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Abstract

We consider a diffusive ’replicator-mutator’ equation to describe the adaptation

of a large asexual population in a n-dimensional phenotypic space, under anisotropic

mutation and selection effects. Though this equation has been studied previously

when n = 1 or under isotropy assumptions, the n-dimensional anisotropic case re-

mained unexplored. We prove here that the equation admits a unique solution,

which is interpreted as the phenotype distribution, and we propose a new and gen-

eral framework to the study of the quantitative behavior of this solution. When

the initial distribution is Gaussian, the equation admits an explicit solution which

remains normally distributed at all times, albeit with dynamic mean vector and

variance-covariance matrix. In the general case, we derive a degenerate nonlocal

parabolic equation satisfied by the distribution of the ’fitness components’, and a

nonlocal transport equation satisfied by the cumulant generating function of the

joint distribution of these components. This last equation can be solved analyti-

cally and we then get a general formula for the trajectory of the mean fitness and all

higher cumulants of the fitness distribution, over time. Such mean fitness trajectory

is the typical outcome of empirical studies of adaptation by experimental evolution,

and can thus be compared to empirical data. In sharp contrast with the known re-

sults based on isotropic models, our results show that the trajectory of mean fitness

may exhibit (n−1) plateaus before it converges. It may thus appear ’non-saturating’

for a transient but possibly long time, even though a phenotypic optimum exists.

To illustrate the empirical relevance of these results, we show that the anisotropic

model leads to a very good fit of Escherichia coli long-term evolution experiment,

one of the most famous experimental dataset in experimental evolution. The two

’evolutionary epochs’ that have been observed in this experiment have long puzzled

the community: we propose that the pattern may simply stem form a climbing hill

process, but in an anisotropic fitness landscape.
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1 Introduction

Biological motivation

Understanding the adaptation of asexual organisms (such as viruses, bacteria or cancer

cells) under the combined effects of selection and mutation is a fundamental issue in po-

pulation genetics

In parallel, the development of experimental evolution (especially in microbes) has

made it possible to compare observed dynamics, in the lab, with alternative models or

infer various model parameters from the data (for a recent special issue on this subject

see [38]). Still, the problem of modelling asexual evolutionary dynamics is inherently

complex (discussed in e.g. [16]): recurrent mutation changes the key parameters of the

dynamical system constantly, competition between numerous, ever changing types must

be described, and both mutational and demographic (birth/death) events are stochastic

in nature.

To cope with this complexity, previous models of asexual adaptation dynamics have

followed two main routes, both focusing on the dynamics of fitness, the expected repro-

ductive output of a lineage. In a first class of models, only the expected mean fitness

is followed, either directly by a deterministic ordinary differential equation (ODE) or by

deriving the stationary regime of fitness change in a stochastic process of appearance

and fixation of beneficial or deleterious mutations (that increase or decrease fitness, re-

spectively). These so-called ’origin fixation models’ [33] assume a limit of low diversity

and large population (which approximately consists of a single genotype at all times):

mean fitness follows a stochastic renewal-reward process which expectation dynamics at

some stationary regime are studied. For a review of formal approaches see [40]. Rigorous

derivations of the limit behavior of the system (in regimes of low polymorphism), from a

stochastic birth/death/mutation process, can be found in e.g. [7] and [8]. Some recent

versions of these ’origin fixation models’ have further allowed for simple forms of epista-

sis, namely the fact that the distribution of a mutation’s effect on fitness depends on its

ancestor’s genetic background. In this case, a stationary regime typically does not exist

but a limit ODE can still be derived for the mean fitness trajectory (e.g. [5, 23, 45]).

A second class of models seeks to follow the dynamics of the full distribution of fit-

ness within populations. These models relax the low polymorphism assumption, but in

exchange for ignoring or simplifying the stochastic components of the dynamics. The re-

sulting outcome is a partial differential equation (PDE) or an integro-differential equation

(IDE). The PDE or IDE typically describes the dynamics of the distribution of a single

’trait’ that may be fitness itself as in [42], or a trait determining fitness (birth rate, phe-

notype), as in [8]. The deterministic limit can be obtained from a microscopic stochastic

model of mutation and demography (e.g. in [8]), but the resulting equations are highly

nonlinear and analytical progress requires further approximations (in a low polymorphism
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limit as above, using moment closure approximations). An alternative is to derive a PDE

for a generating function of the fitness distribution, as in [16, 22, 32]. This PDE can also

be obtained explicitly as a deterministic limit from the underlying stochastic microscopic

model (e.g. in [32]). In some cases, these PDEs for the generating functions of the fitness

distribution can be solved explicitly, yielding a theory for the dynamics of the full fitness

distribution under mutation and selection [17, 18, 32]. In these approaches too, some

forms of epistasis in the fitness effects of mutations have been considered [18, 32].

One established find from empirical fitness trajectories is that epistasis must be ac-

counted for to explain the data (e.g. [23]). More precisely, fitness trajectories tend to

decelerate over time, implying a priori that beneficial mutations become weaker and/or

rarer as the population adapts (ignoring deleterious ones, which is of course debatable).

The question is then: which particular form of epistasis does explain/predict the data

best? A common metaphor to explain this decelerating pattern in fitness trajectories

is to invoke some form of ’fitness landscape’ connecting genotypes or phenotypes with

fitness, with one or several adaptive peak(s) where fitness is maximal (discussed in [10]).

In this view, deceleration in fitness trajectories stems from the hill climbing process of

adaptation up a fitness peak. This view is appealing because of its intuitive/visual illus-

tration, but also because of a particular form of landscape, Fisher’s geometrical model

(FGM; a single peak phenotype-fitness landscape), has shown promising potential when

compared to empirical measures of fitness epistasis. For example, the FGM has shown

to accurately predict observed distributions of epistasis among random and beneficial

mutations in a virus and a bacterium [29], to accurately fit patterns of epistasis among

beneficial mutations in a fungus [39] or the pattern of re-adaptation (compensation) from

different deleterious mutant backgrounds in a ’recovery’ experiment with a bacterium [35].

