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The Chudnovsky and Chudnovsky algorithm for the multiplication in extensions of finite fields provides a bilinear complexity which is uniformly linear with respect to the degree of the extension. Recently, Randriambololona has generalized the method, allowing asymmetry in the interpolation procedure and leading to new upper bounds on the bilinear complexity. In this article, we first translate this generalization into the language of algebraic function fields. Then, we propose a strategy to effectively construct asymmetric algorithms using places of higher degrees and without derivated evaluation. Finally, we provide examples of three multiplication algorithms along with their Magma implementation: in F 16 13 using only rational places, in F 4 5 using also places of degree two, and in F 2 5 using also places of degree four.

Introduction

Let q be a prime power, F q the finite field with q elements and F q n the degree n extension of F q . Among all algorithms of multiplications in F q n , those based on Chudnovsky-Chudnovsky method [START_REF] Chudnovsky | Algebraic complexities and algebraic curves over finite fields[END_REF] are known to provide the lowest bilinear complexity. This method is based on interpolation on algebraic curves defined over a finite field and provides a bilinear complexity which is linear in n. The original algorithm (called here CCMA) uses only points of degree 1, with multiplicity 1. Ballet and Rolland [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF][START_REF] Ballet | On an application of the definition field descent of a tower of function fields[END_REF] and Arnaud [1] improved the algorithm introducing interpolation at points of higher degree or higher multiplicity. The symmetry of the CCMA construction involves 2-torsion points that represent an obstacle to the improvement of upper bilinear complexity bounds. To eliminate this difficulty, Randriambololona [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF] allowed asymmetry in the interpolation procedure, and then Pieltant and Randriambololona [START_REF] Pieltant | New uniform and asymptotic upper bounds on the tensor rank of multiplication in extensions of finite fields[END_REF] derived new bounds, uniform in q, of the bilinear complexity. Unlike symmetric constructions, no effective implementation of this asymmetric construction has been done yet. In this article, we construct explicitly such multiplication algorithms for finite extensions of finite fields.

1.1. Multiplication algorithm and tensor rank. Let q be a prime power, F q the finite field with q elements and F q n the degree n extension of F q . The multiplication of two elements of F q n is an F q -bilinear application from F q n ×F q n onto F q n . Then it can be considered as an F q -linear application from the tensor product F q n ⊗ Fq F q n onto F q n . Consequently, it can also be considered as a tensor T m of F q n ⊗ Fq F q n ⊗ Fq F q n where denotes the dual. When T m is written

(1)

T m = r i=1 x i ⊗ y i ⊗ c i ,
where the r elements x i as well as the r elements y i are in the dual F q n of F q n while the r elements c i are in F q n , the following holds for any x, y ∈ F q n :

x • y = r i=1

x i (x)y i (y)c i .

The decomposition (1) is not unique. x i (x)y i (y)c i defines a bilinear multiplication algorithm U of bilinear complexity µ(U) = r. Such an algorithm is said symmetric if x i = y i for all i.

Definition 1.2. The minimal number of summands in a decomposition of the tensor T m of the multiplication is called the bilinear complexity (resp. symmetric bilinear complexity) of the multiplication and is denoted by µ q (n) (resp. µ sym q (n)):

µ q (n) = min U µ(U)
where U is running over all bilinear multiplication algorithms (resp. all bilinear symmmetric multiplication algorithms) in F q n over F q .

1.2. Known results. In 1979, Winograd proved [START_REF] Winograd | On Multiplication in Algebraic Extension Fields[END_REF] that optimal multiplication algorithms realizing the lowest bilinear bound belong to the class of interpolation algorithms. Then, in 1988, Chudnovsky and Chudnovsky introduced a method [START_REF] Chudnovsky | Algebraic complexities and algebraic curves over finite fields[END_REF] to prove the linearity [START_REF] Ballet | Curves with many points and multiplication complexity in any extension of Fq[END_REF] of the bilinear complexity of the multiplication in finite extensions of a finite field. In doing so, they proposed the first known multiplication algorithm using interpolation on non trivial algebraic curves over F q . This original algorithm, that we call in this article CCMA, only uses points of degree 1, with multiplicity 1. Later, several studies focused on the qualitative improvement of this algorithm (for example [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF]1,[START_REF] Cenk | On multiplication in finite fields[END_REF]) allowing interpolation at points of higher degree, or with higher multiplicity. In parallel, improvements of upper bounds (for example [START_REF] Ballet | On the tensor rank of multiplication in any extension of F 2[END_REF]12]) and asymptotic upper bounds (for example [START_REF] Shparlinski | Curves with many points and multiplication in finite fields[END_REF]11]) of the bilinear complexity were obtained. The first known effective finite field multiplication through interpolation on algebraic curves was proposed by Shokrollahi and Baum [START_REF] Baum | An optimal algorithm for multiplication in F 256 /F 4 . Applicable Algebra in Engineering[END_REF]. They used the Fermat curve x 3 +y 3 = 1 to construct a multiplication algorithm over F 4 4 with 8 bilinear multiplications. In [START_REF] Ballet | Quasi-optimal algorithms for multiplication in the extensions of F 16 of degree 13, 14 and 15[END_REF], Ballet proposed one over F 16 n where n ∈ [START_REF] Ballet | On the existence of dimension zero divisors in algebraic function fields defined over Fq[END_REF][START_REF] Baum | An optimal algorithm for multiplication in F 256 /F 4 . Applicable Algebra in Engineering[END_REF][START_REF] Bosma | The Magma Algebra System I. The user language[END_REF], using the hyperelliptic curve y 2 + y = x 5 of genus 2, with 2n + 1 bilinear multiplications. Notice that these aforementioned two algorithms only used rational points, with multiplicity 1. In 2009, Cenk and Özbudak proposed in [START_REF] Cenk | On multiplication in finite fields[END_REF] an explicit elliptic multiplication algorithm in F 3 9 with 26 bilinear multiplications. To this end, they used the elliptic curve y 2 = x 3 + x + 2, combining the ideas of using points of higher degree and higher multiplicity. In fact, few studies have been devoted to the effective construction of Chudnovsky type algorithms, and in particular when the degree of extensions reaches cryptographic size. In 2013, Ballet et al. [START_REF] Ballet | On the construction of elliptic Chudnovsky-type algorithms for multiplication in large extensions of finite fields[END_REF] detailed a multiplication algorithm in F 3 57 with 234 bilinear multiplications using the elliptic curve y 2 +2x 3 +2x 2 +1 = 0 with points of degree at most 4 and multiplicity at most 3. In 2015, Atighehchi et al. [2] proposed a model allowing parallel computation, in which an ingenious use of normal bases provides efficient algorithms for both multiplication and exponentiation. They detailed an implementation in the finite field F 16 13 using the hyperelliptic curve y 2 + y = x 5 of genus 2. In 2012, Riandriambololona [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF] introduced an asymmetric algorithm which generalizes the Chudnovsky algorithm and leads to better bounds, uniform in q, of the bilinearity. When the genus g of the curve is equal to 1, it is known [START_REF] Ballet | On the construction of elliptic Chudnovsky-type algorithms for multiplication in large extensions of finite fields[END_REF] that an asymmetric algorithm can always be symmetrized (i.e. there always exists a symmetric version of an asymmetric algorithm). However, for greater values of g, it may not be the case. Thus, it is of interest to know an effective construction of this asymmetric algorithm. So far, no effective implementation has been proposed for such an algorithm. In this article, we detail a strategy to effectively construct asymmetric algorithms with higher degree but without derivated evaluation. 1.3. Organization of the paper and new results. In Section 1, we define the bilinear complexity of the multiplication in any extension of finite field and we recall the main known related results. In Section 2, we give an explicit translation of the generalization of CCMA given by Randriambololona [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF]Theorem 3.5]. Then in Section 3, by defining a new design of this algorithm, we give a strategy of construction and implementation. In particular, thanks to a suitable representation of the Riemann-Roch spaces, we present the first construction of asymmetric effective algorithms of multiplication in finite fields. These algorithms are tailored to hardware implementation and they allow computations to be parallelized while maintaining a low number of bilinear multiplications. In Section 4, we give an analysis of the not asymptotical complexity of this algorithm. Finally, in Sections 5, 6, and 7, we give examples with the finite field F 16 13 using only rational places, F 4 5 using also places of degree two and F 2 5 using also places of degree four.

Multiplication algorithms of type Chudnovsky : Generalization of Randriambololona

In this section we present a generalization of Chudnovsky type algorithms, introduced in [23, Theorem 3.5] by Randriambololona, which is possibly asymmetric. Since our aim is to describe explicitly the effective construction of this asymmetric algorithm, we transform the representation of this algorithm, initially made in the abstract geometrical language, in the more explicit language of algebraic function fields. A comprehensive course on algebraic function fields can be found in [START_REF] Stichtenoth | Algebraic Function Fields and Codes[END_REF]. Only the elementary terminology used along this paper is introduced.

