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ABSTRACT 

 

Bone substitute fabrication is of interest to meet the worldwide incidence of bone disorders. 

Physical chitosan hydrogels with intertwined apatite particles were chosen to meet the bio-

physical and mechanical properties required by a potential bone substitute. A set up for 3-

D printing by robocasting was found adequate to fabricate scaffolds. Inks consisted of 

suspensions of calcium phosphate particles in chitosan acidic aqueous solution. The inks 

are shear-thinning and consist of a suspension of dispersed platelet aggregates of dicalcium 

phosphate dihydrate in a continuous chitosan phase. The rheological properties of the inks 

were studied, including their shear-thinning characteristics and yield stress. Scaffolds were 

printed in basic water/ethanol baths to induce transformation of chitosan-calcium 

phosphates suspension into physical hydrogel of chitosan mineralized with apatite. 

Scaffolds consisted of a chitosan polymeric matrix intertwined with poorly crystalline 

apatite particles. Results indicate that ink rheological properties could be tuned by controlling ink 

composition: in particular, more printable inks are obtained with higher chitosan concentration 

(0.19 mol·L-1). 

 

KEYWORDS 
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INTRODUCTION 
Worldwide occurrence of bone disorders is a social problem of major concern due to the general 

ageing of population, the growing incidence of obesity, and to the low physical activity. During the 

last four decades, bone tissue engineering has been a constantly growing research area, which 

purpose is to find solutions for bone substitution and regeneration by a synergistic combination of 

biomaterials, cells and factor therapies [1]. 

An ideal bone substitute would be a material that temporary replaces bone tissue, thus ensuring its 

mechanical function, while promoting bone formation and growth concurrently to its bioresorption. 

Resulting from these requirements, a compromise should be met between structural and chemical 

complexity, ease of fabrication, ease of handling by the surgeon and costs [2]. Since it is difficult 

to find a single material that meets all the properties required by a bone substitute, an alternative is 

to combine materials with complementary properties, for example, bioceramics and biopolymers 

[1, 3–9]. A composite material composed of calcium phosphates (inorganic, bioceramics) and 

chitosan (organic, biopolymer) should provide a good substrate for bone growth [10–13].  

 

Chitosan is a non-toxic and biodegradable natural polymer [14–17]. It is known to promote the 

proliferation of osteoblasts and mesenchymal cells and in-vivo vascularization [18–20]. Chitosan 

has also been reported to be antimicrobial to fungi, parasites and bacteria [21]. Apatite is a calcium 

phosphate bioceramic with composition and structure close to the inorganic part of the extracellular 

matrix of bone. Apatite is osteoconductive [22, 23] and may be resorbed by bone cells, leaving 

enough space for new bone growth [2]. Since the combination of both materials might offer both 

angiogenicity and osseoconductivity in a single composite, such a composite may prove useful to 

fill large bone defects for which vascularization of the core of the bone filler is a condition sine qua 

non for success. 

 

Reported articles deal with the fabrication of chitosan-calcium phosphates composites. They were 

shaped as membranes, films, scaffolds, injectable materials, multilayers films and particles [20, 24]. 

However, pore size, shape, and pore interconnectivity at different scales (30-500 m) cannot be 

fully controlled using classical processing methods [25]. Inversely, the use of additive 
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manufacturing techniques such as robocasting should allow the control of the pore morphology and 

size in the micron-scale and above. 

 

Robocasting (also called Direct Ink Writing) is an extrusion-based additive manufacturing 

technique, in which an ink is pumped from a syringe to be delivered through a nozzle. A robot 

determines the nozzle position where the ink is extruded, drawing out the shape of the printed object 

[26]. The ink should meet two basic conditions: 1) it should flow under mild stress to avoid 

excessive pressure during pumping, but at the same time; 2) it should recover enough stiffness just 

after extrusion, when the stress is released, to retain the shape and solidify to bear its own weight 

and the weight of successive layers extruded on top [27–29] and to resist capillary pressure [30]. 

This means that a precise control of the rheological properties of the ink is crucial [29, 31, 32]. 

Whatever the ink composition (polymer, ceramic or composite), one approach to reach these 

properties is the use of chemical crosslinking agents in the ink formulation [29]. However, chemical 

crosslinking agents could complicate the control of ink properties and moreover, they may be toxic 

to the patient. Another approach to reach the rheological properties is the controlled combination 

of calcium phosphate powders of specific features with chitosan solution [31].  

Up to now, all research performed on robocasting of chitosan-calcium phosphates [29, 31, 32] 

aimed at fabricating dry, architectured sponges (thus involving a freeze-drying step to get the final 

material). The alternative explored in this work, is to simultaneously form a chitosan physical 

hydrogel to solidify the ink and to precipitate intertwined particles of calcium phosphate. The 

intertwining and the interactions between the two phases would also contribute to crosslink the 

network, in line with the idea to avoid toxic cross-linkers and extra freeze-drying step. In addition, 

this approach resembles the physiological mineralization process of bones, since also in our case 

the formation of calcium phosphate occurs in a hydrated natural polymer matrix.  

Rheological characteristics of chitosan-calcium phosphate suspensions depend upon the physico-

chemical interactions occurring between chitosan chains, ions and particles, thus in particular they 

may be impacted by pH [33]. Such interactions are mainly hydrogen bonds, electrostatic forces 

(attractive and repulsive) and polymer chain entanglements [33]. In short, three main interactions 

may affect the cross-linking state of the inks, thus their rheological properties.  

- First, calcium ions and electron donor atoms (nitrogen and oxygen) of chitosan molecule 

form coordination bond, increasing cross-linking [34].  

- Second, orthophosphate ions and amine groups can be involved in attractive electrostatic 

interactions [35, 36], again inducing chitosan chain cross-links.  

- Third, the ionic strength may promote chains disentanglement. Indeed, chitosan is soluble 

in acidic aqueous media (pH ≤ 6) thanks to the protonation of the primary amines of the 

glucosamine residues [37]. However, salts, sources of calcium and orthophosphate ions 

contribute to the ionic strength of the medium, which in turn, may screen electrostatic 

interactions [33], thus weakening the repulsive forces between polymer chains; as a result 

chitosan chains become more flexible and tend to disentangle [33].  