A review of the FGM and its empirical test can be found in [41].

On the other hand, this ’fitness peak’ view is challenged by the observation [45] that,

in the longest evolution experiment ever undertaken (Long Term Evolution Experiment

LTEE, in the bacterium Escherishia coli), fitness has not reached any maximum after

more than 70 000 generations. It has been suggested [19] that this experiment actually

shows a ’two epoch’ dynamics with an initial (potentially saturating) fitness trajectory

and a later and distinct non-saturating dynamics. A similar pattern could be invoked

in another mid-term experiment with an RNA virus [34]. Several other experiments did

seem to yield a ’true’ saturation (plateau) in fitness trajectories over several thousands of

generations in E. coli (e.g. [9, 13, 24]), but they may simply be on a too short timescale to

identify subsequent fitness increases. In fact, the LTEE itself did seem to show a strongly

saturating pattern after 10 000 generations [26].

Overall, these different insights on epistasis and adaptation trajectories are difficult to

reconcile under a single theory: why would a single peak model show a good fit to mutation

epistasis over single mutations, or short term fitness trajectories, yet be invalid over the
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longer term? Is there really a two ’epochs’ dynamics in some long-term trajectories, when

and why? A desirable model should reconcile both timescales, describe both epistasis

among random single mutations and in long term fitness trajectories. Proposed models

that do accurately fit non-saturating trajectories [45] have the drawback that they only

focus on beneficial mutations and do not yield any prediction on the distribution of

epistasis among random mutations. On the other hand, simple fitness landscapes like

the FGM do predict some short term patterns and the full distribution of epistasis among

random mutants, but cannot yield a never-ending fitness trajectory (a fitness plateau

must be reached at the optimum).

Aim of the paper

In this article, we explore the possibility that an extended version of the FGM be

able to fit multiple epochs fitness trajectories. The central extension proposed here is to

consider anisotropy in the landscape, in that different underlying traits mutate and affect

fitness differently. Using central limit and random matrix theory arguments [28], the

FGM can be obtained as a limit of a much less constrained model where high-dimensional

phenotypes integrate into a phenotypic network to a smaller set of traits that directly

determine fitness, with an optimum. The resulting FGM, however, is not necessarily

isotropic, it can also show a single dominant direction in phenotype space (that affects

fitness much more) with all other directions remaining approximately equivalent. Our

initial intuition is that, in these conditions, adaptation along the dominant direction will

drive the early dynamics while a second ’epoch’ will be visible when adaptation only

proceeds along the remaining dimensions. Therefore, it seems natural to explore how

such a model would fare when compared to the fitness trajectories of the LTEE. Yet, this

requires deriving the fitness dynamics resulting from such a complex mutational model,

in the presence of mutation and competition between asexual lineages. This is the aim of

the present paper.

The existence of a phenotype optimum has been taken into account in recent PDE

and IDE approaches (second class of models alluded to above). For instance, in [1, 3],

the fitness depends on a single phenotypic trait x ∈ R, through a function m(x) which

admits an optimum. Extending these works to take into account the dependence of the

fitness on several traits appears as a natural question; especially since we know that

the number of traits affected by mutation and subject to selection critically affects the

evolutionary dynamics [32, 44]. So far, and to the best of our knowledge, such ma-

thematical models that take into account n−dimensional phenotypes together with the

existence of a phenotype optimum always assume an isotropic dependence between the

traits x ∈ Rn and the fitness, and an isotropic effect of mutations on phenotypes (see [18]

for an IDE approach and [32] for an approach based on the analysis of a PDE satisfied

by a moment generating function of the fitness distribution). Our goal here is to extend
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these approaches in order to characterize the dynamics of adaptation in a n-dimensional

phenotypic space, without making an isotropy assumption. For the sake of simplicity here,

we ignore any stochastic component of the dynamics, but note that the same equations

can be obtained explicitly as a deterministic limit of a stochastic model of mutation and

growth [32].

Model assumptions and definitions

We assume that a phenotype is a set of n biological traits, which is represented by

a vector x ∈ Rn. To describe the evolution of the phenotypic distribution we begin with

an intuitive description of the concept of fitness. In an asexual population of K types

of phenotypes x1, . . . , xK , with rmax > 0 the growth rate of the optimal phenotype, the

Malthusian fitness, relative to the optimal genotype is denoted mj = m (xj) ≤ 0 for a

phenotype xj ∈ Rn. It is defined by the following relation: N ′
j(t) = (rmax+mj)Nj(t), with

Nj(t) the abundance of the phenotype xj at time t. When we sum these equations over

all indexes j = 1, . . . ,K, we obtain an ordinary differential equation for the total popu-

lation size N(t) = ∑K
j=1Nj(t) at time t: N ′(t) = (rmax +m(t))N(t), where the quantity

m(t) = ∑K
j=1mjNj(t)/N(t) is the mean relative fitness in the population at time t. Now

if we turn to the distribution of the phenotype frequencies q(t,xj) = Nj(t)/N(t), we get

the partial differential equation:

∂tq (t,xj) = (m(xj) −m(t)) q (t,xj). (1)

This equation can be generalized to a continuous distribution of phenotype frequencies

(see e.g. [42]), as we assume in the sequel, with:

m(t) = ∫
Rn
m(x) q(t,x)dx. (2)

If m(x) <m(t), then (1) implies that the frequency of the phenotype x decreases, whereas

if m (x) >m(t), then the frequency increases.