Let F/F q be an algebraic function field over the finite field F q of genus g (F ). We denote by P 1 (F/F q ) the set of places of degree one of the algebraic function field F/F q and by N 1 (F/F q ) its cardinality. If D is a divisor, L(D) denotes the Riemann-Roch space associated to D. We denote by O Q the valuation ring of the place Q and by

F Q its residue class field O Q /Q which is isomorphic to F q deg Q where deg Q is the degree of the place Q.
In the framework of algebraic function fields, the result [23, Theorem 3.5] of Randriambololona can be stated as in Theorem 2.1. Note that we do not take into account derivated evaluations, since we are not interested in asymptotic results. It means that we describe this asymmetric algorithm with the divisor G = P 1 + • • • + P N where the P i are pairwise disctinct closed points of degree deg

P i = d i .
Let us define the following Hadamard product in

F q l 1 × F q l 2 × • • • × F q l N , where the l i 's denote positive integers, by (u 1 , . . . , u N ) (v 1 , . . . , v N ) = (u 1 v 1 , . . . , u N v N ).
Theorem 2.1. Let F/F q be an algebraic function field of genus g over F q . Suppose there exists a place Q of degree n. Let P = {P 1 , . . . , P N } be a set of N places of arbitrary degree not containing the place Q. Suppose there exist two effective divisors D 1 , D 2 of F/F q such that:

(i) The place Q and the places of P are not in the support of the divisors D 1 and D 2 .

(ii) The natural evaluation maps E i for i = 1, 2 defined as

E i : L(D i ) -→ F q n F Q f -→ f (Q)
are surjective. (iii) The natural evaluation map

T : L(D 1 + D 2 ) -→ F q deg P 1 × F q deg P 2 × • • • × F q deg P N f -→ (f (P 1 ), f (P 2 ), . . . , f (P N ))
is injective. Then for any two elements x, y in F q n , we have:

xy = E Q • T -1 |Im T T • E -1 1 (x) T • E -1 2 (y)
, where E Q denotes the canonical projection from the valuation ring O Q of the place Q in its residue class field

F Q , • the standard composition map, T -1
|Im T the restriction of the inverse map of T on the image of T , E -1 i the inverse map of the restriction of the map E i on the quotient group L(D i )/ ker E i and the Hadamard product in

F q deg P 1 × F q deg P 2 × • • • × F q deg P N ; and µ q (n) ≤ N i=1 µ q (deg P i ).
Remark 2.2. The condition D 1 = D 2 (modulo the group of principal divisors) is not a sufficient condition to have a symmetric algorithm. Indeed, note that even if D 1 = D 2 then this algorithm can be not symmetric in the sens of Definition (1.1) if it uses places of degree strictly greater than one and if the bilinear multiplications in the residue class fields of these places are not computed (via the operation ) with a symmetric algorithm. However, for simplicity, we will say that an algorithm of type Chudnovsky is symmetric when D 1 = D 2 (modulo the group of principal divisors). Indeed, the interest of such an asymmetric algorithm is to avoid the problem of 2-torsion elements in the divisor class group of the algebraic function field F/F q in order to have more flexibility in the choice of the algebraic function field F/F q since the conditions (ii) and (iii) become easier to satisfy (cf. [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF]Remark 3.7]).

Note also that in this presentation, we require that the divisors D 1 and D 2 are positive divisors in contrast to Theorem 3.5 in [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF]. Indeed, in our context of effective construction, it is important to have L(D i ) ⊆ L(D 1 + D 2 ), which is the case if the divisors D 1 and D 2 are positive divisors (cf. Remark 3.1).

Finally, for simplicity, we will use the same representation for F q deg P i and F q deg P j when deg P i = deg P j . Actually, we could only suppose that the products in F q deg P i and F q deg P j use bilinear multiplication algorithms having the same bilinear complexity. In practice, following the ideas of [START_REF] Ballet | Curves with many points and multiplication complexity in any extension of Fq[END_REF], we take as a divisor D 1 one place of degree n + g -1. This has the advantage to solve both the problem of the support of divisor D 1 and the problem of the effectivity of the divisor D 1 . For the same reasons, the divisor D 2 is also chosen as a place of degree n + g -1. Furthermore, we require additional properties described below.

Effective algorithm

3.2.

Finding good places D 1 , D 2 and Q. In order to obtain the good places, we draw them at random and check that they satisfy the required conditions. We proceed as follows:

(1) We draw at random an irreducible polynomial Q(x) of degree n in F q [X] and check that this polynomial is: (a) Primitive.

(b) Totally decomposed in the algebraic function field F/F q (which implies that there exists a place Q of degree n above the polynomial Q(x)). (2) We choose a place Q of degree n among the places of F/F q lying above the polynomial Q(x).

(3) We draw at random a place D 1 of degree n + g -1 and check that D 1 -Q is a non-special divisor of degree g -1 i.e. dim L(D 1 -Q) = 0. (4) We draw at random a place D 2 of degree n + g -1 and check that D 2 -Q is a non-special divisor of degree g -1 i.e. dim(D 2 -Q) = 0.

Remark 3.1. Clearly, our method relies on the existence of the places Q, D 1 and D 2 as defined above and such that D 1 -Q and D 2 -Q are non-special divisors of degree g -1.

A sufficient condition of existence of Q relies on the existence of at least one place of degree n given by the following inequality [27, Corollary V.2.10 (c)]:

2g + 1 ≤ q n-1 2 q 1 2 -1 .
Then, we are sure of the existence of a non-special divisor of degree g -1 when q ≥ 4 [START_REF] Ballet | On the existence of non special divisor of degree g and g -1 in algebraic function fields over Fq[END_REF]. The larger q is, the larger the probability to draw a non-special divisor of degree g -1 becomes (Proposition 5.1 [START_REF] Ballet | On the existence of dimension zero divisors in algebraic function fields defined over Fq[END_REF]), but not necessarily as a difference of two places: this is an open problem. However, looking for non-special divisors of degree g -1 as a difference of two places has many advantages.

Most of all, this solves easily the problem of the support of divisors D 1 and D 2 (condition (i) of Theorem 2.1) as well as the problem of the effectivity of these divisors. Indeed, in our context of construction, it is important to have L(D i ) ⊆ L(D 1 + D 2 ), which is the case if the divisors D 1 and D 2 are effective divisors. However, the property to have simultaneously an effective divisor (with the required properties) without having given places in its support is difficult to obtain theoretically because the method of the support moving (cf. [START_REF] Pieltant | Tours de corps de fonctions algébriques et rang de tenseur de la multiplication dans les corps finis[END_REF]), which is a direct consequence of Strong Approximation Theorem (cf. [27, Proof of Theorem I.6.4]), has the drawback to imply the loss of effectivity.

Furthermore, in practice, it is easy to find Q and the divisors D i satisfying the required properties since there exist many such places in our context. However, it is not true in the general case. For instance, this fails when we consider an elliptic curve with only one rational point since for any elliptic curve, there exists a non-special divisor of degree g -1 = 0 if and only if the divisor class number h is > 1, i.e. N 1 ≥ 2 (cf. [6, Section 3.2]).

3.3.

Choosing good bases of the spaces.

3.3.1.

The residue field F Q . In Subsection 3.2, we chose a place Q of degree n lying above a primitive polynomial Q(x) in F q [X]. Then we identify the residue class field F Q with F q n and set as representation basis of F q n the canonical basis B Q = (1, α, α 2 , ..., α n-1 ) generated by a root α of Q(x). Note that if we wish to use a normal basis as a representation basis, it is convenient to find a place Q above a normal polynomial Q(x) and to make a change of basis between the canonical basis and the normal basis (α, α q , α q 2 ..., α q n-1 ). However, even in this case, it is necessary in our algorithm to preserve the canonical basis as basis of the residue field F Q because we need to have the constant component in the bases of the Riemann-Roch spaces L(D i ) for i ∈ {1, 2} (cf. Section 3.3.2). From now on, we identify F q n to F Q , as the residue class field

F Q of the place Q is isomorphic to the finite field F q n . 3.3.2. The Riemann-Roch spaces L(D 1 ) and L(D 2 ). Clearly, the choice of D i , i ∈ {1, 2} and Q of Section 3.2 implies that the maps E i of Theorem 2.1 are isomorphisms, since deg(D i ) = n + g -1, dim L(D i -Q) = 0 and L(D i -Q) = Ker(E i ). Thereby, we choose as basis of L(D i ) the reciprocal image B Di of the basis B Q = (φ 1 , . . . , φ n ) of F Q by the evaluation map E i , namely B Di = (E -1 i (φ i ), . . . , E -1 i (φ n ))
. Note that by Section 3.3.1, the choice of the basis of the residue field

F Q implies that φ 1 = 1 and so E -1 1 (1) = E -1 2 (1) = 1. Let us denote B Di = (f i,1 , ..., f i,n ) with f i,1 = 1 for i = 1, 2. 3.3.3. The Riemann-Roch space L(D 1 + D 2 ). Note that since D 1 and D 2 are effective divisors, we have L(D 1 ) ⊂ L(D 1 + D 2 ) and L(D 2 ) ⊂ L(D 1 + D 2 ).
Lemma 3.2. Let D 1 and D 2 be two effective divisors with disjoint supports. Then

L(D 1 ) ∩ L(D 2 ) = F q . Proof. It is clear that F q ⊂ L(D 1 ) ∩ L(D 2 ) because the divisors are effective. Suppose that the function f ∈ L(D 1 ) ∩ L(D 2 ) is such that f / ∈ F q .
Then there exist P 1 in the support of D 1 and P 2 in the support of D 2 such that v P1 (f ) ≤ -1 and v P2 (f ) ≤ -1. But then the function f admits a pole of order at least 1 at P 1 and a pole of order at least 1 at P 2 , which is impossible because the supports are disjoint. So, f ∈ F q and the proof is complete. Proposition 3.3. Let D 1 , D 2 and Q be places having the properties described in (3.2). Consider the map Λ :

L(D 1 + D 2 ) → F Q such that Λ(f ) = f (Q) for f ∈ L(D 1 + D 2 ). There exists a vector space M ⊆ ker Λ of dimension g such that L(D 1 + D 2 ) = L(D 1 ) ⊕ L r (D 2 ) ⊕ M, where L r (D 2 ) is such that L(D 2 ) = F q ⊕ L r (D 2
) and ⊕ denotes the direct sum. In particular, if g = 0, then M = KerΛ is equal to {0}.