The increase of pH in appropriate physico-chemical conditions leads to the formation of physical 

chitosan hydrogels. In neutral or alkaline aqueous solutions, amine groups are neutralized 

(deprotonated), reducing the repulsion between polymer chains. As a consequence, polymer chains 

can physically cross-link [37, 38].  

 

Thus, the general objective of this work is to obtain architectured physical hydrogels of chitosan 

with intertwined (or entrapped) apatite particles, via robocasting, using a pH change to get the final 

material. This involves the preparation inks composed of chitosan and calcium phosphates for 

printing and the characterization of their rheological features, to find a processing window for 

robocasting. The chemical compositions of these inks are correlated to their structure (via a study 

of their rheological properties) to investigate possible synergistic physico-chemical interactions 

(between ions, mineral phase and chitosan chains), as previously detailed. Finally, an experimental 

protocol to fabricate scaffolds of mineralized chitosan hydrogels by 3-D printing-robocasting is 

proposed. 
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MATERIALS and METHODS 

The fabrication of the biocomposite comprises ink formulation, preparation and physico-

chemical characterization, followed by 3-D printing of inks and physico-chemical 

characterization of the obtained scaffolds (Figure 1). 

 

 
Figure 1: Schematic representation of the steps leading to chitosan-calcium phosphate scaffold. 

1. Inks preparation and formulation 

Inks consisted of suspensions of calcium phosphate particles in a chitosan acidic aqueous solution.  

 Chitosan powder produced from squid pens and supplied by Mahtani Chitosan Pvt. Ltd (batch type 

114, No S3 20110121) was characterized with standard procedures [37]. The degree of acetylation, 

corresponding to the molar fraction of acetylated units within the polymer chains, was close to 5 %; 

the weight-average molar mass and dispersity were Mw = 550 kg.mol-1 and Ð = 1.9, respectively. 

Chitosan acetate solutions of various repeat unit concentrations (0.15 M (2.4 wt%), 0.17 M 

(2.8 wt%) and 0.19 M (3.1 wt%) were prepared by adding chitosan powder to acetic acid (Carlo 

Erba Reagents, CAS 64-19-7, assay 99.9 %) aqueous solutions. The amount of acetic acid was 

adjusted to match the stoichiometric protonation of -NH2 sites of chitosan. The as-prepared chitosan 

solution was mixed in a Thinky ARE-250 planetary mixer at 2000 rpm in mixing cycles of 

5 minutes until complete dissolution. 

Inorganic salt solutions were prepared by dissolving Ca(NO3)2.4H2O (Sigma-Aldrich, CAS 13477-

34-4, assay ≥ 99 %) and (NH4)2HPO4 (Sigma-Aldrich, CAS 7783-28-0, assay ≥ 99 %) in water, pH 

4.5 and 8.5 respectively. Initial concentrations are reported in Table 1. Calcium and orthophosphate 

solutions were added simultaneously into chitosan solutions and mixed in the planetary mixer at 

2000 rpm in mixing cycles of 5 minutes until obtaining chitosan-calcium phosphate homogenous 

suspensions.  

Chitosan solutions and salt solutions were mixed in such volume proportion as to obtain different 

proportions of inorganic to organic components (in/or, equation 1) while maintaining the calcium 

to phosphorous molar ratio (Ca/P) constant to 1.67 (i.e. the same value as in stoichiometric 

hydroxyapatite Ca10(PO4)6OH2). Thus, inks were formulated according to the ratios defined in 

equation (1). Three chitosan solutions of different polymer concentrations, without any Ca and P 

were prepared as references. The compositions of inks are reported in Table 1. Throughout the 

article, the inks will be referred to as Inn-xy, were nn represents the concentration of chitosan (nn= 

15, 17 or 19 for [CS]=0.15, 0.17 or 0.19 mol·L-1 respectively) and xy represent the inorganic content 

(with respect to the in/or ratio of the last column of table 1: for example xy= 60 corresponds to 

in/or=60/40). The inks with xy = 00 (three last lines of table 1) are reference solutions of chitosan, 

without any calcium phosphate inside, whereas the others are made of calcium phosphate particles 

homogeneously dispersed into a chitosan solution. 

 
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑐𝑎𝑙𝑐𝑖𝑢𝑚 𝑠𝑎𝑙𝑡(𝑔) + 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝑠𝑎𝑙𝑡 (𝑔)

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑐ℎ𝑖𝑡𝑜𝑠𝑎𝑛 (𝑔)
=

𝑖𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐

𝑜𝑟𝑔𝑎𝑛𝑖𝑐
 (1) 



3-D printing of chitosan-calcium phosphate inks,  

Ramirez et al., J Mater. Sci. Mater. Med. 2019  5 

 

Table 1. Inks studied in this work. “in/or” is used for the inorganic to organic ratio of an ink. The calculated 

uncertainties are ± 0.001 mol·L-1 on all concentrations. 

Ink Calcium salt 
Orthophosphate  

salt 

Concentration of 

calcium 

 [Ca] (mol.L-1) 

Concentration of 

phosphorus  

[P] (mol.L-1) 

Concentration of 

chitosan [CS] 

(mol.L-1) 

Initial  

in/or 

ratio (wt%) 

I15-50 Ca(NO3)2 (NH4)2HPO4 0.072 0.043 0.15 50/50 

I15-60 Ca(NO3)2 (NH4)2HPO4 0.108 0.065 0.15 60/40 

I15-70 Ca(NO3)2 (NH4)2HPO4 0.162 0.097 0.15 70/30 

I15-75 Ca(NO3)2 (NH4)2HPO4 0.202 0.121 0.15 75/25 

I17-60 Ca(NO3)2 (NH4)2HPO4 0.121 0.073 0.17 60/40 

I17-70 Ca(NO3)2 (NH4)2HPO4 0.181 0.108 0.17 70/30 

I17-75 Ca(NO3)2 (NH4)2HPO4 0.224 0.134 0.17 75/25 

I19-70 Ca(NO3)2 (NH4)2HPO4 0.206 0.123 0.19 70/30 

I19-80 Ca(NO3)2 (NH4)2HPO4 0.312 0.187 0.19 80/20 

I15-00 0 0 0.072 0.043 0.15 0 

I17-00 0 0 0.108 0.065 0.17 0 

I19-00 0 0 0.162 0.097 0.19 0 

 

 
2. Rheological behavior of chitosan-calcium phosphate inks 

The rheological measurements of inks were carried out using a TA Instruments Discovery HR-1 

rheometer with 40 mm parallel plate geometry, 1 mm gap and a solvent trap to prevent drying. 

