1 and D2 satisfy the good properties since the dimensions of the divisor
D1 − Q and D2 − Q are zero which means that the divisors D1 − Q and D2 − Q are non-special of degree
g − 1.

5.2. Construction of required bases.

5.2.1. The basis of the residue class field FQ. We choose as basis of the residue class field FQ the basis BQ
associated to the place Q obtained in Section 5.1.1.

5.2.2. The basis of L(Di) for i=1,2. We choose as basis of the Riemann-Roch space L(Di) the basis BDi

such that Ei(BDi
) = BQ is a basis of FQ as in Section 3.3.2, BD1

= (f1, ..., fn) and BD2
= (f1, fn+1..., f2n−1).

For j ∈ {2, . . . , n}, any element fj of BD1 is such that

fj(x, y) =
fj1(x)y + fj2(x)

D1(x)
,



ASYMMETRIC CHUDNOVSKY MULTIPLICATION ALGORITHMS 9

and for j ∈ {n+ 1, . . . , 2n− 1}, any element fj of BD2
is such that

fj(x, y) =
fj1(x)y + fj2(x)

D2(x)
,

where fj1, fj2 ∈ F16[x]. To simplify, we set fj(x, y) = (fj1(x), fj2(x)). We have:

f1(x, y) = 1,

f2(x, y) = (a13x11 +a10x10 +a3x9 +a10x8 +a14x7 +a11x6 +a8x5 +a11x4 +x3 +ax2 +a11x+a11, a12x14 +
a12x13 + a9x12 + x11 + a8x10 + a13x9 + a12x8 + ax7 + a5x6 + x5 + a13x4 + a5x3 + a12x2 + a4x),

f3(x, y) = (a2x11 + a11x10 + a13x9 + a3x8 + a10x7 + ax6 + a9x5 + a6x4 + a5x3 + a3x2 + a7x+ a14, a12x14 +
a2x13 + a11x12 + a3x11 + a13x10 + a7x9 + a9x8 + a9x7 + a13x6 + ax5 + a5x4 + a12x3 + a13x2 + a8x+ a2),

f4(x, y) = (a8x11 + ax10 + a10x9 + x8 + a8x7 + a14x6 + a6x5 + a3x4 + a14x3 + a3x2 + a6x + a, a3x14 +
a7x13 + a10x12 + a11x11 + a13x9 + a8x8 + a8x7 + a3x6 + a5x5 + a6x4 + a3x3 + x2 + a5x+ a6),

f5(x, y) = (a12x11 + a12x10 + a14x9 + a7x8 + a7x7 + a7x6 + a3x5 + a13x4 + a2x3 + a7x2 + a7x+ a7, a2x14 +
a11x13 + a5x12 + a10x11 + a10x9 + a13x8 + ax7 + a10x6 + a6x5 + a12x4 + a3x3 + a4x2 + a10x+ a12),

f6(x, y) = (a6x11 + a14x10 + x9 + x8 + a4x7 + a2x6 + a7x5 + a13x4 + a4x3 + a12x2 + a5x + a7, a9x14 +
a6x13 + a4x12 + a4x11 + a12x10 + a10x9 + a7x8 + a2x7 + a11x5 + a14x4 + a4x2 + a11x+ a),

f7(x, y) = (a8x11 + a11x10 + a12x9 + a2x8 + a14x7 + a10x6 + a4x5 + a7x4 + a2x3 + a13x + a12, a8x14 +
a10x13 + a14x12 + a7x11 + a5x10 + a13x9 + a13x8 + a12x7 + a7x6 + a8x5 + a12x4 + x3 + a12x2 + a6x+ a10),

f8(x, y) = (a13x11 + ax10 + a11x9 + ax8 + a9x7 + a11x6 + a10x5 + a9x4 + x3 + a4x2 + a6x + 1, a2x14 +
a2x13 + a11x12 + a5x11 + a7x10 + a2x9 + a4x8 + a11x7 + a14x6 + a13x5 + a8x4 + a4x3 + a6x2 + x+ a12),

f9(x, y) = (a10x11 + a6x10 + a12x9 + a12x8 + a7x7 + a3x6 + a12x5 + a2x4 + a6x3 + a12x2 + a6x+ 1, a8x14 +
a11x13 + ax12 + a8x11 + a5x10 + a8x9 + a3x8 + a14x7 + a9x6 + a13x5 + a11x4 + a3x3 + a7x2 + x+ a2),

f10(x, y) = (a14x11 + ax9 + a12x8 + a3x7 + x6 + a7x5 + a11x4 + a14x3 + a8x2 + ax+ a7, a3x14 + a8x13 +
a7x11 + a14x10 + a13x9 + a9x8 + a6x7 + a9x6 + a8x5 + a12x2 + a13x+ a14),

f11(x, y) = (a9x11 + a5x10 + a5x9 + ax8 + a7x7 + a5x6 + a2x5 + a4x4 + a3x3 + a2x2 + ax + a, a10x14 +
a4x12 + a5x11 + a14x10 + a5x9 + a9x7 + a7x6 + a4x5 + a14x4 + a10x3 + a9x2 + a5x+ a3),

f12(x, y) = (a11x11 + a9x10 + a10x9 + a7x8 + a10x6 + a2x5 + a13x4 + a7x3 + a2x2 + a11x + a3, a9x14 +
a11x13 + x12 + a11x11 + x10 + a9x9 + a8x8 + a11x7 + a8x6 + a12x5 + a6x4 + a2x3 + a4x2 + a14x+ a13),

f13(x, y) = (a9x10 +ax9 +a3x8 +a10x7 +a7x6 +a12x4 +a3x3 +a12x2 +a11x+a8, ax14 +a12x13 +a2x12 +
a3x11 + x10 + a12x9 + a3x8 + a14x7 + x6 + a14x5 + a10x4 + a5x3 + a5x2 + a6x+ 1),

f14(x, y) = (a14x11 + a4x10 + a10x9 + a6x8 + a7x7 + a14x6 + a12x5 + ax4 + a5x3 + a4x + a12, a14x14 +
a14x13 + a3x12 + a11x11 + a12x10 + ax9 + a5x8 + a2x7 + a6x6 + a14x5 + a6x3 + a11x2 + a4x+ a9),

f15(x, y) = (a8x11 + a8x10 + a2x9 + a13x8 + a4x7 + ax6 + a7x4 + a3x3 + a9x2 + a5x+ a5, a10x14 + a6x13 +
x12 + a11x11 + a4x10 + a10x9 + a14x8 + a13x7 + a11x6 + ax5 + a12x4 + x2 + a5),

f16(x, y) = (a13x11 + a8x10 + a6x9 + x8 + a12x7 + a9x6 + x5 + a10x4 + a14x3 + a4x2 + a8x+ a2, a7x14 +
a11x13 + x12 + a5x11 + a10x9 + a9x8 + a6x7 + a9x6 + a14x5 + a13x4 + a11x3 + a6x2 + a9x+ a11),