Proof. The divisors D 1 and D 2 which are effective divisors of degree n + g -1 have the same dimension n by Section 3.3.2. Moreover, as deg(

D 1 + D 2 ) > 2g -2, the divisor D 1 + D 2 is non-special and dim L(D 1 + D 2 ) = 2n + g -1.
Hence, dim KerΛ = n + g -1 and by Lemma 3.2, the spaces L(D 1 ) and L r (D 2 ) consist on a direct sum of dimension dim L(D 1 ) ⊕ L r (D 2 ) = 2n -1. In Section 3.3.2, we have showed that Ker(E i ) = {0}.

Thus, the set L(D i ) ∩ KerΛ = {0} as well. Hence, there exists a vector space M ⊆ KerΛ of dimension g which gives the result.

Hence, we choose as basis of L(D 1 + D 2 ) the basis B D1+D2 defined by:

B D1+D2 = (f 1 , . . . , f n , f n+1 , . . . , f 2n+g-1 ) where B D1 = (f 1 , . . . , f n ) is the basis of L(D 1 ), (f n+1 , . . . , f 2n-1 ) is a basis of L r (D 2 ) such that f n+j = f 2,j+1 ∈ B D2 with B D1 and B D2 defined in Section 3.3.2 and B M = (f 2n , . . . , f 2n+g-1 ) is a basis of M .
3.4. Product of two elements in F q n . In this section, we use as representation bases of spaces

F Q , L(D i ) (i ∈ {1, 2}), L(D 1 + D 2 )
, the bases defined in Section 3.3. The product of two elements in F q n is computed by the algorithm of Chudnovsky and Chudnovsky. Let x = (x 1 , . . . , x n ) and y = (y 1 , . . . , y n ) be two elements of F q n given by their components over F q relative to the chosen basis B Q . According to the previous notation, we can consider that x and y are identified to the following elements:

f x = n i=1 x i f 1,i ∈ L(D 1 ) and f y = n i=1 y i f 2,i ∈ L(D 2 ).
The product f x f y of the two elements f x and f y is their product in the valuation ring O Q . This product lies in L(D 1 + D 2 ) since D 1 and D 2 are effective divisors. We consider that x and y are respectively the elements f x and f y embedded in the Rieman-Roch space L(D 1 + D 2 ), via respectively the embeddings

I i : L(D i ) -→ L(D 1 + D 2
) defined by I 1 (f x ) and I 2 (f y ) as follows. If, f x and f y have respectively coordinates f xi and f yi in B D1+D2 where i ∈ {1, . . . , 2n + g -1}, we have: I 1 (f x ) = (f x1 := x 1 , . . . , f xn := x n , 0, . . . , 0) and I 2 (f y ) = (f x1 := y 1 , 0, . . . , 0, f yn+1 := y 2 , . . . , f y2n-1 := y n , 0, . . . 0). Now it is clear that knowing x (resp. y) or f x (resp. f y ) by their coordinates is the same thing. Theorem 3.4. Let P M s be the projection of

L(D 1 + D 2 ) onto M s = L(D 1 ) ⊕ L r (D 2
) and let Λ be the map defined as in Proposition (3.3). Then, for any elements x, y ∈ F q n , the product of x by y is such that

xy = Λ • P M s T -1 |Im T T • I 1 • E -1 1 (x) T • I 2 • E -1 2 (y) ,
where • denotes the standard composition map, T -1 |Im T the restriction of the inverse map of T on the image of T , and the Hadamard product as in Theorem 2.1.

Proof. Let F q n be a finite extension of F q of degree n with the representation defined in Section 3.3.1. For any two elements x, y ∈ F q n , there exist two elements f x and f y respectively in L(D 1 ) and L(D 2 ) defined as in Section 3.3.

2 such that E 1 (f x ) = f x (Q) = x and E 2 (f y ) = f y (Q) = y where f (Q) denotes the class of f in the residue class field F Q of the place Q. Thus, xy = f x (Q)f y (Q) = (f x f y )(Q)
and so computing the product xy is equivalent to computing the product f x f y . Moreover, since the divisors D 1 and D 2 are effective by the assumptions of Theorem 2.1 and Section 3.1, we have < L(D 1 )L(D 2 ) >⊂ L(D 1 +D 2 ) where < L(D 1 )L(D 2 ) > denotes the vector space generated by the products f x f y with f x ∈ L(D 1 ), f y ∈ L(D 2 ) and so f x f y ∈ L(D 1 + D 2 ). Now, the principle of the algorithm is to compute f x f y via the evaluation map T . In this aim, we represent the elements f x and f y in L(D 1 + D 2 ) respectively by I 1 (f x ) and I 2 (f y ) defined in this section. Then by Theorem 2.1,

h = f x f y = T -1 |Im T (T • I 1 (f x ) T • I 2 (f y )) and h(Q) = xy. Then, the proof is complete since h(Q) = Λ • P M s (h).
We can now present the setup algorithm and the multiplication algorithm. Note that the setup algorithm is only done once.

Algorithm 1 Setup algorithm

INPUT: F/F q , Q, D 1 , D 2 , P 1 , . . . , P N . OUTPUT: T and T -1 .
(1) The representation of the finite field F q =< a >, where a is a primitive element i.e. a generator of the associated cyclic group, is fixed. (2) The function field F/F q , the place Q, the divisors D 1 and D 2 and the points P 1 , . . . , P N are such that Conditions (ii) and (iii) in Theorem 2.1 are satisfied. In addition, we require that 1≤i≤N deg P i = 2n + g -1.

(3) Represent F q n in the canonical basis B Q = {1, α, α 2 , ..., α n-1 }, where F q n =< α > with α a primitive element as in Section 3. Note that any element z of the field F q n is known by its components relatively to the canonical basis B Q : z = (z 1 , . . . , z n ) ∈ F q n (where z i ∈ F q ). Then, we have two ways to represent z in our algorithm: embedding

z in L(D 1 + D 2 ) via I 1 • E -1 1 or via I 2 • E -1
2 . When we want to multiply two elements x and y, we choose conventionally to represent x by

I 1 • E -1 1 (x) and y by I 2 • E -1 2 (y).
Algorithm 2 Multiplication algorithm

INPUT: x = (x 1 , . . . , x n ) and y = (y 1 , . . . , y n ). OUTPUT: xy. (1) Compute    z 1,d1 . . . z N,d N    =           z 1 . . . z n z n+1 . . . z 2n+g-1           = T           x 1 . . . x n 0 . . . 0           and    t 1,d1 . . . t N,d N    =           t 1 . . . t n t n+1
. . .

t 2n+g-1           = T                    y 1 0 . . . 0 y 2 . . . y n 0 . . . 0                    .
where

N i=1 d i = 2n + g -1 and (z i,j , t i,j ) ∈ (F q d j ) 2 and (z i , t i ) ∈ (F q ) 2 . (2) Compute the Hadamard product u = (u 1,d1 , . . . , u N,d N ) = (u 1 , . . . , u 2n+g-1 ), where u i,di = z i,di t i,di , in F q d 1 × F q d 2 × • • • × F q d N as in Theorem 2.1. (3) Compute w = (w 1 , . . . , w 2n+g-1 ) = T -1 (u).
(4) Extract w = (w 1 , . . . , w 2n-1 ) (remark that in the previous step we just have to compute the 2n -1 first components of w). (5) Return xy=Λ(w ).

Complexity analysis

By Theorem 2.1, the condition (ii) implies dim L(D i ) ≥ n. But by Riemann-Roch Theorem, dim L(D i ) ≥ -g + 1 + deg D i which gives in the least case:

deg D i ≥ n + g -1 and so, deg(D 1 + D 2 ) ≥ 2n + 2g -2.
Without loss of generality, we suppose that deg

D i = n + g -1 and so deg(D 1 + D 2 ) = 2n + 2g -2. In this case, deg(D 1 + D 2 ) ≥ 2g -1 and then we obtain dim L(D 1 + D 2 ) = 2n + g -1.
According to Theorem 2, Algorithm 2 requires that the natural evaluation map T is injective. A sufficient condition to get injectivity is given by the following condition:

(2)

r i|r iN i > 2n + 2g -2
where N i denotes the number of places of degree i in P and r an integer > 1. Indeed, the kernel of T is L(D 1 + D 2 -P ∈P P ) and, under Condition 2, this kernel is trivial since the divisor D 1 + D 2 -P ∈P P has negative degree.