Three kinds of tests were performed on each ink: 

1. Amplitude sweep test in the range 1-100 % of strain, in dynamic conditions, at 0.1 rad.s-1 

and at 25°C. The output of the test is the evolution of moduli (G’, G”) vs. oscillation strain. 

This test allows the identification of solid-like (G’>G’’) or liquid-like behavior regions, the 

linear viscoelastic region (LVR, where both G’ and G’’ remain constant) and to determine 

the yield stress 𝜎𝑦 in solid-like inks according to equation (2) [39]. 

𝐺′(𝛾 < 𝛾𝑐). 𝛾𝑐 =  𝜎𝑦 (2) 

Where G’ is the storage modulus, γ is the strain and c is the critical strain that delimits the 

higher end of the LVR.  

2. Time tests at a strain of 0.1 % and angular frequency of 0.1 rad.s-1 were performed up to 

300 s. The output of such tests is the evolution of storage and loss moduli, G’ and G” vs. 

time. We used such time tests to determine if the material was in a steady state. 

3. Flow ramp tests were conducted in continuous mode at shear rates of 10-1000 s-1. The 

output is either a shear stress vs. shear strain rate or a viscosity vs. shear rate graph. Curves 

of shear stress vs. shear strain rate were fitted using a power-law model (equation 3). 
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𝜏 = 𝐾�̇�𝑛     𝑜𝑟     𝑙𝑜𝑔  𝜏 = 𝑙𝑜𝑔 𝐾 + 𝑛𝐿𝑜𝑔 �̇� (3) 

Where 𝜏 is the shear stress, γ̇  the shear rate, n is the flow exponent (calculated from 

equation 3) and K is a scaling factor also known as the flow consistency index [40, 39]. The 

value of n is an adjusted parameter to fit experimental data to the power-law equation. A 

physical sense is commonly assigned to its value: if n = 1, it is a Newtonian fluid; the 

departure of n from 1 is indicative of less Newtonian behavior; if n < 1, the fluid presents 

shear-thinning behavior, that is, viscosity (= / γ̇) drops as shear increases. For n > 1, 

viscosity increases as shear increases: the fluid is said to present shear-thickening behavior 

[39, 40].  

 

 

3. 3-D printing and characterizations 

The printing machine was a Robocasting system (3DInks, USA). A 3D CAD model of 

8 mm x 8 mm was designed using the RoboCAD software (3DInks, USA). A syringe barrel of 

3 cm3 was filled with one ink at a time. To avoid air bubbles in the ink, it was slowly transferred to 

a second syringe. Conical nozzle of 400 m internal diameter was used to print all scaffolds.  

Printing was performed on a flat and smooth glass substrate immersed in a bath containing sodium 

hydroxide hydro-alcoholic solution (water 70/ethanol 30) (the NaOH concentration tested ranged 

between 0.05 M and 0.40 M). Instantaneous gelation of the ink was induced by this alkaline bath, 

while the presence of ethanol made the bath less dense than the ink and prevented the extruded part 

from floating (as occurred with a bath containing only sodium hydroxide water solution) as 

suggested in [31]. A set of printing parameters was chosen after a few trial experiments: 400 µm 

for nozzle diameter; 950 µm for filament distance in x and y directions on the printing plane; 0.25 M 

for NaOH bath concentration; 130-140 µm for distance between layers and 9-10 mm.s-1 for speed 

ink deposition. In particular, the distance between two successive layers was set between 32.5 % 

and 35 % of nozzle diameter (0.4 mm) to favor a good adhesion between the printed layers, whereas 

the usual values generally used in robocasting of other material inks are in the range of 70-80 % of 

nozzle diameter. 

 

The temperature of the system was controlled by means of a custom-built enclosure and a 

convection heater set to 23°C while the humidity was measured and varied from 65 to 85 %.  

Printed hydrogel scaffolds were washed several times with distilled water until the pH in the final 

washing water was constant, around 7. Then, they were stored in water before further 

characterization. 

X-ray diffraction (XRD) analyses were performed using a D8 Advance Bruker AXS diffractometer 

operated at 40 kV and 40 mA, with CuKα radiation (1.54060 Å). Scans were acquired in a θ-θ 

configuration, from 4° to 55° with a step time of 129 s and a step size of 0.019°. Phase identification 

was conducted by comparison to standard patterns from International Center for Diffraction Data – 

Powder Diffraction Files (ICDD-PDF) with the aid of DiffracPlus EVA software (AXS, Bruker). 

The PDF used for apatite and dicalcium phosphate dihydrate (DCPD) identification were 09-0432 

and 09-077 respectively. The obtained diffractograms were normalized with respect to the height 

of the peak of greatest intensity in the crystalline mineral phase. XRD was performed on chitosan-

calcium phosphate suspensions. XRD and Scanning Electron Micoscopy (SEM) analysis were also 

performed on freeze-dried scaffolds. Scaffolds were first immersed for freezing in liquid nitrogen 

for 1 minute, then the frozen samples were left overnight in a vacuum pump at 0.00 mbar and -

86°C. SEM analyses were performed on gold-coated freeze-dried scaffolds, using imaging with 

secondary electrons in a JEOL JSM-6010 SEM (USA) at 20 kV acceleration voltage. Optical 

microscopy analysis was conducted using a Light Axiophot microscope (Zeiss, Germany). Samples 

of chitosan-calcium phosphate inks were fixed between two glass slides and observed in 

transmission mode. Size of crystal aggregates was measured using ImageJ software 

(https://imagej.nih.gov/ij/) using three different 64 μm2 micrographs for each sample. 
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The macroscopic porosity was evaluated by X-ray microtomography, on as-printed samples, using 

a GE Phoenix v|tome|x s tomograph. The porosity was calculated after selecting a representative 

volume inside the sample (excluding the edges), thresholding, and simply measuring the white to 

black voxels number ratio (white voxles: material; black voxel: porosity). 