f17(x, y) = (a8x11 +a10x10 +a2x9 +ax8 +a13x6 +ax5 +a9x4 +a3x2 +a4x+a10, a9x14 +a13x12 +a7x11 +
a9x10 + a12x9 + a2x8 + a3x7 + a13x6 + a12x5 + a5x4 + a4x3 + a8x2 + a10x+ a9),

f18(x, y) = (x10 + a5x9 + x8 + a5x7 + a10x6 + a10x5 + a5x4 + a4x3 + a5x2 + a4, a3x14 + a13x13 + a5x12 +
a8x11 + a12x10 + a4x9 + a10x8 + a11x7 + a2x6 + a12x5 + a11x4 + a2x3 + a3x2 + a12x+ a8),
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f19(x, y) = (a8x11 +a13x10 +a6x9 +a6x8 +a4x6 +a10x5 +a4x3 +a3x+1, a14x14 +ax13 +a14x12 +a5x11 +
ax10 + a2x9 + a7x8 + ax7 + a8x6 + a9x5 + a2x4 + a9x3 + a8x2 + a5x+ a12),

f20(x, y) = (ax11 + a6x10 + x9 + a5x8 + a5x7 + a9x6 + a12x5 + a4x4 + x3 + a13x2 + a4x+ 1, ax14 + x13 +
a6x11 + a5x10 + a9x9 + a10x8 + a9x7 + a5x6 + a8x5 + a10x4 + a11x2 + a6x+ a3),

f21(x, y) = (a10x11 +a14x10 +a13x8 +a2x7 +a11x6 +a7x5 +a7x3 +x2 +a4x+a7, a6x14 +a4x13 +a8x12 +
ax11 + a11x10 + a4x9 + a7x8 + ax7 + a9x6 + a12x5 + a6x4 + a4x3 + a2x2 + a5x+ a7),

f22(x, y) = (a10x11 + x10 + a7x8 + x7 + a13x6 + a6x5 + a2x4 + a10x3 + a2x2 + ax + 1, a2x14 + a2x13 +
a3x11 + a11x10 + a10x8 + a11x7 + a11x6 + a12x5 + ax4 + a14x3 + a2x2 + a3x),

f23(x, y) = (a7x11 + a9x10 + a7x9 + a2x8 + a8x7 + a11x6 + a14x5 + a7x4 + a10x3 + a8x2 + a4x, a10x14 +
a8x13 + a5x12 + x11 + a6x10 + a12x9 + a11x8 + a6x7 + a2x6 + a8x5 + a3x4 + a7x3 + a12),

f24(x, y) = (x11 +a5x10 +a3x9 +a10x8 +a10x7 +a4x6 +a14x5 +a8x3 +a3x2 +a6x+a8, a10x13 +a13x12 +
a13x11 + ax10 + a11x8 + a2x7 + ax6 + a2x5 + a2x4 + a8x2 + a6),

f25(x, y) = (a4x11 +a12x10 +a4x9 +a10x8 +a12x7 +a14x6 +a7x5 +a11x4 +a13x3 +a13x2 +a10x+a4, x14 +
a6x13 + a3x12 + a11x11 + a13x10 + a11x9 + a7x8 + a2x7 + a5x6 + a14x5 + a5x4 + a10x3 + a3x2 + a14x+ a5).

5.2.3. The basis of L(D1 + D2). As seen in Section 3.3.3, BD1+D2 = (f1, . . . , fn, fn+1, . . . , f2n+g−1) where,
for j ∈ {1, . . . , 2n− 1}, the fi are defined above. The basis is completed with

f26(x, y) =
g26(x)y + h26(x)

r(x)
and f27(x, y) =

g27(x)y + h27(x)

r(x)

where:

g26(x) = a13x25 + a14x24 + a2x23 + a8x22 + a7x21 + ax19 + a9x18 + a7x17 + a6x16 + a10x15 + a10x14 +
a2x13 + a5x12 + a4x11 + a11x9 + a12x8 + a7x7 + a14x6 + x5 + a8x4 + a9x3 + a7x2,

h26(x) = a13x28 + a11x26 + x25 + a4x24 + a5x23 + a3x22 + a3x21 + x20 + a12x19 + a4x18 + a13x16 + a5x15 +
a11x14 + a6x13 + ax12 + x11 + a8x10 + a8x9 + a12x7 + a2x6 + a2x5 + x4 + a8x3 + a14x2 + a10x+ a10,

g27(x) = a4x25 +a6x24 +a6x23 +a2x22 +a3x21 +a9x20 +a2x19 +a14x18 +a9x17 +a8x16 +a13x15 +a12x14 +
a8x13 + x12 + a3x10 + a4x9 + a12x8 + a6x7 + a2x6 + a14x5 + a5x4 + a4x3 + a4x2 + a5x+ a5,

h27(x) = a9x28 + a5x27 + a6x26 + a4x25 + x24 + a7x23 + a5x22 + a6x21 + x20 + a12x19 + a7x18 + a11x17 +
a8x16 +a7x15 +a6x14 +a4x13 +a7x12 +a3x11 +a9x10 +x9 +a5x8 +a9x7 +a9x6 +a5x5 +x4 +a13x2 +a3x+a2,

r(x) = x28 + a9x27 + a6x26 + a7x25 + a11x24 + a12x23 + a10x22 + a6x21 + a7x20 + a10x19 + a14x18 + x17 +
a3x14 + a9x13 + a10x12 + a7x11 + a2x10 + a13x9 + a10x8 + a11x7 + a6x6 + a10x5 + a9x4 + a7x3 + a6x+ a.

6. Multiplication in F4n/F4

Set q = 4 and n = 4. With the algebraic function field F/Fq defined over F4 associated to the hyperelliptic
curve X with plane model y2 + y = x5, of genus two, we cannot multiply only with places of degree one.
In fact, if we use only places of degree one we get that dim Im(T ) ≤ N1(F/F4) whereas dimL(D1 + D2) =
2n + g − 1 = 9. As a consequence, the evaluation map T is not injective as required in Theorem 2.1 since
N1(F/F4) = 5. We can ask whether there exists another hyperelliptic curve of genus two that allows the
multiplication with only places of degree one in F44 . By definition, an hyperelliptic curve is a covering of
degree two of the projective line P1(Fq). It is clear that the maximal number Nq(g) of rational points of a
projective smooth absolutely irreducible curve of genus g = 2 over Fq is such that Nq(2) ≤ 2q+2. In the case
of q = 4 and g = 2, this bound is least that the bound of Serre-Weil Nq(2) ≤ q + 1 + 2m where m = b2√qc.
Hence, there does not exist a maximal Serre-Weil curve (i.e. attaining the Serre-Weil bound) over F4 of genus
two and N4(2) ≤ 2q + 2 = q + 1 + 2m − 3 = 10. In fact, Serre in [24] proves that N4(2) = 10 and Shabat
in [25] exhibits an optimal (i.e. attaining Nq(g)) curve of genus two over F4, namely the curve of equation
y2 + y = x

x3+x+1 . Clearly, the sufficient Condition (2) fails since N1(F/F4) > 2n+ 2g− 2 implies that n < 4.
Nevertheless, it is still possible to multiply according to Theorem 2.1 with the ten places of degree one of the
algebraic function field F/F4 associated to the curve y2 + y = x

x3+x+1 , by choosing suitable degree n place
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Q and divisors D1 and D2 of F/F4. For instance, using the description given by Magma, we can choose the
n-degree place