To define the fitness function x ↦ m(x), we use the standard Fisher’s Geometric

Model or FGM [31, 41], which assumes that there is a unique optimal phenotype O ∈ Rn

– without loss of generality, we assume that O = (0, . . . ,0) – and that the fitness m(x)
decreases quadratically with respect to each trait:

m(x) =
n

∑
i=1

αimi(x), where mi(x) = −
(xi −Oi)2

2
= −

x2i
2
,

and the coefficients αi are positive. To describe the mutation effects on phenotypes, the

standard isotropic Gaussian FGM uses a normal distribution N(0, λ In) with λ > 0 the

phenotypic mutational variance at each trait and In the identity matrix.

In the present paper, we assume that the mutation effects can be anisotropic i.e.

the mutation effects on phenotypes are described with a distribution N(0,Λ), where

Λ = diag (λ1, . . . , λn) is any given positive diagonal matrix.
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Assuming a small mutational variance maxλi << 1, the mutational effects can be

approximated by an elliptic operator ∑n
i=1(µ2

i /2)∂ii, where µi =
√
U λi > 0 and ∂ii denotes

the second order partial derivative with respect to the i-th coordinate of x (or later m as

in (15) below). We refer to Appendix A for further details.

Finally the corresponding PDE describing the dynamics of the phenotype distribution

q(t,x), under the combined effects of selection and mutation, is:

∂tq(t,x) =
n

∑
i=1

µ2
i

2
∂iiq(t,x) + (m(x) −m(t)) q(t,x), t > 0, x ∈ Rn, (3)

with m(t) defined by (2). Recent studies [1] have already treated the case n = 1 (see

also [3] for more general fitness functions). In this paper, we consider the general case

n ≥ 1. Without loss of generality, we may assume in the sequel that α1 = . . . = αn = 1, up

to a scaling of the phenotype space (q̃(t,x) = (∏n
i=1α

1/2
i ) q(t, x1/

√
α1, . . . , xn/

√
αn)). This

leads to:

m (x) = − ∥x∥2
2

,

with ∥ ⋅ ∥ the standard Euclidian norm in Rn. Similarly, we could remove the anisotropy

in the mutation effects, up to an other scaling of the phenotype space (defined this time

by q̃(t,x) = (∏n
i=1 µ

−1
i )q(t, µ1x1, . . . , µnxn)), but in this case the coefficients αi would be

replaced by αi
√
µi and hence cannot be taken all equal to 1. Note that, for the sake

of simplicity, we assumed a diagonal coraviance matrix Λ and that m(x) was a linear

combination of the fitness components mi(x) = −x2i /2. More general covariance matrices

Λ and quadratic forms m(x) could have been considered as well using the transformations

of the phenotype space presented in [30].

Compared to standard reaction-diffusion equations, the mathematical analysis of (3)

is more involved, due to the nonlocal term m(t) (see e.g. [2, 6, 11, 12, 15, 20, 21] for

other reaction-diffusion equations with nonlocal terms). In the one-dimensional case,

an equation of the form (3) with a general nonlocal reaction term of the form m(x) −
∫Rm(z)q(t, z)dz has been studied in [3]. Under the assumption that m(x) tends to −∞
as x tends to ±∞, the authors have established a formula for q involving the eigenelements

of the operator H = − µ2

2 d
2/dx2 −m(x). The formula can be made more explicit for our

choice of m, m(x) = −x2/2 [1]. However, the method used in [1], which consists in

reducing the equation (3) to the heat equation thanks to changes of variables based on

Avron-Herbst formula and generalized Lens transform, cannot be directly applied in our

n−dimensional anisotropic framework. We use here a completely different approach.

In order to understand the dynamics of adaptation, an important quantity is of course

the fitness distribution p(t,m), such that p(t,m)dm is the pushforward measure of the

measure q(t,x)dx by the map x ↦ −∥x∥2/2, and the mean fitness m(t). In the isotropic

case [18], the authors directly focused on the equation satisfied by p(t,m) and not by

q(t,x). Whereas (3) is quadratic into the variables x1, . . . , xn, the equation satisfied by

p(t,m) is linear with respect to m, which makes possible the derivation of some PDEs
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satisfied by generating functions of p(t,m). Here, due to the anisotropy, the dynamics of

p(t,m) is not summarized by a single one-dimensional PDE. Instead, we define the fitness

components m = (m1, . . . ,mn) and the joint distribution of the fitness components p(t,m)
such that p(t,m)dm is the pushforward measure of the measure q(t,x)dx by the map

x ↦ (−x21/2,⋯,−x2n/2). As fitness is the sum of the fitness components, the distributions

p and p are linked by:

p(t,m) = ∫
Rn−∩{m≤∑

n−1
i=1 mi}

p(t,m1, . . . ,mn−1,m −
n−1

∑
i=1

mi)dm1 . . . dmn−1, (4)

where R− = (−∞,0].
Thus the mean fitness m(t) can be easily connected with these distributions:

m(t) = ∫
Rn
m(x)q(t,x)dx =

n

∑
i=1
∫
Rn−
mip(t,m)dm = ∫

R−
mp(t,m)dm,

see also (13) below.

This paper is organized as follows. The results are presented in Section 2, and their

proofs are presented in Section 4. More precisely, Section 2.1 is dedicated to the analysis

of the time-dependent problem (3). We begin with the existence and uniqueness of the

solution of the Cauchy problem. We then give an explicit formula for q(t,x) in the

particular case of a Gaussian initial distribution of phenotypes q0(x). Then, we derive

a nonlocal degenerate parabolic equation satisfied by p(t,m), and the equation satisfied

by its cumulant generating function (CGF). Solving the equation satisfied by the CGF,

we derive an explicit formula for m(t). Then, in Section 2.2, we study the long time

behavior and the stationary states of (3). We shall see that the distribution of the fitness

components p(t,m) converges towards a distribution p∞(m) as t→ +∞, and we give an

explicit formula for p∞(m). Lastly, in Section 2.3 we show that including anisotropy in

the models may help to understand experimental trajectories of fitnesses, such as those

obtained in the famous experiment of Richard Lenski [25, 26, 45].