In terms of number of multiplications in F q , the complexity of this multiplication algorithm is as follows: calculation of z and t needs 2(2n 2 +ng-n) multiplications, calculation of u needs (2n+2g-2+r) sup 1≤i≤r µq(i) i

bilinear multiplications and calculation of the 2n -1 first components of w needs (2n + g -1)(2n -1) multiplications (remark that in Algorithm 2, we just have to compute the 2n -1 first components of w).

The calculation of xy needs n + g multiplications. The total complexity with respect to the multiplications is bounded by

8n 2 + n(4g -5) + (2n + 2g -2 + r) sup 1≤i≤r µq(i)
i . The asymptotic analysis of our method needs to consider infinite families of algebraic function fields defined over F q with increasing genus (or equivalently of algebraic curves) having the required properties. The existence of such families follows from that of families of algebraic function fields reaching the Generalized Drinfeld-Vladut bound of order r (cf. [START_REF] Ballet | Families of curves over any finite field attaining the generalized Drinfeld-Vladut bound[END_REF]). For example, it is proved in [START_REF] Ballet | Curves with many points and multiplication complexity in any extension of Fq[END_REF] (with rational places i.e. r = 1), in [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF][START_REF] Ballet | On an application of the definition field descent of a tower of function fields[END_REF] (with places of degree two i.e. r = 2) and in [START_REF] Ballet | On the tensor rank of multiplication in any extension of F 2[END_REF] (with places of degree four i.e. r = 4) from a specialization of the Chudnovsky type symmetric algorithms on recursive towers of algebraic function fields of type Garcia-Stichtenoth that the bilinear complexity of the multiplication in any degree n extension of F q is uniformly linear in q with respect to n. Good asymptotic bounds are also obtained by using families of modular Shimura curves [11]. Similarly, Randriambololona improved the uniform (resp. asymptotic) bounds with an asymmetric algorithm of type Theorem 2.1. Hence, the number of bilinear multiplications of the algorithm 2.1 is in O(n) when the places used in the algorithm 2.1 have a degree one or two. Moreover, the genus g of the required curves also necessarily increases in O(n). Consequently, the total number of multiplications/additions/subtractions of the algorithm 2.1 is in O n 2 and the total number of bilinear multiplications is in O n .

Remark 4.1. The general construction of the set-up algorithm involves some random choice of divisors having prescribed properties over an exponentially large set of divisors. To get a polynomially constructible algorithm with linear complexity, one needs to construct explicitly (i.e. polynomially) points of corresponding degrees n on curves of arbitrary genus with many rational points. Unfortunately, so far it is unknown how to produce such points (cf. [26, Section 4, Remark 5] and [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF]Remark 6.6]). Hence, the asymptotic complexity of such a construction is an open problem. Note that there exists a polynomial time construction of a bilinear algorithm with linear bilinear complexity for the multiplication of two elements in any extension finite field [START_REF] Bshouty | Multinlinear complexity is equivalent to optimal tester size[END_REF], but this type of bilinear algorithm is not as performant as algorithms of Chudnovsky type with respect to the bilinear complexity [16, Section 8], idem for elliptic Chudnovsky type algorithms [START_REF] Ballet | On the construction of elliptic Chudnovsky-type algorithms for multiplication in large extensions of finite fields[END_REF] which are symmetric with an only quasi-linear bilinear complexity.

Multiplication in F 16 n /F16

Set q = 16 and n = 13, 14, 15. Note that the multiplication algorithms in the extensions of degree n < 13 are symmetric because they are obtained with rational and elliptic function fields (with the best possible bilinear complexities of multiplication). Hence, it is only pertinent to consider the multiplication in extensions of degree ≥ 13 namely with function fields of genus g ≥ 2. From now on, F/F q denotes the algebraic function field associated to the hyperelliptic curve X with plane model y 2 + y = x 5 , of genus two. This curve has 33 rational points, which is maximal over F q according to the Hasse-Weil bound. We represent F 16 as the field F 2 (a) = F 2 [X]/(P (X)) where P (X) is the irreducible polynomial P (X) = X 4 + X + 1 and a denotes a primitive root of P (X) = X 4 + X + 1. Let us give the projective coordinates (x : y : z) of rational points of the curve X: P ∞ = (0 : 1 : 0) P 2 = (0 : 0 : 1) P 3 = (0 : 1 : 1) P 4 = (a : a : 1) P 5 = (a : a 4 : 1) P 6 = (a 2 : a 2 : 1) P 7 = (a 2 : a 8 : 1) P 8 = (a 3 : a 5 : 1) P 9 = (a 3 : a 10 : 1) P 10 = (a 4 : a : 1) P 11 = (a 4 : a 4 : 1) P 12 = (a 5 : a 2 : 1) P 13 = (a 5 : a 8 : 1) P 14 = (a 6 : a 5 : 1) P 15 = (a 6 : a 10 : 1) P 16 = (a 7 : a : 1) P 17 = (a 7 : a 4 : 1) P 18 = (a 8 : a 2 : 1) P 19 = (a 8 : a 8 : 1) P 20 = (a 9 : a 5 : 1) P 21 = (a 9 : a 10 : 1) P 22 = (a 10 : a : 1) P 23 = (a 10 : a 4 : 1) P 24 = (a 11 : a 2 : 1) P 25 = (a 11 : a 8 : 1) P 26 = (a 12 : a 5 : 1) P 27 = (a 12 : a 10 : 1) P 28 = (a 13 : a : 1) P 29 = (a 13 : a 4 : 1) P 30 = (a 14 : a 2 : 1) P 31 = (a 14 : a 8 : 1) P 32 = (1 : a 5 : 1) P 33 = (1 : a 10 : 1)

5.1. Construction of the required divisors.

5.1.1.

A place Q of degree n. It is sufficient to take a place Q of degree n in the rational function field F q (x)/F q , which totally splits in F/F q . It is equivalent to choose a monic irreducible polynomial Q(x) ∈ F q [x] of degree n such that its roots α i in F q n satisfy T r F2 (α 5 i ) = 0 for i = 1, ..., n where the map T r F2 denotes the classical function Trace over F 2 by [20, Theorem 2.25]. In fact, it is sufficient to verify that this property is satisfied for only one root since a finite field is Galois.

For example, for the extension n = 13, we choose the irreducible polynomial (3) Q(x) = x 13 + a 6 x 12 + a 5 x 11 + a 11 x 10 + x 9 + a 12 x 8 + a 7 x 7 + a 7 x 5 + a 2 x 4 + a 11 x 3 + a 8 x 2 + a 6 x + a 14 .

Let b be a root of Q(x). It is easy to check that T r F2 (b 5 ) = 0, hence the place (Q(x)) of F 16 (x)/F 16 is totally splitted in the algebraic function field F/F q , which means that there exist two places of degree n in F/F q lying over the place (Q(x)) of F 16 (x)/F 16 . For the place Q of degree n in the algebraic function field F/F q , we consider one of the two places in F/F q lying over the place (Q(x)) of F 16 (x)/F 16 , namely the orbit of the F 16 13 -rational point P 1i = (α i : β i : 1) where α i is a root of Q(x) and β i = a 6 α 12 i + a 13 α 11 i + aα 10 i + a 13 α 9

i + a 8 α 8 i + aα 7 i + a 8 α 6 i + a 9 α 5 i + a 5 α 4 i + a 2 α 2 i + a 8 α i + a 13 for i = 1, ..., 13. Notice that the second place is given by the conjugated points P 2i = (α i : β i + 1 : 1) for i = 1, ..., 13.

5.1.2.

The two divisors D 1 and D 2 of degree n+g-1. For the divisor D 1 of degree n + g -1, we choose a place D 1 of degree 14 according to the method used for the place Q. We consider the orbit of the F 16 14 -rational point P 1 1i = (γ i : δ i : 1) where γ i is a root of D 1 (x) = x 14 +a 9 x 13 +a 6 x 12 +a 7 x 11 +a 11 x 10 +a 12 x 9 +a 10 x 8 +a 6 x 7 +a 7 x 6 + a 10 x 5 +a 14 x 4 +x 3 +x 2 +a 3 x+a and δ i = a 4 γ 12 i +a 8 γ 11 i +a 7 γ 9 i +a 2 γ 8 i +a 3 γ 7 i +a 8 γ 6 i +a 4 γ 5 i +a 14 γ 4 i +γ 2 i +a 6 γ i +a 3 for i = 1, ..., 14. Notice that the second place is given by the conjugated points T 1 2i = (γ i : δ i + 1 : 1) for i = 1, ..., 14.