Q = (x4 + a2x2 + a2x+ a, (x3 + x+ 1)y + x2 + a2x+ a)

that lies over the place (Q(x)) of the rational field F4(x) defined by Q(x) = x4 + a2x2 + a2x + a, and the
divisors

D1 = (x5 + x4 + x3 + x2 + x+ a2, (x3 + x+ 1)y + a2x3 + a2x2 + a2x+ a2)

and
D2 = (x5 + x+ a, (x3 + x+ 1)y + a2x4 + a2x3 + a2x+ a2)

of degree n + g − 1 = 5 that respectively lie over the places (D1(x)) and (D2(x)) of the rational field F4(x)
defined by D1(x) = x5 + x4 + x3 + x2 + x+ a2 and D2(x) = x5 + x+ a. Indeed, in this case, the divisors D1

and D2 as well as the place Q satisfy the conditions required by Theorem 2.1, namely: dimL(D1 −Q) = 0,
dimL(D2 −Q) = 0 and dimL(D1 +D2 −

∑
Pi∈P1(F/Fq)

Pi) = 0.
Now, suppose that n = 5. In this case, we have dimL(D1 +D2) = 2n+ g − 1 = 11 and still dim Im(T ) ≤

N1(F/F4) = 10. This means that T cannot be injective. Since the curve of equation y2 + y = x
x3+x+1 is

optimal, it is impossible to multiply with only places of degree one in extensions of F4 of degree n ≥ 5.
Consequently, the algorithm has to be modified in order to use places of degree two. It is clear that we need
to use as much as possible places of degree one to minimize bilinear complexity. Therefore, our algorithm
will still use the curve of equation y2 + y = x

x3+x+1 . This curve has N1(F/F4) = 10 rational places and
N2(F/F4) = 4 places of degree two. We represent F4 as the field F2(a) = F2[X]/(P1(X)) where P1(X) is the
primitive irreducible polynomial P1(X) = X2 +X+1 and a denotes a primitive root of P1(X) = X2 +X+1.
As we also use evaluations over places of degree two, we need to define the finite field F16 = F42 as F4-vector
space. So, we represent F42 as the field F4(b) = F4[X]/(P2(X)) where P2(X) is the primitive irreducible
polynomial P2(X) = X2 +X + a and b denotes a primitive root of P2(X) = X2 +X + a.

For the description of the places of degree one, we use the description given by Magma:

P∞,1 = ( 1
x ,

x3+x+1
x3 y + 1

x ) P∞,2 = ( 1
x ,

x3+x+1
x3 y + x+1

x )
P3 = (x, (x3 + x+ 1)y) P4 = (x, (x3 + x+ 1)y + x+ 1)
P5 = (x+ a, (x3 + x+ 1)y + 1) P6 = (x+ a, (x3 + x+ 1)y + x+ 1)
P7 = (x+ a2, (x3 + x+ 1)y + 1) P8 = (x+ a2, (x3 + x+ 1)y + x+ 1)
P9 = (x+ 1, (x3 + x+ 1)y + a) P10 = (x+ 1, (x3 + x+ 1)y + a2).

Note that the first two infinite places lie above the infinite place 1/x of the rational function field Fq(x).
Moreover, if (x : y : z) denotes the projective coordinates of rational points of the curve X, then these infinite
places correspond to the two points to the infinity P∞,1 = (1 : 0 : 0) and P∞,2 = (0 : 1 : 0) of X.

For the description of the places of degree two, we use the description given by Magma:

Q1 = (x2 + ax+ a, (x3 + x+ 1)y + a2x+ a2) Q2 = (x2 + ax+ a, (x3 + x+ 1)y + a2x+ 1)
Q3 = (x2 + a2x+ a2, (x3 + x+ 1)y + ax+ a) Q4 = (x2 + a2x+ a2, (x3 + x+ 1)y + ax+ 1).

Again, we proceed as in Subsection 5.1. We choose an irreducible polynomial Q(x) of degree n = 5 and
two irreducible polynomials D1(x) and D2(x) of degree n+ g − 1 = 6. For instance,

Q(x) = x5 + ax4 + x3 + a2x2 + ax+ 1,
D1(x) = x6 + ax4 + ax2 + x+ a2,
D2(x) = x6 + ax3 + a2x2 + a2.

The degree n place (Q(x)) and the two degree n+ g− 1 places (D1(x)) and (D2(x)) of Fq(x)/Fq totally split
in F/Fq. Then we choose suitable places Q, D1 and D2 of F/Fq lying over the places (Q(x)), (D1(x)) and
(D2(x)) respectively, that is, such that D1 − Q and D2 − Q are non-special divisors of degree g − 1. For
instance, using the description of Magma,

Q = (x5 + ax4 + x3 + a2x2 + ax+ 1, (x3 + x+ 1)y + ax4 + a2x3 + ax2 + a2x+ 1),
D1 = (x6 + ax4 + ax2 + x+ a2, (x3 + x+ 1)y + x5 + a2),
D2 = (x6 + ax3 + a2x2 + a2, (x3 + x+ 1)y + a2x5 + ax2 + a2).

As in Section 3.3.2, we choose as basis of the Riemann-Roch space L(Di) the basis BDi such that Ei(BDi) =
BQ is a basis of FQ. We write BD1 = (f1, ..., fn) and BD2 = (f1, fn+1..., f2n−1). For j ∈ {2, . . . , n} and
k ∈ {n+ 1, . . . , 2n− 1}, any element fj of BD1

and fk of BD2
are respectively of the form:

fj(x, y) =
fj1(x)y + fj2(x)

D1(x)
and fk(x, y) =

fk1(x)y + fk2(x)