2 Main results

2.1 The time-dependent problem

Solution of the Cauchy problem associated with equation (3) for q(t,x)

We first show that the Cauchy problem admits a unique solution. We need the fol-

lowing assumption on the initial distribution q0:

q0 ∈ C2+α(Rn), (5)

for some α ∈ (0,1), that is, ∥q0∥C2+α(Rn) < +∞. Additionally, we assume that:

∫
Rn
q0(x)dx = 1, (6)
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and there exists a function g ∶ R+ → R+ (with R+ = [0,+∞)) such that

g is non-increasing, 0 ≤ q0 ≤ g(∥ ⋅ ∥) in Rn, x↦m(x)g(∥x∥) is bounded in Rn

and ∫
Rn

∣m(x)∣ g(∥x∥)dx < +∞. (7)

These assumptions are made throughout the paper, and are therefore not repeated in the

statements of the results below.

We can now state an existence and uniqueness result for the distribution of phenotypes.

Theorem 2.1. There exists a unique nonnegative solution q ∈ C1,2(R+ ×Rn) of:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tq(t,x) =
n

∑
i=1

µ2
i

2
∂iiq(t,x) + (m(x) −m(t)) q(t,x), t ≥ 0, x ∈ Rn,

q(0,x) = q0(x), x ∈ Rn,

(8)

such that q ∈ L∞((0, T ) ×Rn) for all T > 0, and the function:

t↦m(t) = ∫
Rn
m(x) q(t,x)dx,

is real-valued and continuous in R+. Moreover, we have:

∀ t ≥ 0, ∫
Rn
q(t,x)dx = 1.

The next result gives an explicit solution of (8) in the particular case where the

phenotypes are initially Gaussian-distributed.

Corollary 2.2. Assume that the initial distribution of phenotype frequencies is Gaussian,

that is,

∀x ∈ Rn, q0(x) = (2π)−n/2(
n

∏
i=1

(s0i )−1/2) exp(−
n

∑
i=1

(xi − q0i )2
2s0i

) , (9)

for some parameters q0i ∈ R and s0i > 0. Then the solution q(t,x) of the Cauchy problem (8)

is Gaussian at all time:

∀ t ≥ 0, ∀x ∈ Rn, q(t,x) = (2π)−n/2(
n

∏
i=1

(si(t))−1/2) exp(−
n

∑
i=1

(xi − qi(t))2
2si(t)

) , (10)

with:

qi(t) =
µiq

0
i

µi cosh(µit) + s0i sinh(µit)
, and si(t) = µi

µi sinh(µit) + s0i cosh(µit)
µi cosh(µit) + s0i sinh(µit)

. (11)

Moreover, we have:

m(t) = −
n

∑
i=1

q2i (t) + si(t)
2

.

We also note, in Corollary 2.2, that the distribution q(t,x) converges to a Gaussian

distribution with mean q∞ = 0 and variances s∞,i = µi, as t→ +∞.

The determination of an explicit formula for q(t,x) becomes more involved when the

initial distribution q0 is not a Gaussian. In this case, we study the equation satisfied by

the distribution of the fitness components p(t,m) (see Introduction) and, as a by-product,

we derive an explicit formula for m(t).

8



A degenerate parabolic PDE satisfied by p(t,m)

Our objective here is to derive an equation for p(t,m) that only involves linear de-

pendencies with respect to the coefficients mi, and holds for general initial phenotype

distributions q0, which may not be Gaussian.

First, we express the distribution of the fitness components p(t,m) in terms of the

distribution of phenotypes q(t,x) given in Theorem 2.1.

Proposition 2.3. For all t ≥ 0 and m = (m1, . . . ,mn) ∈ (R∗
−)n, there holds:

p(t,m) = 2−n/2√
∣m1⋯mn∣

∑
ε=(ε1,...,εn)∈{±1}n

q(t,xε(m)), (12)

with xε(m) = (ε1
√
−2m1, . . . , εn

√
−2mn) ∈ Rn. Furthermore, we have:

∀ t ≥ 0, ∫
Rn−

p(t,m)dm = 1 and m(t) =
n

∑
i=1
∫
Rn−
mip(t,m)dm, (13)

where all above integrals are convergent.

It also turns out that the expression (12) becomes simpler when q satisfies some

symmetry properties. In the sequel, for a given function f ∈ C(Rn), we define its

#−symmetrization f# ∈ C(Rn) by:

∀x = (x1, . . . , xn) ∈ Rn, f#(x) = 2−n ∑
ε=(ε1,...,εn)∈{±1}n

f(ε1x1, . . . , εnxn).

From the symmetries inherent to (3), it is easy to check that, if q is the solution of (3)

with initial condition q0 satisfying the conditions of Theorem 2.1, then q# is the solution

of (3) with initial condition q#0 , and q(t, ⋅) and q#(t, ⋅) have the same mean fitness m(t)
at every time t ≥ 0. Furthermore, using the expression (12), we observe that p(t,m) can

be described in terms of the #−symmetrization of q(t, ⋅):

p(t,m) = 2n/2√
∣m1⋯mn∣

q#(t,x11(m)), (14)

for every t ≥ 0 and m ∈ (R∗
−)n, with:

x11(m) = (
√
−2m1, . . . ,

√
−2mn) ∈ Rn

+.