 

 

 

RESULTS 

1. Chemical composition and microstructure of inks 

The pH of all inks was about 5.5. It was observed that immediately after mixing salt solutions and 

chitosan solution, the system was no longer transparent but rather white, indicating the formation 

of calcium phosphate particles. 

The crystalline phase in the inks was investigated by XRD. According to the XRD results (Figure 

2a), the peaks corresponding to the principal planes of DCPD (dicalcium phosphate dihydrate: 

CaHPO4.2H2O), (020) at 2θ = 11.681°, (021) at 2θ = 20.935°, (041) at 2θ =29.258°, (-221) at 

2θ = 30.506°, (220) at 2θ = 34.156°, (022) at 2θ = 37.105° were identified. DCPD was the only 

detectable crystalline phase of calcium phosphates in the inks. No diffraction peaks of chitosan 

were identified indicating that the amount of crystalline chitosan was below the detection limit. The 

X-ray diffuse halo observed from approximately 2θ = 24° to 36° in the diffractograms may be 

attributed to the presence of water (about 96 wt.% of the ink was water). 

Optical micrographs of inks (Figure 2b, example for ink I17-70) showed that they were composed 

of a dispersed phase, platelet aggregates of DCPD, in a chitosan solution. The dimensions of 

aggregates were 20 ± 5 µm in length and 14 ± 5 µm in width. 

 

 
Figure 2:  a) Example of X-ray diffractogram of ink I17-70. Black arrows identify the DCPD characteristic planes: 

(020) at 2θ = 11.681°, (021) at 2θ = 20.935°, (041) at 2θ = 29.258°, (-221) at 2θ = 30.506°, (220) at 2θ = 34.156°, 

(022) at 2θ = 37.105°. The diffuse halo is assigned to water. b) Example of optical microscopy micrograph of ink 

I17-70, showing the dispersion of DCPD crystals and aggregates (pointed out by white arrows). The figure 7 also 

illustrates the size measurement of one DCPD crystal. 

 

2. Rheology study 

This rheology investigation was conducted to assess whether inks could meet the requirements for 

robocasting, i.e., shear-thinning and yield stress. Indeed a shear-thinning character facilitates the 

extrusion through the needle by providing a low viscosity during the high-shear phase encountered 

by the ink when it flows through the needle. A high enough yield stress (in the rheological sense) 

enables shape retention of the printed parts for a period of time long enough for physical cross-

linking to proceed (less than a few seconds). Other parameters such as high enough G’ (that would 
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limit sagging of the printed filaments over large spans) will not be discussed here, since only limited 

span was allowed by the design of the printed parts. 

 

2.1. Linear viscoelastic region (LVR) 

LVR can be determined by measuring moduli, G’ and G” as function of strain. Figure 3 shows the 

results for the different inks. 

Observing the region of constant moduli for each ink and for references of chitosan solutions (table 

1), LVR strain limit at 0.1 rad.s-1 could be determined as below 10 % in all cases. Thus, all other 

rheological tests we performed at strains below 10 %. 

 

 
Figure 3: Results of amplitude sweep test (between 1-100 % of strain, at 0.1 rad.s-1) for the different inks and 

references with (a) liquid-like behaviors and (b) solid-like behaviors. For a detailed description of numbered 

samples, see table 1. The red square in dotted line indicates the transition point from solid-like to liquid-like. The 

black arrow indicates the critical strain in ink I19-70. 

 

2.2. Time sweep experiments 

Another important consideration when testing multiphasic inks is to find out whether the system is 

in steady state. Figure 4 shows the results of oscillation time test. 

It may be observed that moduli remained rather constant over time for all samples, indicating that 

inks were stable. Values of loss modulus G” and storage modulus G’ are presented in Table 2, 

column 2 and 3, respectively. From these data, it can be deduced that inks I17-60, I17-70, I17-75, 

I19-80, I19-70 and I19-00 are solid-like (G’ > G”), while inks I15-50, I15-60, I15-70, I15-75, I15-

00 and I17-00 are liquid-like (G’ < G”). Thus, the chitosan concentration largely impacted the 

viscoelastic properties; an apparent injectable gel state is obtained at the highest concentration at 

3.1% w/w. 
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Figure 4: Results of oscillation time test (strain of 0.1 % and frequency of 0.1 rad.s-1 during 300 s) for inks and 

references with (a) liquid-like behavior and (b) solid-like behavior. 

 

2.3. Shear-thinning behavior 

Figure 5a shows the rheological curves for chitosan – calcium phosphate inks. Stress-strain rate 

curves were fitted to equation (2) to estimate values of K (flow consistency index) and n (flow 

exponent). Values of n much lower than 1 were calculated for all inks, indicating a high shear-

thinning behavior. Table 2, column 4, summarizes the results. 

Shear-thinning behavior can also be observed from viscosity vs. shear rate curve. It is characterized 

by a decrease of viscosity as shear rate increases, as shown in Figure 5b. Thus, all inks met the 

condition of shear-thinning, as required for robocasting. 