D2(x)
,
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where fj1, fj2, fk1, fk2 ∈ F4[x]. To simplify, we set fj(x, y) = (fj1(x), fj2(x)) for all j ∈ {2, 2n−1}. We have:

f1(x, y) = 1,

f2(x, y) = (a2x5 + a2x4 + ax3 + ax+ 1, a2x6 + a2x5 + a2x4 + a2x3 + x2 + ax+ a),

f3(x, y) = (a2x6 + x5 + x3 + ax2 + a2, x6 + x4 + ax3 + ax2 + x+ 1),

f4(x, y) = (ax6 + a2x5 + ax4 + x3 + a2x2, ax6 + ax5 + a2x3 + ax2 + x+ a),

f5(x, y) = (x6 + a2x5 + a2x3 + ax2 + 1, a2x5 + x4 + a2x2 + a2x+ a2),

f6(x, y) = (a2x6 + ax4 + x2 + ax+ a2, ax6 + a2x4 + a2x3 + x),

f7(x, y) = (x6 + x2 + 1, ax4 + ax3 + a2x+ a2),

f8(x, y) = (a2x5 + x4 + a2x3 + ax2 + x, x6 + a2x5 + a2x4 + a2x3 + x2 + a2x+ 1),

f9(x, y) = (x5 + x4 + ax3 + ax+ a2, x6 + a2x5 + ax4 + x3 + a2x2 + a2x),

The basis BD1+D2 = (f1, . . . , f2n+g−1) consists of the fi’s that are defined above for j ∈ {1, . . . , 2n − 1}
and the g = 2 components

f10(x, y) =
g10(x)y + h10(x)

r(x)
and f11(x, y) =

g11(x)y + h11(x)

r(x)

where:

g10(x) = ax12 + x11 + a2x9 + a2x8 + ax7 + ax6 + a2x5 + x3 + x2 + ax,

h10(x) = x12 + a2x9 + ax8 + a2x7 + x6 + ax4 + ax3 + x2 + a2x+ 1),

f11(x) = a2x12 + a2x11 + a2x10 + x7 + ax5 + ax3 + ax2 + a2x+ 1,

h11(x) = x10 + x8 + ax5 + a2x2 + 1,

r(x) = x12 + ax10 + ax9 + x8 + ax7 + x6 + a2x5 + ax4 + ax3 + a2x2 + a2x+ a.

7. Multiplication in F2n/F2

Set q = 2 and g = 2. In this case, it is known that the number of rational places Nq(g) = 6 by the upper
bound of Ihara [19] and the lower bound of Serre [24] and it is not sufficient to multiply in the extensions
of F2 of degree n ≥ 3. Hence, we need to use places of higher degree. Note that as by the above section,
N4(g) = 10 = N1(F/F2) + 2N2(F/F2), we can only multiply in extensions of degree n ≤ 4 if we only use
places of degree one and two (for any curve of genus two) a priori (up to the remark of previous subsection
that the condition of Theorem 2.1 is only a sufficient condition). By consequence, we set n = 5 and we
consider the curve used in Section 6 namely the algebraic function field F/F2 associated to the hyperelliptic
curve X with plane model y2 + y = x

x3+x+1 , of genus two. This curve has N1(F/F2) = 4 rational places,
N2(F/F2) = 3 places of degree two and N4(F/F2) = 2 places of degree four. For the description of the places,
we use the description given by Magma. The places of degree one are :

P∞,1 = ( 1
x ,

x3+x+1
x3 y + 1

x ) P∞,2 = ( 1
x ,

x3+x+1
x3 y + x+1

x )
P3 = (x, (x3 + x+ 1)y) P4 = (x, (x3 + x+ 1)y + x+ 1).

The places of degree two are:

Q1 = (x+ 1) Q2 = (x2 + x+ 1, (x3 + x+ 1)y + 1) Q3 = (x2 + x+ 1, (x3 + x+ 1)y + x+ 1).

And the places of degree four are:

R1 = (x4 + x3 + 1, (x3 + x+ 1)y + x2 + x+ 1) R2 = (x4 + x3 + 1, (x3 + x+ 1)y + x3 + x2).

According to our method, we choose the irreducible polynomial Q(x) = x5 + x3 + 1 of degree n = 5 and
the two irreducible polynomials D1(x) = x6 + x5 + x4 + x + 1 and D2(x) = x6 + x5 + x2 + x + 1 of degree
n+g−1 = 6. The degree n place (Q(x)) and the two degree n+g−1 places (D1(x)) and (D2(x)) of Fq(x)/Fq
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totally split in F/Fq. Then we choose places Q, D1 and D2 of F/Fq lying over these three places and such
that D1 −Q and D2 −Q are non-special divisors of degree g − 1. Using the description of Magma,

Q = (x5 + x3 + 1, (x3 + x+ 1)y + x4 + x+ 1)
D1 = (x6 + x5 + x4 + x+ 1, (x3 + x+ 1)y + x5 + x3 + 1)
D2 = (x6 + x5 + x2 + x+ 1, (x3 + x+ 1)y + x5 + x4 + x).

As in Section 3.3.2, we choose as basis of the Riemann-Roch space L(Di) the basis BDi
such that Ei(BDi

) =
BQ is a basis of FQ. We write BD1

= (f1, ..., fn) and BD2
= (f1, fn+1..., f2n−1). For j ∈ {2, . . . , n} and

k ∈ {n+ 1, . . . , 2n− 1}, any element fj of BD1
and fk of BD2

are respectively of the form:

fj(x, y) =
fj1(x)y + fj2(x)

D1(x)
and fk(x, y) =

fk1(x)y + fk2(x)

D2(x)
,

where fj1, fj2, fk1, fk2 ∈ F4[x]. To simplify, we set fj(x, y) = (fj1(x), fj2(x)) for all j ∈ {2, 2n−1}. We have:

f1(x, y) = 1,

f2(x, y) = (x3 + x+ 1, x6 + x4 + 1),

f3(x, y) = (x4 + x3 + x2 + 1, x4 + x2 + 1),

f4(x, y) = (x5 + x4 + x3 + x, x5 + x3 + x),

f5(x, y) = (x6 + x5 + x4 + x2, x6 + x4 + x2),

f6(x, y) = (x6 + x5 + x4 + x3 + x2 + x+ 1, x5),

f7(x, y) = (x6 + x5 + x3 + 1, x5 + x4 + x2 + 1),

f8(x, y) = (x6 + x2 + 1, x4 + x3 + x2 + x+ 1),

f9(x, y) = (x4 + x3 + x2 + 1, x6 + x3 + x+ 1),

The basis is completed with

f10(x, y) =
(x12 + x8 + x6 + x5 + x2 + x+ 1)y + (x11 + x8 + x5 + x4 + x3 + x2 + x)

r(x)

f11(x, y) =
(x12 + x11 + x9 + x8 + x6 + x)y + (x12 + x10 + x8 + x7 + x6 + x4 + x3 + x2)

r(x)

with r(x) = x12 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + 1.