This function p(t,m) satisfies a nonlocal degenerate parabolic equation, as the fol-

lowing result shows:

Theorem 2.4. The distribution function of the fitness components p is a classical C1,2(R+×
(R∗

−)n) solution of:

∂tp(t,m) =
n

∑
i=1

µ2
i ∣mi∣∂iip(t,m) − 3

2

n

∑
i=1

µ2
i ∂ip(t,m) + (

n

∑
i=1

mi −m(t)) p(t,m), (15)
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for t ≥ 0 and m ∈ (R∗
−)n, with initial condition:

p0(m) = 2n/2√
∣m1⋯mn∣

q#0 (x11(m)). (16)

In the isotropic case (µi = µ > 0 for all i), it is also possible to derive a scalar equation

for the distribution of fitness p(t,m), defined by (4).

Theorem 2.5. (Isotropic case) If µi = µ for all 1 ≤ i ≤ n, then the fitness distribution

p(t,m) is a classical C1,2(R+ ×R∗
−) solution of:

∂tp(t,m) = −µ2m∂mmp(t,m) + µ2 (n
2
− 2)∂mp(t,m) + (m − m(t))p(t,m), (17)

for t ≥ 0 and m < 0, with initial condition,

p0(m) = ∫
Rn−1− ∩{m≤∑

n−1
i=1 mi}

p0 (m1, . . . ,mn−1,m −
n−1

∑
i=1

mi) dm1 . . . dmn−1. (18)

As expected, the equations (15) and (17) only involve linear combinations of the

coefficients mi. This allows us to derive simpler equations satisfied by the generating

functions of p(t,m) and p(t,m).

Generating functions

We define the moment generating functions (MGFs) Mp and Mp of p and p and their

logarithms – the cumulant generating functions (CGFs) – Cp and Cp by:

Mp(t,z) = ∫
Rn−
ez ⋅mp(t,m)dm, Mp(t, z) = ∫

0

−∞
ezmp(t,m)dm, (19)

and:

Cp(t,z) = logMp(t,z), Cp(t, z) = logMp(t, z), (20)

for t ≥ 0, z ∈ Rn
+ and z ≥ 0. The integrals are well defined because the components mi

are all negative. Furthermore, it follows from (13) and the nonnegativity of p that, for

each t ≥ 0, the functions Mp(t, ⋅) and Cp(t, ⋅) are of class C∞((R∗
+)n) ∩C1(Rn

+), while the

functions Mp(t, ⋅) and Cp(t, ⋅) are of class C∞(R∗
+) ∩C1(R+).

The following result gives the equation satisfied by Cp.

Theorem 2.6. The cumulant generating function Cp of p is of class C1,1(R+ ×Rn
+) 1 and

it solves:

⎧⎪⎪⎨⎪⎪⎩

∂tCp(t,z) = A(z) ⋅ ∇Cp(t,z) − b(z) −m(t), t ≥ 0, z ∈ Rn
+,

Cp(0,z) = Cp0(z), z ∈ Rn
+,

(21)

1. This means that the partial derivatives of Cp with respect to the variables t and z exist and are

continuous in R+ ×Rn
+
.

10



where:

A(z) = (1 − µ2
1z

2
1 , . . . ,1 − µ2

nz
2
n) ∈ Rn, b(z) =

n

∑
i=1

µ2
i

2
zi ∈ R, m(t) =

n

∑
i=1

∂iCp(t,O), (22)

and ∇Cp(t,z) denotes the gradient of Cp with respect to the variable z.

As a corollary of this theorem, we derive an equation satisfied by Cp in the isotropic

case.

Corollary 2.7. (Isotropic Case) If µi = µ for all 1 ≤ i ≤ n, then the cumulant generating

function Cp of the fitness distribution p is a C1,1(R+ ×R+) solution of:

⎧⎪⎪⎨⎪⎪⎩

∂tCp(t, z) = (1 − µ2z2)∂zCp(t, z) −
n

2
µ2z −m(t), t ≥ 0, z ∈ R+,

Cp(0, z) = Cp0(z), z ∈ R+,
(23)

where p0 is the initial fitness distribution given in (18), and m(t) = ∂zCp(t,0).

Note that the equation (23) is directly obtained as a by-product of (21), without using

the equation (17) satisfied by p(t,m). Each of these two equations (21) and (23) has a

unique solution which can be computed explicitly, leading to a formula for m(t). We refer

to Section 2.3 for an application of this result.

In the Introduction, we mentioned that the coefficients µ2
i can be interpreted as the

product between the mutation rate U and the variance λi at the i-th trait. In the isotropic

case, µ2
i = µ2 = U λ. Thus we have retrieved the equation mentioned in [32, Eq. (E5) in

Appendix E].

The last two results of this section provide some explicit expressions of Cp(t,z) and

Cp(t, z) when z and z are close enough to O and 0.

Proposition 2.8. The cumulant generating function Cp of p is given by, for all t ≥ 0

and z = (z1, . . . , zn) ∈ [0,1/µ1) ×⋯ × [0,1/µn),

Cp(t,z) =
1

2

n

∑
i=1

log [cosh(µit) cosh(atanh(µizi))
cosh(µit + atanh(µizi))

] +Cp(0, ψ(t,z)) −Cp(0, ψ(t,O)), (24)

with:

ψ(t,z) = (ψ1(t,z), . . . , ψn(t,z)) and ψj(t,z) =
1

µj
tanh (µjt + atanh(µjzj)) . (25)

Moreover, for all t ≥ 0, we have:

m(t) =
n

∑
i=1

[(1 − tanh2(µit)) ∂iCp(0, ψ(t,O)) − µi
2

tanh(µit)]. (26)

Corollary 2.9. (Isotropic case) If µi = µ for all 1 ≤ i ≤ n, then the cumulant generating

function Cp of p is given by:

Cp(t, z) =
n

2
log(cosh(µ t) cosh(atanh(µz))

cosh(µ t + atanh(µz))
) +Cp(0, ϕ(t, z)) −Cp(0, ϕ(t,0)), (27)

for t ≥ 0 and 0 ≤ z < 1/µ, with ϕ(t, z) = (1/µ) tanh (µ t+ atanh(µz)). Moreover, we have:

m(t) = (1 − tanh2(µt))∂zCp(0,
tanh(µt)

µ
) − nµ

2
tanh(µt). (28)

11



2.2 Long time behavior and stationary states

We are here interested in the long time behavior of the solutions of (3) and (15). We

begin with a result on the convergence of the solution of (15) at t→ +∞.