For the divisor D 2 of degree n + g -1, we choose a place D 2 of degree 14 according to the method used for the place Q. We consider the orbit of the F 16 14 -rational point P 2 1i = (γ i : δ i : 1) where γ i is a root of D 2 (x) = x 14 +x 2 +ax+1 and δ i = a 5 γ 12 i +a 11 γ 11 i +a 11 γ 10 i +a 8 γ 9 i +a 4 γ 8 i +a 8 γ 7 i +γ 6 i +a 8 γ 5 i +a 2 γ 4 i +a 9 γ 3 i +a 2 γ 2 i +a 2 γ i +a 7 for i = 1, ..., 14. Notice that the second place is given by the conjugated points T 2 2i = (γ i : δ i + 1 : 1) for i = 1, ..., 14.

The place Q and the divisors D 1 and D 2 satisfy the good properties since the dimensions of the divisor D 1 -Q and D 2 -Q are zero which means that the divisors D 1 -Q and D 2 -Q are non-special of degree g -1.

Construction of required bases.

5.2.1.

The basis of the residue class field F Q . We choose as basis of the residue class field F Q the basis B Q associated to the place Q obtained in Section 5.1.1.

5.2.2.

The basis of L(D i ) for i=1,2. We choose as basis of the Riemann-Roch space L(D i ) the basis

B Di such that E i (B Di ) = B Q is a basis of F Q as in Section 3.3.2, B D1 = (f 1 , ..., f n ) and B D2 = (f 1 , f n+1 ..., f 2n-1 ).
For j ∈ {2, . . . , n}, any element f j of B D1 is such that

f j (x, y) = f j1 (x)y + f j2 (x) D 1 (x) ,
and for j ∈ {n + 1, . . . , 2n -1}, any element f j of B D2 is such that

f j (x, y) = f j1 (x)y + f j2 (x) D 2 (x) , where f j1 , f j2 ∈ F 16 [x].
To simplify, we set f j (x, y) = (f j1 (x), f j2 (x)). We have:

f 1 (x, y) = 1,
f 2 (x, y) = (a 13 x 11 + a 10 x 10 + a 3 x 9 + a 10 x 8 + a 14 x 7 + a 11 x 6 + a 8 x 5 + a 11 x 4 + x 3 + ax 2 + a 11 x + a 11 , a 12 x + a 12 x 13 + a 9 x 12 + x 11 + a 8 x 10 + a 13 x 9 + a 12 x 8 + ax 7 + a 5 x 6 + x 5 + a 13 x 4 + a 5 x 3 + a 12 x 2 + a 4 x), f 3 (x, y) = (a 2 x 11 + a 11 x 10 + a 13 x 9 + a 3 x 8 + a 10 x 7 + ax 6 + a 9 x 5 + a 6 x 4 + a 5 x 3 + a 3 x 2 + a 7 x + a 14 , a 12 x + a 2 x 13 + a 11 x 12 + a 3 x 11 + a 13 x 10 + a 7 x 9 + a 9 x 8 + a 9 x 7 + a 13 x 6 + ax 5 + a 5 x 4 + a 12 x 3 + a 13 x 2 + a 8 x + a 2 ), f 4 (x, y) = (a 8 x 11 + ax 10 + a 10 x 9 + x 8 + a 8 x 7 + a 14 x 6 + a 6 x 5 + a 3 x 4 + a 14 x 3 + a 3 x 2 + a 6 x + a, a 3 x 14 + a 7 x 13 + a 10 x 12 + a 11 x 11 + a 13 x 9 + a 8 x 8 + a 8 x 7 + a 3 x 6 + a 5 x 5 + a 6 x 4 + a 3 x 3 + x 2 + a 5 x + a 6 ), f 5 (x, y) = (a 12 x 11 + a 12 x 10 + a 14 x 9 + a 7 x 8 + a 7 x 7 + a 7 x 6 + a 3 x 5 + a 13 x 4 + a 2 x 3 + a 7 x 2 + a 7 x + a 7 , a 2 x + a 11 x 13 + a 5 x 12 + a 10 x 11 + a 10 x 9 + a 13 x 8 + ax 7 + a 10 x 6 + a 6 x 5 + a 12 x 4 + a 3 x 3 + a 4 x 2 + a 10 x + a 12 ), f 6 (x, y) = (a 6 x 11 + a 14 x 10 + x 9 + x 8 + a 4 x 7 + a 2 x 6 + a 7 x 5 + a 13 x 4 + a 4 x 3 + a 12 x 2 + a 5 x + a 7 , a 9 x 14 + a 6 x 13 + a 4 x 12 + a 4 x 11 + a 12 x 10 + a 10 x 9 + a 7 x 8 + a 2 x 7 + a 11 x 5 + a 14 x 4 + a 4 x 2 + a 11 x + a), f 7 (x, y) = (a 8 x 11 + a 11 x 10 + a 12 x 9 + a 2 x 8 + a 14 x 7 + a 10 x 6 + a 4 x 5 + a 7 x 4 + a 2 x 3 + a 13 x + a 12 , a 8 x 14 + a 10 x 13 + a 14 x 12 + a 7 x 11 + a 5 x 10 + a 13 x 9 + a 13 x 8 + a 12 x 7 + a 7 x 6 + a 8 x 5 + a 12 x 4 + x 3 + a 12 x 2 + a 6 x + a 10 ), f 8 (x, y) = (a 13 x 11 + ax 10 + a 11 x 9 + ax 8 + a 9 x 7 + a 11 x 6 + a 10 x 5 + a 9 x 4 + x 3 + a 4 x 2 + a 6 x + 1, a 2 x 14 + a 2 x 13 + a 11 x 12 + a 5 x 11 + a 7 x 10 + a 2 x 9 + a 4 x 8 + a 11 x 7 + a 14 x 6 + a 13 x 5 + a 8 x 4 + a 4 x 3 + a 6 x 2 + x + a 12 ), f 9 (x, y) = (a 10 x 11 + a 6 x 10 + a 12 x 9 + a 12 x 8 + a 7 x 7 + a 3 x 6 + a 12 x 5 + a 2 x 4 + a 6 x 3 + a 12 x 2 + a 6 x + 1, a 8 x + a 11 x 13 + ax 12 + a 8 x 11 + a 5 x 10 + a 8 x 9 + a 3 x 8 + a 14 x 7 + a 9 x 6 + a 13 x 5 + a 11 x 4 + a 3 x 3 + a 7 x 2 + x + a 2 ), f 10 (x, y) = (a 14 x 11 + ax 9 + a 12 x 8 + a 3 x 7 + x 6 + a 7 x 5 + a 11 x 4 + a 14 x 3 + a 8 x 2 + ax + a 7 , a 3 x 14 + a 8 x + a 7 x 11 + a 14 x 10 + a 13 x 9 + a 9 x 8 + a 6 x 7 + a 9 x 6 + a 8 x 5 + a 12 x 2 + a 13 x + a 14 ), f 11 (x, y) = (a 9 x 11 + a 5 x 10 + a 5 x 9 + ax 8 + a 7 x 7 + a 5 x 6 + a 2 x 5 + a 4 x 4 + a 3 x 3 + a 2 x 2 + ax + a, a 10 x 14 + a 4 x 12 + a 5 x 11 + a 14 x 10 + a 5 x 9 + a 9 x 7 + a 7 x 6 + a 4 x 5 + a 14 x 4 + a 10 x 3 + a 9 x 2 + a 5 x + a 3 ), f 12 (x, y) = (a 11 x 11 + a 9 x 10 + a 10 x 9 + a 7 x 8 + a 10 x 6 + a 2 x 5 + a 13 x 4 + a 7 x 3 + a 2 x 2 + a 11 x + a 3 , a 9 x 14 + a 11 x 13 + x 12 + a 11 x 11 + x 10 + a 9 x 9 + a 8 x 8 + a 11 x 7 + a 8 x 6 + a 12 x 5 + a 6 x 4 + a 2 x 3 + a 4 x 2 + a 14 x + a 13 ), f 13 (x, y) = (a 9 x 10 + ax 9 + a 3 x 8 + a 10 x 7 + a 7 x 6 + a 12 x 4 + a 3 x 3 + a 12 x 2 + a 11 x + a 8 , ax 14 + a 12 x 13 + a 2 x + a 3 x 11 + x 10 + a 12 x 9 + a 3 x 8 + a 14 x 7 + x 6 + a 14 x 5 + a 10 x 4 + a 5 x 3 + a 5 x 2 + a 6 x + 1), f 14 (x, y) = (a 14 x 11 + a 4 x 10 + a 10 x 9 + a 6 x 8 + a 7 x 7 + a 14 x 6 + a 12 x 5 + ax 4 + a 5 x 3 + a 4 x + a 12 , a 14 x 14 + a 14 x 13 + a 3 x 12 + a 11 x 11 + a 12 x 10 + ax 9 + a 5 x 8 + a 2 x 7 + a 6 x 6 + a 14 x 5 + a 6 x 3 + a 11 x 2 + a 4 x + a 9 ), f 15 (x, y) = (a 8 x 11 + a 8 x 10 + a 2 x 9 + a 13 x 8 + a 4 x 7 + ax 6 + a 7 x 4 + a 3 x 3 + a 9 x 2 + a 5 x + a 5 , a 10 x 14 + a 6 x + x 12 + a 11 x 11 + a 4 x 10 + a 10 x 9 + a 14 x 8 + a 13 x 7 + a 11 x 6 + ax 5 + a 12 x 4 + x 2 + a 5 ), f 16 (x, y) = (a 13 x 11 + a 8 x 10 + a 6 x 9 + x 8 + a 12 x 7 + a 9 x 6 + x 5 + a 10 x 4 + a 14 x 3 + a 4 x 2 + a 8 x + a 2 , a 7 x + a 11 x 13 + x 12 + a 5 x 11 + a 10 x 9 + a 9 x 8 + a 6 x 7 + a 9 x 6 + a 14 x 5 + a 13 x 4 + a 11 x 3 + a 6 x 2 + a 9 x + a 11 ), f 17 (x, y) = (a 8 x 11 + a 10 x 10 + a 2 x 9 + ax 8 + a 13 x 6 + ax 5 + a 9 x 4 + a 3 x 2 + a 4 x + a 10 , a 9 x 14 + a 13 x 12 + a 7 x + a 9 x 10 + a 12 x 9 + a 2 x 8 + a 3 x 7 + a 13 x 6 + a 12 x 5 + a 5 x 4 + a 4 x 3 + a 8 x 2 + a 10 x + a 9 ), f 18 (x, y) = (x 10 + a 5 x 9 + x 8 + a 5 x 7 + a 10 x 6 + a 10 x 5 + a 5 x 4 + a 4 x 3 + a 5 x 2 + a 4 , a 3 x 14 + a 13 x 13 + a 5 x + a 8 x 11 + a 12 x 10 + a 4 x 9 + a 10 x 8 + a 11 x 7 + a 2 x 6 + a 12 x 5 + a 11 x 4 + a 2 x 3 + a 3 x 2 + a 12 x + a 8 ), f 19 (x, y) = (a 8 x 11 + a 13 x 10 + a 6 x 9 + a 6 x 8 + a 4 x 6 + a 10 x 5 + a 4 x 3 + a 3 x + 1, a 14 x 14 + ax 13 + a 14 x 12 + a 5 x 11 + ax 10 + a 2 x 9 + a 7 x 8 + ax + a 8 x 6 + a 9 x 5 + a 2 x 4 + a 9 x 3 + a 8 x 2 + a 5 x + a 12 ), f 20 (x, y) = (ax 11 + a 6 x 10 + x 9 + a 5 x 8 + a 5 x 7 + a 9 x 6 + a 12 x 5 + a 4 x 4 + x 3 + a 13 x 2 + a 4 x + 1, ax 14 + x 13 + a 6 x 11 + a 5 x 10 + a 9 x 9 + a 10 x 8 + a 9 x 7 + a 5 x 6 + a 8 x 5 + a 10 x 4 + a 11 x 2 + a 6 x + a 3 ), f 21 (x, y) = (a 10 x 11 + a 14 x 10 + a 13 x 8 + a 2 x 7 + a 11 x 6 + a 7 x 5 + a 7 x 3 + x 2 + a 4 x + a 7 , a 6 x 14 + a 4 x 13 + a 8 x 12 + ax 11 + a 11 x 10 + a 4 x 9 + a 7 x 8 + ax 7 + a 9 x 6 + a 12 x 5 + a 6 x 4 + a 4 x 3 + a 2 x 2 + a 5 x + a 7 ), f 22 (x, y) = (a 10 x 11 + x 10 + a 7 x 8 + x 7 + a 13 x 6 + a 6 x 5 + a 2 x 4 + a 10 x 3 + a 2 x 2 + ax + 1, a 2 x 14 + a 2 x 13 + a 3 x 11 + a 11 x 10 + a 10 x 8 + a 11 x 7 + a 11 x 6 + a 12 x 5 + ax 4 + a 14 x 3 + a 2 x 2 + a 3 x), f 23 (x, y) = (a 7 x 11 + a 9 x 10 + a 7 x 9 + a 2 x 8 + a 8 x 7 + a 11 x 6 + a 14 x 5 + a 7 x 4 + a 10 x 3 + a 8 x 2 + a 4 x, a 10 x 14 + a 8 x 13 + a 5 x 12 + x 11 + a 6 x 10 + a 12 x 9 + a 11 x 8 + a 6 x 7 + a 2 x 6 + a 8 x 5 + a 3 x 4 + a 7 x 3 + a 12 ), f 24 (x, y) = (x 11 + a 5 x 10 + a 3 x 9 + a 10 x 8 + a 10 x 7 + a 4 x 6 + a 14 x 5 + a 8 x 3 + a 3 x 2 + a 6 x + a 8 , a 10 x 13 + a 13 x 12 + a 13 x 11 + ax 10 + a 11 x 8 + a 2 x 7 + ax 6 + a 2 x 5 + a 2 x 4 + a 8 x 2 + a 6 ), f 25 (x, y) = (a 4 x 11 + a 12 x 10 + a 4 x 9 + a 10 x 8 + a 12 x 7 + a 14 x 6 + a 7 x 5 + a 11 x 4 + a 13 x 3 + a 13 x 2 + a 10 x + a 4 , x 14 + a 6 x 13 + a 3 x 12 + a 11 x 11 + a 13 x 10 + a 11 x 9 + a 7 x 8 + a 2 x 7 + a 5 x 6 + a 14 x 5 + a 5 x 4 + a 10 x 3 + a 3 x 2 + a 14 x + a 5 ).