 

 
Figure 5: a) Shear stress vs. shear rate curve for inks and reference solutions. Data obtained from flow ramp tests 

conducted at shear rates of 10-600 s-1. b) Shear-thinning behavior: viscosity decreases as shear rate increases. Data 

obtained from flow ramp tests conducted at shear rates of 10-1000 s-1. Note that for sample I19-00, the flow ramp 

test results were reported only until shear rate of 120 s-1 because of unexplained instability and lack of 

reproducibility of the test at higher shear rates. 
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2.4. Yield stress 

In cases of inks I17-60, I17-70, I17-75, I19-80, I19-70 and I19-00 (Figure 3b), the inks were solid-

like at low oscillation amplitudes and there was a point beyond which G’ declined; this was 

indicative of a breaking of the solid structure to become a fluid, therefore, the material had yield 

stress. For these inks that showed a well-defined yield stress, values of critical strain and storage 

modulus were measured from curves of storage and loss moduli vs. oscillation strain, and the 

corresponding values of yield stress were calculated with equation (2). The results are shown in 

Table 2, in column 5 (𝜎𝑦).  

For all other inks, G’’ were higher than G’ from the start, thus the inks were liquid-like, and 

calculation of a yield stress was not relevant. 

 
Table 2. Correlation between composition and rheological behavior for all inks. The relative uncertainties on G’, G’’ 

and viscosities varied between 8 and 15%, and are plotted in Figure 9.   

1 2 3 4 5 6 7 8 

Ink 
G” 

(Pa) 

G’ 

(Pa) 
n 

𝛔𝐲 

(Pa) 

Ionic 

strength 

(mol.L-1) 

Viscosity 

(Pa s) 

�̇� = 𝟏 𝐬−𝟏 

Viscosity     

(Pa s) 

�̇� = 𝟒𝟎𝟎 𝐬−𝟏 

I15-50 74 ± 7 69 ± 10 0.19 ± 0.02 * 0.30 50 2.7 ± 0.3 

I15-60 59 ± 9 45 ± 7 0.16 ± 0.01 * 0.46 40 2.4 ± 0.4 

I15-70 60  ± 8 46 ± 4 0.16 ± 0.02 * 0.68 45 2.3 ± 0.4 

I15-75 52 ± 8 37 ± 6 0.18 ± 0.02 * 0.85 35 2.1 ± 0.2 

I17-60 114 ± 14 127 ± 11 0.14 ± 0.02 26.5 ± 3.0 0.51 150 3.2 ± 0.3 

I17-70 102 ± 8 110 ± 17 0.14 ± 0.02 24.1 ± 2.3 0.76 65 3.0 ± 0.3 

I17-75 92 ± 11 93 ± 12 0.14 ± 0.01 20.9 ± 2.2  0.94 60 2.8 ± 0.4 

I19-70 159 ± 21 188 ± 28 0.21 ± 0.03 38.4 ± 3.5 0.87 95 3.6 ± 0.5 

I19-80 125 ± 11 144 ± 16 0.13 ± 0.02 30.5 ± 2.7 1.31 85 3.5 ± 0.3 

 I15-00 72 ± 10  56 ± 7 0.16 ± 0.02 * ----- 50 2.5 ± 0.3 

I17-00 101 ± 10 91 ± 10 0.20 ± 0.02 * ----- 75 3.3 ± 0.4 

I19-00 175 ± 18 200 ± 20 0.23 ± 0.03 26.4 ± 2.14 ----- 200 3.5 ± 0.4 

* Not measured because inks are liquid-like thus not adequate for robocasting 

 

3. 3-D printing of scaffolds 

To design the robocasting processing, three major key-points must be addressed: ink rheological 

properties (stability, shear-thinning behavior and yield stress), machine parameters and printing 

environment. 

All inks were prepared at acidic pH~5.5, they were stable, presented shear-thinning behavior and 

inks with high chitosan concentrations presented yield stress, as shown in the preceding section. As 

a result, scaffolds from all inks were successfully printed up to five layers (final width of printed 

sample: 2 mm). However, printing more than five layers was difficult, since the printed filament 

had not the necessary stiffness to support the weight of the layers printed above. 

The macroscopic porosity was evaluated by X-ray microtomography (figure 6), and lead to 22% 

porosity. However this figure is very unprecise, in particular due to the unprecise sample geometry. 
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Besides, figure 6 allows the observation of the sample architecture. Due to the small interlayer 

distance (max 35% of the nozzle diameter), only vertical channels were detected (perpendicular 

plane XY shown in figure 6a), whereas the filaments from successive layers were pressed together 

to close horizontal channels (perpendicular to the XZ and ZY planes). As a result no overhanging 

structures were created, allowing printing with small values of G’ as stated above. 

 

 

Figure 6: Tomography view of sample printed 

from ink I19-80. a): plane (XY) view; b) and 

c): XZ and YZ cross sections on the plane 

indicated by the yellow reticule in a). 

 

 

4. Characterization of printed scaffolds 

From XRD analyses of freeze-dried printed scaffolds, apatite was identified as inorganic crystalline 

phase (Figure 7). A X-ray diffuse halo (between 2= 8° and 22°) can be observed, and it was 

attributed to chitosan; other peaks corresponded to the reflection lines of apatite, (002) at 25.879°, 

(211) at 31.774° and (112) at 32.902°. Peaks were broad and not very well defined in spite of 

inorganic/organic ratios up to 80/20.  

XRD of scaffold made from ink I15-50 did not show any peak of apatite but a X-ray diffuse halo 

(between 24° and 34°) of somewhat amorphous structure. 

 

 
Figure 7: a) Examples of X-ray diffractograms of fabricated scaffolds. Gray arrows identify the chitosan X-ray 

diffuse halo (between 8° and 22°); black arrows identify the apatite characteristic planes (002) at 2θ = 25.879°, (211) 

at 2θ = 31.774° and (112) at 2θ = 32.902°. b) Zoom of the X-ray diffractogram of ink I17-70. Black arrows identify 

the apatite characteristic planes (002) at 2θ = 25.879°, (211) at 2θ = 31.774° and (112) at 2θ = 32.902°. 
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SEM analyses of freeze-dried printed scaffolds showed details of the microstructural arrangement 

of inorganic and organic phases. It consisted in a chitosan polymeric matrix intertwined with 

calcium phosphate particles. The microstructure of scaffold fabricated with ink I15-50 is shown in 

Figure 8. The micrograph a) showed a well-defined grid. Aggregates of calcium phosphates (white 

arrows in Figure 8) embedded in chitosan filaments were observed in micrographs b), c) and d). In 

micrographs c) and d), single platelets of calcium phosphate of different sizes can be observed. 