Theorem 2.10. Let p and m(t) be as in the previous section. Then:

(i) p(t, ⋅) weakly converges in (R∗
−)n to p∞ as t→ +∞, where:

p∞(m) = 1

πn/2
√
µ1⋯µn

√
∣m1⋯mn∣

exp(
n

∑
i=1

mi

µi
) for all m ∈ (R∗

−)n, (29)

in the sense that ∫
(R∗−)n

p(t,m)φ(m)dm → ∫
(R∗−)n

p∞(m)φ(m)dm as t → +∞ for

every test function φ ∈ C∞
c ((R∗

−)n);

(ii) m(t) →m∞ = −
n

∑
i=1

µi
2

as t→ +∞ and m∞ =
n

∑
i=1
∫
Rn−
mip∞(m)dm;

(iii) the function p∞ is a classical C2((R∗
−)n) solution of:

0 =
n

∑
i=1

µ2
i ∣mi∣∂iip∞(m) − 3

2

n

∑
i=1

µ2
i∂ip∞(m) + (

n

∑
i=1

mi −m∞)p∞(m). (30)

In the isotropic case, we retrieve the result of [32] in the WSSM case (Weak Selec-

tion and Strong Mutation), which says that the fitnesses are asymptotically distributed

according to the symetrized Gamma distribution −Γ(n/2, µ), with µ =
√
Uλ:

Corollary 2.11. (Isotropic case) If µi = µ for all 1 ≤ i ≤ n, then p(t, ⋅) weakly converges

in R∗
− to p∞ as t→ +∞, where:

p∞(m) = ∣m∣n2 −1

Γ(n/2)µn/2
exp(m

µ
) for all m < 0,

and Γ(x) = ∫
+∞

0
tx−1e−tdt is the standard Gamma function.

Thanks to the previous two results, we get the asymptotic behavior of the phenotype

distribution in the symmetric case.

Corollary 2.12. If q0 is #-symmetric in the sense that q0 = q#0 , then q(t, ⋅) = q#(t, ⋅)
weakly converges to q∞ as t→ +∞ on Rn where, for all x ∈ Rn,

q∞(x) = 1

(2π)n/2√µ1⋯µn
exp(−

n

∑
i=1

x2i
2µi

) , (31)

and m(t) →m∞ = ∫
Rn
m(x) q∞(x)dx as t→ +∞.

We note that q∞ is a classical positive stationary state of (3), i.e., it satisfies the

following equation:

n

∑
i=1

µ2
i

2
∂iiq∞(x) +m(x) q∞(x) =m∞ q∞(x) for all x ∈ Rn.

12



Thus, as already observed in [3] in the 1D case, the distribution q(t,x) and the mean

fitness m(t) converge to the principal eigenfunction (resp. eigenvalue) of the operator

H = ∑n
i=1

µ2i
2 ∂ii +m(x). By analogy with their results, we expect that the convergence of

q(t, ⋅) also occurs in Lp(Rn), for all 1 ≤ p ≤ +∞, and that the convergence result remains

true when the initial condition q0 is not #-symmetric.

2.3 Effect of anisotropy: numerical computations and connec-

tion with Escherichia coli long-term evolution experiment

The objective of this section is to illustrate the importance of taking anisotropy into

account when modelling adaptation trajectories. Isotropic models [32] lead to regularly

saturating trajectories of m(t) with a plateau, i.e. a single ’epoch’. Here, we show that,

in the presence of anisotropy, the trajectory of m(t) can exhibit several plateaus before

reaching a stable level close to m∞. Thus, the dynamics of adaptation can show several

evolutionary ’epochs’, as those observed in the E. coli long-term evolution experiment [19],

corresponding to different time-scales at which adaptation occurs.

For the sake of simplicity of the computations, and although the existence and unique-

ness results of Section 2.1 were only obtained with continuous initial distributions of phe-

notypes, we assume a Dirac initial distribution of the phenotypes. Namely, we assume that

q0 = δx0 with x0 = (x0,1, . . . , x0,n) ∈ Rn. This corresponds to an initially clonal population.

In this case, the expression (26) in Proposition 2.8 simplifies to:

m(t) =
n

∑
i=1

(
x20,i
2

( tanh2 (µit) − 1) − µi
2

tanh (µit)) . (32)

Trajectory of adaptation in the presence of anisotropy: an illustrative example

We take n = 3 and µ1 > µ2 > µ3. The corresponding trajectory of m(t) is depicted

in Figure 1. After a brief initial decay which was already observed in the isotropic

case [32], m(t) rapidly increases and reaches a first plateau (of value close to m∞,1 ∶=
−x20,2/2 − x20,3/2 − µ1/2). Then, m(t) rapidly increases again to reach a second plateau (of

value close to m∞,2 ∶= −x20,3/2 − µ1/2 − µ2/2). Finally, m(t) increases again and stabilises

around m∞ = −µ1/2−µ2/2−µ3/2. Interestingly, although the ultimate value m∞ does not

depend on the initial phenotype, the intermediate plateaus depend on x0. Their values

approximately correspond to the fitnesses associated with the successive projections of x0

on the hyperplanes {x1 = 0} and {x1 = x2 = 0} minus the mutation load (we recall that

the optimal phenotype was fixed at x = (0, . . . ,0), see Introduction).