Appendix A. Magma implementation of the multiplication algorithms in the finite fields

A.1. F1613 over F16.
// Asymmetric version of Chudnovsky multiplication algorithm in GF16^13
// using only places of degree 1

n:=13; g:=2; q:=16;
F16<a>:=GF(16);

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// ALGEBRAIC FUNCTION FIELD WITH CURVE y^2 + y + x^5 OF GENUS 2
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

Kx<x> := FunctionField(F16);
Kxy<y> := PolynomialRing(Kx);
f:=y^2 + y + x^5;
F<c> := FunctionField(f);

//------ find places of higher degree
LP1:=Places(F,1); // 33 degree 1 places
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// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// CHOOSE GOOD PLACE Q AND GOOD DIVISORS D1, D2
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

//------ q<x>:=RandomIrreduciblePolynomial(F16,n);
q := x^13 + a^6 *x^12 + a^5*x^11 + a^11*x^10 + x^9 + a^12 *x^8
+ a^7*x^7 + a^7*x^5 + a^2*x^4 + a^11*x^3 + a^8*x^2 + a^6*x+a^14;

Q := Decomposition(F,Zeros(Kx!q)[1])[1];
K<b>:=ResidueClassField(Q);
"degree of Q is ", Degree(Q); // n

//------ D1 := RandomIrreduciblePolynomial(F16,n+g-1);
D1 := x^14 + a^9*x^13 + a^6*x^12 + a^7*x^11 + a^11*x^10 + a^12*x^9 + a^10*x^8 + a^6*x^7 + a^7*x^6
+ a^10*x^5 + a^14*x^4 + x^3 + x^2 + a^3*x + a;
D1:=Decomposition(F,Zeros(Kx!D1)[1])[1];
D1:=1*D1;

//------ D2:=RandomIrreduciblePolynomial(F16,n+g-1);
D2 := x^14 + x^2 + a*x + 1;
D2:=Decomposition(F,Zeros(Kx!D2)[1])[1];
D2:=1*D2;

//------ Check D1 and D2 are suitable
"D1-Q is special ? ",IsSpecial(D1-Q); // false
"dim L(D1) is ", Dimension(D1); // n
"D2-Q is special ? ", IsSpecial(D2-Q); // false
"dim L(D2) is ", Dimension(D2); // n
"Is D1 equivalent to D2 ? ", D1 eq D2; // false
"dim L(D1+D2) is ", Dimension(D1+D2); // 27

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// CONSTRUCTION OF THE RIEMANN-ROCH SPACES
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

LD1, h1 :=RiemannRochSpace(D1);
BD1 := h1(Basis(LD1));
LD2, h2 :=RiemannRochSpace(D2);
BD2 := h2(Basis(LD2));
LD1D2, h := RiemannRochSpace(D1+D2);

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// SET GOOD BASES
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

//------ Construction of E1=Evalf(Q) and set a good basis for L(D1)
L:=[]; for i in [1..n] do L:=Append(L,ElementToSequence(Evaluate(BD1[i],Q))); end for;
E1:=Transpose(Matrix(L));
BasisLD1 := Matrix(F,1,n,BD1)*Matrix(F,E1^-1);
//BasisLD1;

//------ Construction of E2=Evalf(Q) and set a good basis for L(D2)
L:=[]; for i in [1..n] do L:=Append(L,ElementToSequence(Evaluate(BD2[i],Q))); end for;
E2:=Transpose(Matrix(L));
BasisLD2 := Matrix(F,1,n,BD2)*Matrix(F,E2^-1);
//BasisLD2;

//------ Merge the two previous bases to a basis of L(D1+D2)
L1 := ElementToSequence(BasisLD1);
L2 := ElementToSequence(BasisLD2);
// Concatenate L1 to L2 except the first component of L2
LL := [LD1D2!L1[i] : i in [1..n]] cat [LD1D2!L2[i] : i in [2..n]];
BasisLD1D2 := h(ExtendBasis(LL,LD1D2));

//------ In addition, we require that the two last elements of the basis are evaluated to 0
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X := Transpose(Matrix(F,[ElementToSequence(Evaluate(BasisLD1D2[i],Q)): i in [2*n+g-2..2*n+g-1]]));
TT := Matrix(F,1,n,L1)*X;
BasisLD1D2[2*n+g-2] := BasisLD1D2[2*n+g-2] - ElementToSequence(TT)[1];
BasisLD1D2[2*n+g-1] := BasisLD1D2[2*n+g-1] - ElementToSequence(TT)[2];
BLD1D2 := ExtendBasis([LD1D2!BasisLD1D2[i] : i in [1..n]], LD1D2);
"Basis of BLD1D2 : ";
for i in [1..2*n+g-1] do printf "f%o=",i; BasisLD1D2[i]; end for;
//for i in [1..2*n+g-1] do Evaluate(BasisLD1D2[i],Q); end for;

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// CONSTRUCTION OF T AND T^-1 USING PLACES OF DEGREE ONE
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

// the rows of T are the evaluation on the degree 1 places over F16
ST:=[];
for j:=1 to 2*n+g-1 do

for i:=1 to 2*n+g-1 do
ST:=Append(ST, Evaluate(BasisLD1D2[i], LP1[j]));

end for;
end for;

T := Matrix(2*n+g-1,2*n+g-1, ST);
"Rank of T : ", Rank(T);
TI := T^-1;

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// ALGORITHM FOR THE MULTIPLICATION
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

// ============= FUNCTION MULT =============
// @parameter : VarX, VarY are the coordinates in a canonical basis
// of the elements of (F16)^n to multipliate
// @return : the result of VarX * VarY in the canonical basis of (F16)^n

mult := function(varX, varY)

//------ injection of the coordinates of X into L(D1+D2) using basis BLD1D2
fx := VerticalJoin(varX,ZeroMatrix(F16,n+g-1,1));

//------ injection of the coordinates of Y into L(D1+D2) using basis BLD1D2
Y1 := [varY[1,1]] cat [0 : i in [2..n]] cat [varY[i,1] : i in [2..n]] cat [0,0];
fy := Matrix(F16,2*n+g-1,1,Y1);

//------ Hadamard product u = T(fx)*T(fy)
u:=ZeroMatrix(F16,2*n+g-1,1);
// the products are done in F16 for all coordinates
TFX:=T*fx;
TFY:=T*fy;
for i:=1 to 2*n+g-1 do u[i,1]:=TFX[i][1]*TFY[i][1]; end for;

//------ E_Q(TI(u)) : T^-1 then evaluation in Q
uu:=Matrix(F,TI*u);
result := Evaluate(Matrix(1,2*n+g-1,BasisLD1D2)*uu,Q);
return result;
end function;
// ============= END FUNCTION MULT =============

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// EXAMPLES
//%%%%%%%%%%%%%%%%%%%%%%%%%%%

// Example 1 : (a+b)*(1+a*b+a*b^2) = a*b^3 + a^5*b^2 + a^8*b + a
X1 := Matrix(F16,n,1,ElementToSequence(a+b));
Y1 := Matrix(F16,n,1,ElementToSequence(1+a*b+a*b^2));
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mult(X1,Y1);