Some of the largest platelets were 10 μm wide and 20 μm long, whereas others were around 10 

times smaller (around 0.7 μm wide and 2 μm long). 

 

 
Figure 8: SEM micrographs of scaffolds fabricated with ink I15-50. (a) Well-defined grid of the 3-D printed scaffold 

and (b-d) calcium phosphate aggregates embedded in chitosan filaments. White arrows indicate the calcium 

phosphate aggregates in chitosan filaments. 

 
DISCUSSION 

1. Inks and scaffolds 

The starting materials to fabricate inks were mixed solutions of chitosan, calcium salt and 

orthophosphate salt (Figure 1). The dissolution of chitosan occurs at pH ≤ 6, in an acidic aqueous 

medium, due to electrostatic repulsions between polymer chains induced by protonated amine 

groups and hydrophilic interactions [37, 38]  

The presence of calcium and orthophosphate salts in solutions at low pH (here around 5.5 for all 

inks) induces the spontaneous precipitation of dicalcium phosphate dihydrate, DCPD 

(CaHPO4.2H2O), as stable calcium orthophosphate [41, 42]. 

The reaction scheme for DCPD formation could be as follows: 

𝐶𝑎(𝑁𝑂3)2 →  𝐶𝑎2+ + 2𝑁𝑂3
− (4) 

(𝑁𝐻4)2𝐻𝑃𝑂4 → 2𝑁𝐻4
+ +  𝐻𝑃𝑂4

2− (5) 
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Calcium and orthophosphate ions are solvated (equations (4) and (5)) in the two initial solutions, 

which are then simultaneously added into the chitosan solution (Figure 1). At this moment, divalent 

orthophosphate ions can react: 1) forming DCPD with calcium ions, equation (6); 2) decomposing 

to form monovalent orthophosphate ions in an equilibrium reaction, equation (7). 

𝐶𝑎2+ +  𝐻𝑃𝑂4
2− + 2𝑂𝐻− + 2𝐻+ → 𝐶𝑎𝐻𝑃𝑂4. 2𝐻2𝑂 (6) 

𝐻𝑃𝑂4
2− + 𝐻+ ⇄ 𝐻2𝑃𝑂4

−  (𝑝𝐾𝑎~7.2) (7) 

Most of divalent orthophosphate ions, HPO4
2-, were expected to form DCPD, although, some 

should remain in the system due to the equilibrium with monovalent orthophosphate ions, H2PO4
- 

(equation (7)). DCPD has a Ca/P ratio equal to 1. Since the amounts of salts were calculated in 

order to reach a Ca/P proportion of 1.67, it is safe to affirm that solvated calcium ions remained in 

the chitosan-DCPD inks. On the other hand, DCPD crystals are made of Ca2+, HPO4
2- ions and 

water molecules. Thus, chitosan-DCPD interactions may occur in the inks. In particular, 

electrostatic interactions may occur between the protonated amine groups and divalent phosphate 

ions. HPO42- can form physical cross-links of polymer chains through the simultaneous interaction 

with protonated amine groups of different chains [43]. In addition, hydrogen bonds may be formed 

between water molecules of DCPD crystals and hydrophilic groups in chitosan molecules. 

After mixing calcium, orthophosphate and chitosan solutions, ionic strength decreased as calcium 

phosphates precipitated in the form of DCPD, as shown in Figure 2. Since it was difficult to 

calculate or measure ionic strength after and during calcium phosphates precipitation, the initial 

ionic strength was chosen as a parameter for inks comparison. As mentioned above, the pH of inks 

was about 5.5. For this pH, the initial ionic strength was calculated for all inks and reported in Table 

2, column 6. In these conditions, the inks used here were indeed expected to form a suspension of 

DCPD particles in a chitosan solution, as shown in Figure 2. 

Printing scaffolds in a basic liquid medium permitted to achieve two main goals. The first one was 

the retention of filament shape after extrusion thanks to gelation process of the chitosan contained 

in the inks. The second goal, concurrent to gelation process, was the phase transformation of the 

mineral phase in the extruded filament, from DCPD to apatite. Indeed, at pH higher than 6.5, apatite 

is the most stable calcium orthophosphate compound at room temperature [2, 42]. The presence of 

apatite in the 3-D printed scaffolds was confirmed by X-ray diffraction on composites printed from 

all inks except from ink I15-50 (Figure 7). For the latter, the X-ray diffuse halos around 2θ ≈ 26° 

and 2θ ≈ 32° may indicate the presence of an amorphous inorganic phase (or very poorly 

crystallized apatite with very small crystalline size). These results could be explained considering 

that this scaffold was made from the ink with the lowest calcium and orthophosphate concentrations 

and the lowest inorganic/organic ratio (Table 1); therefore, the amorphous phase dominates the 

diffractogram in comparison with the other scaffolds. For all inks apatite was poorly crystalline, as 

was expected for a crystal formation with the conditions used here (room temperature and aqueous 

medium). Interestingly, SEM observations of the 3-D scaffolds (Figure 8) showed that the mineral 

crystals were intertwined with the polymer matrix. Some of the aggregates had retained the typical 

shape (platelet) and sizes (around 20 μm in length) of the DCPD crystals observed in the inks before 

gelation (Figure 2b). This capacity of shape retention during the phase conversion from DCPD to 

apatite is an interesting feature, which should be further exploited to optimize the microstructure 

and the mechanical properties of the 3-D printed scaffolds. 