5.2.3.

The basis of L(D 1 + D 2 ). As seen in Section 3.3.3, B D1+D2 = (f 1 , . . . , f n , f n+1 , . . . , f 2n+g-1 ) where, for j ∈ {1, . . . , 2n -1}, the f i are defined above. The basis is completed with

f 26 (x, y) = g 26 (x)y + h 26 (x) r(x)
and f 27 (x, y) = g 27 (x)y + h 27 (x) r(x) where: g 26 (x) = a 13 x 25 + a 14 x 24 + a 2 x 23 + a 8 x 22 + a 7 x 21 + ax 19 + a 9 x 18 + a 7 x 17 + a 6 x 16 + a 10 x 15 + a 10 x 14 + a 2 x 13 + a 5 x 12 + a 4 x 11 + a 11 x 9 + a 12 x 8 + a 7 x 7 + a 14 x 6 + x 5 + a 8 x 4 + a 9 x 3 + a 7 x 2 , h 26 (x) = a 13 x 28 + a 11 x + x 25 + a 4 x 24 + a 5 x 23 + a 3 x 22 + a 3 x 21 + x 20 + a 12 x 19 + a 4 x 18 + a 13 x 16 + a 5 x 15 + a 11 x 14 + a 6 x 13 + ax 12 + x 11 + a 8 x 10 + a 8 x 9 + a 12 x 7 + a 2 x 6 + a 2 x 5 + x 4 + a 8 x 3 + a 14 x 2 + a 10 x + a 10 , g 27 (x) = a 4 x 25 + a 6 x 24 + a 6 x 23 + a 2 x 22 + a 3 x 21 + a 9 x 20 + a 2 x 19 + a 14 x 18 + a 9 x 17 + a 8 x 16 + a 13 x 15 + a 12 x 14 + a 8 x 13 + x 12 + a 3 x 10 + a 4 x 9 + a 12 x 8 + a 6 x 7 + a 2 x 6 + a 14 x 5 + a 5 x 4 + a 4 x 3 + a 4 x 2 + a 5 x + a 5 , h 27 (x) = a 9 x 28 + a 5 x 27 + a 6 x 26 + a 4 x 25 + x 24 + a 7 x 23 + a 5 x 22 + a 6 x 21 + x 20 + a 12 x 19 + a 7 x 18 + a 11 x 17 + a 8 x 16 + a 7 x 15 + a 6 x 14 + a x 13 + a 7 x 12 + a 3 x 11 + a 9 x 10 + x 9 + a 5 x 8 + a 9 x 7 + a 9 x 6 + a 5 x 5 + x 4 + a 13 x 2 + a 3 x + a 2 , r(x) = x 28 + a 9 x 27 + a x 26 + a 7 x 25 + a 11 x 24 + a 12 x 23 + a 10 x 22 + a 6 x 21 + a 7 x 20 + a 10 x 19 + a 14 x 18 + x 17 + a 3 x 14 + a 9 x 13 + a 10 x 12 + a 7 x 11 + a 2 x 10 + a 13 x 9 + a 10 x 8 + a 11 x 7 + a 6 x 6 + a 10 x 5 + a 9 x 4 + a 7 x 3 + a 6 x + a.