More generally speaking, for n ≥ 2 and µ1 > . . . > µn, the trajectory exhibits (n − 1)

13
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Figure 1 – Trajectory of adaptation in the presence of anisotropy, with n = 3.

The function m(t) is given by formula (32), and the approximations of the values of the

intermediate plateaus are m∞,1 = −x20,2/2 − x20,3/2 − µ1/2 and m∞,2 = −x20,3/2 − µ1/2 − µ2/2.

The mutational parameters are µ1 =
√

2, µ2 =
√

2 ⋅ 10−2 and µ3 =
√

2 ⋅ 10−4. The other

parameter values are x0 = (3/2,1,1).

plateaus (before the final one of value m∞), of respective values:

m ≈m∞,k ∶= −
n

∑
i=k+1

x20,i
2

−
k

∑
i=1

µi
2
,

for k = 1, . . . , (n − 1). Note that these values may not be ordered by increasing order,

depending on the parameter values, possibly leading to nonmonotone trajectories of m(t).
The plateaus are more visible when the µi’s have different orders of magnitude. More

precisely, we show in Section 4.5 that, given T > 0, m(t) remains around each plateau

of value m∞,k at least during a time interval of duration T , for a good choice of the

parameters µi.

Long term evolution experiment with Escherichia coli

The long term evolution experiment (LTEE) has been carried by Lenski and his col-

laborators since 1988 [25]. Twelve populations of E. coli have been founded from a single

common ancestor, and are still evolving after more than 70,000 generations. The fitness

evolved rapidly during the first 2,000 generations, and then remained nearly static between

generations 5,000 and 10,000 [26], which would at least phenomenologically advocate for

the existence of a phenotype optimum. However, more recent data (after generation

10,000) indicate that the mean fitness seems to increase without bounds [45]. Our goal

here is not to propose a new explanation of the LTEE data, but simply to check whether

the anisotropic model (3) leads to a better fit than an isotropic model.
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The interpretation of the fitness data from the LTEE is quite subtle (see the com-

ments in Richard Lenski’s Experimental Evolution website http://myxo.css.msu.edu/

ecoli/srvsrf.html). For the sake of simplicity, as our objective is to check if the trajecto-

ries given by (32) can be qualitatively consistent with the fitness data from the LTEE, we

make the following simplifying assumptions: (1) a time unit t in our model corresponds

to 1 cycle of the experiment (1 day), corresponding to ≈ 6.64 generations [25]; (2) the

link between m(t) and the mean fitness values given by the LTEE data, which are of the

form w(gen) (gen is the generation number and w the Darwinian mean fitness, which

is related to the Malthusian fitness through an exponential) is made by assuming that

m(t+2)−m(2) = ln [w(6.64t)]. Thus, we assume (arbitrarily) that 2 cycles were necessary

to build the founding colony from the single ancestor (hence the term t + 2). Addition-

ally, in the data, the fitness is a relative fitness against the ancestor, which implies that

w(0) = 1; this is why the quantity m(2) was subtracted to m(t+2). As mentioned above,

the data are available for 12 populations. Here, we only use the data from one population

(the population Ara-1, see [45]), for which measurements were obtained at 100-generation

intervals during the first 2,000 generations, and then at 500-generation intervals.

We carried out a fit (using Matlab R○ Curve Fitting Toolbox R○, with a nonlinear least

squares method) with the function f(t) =m(t + 2) −m(2). For the sake of simplicity, we

assumed a two-dimensional phenotypic space (n = 2). The only parameters to estimate

are µ1, µ2 and x0. We compared the result of this fit with a fit of the isotropic model

(µ1 = µ2). The results are depicted in Figure 2. A graphical analysis shows that the

anisotropic model gives a far better fit. This is confirmed by the adjusted R2: 0.89 for the

anisotropic model versus 0.57 for the isotropic model (R2=1 indicates that the fitted model

explains all of the variability in the data). In the anisotropic model, the fitted mutational

parameters have two different orders of magnitude: µ1 = 1.3 ⋅ 10−2 and µ2 = 3.0 ⋅ 10−4.

This leads to a first plateau until about 1,000 cycles (6,640 generations) followed by a

second increase of the fitness. As expected, the isotropic model cannot explain this type

of pattern.

3 Discussion

We considered a natural n-dimensional extension of the standard diffusive ’replicator-

mutator’ equation, to describe the dynamics of a phenotype distribution under anisotropic

mutation and selection effects, and in the presence of a phenotype optimum. We proved

that the corresponding Cauchy problem was well-posed (existence and uniqueness of the

solution) and we proposed a new and general framework to the study of the quantitative

behavior of the solution q(t,x). This framework enabled us to derive a formula for the

mean fitness in the population at all time (equation (26)), an important quantity to

describe the dynamics of adaptation.
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Figure 2 – Trajectory of adaptation, anisotropic and isotropic model vs LTEE

data. The function f(t) = m(t + 2) −m(2), with m(t) given by (32) was fitted to the

LTEE data. The functions f(t) with the parameter values corresponding to the best fit

are depicted in blue. The red crosses correspond to the LTEE data (population Ara-

1, ln [w(6.64t)], with w the original data). The values leading to the best fit are (a,

anisotropic model) x0 = (0.73,0.76), µ1 = 1.3 ⋅ 10−2 and µ2 = 3.0 ⋅ 10−4; (b, isotropic model)

x0 = (0.30,0.09) and µ1 = µ2 = 5.3 ⋅ 10−3.
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The case of an initially Gaussian distribution q0 of the phenotypes is simpler, as

the phenotype distribution q(t,x) remains Gaussian (though anisotropic) at all time.