With respect to the potential application as filler for large bone defects, the obtained materials seem 

adequate: the architecture (large channels) should allow easy invasion by both bone cells and 

endothelial cells, thus creating the possibility of forming vascularized bone tissue even inside large 

bone defects. Even though the large scale is not yet present on a single sample, the use of several 

of them in a large defect is possible. 
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2. Rheology of inks 

Questions about the order of magnitude of shear rate and viscosity of the inks arise, especially under 

the conditions of robocasting used in this work. We estimated the values of these processing 

parameters from capillary rheology equations for non-Newtonian fluids. 

Equation (8) is valid for flow in pipes/capillaries for fluids of any rheology: 

𝜏 =  
∆𝑃

2𝐿
 𝑅 (8) 

where 𝜏 is the shear stress; ∆𝑃/𝐿 is the pressure drop per unit length of nozzle; 𝑅 is the radius of 

the nozzle.  

Volumetric flow in pipes can be calculated with the Hagen-Poiseuille equation, modified in the case 

of a power-law fluid (equation 9): 

𝑄 =  
𝜋𝑅3

1
𝑛

+ 3
 (

∆𝑃 𝑅

2𝐾𝐿
)

1
𝑛

 (9) 

In equation (9), 𝑄 is the volumetric flow and the other parameters are defined as in the results 

section. Volumetric flow can also be calculated with flow velocity of fluid (i.e., rate of ink 

deposition), S, and nozzle diameter, equation (10): 

𝑄 = 𝑆 𝜋𝑅2 (10) 

Combining equations (1), (8), (9) and (10), the shear rate can classically be calculated according to 

(11): 

�̇� =  
𝑆 (

1
𝑛

+ 3)

𝑅
 

(11) 

Applying equation (11), and taking a value of n = 0.2, as previously computed for the inks (Table 

2), S = 10 mm.s-1 and R = 0.2 mm then, the shear rate of flow along the nozzle is evaluated to be 

γ̇ = 400 s-1. At this shear rate, a typical shear stress would be τ = 1100 Pa (Figure 5a). The pressure 

drop per unit length can be calculated from equation (8). The result is 
∆P

L
 = 11000 Pa/mm. Such 

parameters are quite acceptable for extrusion across the nozzle with a length L = 30 mm. 

From Figure 5b, viscosity can be read at γ̇ = 400 s-1 and extrapolated at a shear rate close to rest 

(when filament leaves the nozzle), γ̇ = 1 s-1. Table 2 (columns 7 and 8) shows the calculated values 

of viscosity for all inks at those shear rates. Due to shear thinning, inks viscosities at the exit of the 

nozzle (for γ̇ = 1 s-1) were much higher than inside the nozzle (for γ̇ = 400 s-1): whatever the ink, a 

factor ranging from 15 to 47 is found between the two values (Table 2). However, the viscosity of 

the inks at the exit of the nozzle was still significantly lower than viscosities generally reported in 

the literature to retain the shape of the printed scaffold (viscosity of at least 600 Pa s would have 

been required [40]). This is why it was necessary in our case to use a printing bath to gel the 

chitosan, convert the calcium phosphate into apatite and thus favor the shape retention of the 

extruded filaments. The drawback of this approach is the difficulty to measure the viscosity and the 

properties of extruded filaments during their evolution in the printing bath to better assess their 

capacity of shape retention. Viscosity at the exit of the nozzle may be increased by either adjusting 

(decreasing) the inorganic/organic ratio, or increasing the chitosan solution concentration (at the 

cost of much more difficult ink preparation), or adding in the ink some viscosity modifiers, such as 

pluronic F127 that could provide a physical gelling even before gelling of the chitosan itself. These 

solutions rather complicate the system and thus have not been tested here. 

However, a thorough rheological characterization of the inks before their gelation already enables 

to draw some interesting conclusions about the effect of the different parameters, which should be 

optimized in the formulation of such inks. In the following, our discussion will focus on finding 

correlations between composition of inks (Table 1) and their rheological behavior, based on data 

reported in Table 2. To illustrate the main trends, some are plotted in Figure 9. 
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Figure 9: Effect of ionic strength and chitosan concentration on moduli (G´, G”) and viscosity (at γ ̇=400 s^(-1)). In 

figures a), c) and e), circles, squares and triangles correspond to inks with chitosan concentration 0.15 M, 0.17M 

and 0.19M respectively. Ionic strength equal to zero corresponds to the reference (no organic salts). In figures b), d) 

and f), circles, squares, triangles and reverse triangles correspond to inks with inorganic to organic ratio (in/or) of 

0/100 (references), 60/40, 70/30 and 75/25, respectively. 

 

The rheological features of the prepared inks (chitosan-DCPD suspensions) fundamentally 

depended upon composition, pH and temperature. All inks were at about the same pH = 5.5 and all 

experiments and tests were performed at room temperature. Thus, the concentration of species 

(chitosan and dissolved ions), and the initial inorganic to organic ratio (in/or) were the only 

variables from an ink formulation to another. 

In the chitosan concentration range used in this work, viscosity of chitosan solutions and viscosity 

of inks were hundreds of times higher than the viscosity of solvent (water). Therefore, chain 

entanglements are expected to persist in all inks. The density of chain entanglements is higher as 

chitosan concentration is higher. Chain entanglement makes the fluid more structured, that is, less 

Newtonian. The corresponding effect of chain entanglement on rheological properties will be 

named effect 1: increase in chain entanglement density: higher entanglement density will lead to a 

solid-like structure with higher G', yield stress and viscosity values, and the system will show more 

shear-thinning behavior [44–46].  

Inorganic to organic ratio was directly related with the mineral content (DCPD particles) of the ink 

and with the concentration of dissolved ions in the system. It is expected that, as the mineral content 

increases in a composite ink, it becomes more structured, more solid-like, with the corresponding 

effect on rheological properties called effect 2: increase in mineral content. As mineral content 

increases, the fluid would also be more shear-thinning and present higher storage modulus and 

viscosity, with higher probability of showing yield stress [33].  
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On the other hand, the concentration of dissolved ions also determines the ionic strength of the ink. 