Multiplication in F 4 n /F4

Set q = 4 and n = 4. With the algebraic function field F/F q defined over F 4 associated to the hyperelliptic curve X with plane model y 2 + y = x 5 , of genus two, we cannot multiply only with places of degree one. In fact, if we use only places of degree one we get that dim Im(T ) ≤ N 1 (F/F 4 ) whereas dim L(D 1 + D 2 ) = 2n + g -1 = 9. As a consequence, the evaluation map T is not injective as required in Theorem 2.1 since N 1 (F/F 4 ) = 5. We can ask whether there exists another hyperelliptic curve of genus two that allows the multiplication with only places of degree one in F 4 4 . By definition, an hyperelliptic curve is a covering of degree two of the projective line P 1 (F q ). It is clear that the maximal number N q (g) of rational points of a projective smooth absolutely irreducible curve of genus g = 2 over F q is such that N q (2) ≤ 2q + 2. In the case of q = 4 and g = 2, this bound is least that the bound of Serre-Weil N q (2) ≤ q + 1 + 2m where m = 2 √ q . Hence, there does not exist a maximal Serre-Weil curve (i.e. attaining the Serre-Weil bound) over F 4 of genus two and N 4 (2) ≤ 2q + 2 = q + 1 + 2m -3 = 10. In fact, Serre in [START_REF] Serre | Sur le nombre de points rationnels d'une courbe algébrique sur un corps fini[END_REF] proves that N 4 (2) = 10 and Shabat in [START_REF] Shabat | Curves with many points[END_REF] exhibits an optimal (i.e. attaining N q (g)) curve of genus two over F 4 , namely the curve of equation y 2 + y = x x 3 +x+1 . Clearly, the sufficient Condition (2) fails since N 1 (F/F 4 ) > 2n + 2g -2 implies that n < 4. Nevertheless, it is still possible to multiply according to Theorem 2.1 with the ten places of degree one of the algebraic function field F/F 4 associated to the curve y 2 + y = x x 3 +x+1 , by choosing suitable degree n place Q and divisors D 1 and D 2 of F/F 4 . For instance, using the description given by Magma, we can choose the n-degree place Q = (x 4 + a 2 x 2 + a 2 x + a, (x 3 + x + 1)y + x 2 + a 2 x + a) that lies over the place (Q(x)) of the rational field F 4 (x) defined by Q(x) = x 4 + a 2 x 2 + a 2 x + a, and the divisors D 1 = (x 5 + x 4 + x 3 + x 2 + x + a 2 , (x 3 + x + 1)y + a 2 x 3 + a 2 x 2 + a 2 x + a 2 ) and D 2 = (x 5 + x + a, (x 3 + x + 1)y + a 2 x 4 + a 2 x 3 + a 2 x + a 2 ) of degree n + g -1 = 5 that respectively lie over the places (D 1 (x)) and (D 2 (x)) of the rational field F 4 (x) defined by D 1 (x) = x 5 + x 4 + x 3 + x 2 + x + a 2 and D 2 (x) = x 5 + x + a. Indeed, in this case, the divisors D 1 and D 2 as well as the place Q satisfy the conditions required by Theorem 2.1, namely:

dim L(D 1 -Q) = 0, dim L(D 2 -Q) = 0 and dim L(D 1 + D 2 -Pi∈P1(F/Fq) P i ) = 0.
Now, suppose that n = 5. In this case, we have dim L(D 1 + D 2 ) = 2n + g -1 = 11 and still dim Im(T ) ≤ N 1 (F/F 4 ) = 10. This means that T cannot be injective. Since the curve of equation y 2 + y = x x 3 +x+1 is optimal, it is impossible to multiply with only places of degree one in extensions of F 4 of degree n ≥ 5. Consequently, the algorithm has to be modified in order to use places of degree two. It is clear that we need to use as much as possible places of degree one to minimize bilinear complexity. Therefore, our algorithm will still use the curve of equation y 2 + y = x x 3 +x+1 . This curve has N 1 (F/F 4 ) = 10 rational places and N 2 (F/F 4 ) = 4 places of degree two. We represent F 4 as the field F 2 (a) = F 2 [X]/(P 1 (X)) where P 1 (X) is the primitive irreducible polynomial P 1 (X) = X 2 + X + 1 and a denotes a primitive root of P 1 (X) = X 2 + X + 1. As we also use evaluations over places of degree two, we need to define the finite field F 16 = F 4 2 as F 4 -vector space. So, we represent F 4 2 as the field F 4 (b) = F 4 [X]/(P 2 (X)) where P 2 (X) is the primitive irreducible polynomial P 2 (X) = X 2 + X + a and b denotes a primitive root of P 2 (X) = X 2 + X + a.

For the description of the places of degree one, we use the description given by Magma:

P ∞,1 = ( 1 x , x 3 +x+1 x 3 y + 1 x ) P ∞,2 = ( 1 x , x 3 +x+1
x 3 y + x+1 x ) P 3 = (x, (x 3 + x + 1)y) P 4 = (x, (x 3 + x + 1)y + x + 1) P 5 = (x + a, (x 3 + x + 1)y + 1) P 6 = (x + a, (x 3 + x + 1)y + x + 1) P 7 = (x + a 2 , (x 3 + x + 1)y + 1) P 8 = (x + a 2 , (x 3 + x + 1)y + x + 1) P 9 = (x + 1, (x 3 + x + 1)y + a) P 10 = (x + 1, (x 3 + x + 1)y + a 2 ). Note that the first two infinite places lie above the infinite place 1/x of the rational function field F q (x). Moreover, if (x : y : z) denotes the projective coordinates of rational points of the curve X, then these infinite places correspond to the two points to the infinity P ∞,1 = (1 : 0 : 0) and P ∞,2 = (0 : 1 : 0) of X.

For the description of the places of degree two, we use the description given by Magma:

Q 1 = (x 2 + ax + a, (x 3 + x + 1)y + a 2 x + a 2 ) Q 2 = (x 2 + ax + a, (x 3 + x + 1)y + a 2 x + 1) Q 3 = (x 2 + a 2 x + a 2 , (x 3 + x + 1)y + ax + a) Q 4 = (x 2 + a 2 x + a 2 , (x 3 + x + 1)y + ax + 1).
Again, we proceed as in Subsection 5.1. We choose an irreducible polynomial Q(x) of degree n = 5 and two irreducible polynomials D 1 (x) and D 2 (x) of degree n + g -1 = 6. For instance,

Q(x) = x 5 + ax 4 + x 3 + a 2 x 2 + ax + 1, D 1 (x) = x 6 + ax 4 + ax 2 + x + a 2 , D 2 (x) = x 6 + ax 3 + a 2 x 2 + a 2 .
The degree n place (Q(x)) and the two degree n + g -1 places (D 1 (x)) and (D 2 (x)) of F q (x)/F q totally split in F/F q . Then we choose suitable places Q, D 1 and D 2 of F/F q lying over the places (Q(x)), (D 1 (x)) and (D 2 (x)) respectively, that is, such that D 1 -Q and D 2 -Q are non-special divisors of degree g -1. For instance, using the description of Magma, Q = (x 5 + ax 4 + x 3 + a 2 x 2 + ax + 1, (x 3 + x + 1)y + ax 4 + a 2 x 3 + ax 2 + a 2 x + 1), D 1 = (x 6 + ax 4 + ax 2 + x + a 2 , (x 3 + x + 1)y + x 5 + a 2 ), D 2 = (x 6 + ax 3 + a 2 x 2 + a 2 , (x 3 + x + 1)y + a 2 x 5 + ax 2 + a 2 ).

As in Section 3.3.2, we choose as basis of the Riemann-Roch space L(D i ) the basis B Di such that E i (B Di ) = B Q is a basis of F Q . We write B D1 = (f 1 , ..., f n ) and B D2 = (f 1 , f n+1 ..., f 2n-1 ). For j ∈ {2, . . . , n} and k ∈ {n + 1, . . . , 2n -1}, any element f j of B D1 and f k of B D2 are respectively of the form:

f j (x, y) = f j1 (x)y + f j2 (x) D 1 (x) and f k (x, y) = f k1 (x)y + f k2 (x) D 2 (x) , where f j1 , f j2 , f k1 , f k2 ∈ F 4 [x].
To simplify, we set f j (x, y) = (f j1 (x), f j2 (x)) for all j ∈ {2, 2n -1}. We have:

f 1 (x, y) = 1, f 2 (x, y) = (a 2 x 5 + a 2 x 4 + ax 3 + ax + 1, a 2 x 6 + a 2 x 5 + a 2 x 4 + a 2 x 3 + x 2 + ax + a), f 3 (x, y) = (a 2 x 6 + x 5 + x 3 + ax 2 + a 2 , x 6 + x 4 + ax 3 + ax 2 + x + 1), f 4 (x, y) = (ax 6 + a 2 x 5 + ax 4 + x 3 + a 2 x 2 , ax 6 + ax 5 + a 2 x 3 + ax 2 + x + a), f 5 (x, y) = (x 6 + a 2 x 5 + a 2 x 3 + ax 2 + 1, a 2 x 5 + x 4 + a 2 x 2 + a 2 x + a 2 ), f 6 (x, y) = (a 2 x 6 + ax 4 + x 2 + ax + a 2 , ax 6 + a 2 x 4 + a 2 x 3 + x), f 7 (x, y) = (x 6 + x 2 + 1, ax 4 + ax 3 + a 2 x + a 2 ),
f 8 (x, y) = (a 2 x 5 + x 4 + a 2 x 3 + ax 2 + x, x 6 + a 2 x 5 + a 2 x 4 + a 2 x 3 + x 2 + a 2 x + 1), f 9 (x, y) = (x 5 + x 4 + ax 3 + ax + a 2 , x 6 + a 2 x 5 + ax 4 + x 3 + a 2 x 2 + a 2 x),

The basis B D1+D2 = (f 1 , . . . , f 2n+g-1 ) consists of the f i 's that are defined above for j ∈ {1, . . . , 2n -1} and the g = 2 components f 10 (x, y) = g 10 (x)y + h 10 (x) r(x) and f 11 (x, y) = g 11 (x)y + h 11 (x) r(x) where: g 10 (x) = ax 12 + x 11 + a 2 x 9 + a 2 x 8 + ax 7 + ax 6 + a 2 x 5 + x 3 + x 2 + ax, h 10 (x) = x 12 + a 2 x 9 + ax 8 + a 2 x 7 + x 6 + ax 4 + ax 3 + x 2 + a 2 x + 1), f 11 (x) = a 2 x 12 + a 2 x 11 + a 2 x 10 + x 7 + ax 5 + ax 3 + ax 2 + a 2 x + 1, h 11 (x) = x 10 + x 8 + ax 5 + a 2 x 2 + 1, r(x) = x 12 + ax 10 + ax 9 + x 8 + ax 7 + x 6 + a 2 x 5 + ax 4 + ax 3 + a 2 x 2 + a 2 x + a.