// Example 2 : b^5 * (1 + a^2*b^3 + b^4) = b^9 + a^2*b^8 + b^5
X2 := Matrix(F16,n,1,ElementToSequence(b^5));
Y2 := Matrix(F16,n,1,ElementToSequence(1 + a^2*b^3 + b^4));
mult(X2,Y2);

// Example 3 : (a*b + b^2 + a*b^4) * (a*b + b^2 + a*b^4) = a^2*b^8 + b^4 + a^2*b^2
X3 := Matrix(F16,n,1,ElementToSequence(a*b + b^2 + a*b^4));
Y3 := Matrix(F16,n,1,ElementToSequence(a*b + b^2 + a*b^4));
mult(X3,Y3);

// Example 4 : (a*b + b^2 + a*b^4 + b^7 + a*b^12) * (a*b + b^2 + a*b^4) =
// a*b^12 + a^8*b^11 + b^10 + a^2*b^9 + a^8*b^8 + a^3*b^7 + a^9*b^6 + a^11*b^5 +
// a^8*b^4 + a^5*b^3 + a^3*b^2 + a^8*b + a
X4 := Matrix(F16,n,1,ElementToSequence(a*b + b^2 + a*b^4 + b^7 + a*b^12));
Y4 := Matrix(F16,n,1,ElementToSequence(a*b + b^2 + a*b^4));
mult(X4,Y4);

A.2. F45 over F4.

// Asymmetric version of Chudnovsky multiplication algorithm in GF4^5
// In this case, the curve is defined over F4 instead of F16
// and, for n:=5, we must use places of degree 2.
// Note that in GF4^4 (i.e. when n:= 4) it suffices to use degree 1 places.

n:=5; g:=2; q:=4;
F4<a>:=GF(4);

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// ALGEBRAIC FUNCTION FIELD WITH CURVE y^2 + y + x/(x^3 + x + 1) OF GENUS 2
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

Kx<x> := FunctionField(F4);
Kxy<y> := PolynomialRing(Kx);
f:=y^2 + y + x/(x^3 + x + 1);
F<c> := FunctionField(f);

//------ find places of higher degree
LP1:=Places(F,1); // 10 degree 1 places
LP2:=Places(F,2); // 4 degree 2 places

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// CHOOSE GOOD PLACE Q AND GOOD DIVISORS D1, D2
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

//------ q<x>:=RandomIrreduciblePolynomial(F4,n);
q := x^5 + a*x^4 + x^3 + a^2*x^2 + a*x + 1;
Q := Decomposition(F,Zeros(Kx!q)[1])[1];
K<b>:=ResidueClassField(Q);
"degree of Q is ", Degree(Q); // n

//------ D1 := RandomIrreduciblePolynomial(F4,n+g-1);
D1 := x^6 + a*x^4 + a*x^2 + x + a^2;
D1:=Decomposition(F,Zeros(Kx!D1)[1])[1];
D1:=1*D1;

//------ D2:=RandomIrreduciblePolynomial(F4,n+g-1);
D2 := x^6 + a*x^3 + a^2*x^2 + a^2;
D2:=Decomposition(F,Zeros(Kx!D2)[1])[1];
D2:=1*D2;

//------ Check D1 and D2 are suitable
"D1-Q is special ? ",IsSpecial(D1-Q); // false
"dim L(D1) is ", Dimension(D1); // n
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"D2-Q is special ? ", IsSpecial(D2-Q); // false
"dim L(D2) is ", Dimension(D2); // n
"Is D1 equivalent to D2 ? ", D1 eq D2; // false
"dim L(D1+D2) is ", Dimension(D1+D2); // 11

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// CONSTRUCTION OF THE RIEMANN-ROCH SPACES
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

LD1, h1 :=RiemannRochSpace(D1);
BD1 := h1(Basis(LD1));
LD2, h2 :=RiemannRochSpace(D2);
BD2 := h2(Basis(LD2));
LD1D2, h := RiemannRochSpace(D1+D2);

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// SET GOOD BASES
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

//------ Construction of E1=Evalf(Q) and set a good basis for L(D1)
L:=[]; for i in [1..n] do L:=Append(L,ElementToSequence(Evaluate(BD1[i],Q))); end for;
E1:=Transpose(Matrix(L));
BasisLD1 := Matrix(F,1,n,BD1)*Matrix(F,E1^-1);
//BasisLD1;

//------ Construction of E2=Evalf(Q) and set a good basis for L(D2)
L:=[]; for i in [1..n] do L:=Append(L,ElementToSequence(Evaluate(BD2[i],Q))); end for;
E2:=Transpose(Matrix(L));
BasisLD2 := Matrix(F,1,n,BD2)*Matrix(F,E2^-1);
//BasisLD2;

//------ Merge the two previous bases to a basis of L(D1+D2)
L1 := ElementToSequence(BasisLD1);
L2 := ElementToSequence(BasisLD2);
// Concatenate L1 to L2 except the first component of L2
LL := [LD1D2!L1[i] : i in [1..n]] cat [LD1D2!L2[i] : i in [2..n]];
BasisLD1D2 := h(ExtendBasis(LL,LD1D2));

//------ In addition, we require that the two last elements of the basis are evaluated to 0
X := Transpose(Matrix(F,[ElementToSequence(Evaluate(BasisLD1D2[i],Q)): i in [2*n+g-2..2*n+g-1]]));
TT := Matrix(F,1,n,L1)*X;
BasisLD1D2[2*n+g-2] := BasisLD1D2[2*n+g-2] - ElementToSequence(TT)[1];
BasisLD1D2[2*n+g-1] := BasisLD1D2[2*n+g-1] - ElementToSequence(TT)[2];
BLD1D2 := ExtendBasis([LD1D2!BasisLD1D2[i] : i in [1..n]], LD1D2);
"Vectors of BLD1D2 are independent ? ", IsIndependent(BLD1D2);
"Basis of BLD1D2 : ";
for i in [1..2*n+g-1] do printf "f%o=",i; BasisLD1D2[i]; end for;
//for i in [1..2*n+g-1] do Evaluate(BasisLD1D2[i],Q); end for;

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// CONSTRUCTION OF T AND T^-1 USING PLACES OF DEGREE 1 AND 2
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

// The 9 first rows of T are the evaluation on 9 places of degree 1.
// The two last rows are the evaluation on one place of degree 2,
// since it has 2 coordinates over F4

ST:=[];
for j:=1 to 9 do

for i:=1 to 2*n+g-1 do
ST:=Append(ST, Evaluate(BasisLD1D2[i], LP1[j]));

end for;
end for;
STemp:= ST;
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// Choose a degree 2 place such that the 11x11-matrix T has rank 11
numPlace:=0;
for j:=1 to #LP2 do