Screening of electrostatic interactions may occur as an effect of ionic strength, reducing the 

repulsive forces between chitosan polymer chains. Therefore, the fluid becomes less structured 

(more Newtonian) and more fluid-like with the corresponding effect on rheological properties: 

effect 3: increase in ionic strength: at higher ionic strength, elastic properties (G’), shear-thinning 

behavior and viscosity decrease [33]. 

It should be noticed that in/or ratio induces two opposite tendencies: as in/or ratio increased, both 

mineral content and ionic strength increased. As in/or ratio increased, structured fluid nature 

increased by increasing mineral content and decreased by increasing ionic strength. The observed 

rheological features were the result of these two opposite effects. 

Experimental results can be discussed according to the effects listed above. The effect of chitosan 

concentration alone can be analyzed in view of the results obtained for references inks I15-00, I17-

00 and I19-00 (Table 1). As chitosan concentration increased, chain entanglement density 

increased. Therefore, effect 1 would be expected. Indeed, the chitosan solution changed from liquid-

like at concentrations of 0.15 M and 0.17 M, to solid-like fluid at concentration of 0.19 M (Table 

2). Yield stress was observed only in the most concentrated sample. Viscosity tended to increase as 

chitosan concentration increased (Table 2, column 7). It was also observed that chitosan solution 

of all concentrations showed shear-thinning behavior and that shear-thinning behavior was higher 

as chitosan concentration increased (the absolute value of slope of viscosity vs. shear rate curve 

increased with chitosan concentration). That is, as the chitosan concentration increased, the fluid 

became more structured. 

Inks with the same chitosan concentration and increasing in/or ratio would be expected to have a 

higher mineral phase content and a higher ionic strength. For the higher mineral content, effect 2 is 

expected; for the higher ionic strength, effect 3 is expected to change the rheological properties of 

the inks.  

Inks I15-50, I15-60, I15-70 and I15-75 had chitosan concentration of 0.15 M and increasing in/or 

ratio (Table 1). Results showed an increase in the computed ionic strength and an experimental 

decrease in storage modulus and viscosity (Table 2, Figure 9c), on the contrary to what was 

observed when comparing the properties of ink I15-50 (with the lowest in/or ratio) with those of 

I15-00 (same chitosan concentration, but no mineral content) (Figure 9c). Therefore, it seems that 

the structuring of the ink due to the presence of mineral particles (effect 2) was significant for inks 

with low mineral contents as compared to the chitosan solution alone. For higher in/or ratios, the 

effect of ionic strength became dominant compared to the effect of mineral content (Figure 9). Inks 

were liquid-like fluids (G” > G’). None of the samples showed yield stress. The value of n, 

indicative of shear-thinning, showed no clear variation, that is, shear-thinning behavior was about 

the same for inks with the same chitosan concentration. 

Inks I17-60, I17-70 and I17-75 have chitosan concentration of 0.17 M (Table 1). Experimental 

results showed that, in this case also, the effect of ionic strength dominated on the effect of mineral 

content (Figure 9). But for the inks with the highest chitosan concentrations (I17-60, I17-70 and 

I17-75), fluids were solid-like (G’ > G”) and yield stress appeared: effect 1 was evidenced. 

However, the yield stress 𝜎𝑦 decreased significantly as ionic strength increased. That is, yield stress 

appeared at higher chitosan concentration and its value diminished as ionic strength increased 

(Table 2). As expected, yield stress significantly depended on the interactions existing inside the 

inks between the chitosan chains, solvated ions and mineral particles.  

On the contrary, no significant change in shear-thinning behavior in the inks I17-60, I17-70 and 

I17-75was observed. 

Inks I19-80 and I19-70, at chitosan concentration 0.19 M and decreasing in/or ratio and ionic 

strength, showed that experimental results led to the same discussion as for inks I17-60, I17-70 and 

I17-75 (Table 2, Figure 9). 

Inks with the same in/or ratio and increasing chitosan concentration and ionic strength would have 

increasing chain entanglement and higher screening of electrostatic interactions. For the higher 

chain entanglement density, effect 1 was expected; for higher ionic strength, effect 3 was expected. 

The groups formed by inks (I15-60, I17-60); (I15-70, I17-70, I19-70); (I15-75, I17-75) had a single 
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in/or ratio and increasing chitosan concentration and ionic strength in each group of inks (Table 1). 

Experimental results showed that storage modulus, yield stress and viscosity increased (Figure 9d, 

Figure 9f). That is, the fluids became more structured, effect 1 dominated on effect 3. That is, the 

dominant factor determining rheological properties was the chitosan concentration. The fluids 

showed more shear-thinning behavior as chitosan concentration increased. 

 

CONCLUSION 

The experimental protocol set up for 3-D printing by robocasting was adequate to fabricate 

scaffolds from chitosan solution inks and chitosan-calcium phosphate inks at pH of 5.5, and to 

convert the extruded inks into physical hydrogels of chitosan with intertwined particles of apatite, 

thanks to a pH change. Thus, the calcium phosphate phase evolved from dicalcium phosphate 

dihydrate in the extruded inks to apatite in the 3-D scaffolds. The chitosan solution was gelled in 

the meantime, and the chitosan hydrogel remained amorphous (from XRD analysis). Apatite was 

poorly crystalline, forming aggregates in platelet shape of micrometric scale with a rather uniform 

distribution within the polymer matrix of chitosan. 

Properties of inks used in this work mainly depended upon two variables of the formulation of the 

suspensions: chitosan concentration and inorganic to organic ratio. The chitosan concentration 

determined the polymer chain entanglement. The inorganic to organic ratio determined both the 

mineral content and the ionic strength in the inks. An increase in the chitosan concentration led to 

a more structured fluid, i.e. less Newtonian, solid-like in nature, with increased shear-thinning 

behavior, and viscosity. Chain entanglement and mineral content also made the fluid less 

Newtonian but an increasing ionic strength, due to charge screening, made the fluid more 

Newtonian. 

The thorough analysis of the relations between composition and rheological properties of inks 

carried out in this work opens further research directions to tune composition parameters and 

properties of composite inks suitable to fabricate 3-D printed biocomposite scaffolds. 
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