Multiplication in F 2 n /F2

Set q = 2 and g = 2. In this case, it is known that the number of rational places N q (g) = 6 by the upper bound of Ihara [START_REF] Ihara | Some remarks on the number of rational points of algebraic curves[END_REF] and the lower bound of Serre [START_REF] Serre | Sur le nombre de points rationnels d'une courbe algébrique sur un corps fini[END_REF] and it is not sufficient to multiply in the extensions of F 2 of degree n ≥ 3. Hence, we need to use places of higher degree. Note that as by the above section, N 4 (g) = 10 = N 1 (F/F 2 ) + 2N 2 (F/F 2 ), we can only multiply in extensions of degree n ≤ 4 if we only use places of degree one and two (for any curve of genus two) a priori (up to the remark of previous subsection that the condition of Theorem 2.1 is only a sufficient condition). By consequence, we set n = 5 and we consider the curve used in Section 6 namely the algebraic function field F/F 2 associated to the hyperelliptic curve X with plane model y 2 + y = x x 3 +x+1 , of genus two. This curve has N 1 (F/F 2 ) = 4 rational places, N 2 (F/F 2 ) = 3 places of degree two and N 4 (F/F 2 ) = 2 places of degree four. For the description of the places, we use the description given by Magma. The places of degree one are :

P ∞,1 = ( 1
x , x 3 +x+1

x 3 y + 1 x ) P ∞,2 = ( 1 x , x 3 +x+1

x 3 y + x+1 x ) P 3 = (x, (x 3 + x + 1)y) P 4 = (x, (x 3 + x + 1)y + x + 1). The places of degree two are: Q 1 = (x + 1) Q 2 = (x 2 + x + 1, (x 3 + x + 1)y + 1) Q 3 = (x 2 + x + 1, (x 3 + x + 1)y + x + 1).

And the places of degree four are: R 1 = (x 4 + x 3 + 1, (x 3 + x + 1)y + x 2 + x + 1) R 2 = (x 4 + x 3 + 1, (x 3 + x + 1)y + x 3 + x 2 ).

According to our method, we choose the irreducible polynomial Q(x) = x 5 + x 3 + 1 of degree n = 5 and the two irreducible polynomials D 1 (x) = x 6 + x 5 + x 4 + x + 1 and D 2 (x) = x 6 + x 5 + x 2 + x + 1 of degree n + g -1 = 6. The degree n place (Q(x)) and the two degree n + g -1 places (D 1 (x)) and (D 2 (x)) of F q (x)/F q totally split in F/F q . Then we choose places Q, D 1 and D 2 of F/F q lying over these three places and such that D 1 -Q and D 2 -Q are non-special divisors of degree g -1. Using the description of Magma, Q = (x 5 + x 3 + 1, (x 3 + x + 1)y + x 4 + x + 1) D 1 = (x 6 + x 5 + x 4 + x + 1, (x 3 + x + 1)y + x 5 + x 3 + 1) D 2 = (x 6 + x 5 + x 2 + x + 1, (x 3 + x + 1)y + x 5 + x 4 + x).

As in Section 3.3.2, we choose as basis of the Riemann-Roch space L(D i ) the basis B Di such that E i (B Di ) = B Q is a basis of F Q . We write B D1 = (f 1 , ..., f n ) and B D2 = (f 1 , f n+1 ..., f 2n-1 ). For j ∈ {2, . . . , n} and k ∈ {n + 1, . . . , 2n -1}, any element f j of B D1 and f k of B D2 are respectively of the form: where f j1 , f j2 , f k1 , f k2 ∈ F 4 [x]. To simplify, we set f j (x, y) = (f j1 (x), f j2 (x)) for all j ∈ {2, 2n -1}. We have:

f 1 (x, y) = 1,
f 2 (x, y) = (x 3 + x + 1, x 6 + x 4 + 1), f 3 (x, y) = (x 4 + x 3 + x 2 + 1, x 4 + x 2 + 1), f 4 (x, y) = (x 5 + x 4 + x 3 + x, x 5 + x 3 + x), f 5 (x, y) = (x 6 + x 5 + x 4 + x 2 , x 6 + x 4 + x 2 ), f 6 (x, y) = (x 6 + x 5 + x 4 + x 3 + x 2 + x + 1, x 5 ), f 7 (x, y) = (x 6 + x 5 + x 3 + 1, x 5 + x 4 + x 2 + 1), f 8 (x, y) = (x 6 + x 2 + 1, x 4 + x 3 + x 2 + x + 1), f 9 (x, y) = (x 4 + x 3 + x 2 + 1, x 6 + x 3 + x + 1),

The basis is completed with f 10 (x, y) = (x 12 + x 8 + x 6 + x 5 + x 2 + x + 1)y + (x 11 + x 8 + x 5 + x 4 + x 3 + x 2 + x) r(x) f 11 (x, y) = (x 12 + x 11 + x 9 + x 8 + x 6 + x)y + (x 12 + x 10 + x 8 + x 7 + x 6 + x 4 + x 3 + x 2 ) r(x) with r(x) = x 12 + x 9 + x 8 + x 7 + x 6 + x 5 + x 4 + x 3 + 1.

Definition 1 . 1 .

 11 Every expressionx • y = r i=1

3. 1 .

 1 Method and strategy of implementation. The construction of the algorithm is based on the choice of the place Q of degree n, the effective divisors D 1 and D 2 of degree n + g -1, the bases of spaces L(D 1 ), L(D 2 ) and L(D 1 + D 2 ) and the basis of the residue class field F Q of the place Q.

3 . 1 . ( 4 )

 314 Construct a basis (f 1 , . . . , f n , f n+1 , . . . , f 2n+g-1 ) of L(D 1 + D 2 ) where (f 1 , . . . , f n ) is the basis of L(D 1 ), (f 1 , f n+1 , . . . , f 2n-1 )the basis of L(D 2 ) and (f 2n , . . . , f 2n+g-1 ) the basis of M, defined in Section 3.3.2. (5) Compute the matrices T and T -1 . (6) Compute the matrice Λ.

  f j (x, y) = f j1 (x)y + f j2 (x) D 1 (x) and f k (x, y) = f k1 (x)y + f k2 (x) D 2 (x) ,

Appendix A. Magma implementation of the multiplication algorithms in the finite fields A.1. F 16 13 over F16.

// Asymmetric version of Chudnovsky multiplication algorithm in GF16^13 // using only places of degree 1 n:=13; g:=2; q:=16; F16<a>:=GF [START_REF] Bshouty | Multinlinear complexity is equivalent to optimal tester size[END_REF]; // %%%%%%%%%%%%%%%%%%%%%%%%%%% // ALGEBRAIC FUNCTION FIELD WITH CURVE y^2 + y + x^5 OF GENUS 2 // %%%%%%%%%%%%%%%%%%%%%%%%%%% Kx<x> := FunctionField(F16); Kxy<y> := PolynomialRing(Kx); f:=y^2 + y + x^5; F<c> := FunctionField(f); //------find places of higher degree LP1:=Places ( Q := Decomposition(F,Zeros(Kx!q) [1]) [1]; K<b>:=ResidueClassField(Q); "degree of Q is ", Degree(Q); // n //------D1 := RandomIrreduciblePolynomial(F16,n+g- // Asymmetric version of Chudnovsky multiplication algorithm in GF4^5 // In this case, the curve is defined over F4 instead of F16 // and, for n:=5, we must use places of degree 2. // Note that in GF4^4 (i.e. when n:= 4) it suffices to use degree 1 places. n:=5; g:=2; q:=4; F4<a>:=GF( 4 KK4<hh4>:=Parent(Evaluate(BasisLD1D2 [2], LP4 [ 2] )); // degree 4 place mb:=KK4![TFX [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF][1], TFX [START_REF] Ballet | Families of curves over any finite field attaining the generalized Drinfeld-Vladut bound[END_REF][1], TFX [START_REF] Ballet | On an application of the definition field descent of a tower of function fields[END_REF][1], TFX [11] [1]] * KK4![TFY [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF][1], TFY [START_REF] Ballet | Families of curves over any finite field attaining the generalized Drinfeld-Vladut bound[END_REF][1], TFY [START_REF] Ballet | On an application of the definition field descent of a tower of function fields[END_REF][1], TFY [11]