ST := STemp;
ST1:=[];
for i:=1 to 2*n+g-1 do

eva:= ElementToSequence(Evaluate(BasisLD1D2[i], LP2[j]),F4);
ST1:=Append(ST1, eva[1]);
ST1:=Append(ST1, eva[2]);

end for;
for i:=1 to 4*n+2*g-2 by 2 do ST:=Append(ST, ST1[i]); end for;
for i:=2 to 4*n+2*g-2 by 2 do ST:=Append(ST, ST1[i]); end for;
T := Matrix(2*n+g-1,2*n+g-1, ST);
if Rank(T) eq 11 then numPlace:=j; break; end if;

end for;
"num of the chosen 2 degree place : ", numPlace;
"Rank of T : ", Rank(T);
TI := T^-1;

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// ALGORITHM FOR THE MULTIPLICATION
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

// ============= FUNCTION MULT =============
// @parameter : VarX, VarY are the coordinates in a canonical basis
// of the elements of (F4)^n to multipliate
// @return : the result of VarX * VarY in the canonical basis of (F4)^n

mult := function(varX, varY)

//------ injection of the coordinates of X into L(D1+D2) using basis BLD1D2
fx := VerticalJoin(varX,ZeroMatrix(F4,n+g-1,1));

//------ injection of the coordinates of Y into L(D1+D2) using basis BLD1D2
Y1 := [varY[1,1]] cat [0 : i in [2..n]] cat [varY[i,1] : i in [2..n]] cat [0,0];
fy := Matrix(F4,2*n+g-1,1,Y1);

//------ Hadamard product u = T(fx)*T(fy)
u:=ZeroMatrix(F4,2*n+g-1,1);
TFX:=T*fx;
TFY:=T*fy;

// the products are done in F4 for the 9 first coordinates
for i:=1 to 9 do u[i,1]:=TFX[i][1]*TFY[i][1]; end for;

// and over F16 for the other coordinates taken 2 by 2
KK<hh>:=Parent(Evaluate(BasisLD1D2[2], LP2[numPlace]));
mb:=KK![TFX[10][1], TFX[11][1]]* KK![TFY[10][1], TFY[11][1]];
mp:=ElementToSequence(mb,F4);
u[10,1]:=mp[1];
u[11,1]:=mp[2];

//------ E_Q(TI(u)) : T^-1 then evaluation in Q
uu:=Matrix(F,TI*u);
result := Evaluate(Matrix(1,2*n+g-1,BasisLD1D2)*uu,Q);
return result;
end function;
// ============= END FUNCTION MULT =============

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// EXAMPLES
// %%%%%%%%%%%%%%%%%%%%%%%%%%%
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// Example 1 : (a+b)*(1+a*b+a*b^2) = a*b^3 + b^2 + a*b + a
X1 := Matrix(F4,n,1,ElementToSequence(a+b));
Y1 := Matrix(F4,n,1,ElementToSequence(1+a*b+a*b^2));
mult(X1,Y1);

// Example 2 : b^5 * (1 + a^2*b^3 + b^4) = b^4 + a^2*b^2 + a
X2 := Matrix(F4,n,1,ElementToSequence(b^5));
Y2 := Matrix(F4,n,1,ElementToSequence(1 + a^2*b^3 + b^4));
mult(X2,Y2);

// Example 3 : (a*b + b^2 + a*b^4) * (a*b + b^2 + a*b^4) = a^2*b^3 + a^2*b^2 + a^2*b + 1
X3 := Matrix(F4,n,1,ElementToSequence(a*b + b^2 + a*b^4));
Y3 := Matrix(F4,n,1,ElementToSequence(a*b + b^2 + a*b^4));
mult(X3,Y3);

A.3. F25 over F2.

// Same curve but defined over GF2.
// We use 3 degree 1 places, 2 degree 2 places and 1 degree 4 place

n:=5; g:=2; q:=2;
F2:=GF(2);

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// ALGEBRAIC FUNCTION FIELD WITH CURVE y^2 + y + x/(x^3 + x + 1) OF GENUS 2
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

Kx<x> := FunctionField(F2);
Kxy<y> := PolynomialRing(Kx);
f:=y^2 + y + x/(x^3+x+1);
F<c> := FunctionField(f);

//------ find places of higher degree
LP1:=Places(F,1); // 3 degree 1 places
LP2:=Places(F,2); // 1 degree 2 places
LP4:=Places(F,4); // 7 degree 4 places
#LP1;#LP2;#LP4;

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// CHOOSE GOOD PLACE Q AND GOOD DIVISORS D1, D2
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

//------ q<x>:= RandomIrreduciblePolynomial(F2,n);
q := x^5 + x^3 + 1;
Q := Decomposition(F,Zeros(Kx!q)[1])[1];
K<b>:=ResidueClassField(Q);

//------ D1 := RandomIrreduciblePolynomial(F2,n+g-1); D1;
D1 := x^6 + x^5 + x^4 + x + 1;
D1:=Decomposition(F,Zeros(Kx!D1)[1])[1];
D1:=1*D1;

//------ D2:=RandomIrreduciblePolynomial(F2,n+g-1);
D2 := x^6 + x^5 + x^2 + x + 1;
D2:=Decomposition(F,Zeros(Kx!D2)[1])[1];
D2:=1*D2;

//------ Check D1 and D2 are suitable
"D1-Q is special ? ",IsSpecial(D1-Q); // false
"dim L(D1) is ", Dimension(D1); // n
"D2-Q is special ? ", IsSpecial(D2-Q); // false
"dim L(D2) is ", Dimension(D2); // n
"Is D1 equivalent to D2 ? ", D1 eq D2; // false
"dim L(D1+D2) is ", Dimension(D1+D2); // 11
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// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// CONSTRUCTION OF THE RIEMANN-ROCH SPACES
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

LD1, h1 :=RiemannRochSpace(D1);
BD1 := h1(Basis(LD1));
LD2, h2 :=RiemannRochSpace(D2);
BD2 := h2(Basis(LD2));
LD1D2, h := RiemannRochSpace(D1+D2);

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// SET GOOD BASES
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

//------ Construction of E1 : E1=Evalf(Q) and set a good basis for L(D1)
L:=[]; for i in [1..n] do L:=Append(L,ElementToSequence(Evaluate(BD1[i],Q))); end for;
E1:=Transpose(Matrix(L));
BasisLD1 := Matrix(F,1,n,BD1)*Matrix(F,E1^-1);
//BasisLD1;

//------ Construction of E2 : E2=Evalf(Q) and set a good basis for L(D2)
L:=[]; for i in [1..n] do L:=Append(L,ElementToSequence(Evaluate(BD2[i],Q))); end for;
E2:=Transpose(Matrix(L));
BasisLD2 := Matrix(F,1,n,BD2)*Matrix(F,E2^-1);
//BasisLD2;

//------ Merge the two previous bases to a basis of L(D1+D2)
L1 := ElementToSequence(BasisLD1);
L2 := ElementToSequence(BasisLD2);
// Concatenate L1 to L2 except the first component of L2
LL := [LD1D2!L1[i] : i in [1..n]] cat [LD1D2!L2[i] : i in [2..n]];
BasisLD1D2 := h(ExtendBasis(LL,LD1D2));

//------ In addition, we require that the two last elements of the basis are evaluated to 0
X := Transpose(Matrix(F,[ElementToSequence(Evaluate(BasisLD1D2[i],Q)): i in [2*n+g-2..2*n+g-1]]));
TT := Matrix(F,1,n,L1)*X;
BasisLD1D2[2*n+g-2] := BasisLD1D2[2*n+g-2] - ElementToSequence(TT)[1];
BasisLD1D2[2*n+g-1] := BasisLD1D2[2*n+g-1] - ElementToSequence(TT)[2];
BLD1D2 := ExtendBasis([LD1D2!BasisLD1D2[i] : i in [1..n]], LD1D2);
"Vectors of BLD1D2 are independent ? ", IsIndependent(BLD1D2);
"Basis of BLD1D2 : ";
for i in [1..2*n+g-1] do printf "f%o=",i; BasisLD1D2[i]; end for;
//for i in [1..2*n+g-1] do Evaluate(BasisLD1D2[i],Q); end for;

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// CONSTRUCTION OF T AND T^-1 USING PLACES OF DEGREE 1, 2 and 4
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

// The 3 first rows of T are the evaluation on the degree 1 places.
// The 4 next rows are the evaluation on 2 places of degree;
// each evaluation is on 2 rows since it has 2 coordinates over F2
// Finally, the 4 last rows are the evaluation on 1 place of degree 4;
// this evaluation is on 4 rows since it has 4 coordinates over F2

ST:=[];
for j:=1 to 3 do

for i:=1 to 2*n+g-1 do
ST:=Append(ST, Evaluate(BasisLD1D2[i], LP1[j]));

end for;
end for;

ST2:=[];
for j:=1 to 2 do
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ST2:=[];
for i:=1 to 2*n+g-1 do

eva:= ElementToSequence(Evaluate(BasisLD1D2[i], LP2[j]),F2);
ST2:=Append(ST2, eva[1]);
ST2:=Append(ST2, eva[2]);

end for;
for i:=1 to 4*n+2*g-2 by 2 do ST:=Append(ST, ST2[i]); end for;
for i:=2 to 4*n+2*g-2 by 2 do ST:=Append(ST, ST2[i]); end for;

end for;

ST4:=[];
for i:=1 to 2*n+g-1 do

eva:= ElementToSequence(Evaluate(BasisLD1D2[i], LP4[2]),F2);
ST4:=Append(ST4, eva[1]);
ST4:=Append(ST4, eva[2]);
ST4:=Append(ST4, eva[3]);
ST4:=Append(ST4, eva[4]);

end for;

for i:=1 to 8*n+4*g-4 by 4 do ST:=Append(ST, ST4[i]); end for;
for i:=2 to 8*n+4*g-4 by 4 do ST:=Append(ST, ST4[i]); end for;
for i:=3 to 8*n+4*g-4 by 4 do ST:=Append(ST, ST4[i]); end for;
for i:=4 to 8*n+4*g-4 by 4 do ST:=Append(ST, ST4[i]); end for;

T := Matrix(2*n+g-1,2*n+g-1, ST);
"Rank of T : ", Rank(T);
TI := T^-1;

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// ALGORITHM FOR THE MULTIPLICATION
// %%%%%%%%%%%%%%%%%%%%%%%%%%%

// ============= FUNCTION MULT =============
// @parameter : VarX, VarY are the coordinates in a canonic basis
// of the elements of (F4)^n to multiply
// @return : the result of VarX * VarY in the canonic basis of (F2)^n

mult := function(varX, varY)

//------ injection of the coordinates of X into L(D1+D2) using basis BLD1D2
fx := VerticalJoin(varX,ZeroMatrix(F2,n+g-1,1));

//------ injection of the coordinates of Y into L(D1+D2) using basis BLD1D2
Y1 := [varY[1,1]] cat [0 : i in [2..n]] cat [varY[i,1] : i in [2..n]] cat [0,0];
fy := Matrix(F2,2*n+g-1,1,Y1);

//------ Hadamard product u = T(fx)*T(fy)
u:=ZeroMatrix(F2,2*n+g-1,1);
TFX:=T*fx;
TFY:=T*fy;

// the products are done in F2 for the 3 first coordinates
for i:=1 to 3 do u[i,1]:=TFX[i][1]*TFY[i][1]; end for; // degree 1 places

// over F4 for the next 4 coordinates taken 2 by 2
for i:=4 to 7 by 2 do // degree 2 places
KK<hh>:=Parent(Evaluate(BasisLD1D2[2], LP2[(i-2) div 2]));
mb:=KK![TFX[i][1], TFX[i+1][1]]* KK![TFY[i][1], TFY[i+1][1]];
mp:=ElementToSequence(mb,F2);
u[i,1]:=mp[1];
u[i+1,1]:=mp[2];
end for;

// and over F16 for the other coordinates taken 4 by 4
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KK4<hh4>:=Parent(Evaluate(BasisLD1D2[2], LP4[ 2] )); // degree 4 place
mb:=KK4![TFX[8][1], TFX[9][1], TFX[10][1], TFX[11][1]]

* KK4![TFY[8][1], TFY[9][1], TFY[10][1], TFY[11][1]];
mp:=ElementToSequence(mb,F2);
u[8,1]:= mp[1];
u[9,1]:= mp[2];
u[10,1]:= mp[3];
u[11,1]:= mp[4];

//------ E_Q(TI(u)) : T^-1 then evaluation in Q
uu:=Matrix(F,TI*u);
result := Evaluate(Matrix(1,2*n+g-1,BasisLD1D2)*uu,Q);
return result;
end function;
// ========= END FUNCTION MULT =========

// %%%%%%%%%%%%%%%%%%%%%%%%%%%
// EXAMPLES
//%%%%%%%%%%%%%%%%%%%%%%%%%%%

// Example 1 : (1+b)*(1+b+b^2) = b^5
X1 := Matrix(F2,n,1,ElementToSequence(1+b));
Y1 := Matrix(F2,n,1,ElementToSequence(1+b+b^2));
mult(X1,Y1);

// Example 2 : b^4*(b^2+b^3) = b^20
X2 := Matrix(F2,n,1,ElementToSequence(b^4));
Y2 := Matrix(F2,n,1,ElementToSequence(b^2+b^3));
mult(X2,Y2);

// Example 3 : (1+b+b^3)*(1+b+b^3) = b^21
X3 := Matrix(F2,n,1,ElementToSequence(1+b+b^3));
Y3 := Matrix(F2,n,1,ElementToSequence(1+b+b^3));
mult(X3,Y3);
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