However, when q0 is not Gaussian, this result obviously breaks down. In this case, the

method that we proposed consists in two steps: (1) to derive a degenerate nonlocal

parabolic equation satisfied by the distribution p(t,m) of the fitness components, i.e.,

the joint distribution of the mi = −x2i /2. This equation is degenerate at 0, but has the

advantage of being linear with respect to m; (2) to derive a nonlocal transport equation

satisfied by the cumulant generating function of p(t,m). This last equation can be solved

analytically, and its solution leads to explicit formulae for all the moments of p.

Conversely, the methods that are developed in this paper could be applied to solve

more general degenerate parabolic PDEs. The idea would be firstly to transform the

degenerate equation into a non-degenerate equation, through a change of function of the

type (14) (rewriting q# in terms of p) to get an existence result, and secondly to consider

PDEs satisfied by moment generating functions in order to obtain uniqueness and more

quantitative properties of the solution of the degenerate PDE.

A natural idea to solve (3) could be to consider directly the cumulant generating

function associated with q:

Cq(t,z) = ln(∫
Rn
ez⋅xq(t,x)dx) . (33)

One would then have to see for which z this quantity makes sense, since now one integrates

with respect to x ∈ Rn. Due to the nonlinear term m(x) in (3), the equation satisfied by

Cq would then be a nonlocal second-order viscous Hamilton-Jacobi type equation:

∂tCq(t,z) = −
1

2
∆Cq(t,z) −

1

2
∥∇Cq(t,z)∥2 +

n

∑
i=1

µ2
i

2
z2i −m(t),

whereas equation (21) for Cp was a nonlocal first-order transport equation.

Finally, the results of Section 2.3 illustrate the importance of taking anisotropy into

account from an applied perspective, as it can open up further explanations of experimen-

tal data. In sharp contrast with the known results based on isotropic models, our results

show that the trajectory of adaptation may exhibit (n − 1) plateaus before it reaches

the final one. In particular, using our analytic formulae for the dynamics of m(t), we

obtained a very good fit of one of the most famous experimental dataset in experimental

evolution, for which several evolutionary ’epochs’ had already been observed [19]. This

suggests that the FGM, in its anisotropic form, can generate a diversity of behaviours

that may reconcile the various outcomes observed in long vs. short term experimental

evolution. However, whether this versatility may lead to overparameterization remains

an open statistical question.
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4 Proofs

This section is devoted to the proofs of the results announced in Section 2. Sec-

tion 4.1 is concerned with problem (8) satisfied by the distribution of phenotype frequen-

cies q(t,x), while Section 4.2 deals with the fitness frequencies p(t,m) and the proofs of

Proposition 2.3 and Theorem 2.4. In Section 4.3, we carry out the proofs of Theorem 2.6

and Proposition 2.8 on the cumulant generating functions, and their corollaries (Theo-

rem 2.5 and Corollaries 2.7 and 2.9) in the isotropic case. Lastly, Sections 4.4 and 4.5 are

concerned with the stationary states and the existence of plateaus for the mean fitness.

4.1 Proofs of Theorem 2.1 and Corollary 2.2 on the Cauchy

problem (8)

Before considering the nonlocal problem (8), we begin with the local problem:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tv(t,x) =
n

∑
i=1

µ2
i

2
∂iiv(t,x) +m(x) v(t,x), t ≥ 0, x ∈ Rn,

v(0,x) = q0(x), x ∈ Rn,

(34)

where q0 satisfies (5)-(7). As the fitness function:

m(x) = − ∥x∥2
2

,

is unbounded, standard parabolic theory with bounded coefficients does not apply. How-

ever, some properties of (34) can be for instance be found in [4, 27, 36], which in particular

lead to the following result.

Theorem 4.1. The problem (34) admits a unique bounded solution v ∈ C1,2(R+ × Rn).

Additionally, we have:

∀T > 0, ∃S > 0, ∀ t ∈ [0, T ], ∥v(t, ⋅)∥C2+α(Rn) ≤ S ∥q0∥C2+α(Rn), (35)

and:

0 < v(t,x) < (Kt ∗ q0)(x) for all (t,x) ∈ R∗
+ ×Rn, (36)

with:

Kt(x) =
1

(2πt)n/2 µ1⋯µn
exp [−

n

∑
i=1

x2i
2µ2

i t
] . (37)

Proof. Let us fix a time T > 0. Theorem 2 in [27] implies that (34) admits a unique

bounded solution v ∈ C1,2([0, T ] ×Rn) and this solution satisfies (35). Theorem III in [4]

further implies that this solution is nonnegative. As T was chosen arbitrarily, these exis-

tence, uniqueness and nonnegativity results extend to t ∈ (0,+∞), with local boundedness

in t.
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Let us set h(t,x) ∶= (Kt∗q0)(x) for t > 0, and h(0,x) = q0(x). The function h satisfies:

∂th(t,x) =
n

∑
i=1

µ2
i

2
∂iih(t,x),

for all t > 0 and x ∈ Rn. Let ψ(t,x) ∶= v(t,x) − h(t,x). We see that, for all t > 0 and

x ∈ Rn,

∂tψ(t,x) −
n

∑
i=1

µ2
i

2
∂iiψ(t,x) =m(x)v(t,x) ≤ 0, (38)

and ψ(0,x) = 0. By the Phragmèn-Linderlöf principle [36, Theorem 10, Chapter 3], we

get that ψ ≤ 0 in R+ × Rn, i.e., v(t,x) ≤ h(t,x) = (Kt ∗ q0)(x). We therefore infer that

0 ≤ v(t,x) ≤ (Kt ∗ q0)(x) in (0,+∞) ×Rn. Since q0 is bounded, this also implies that v is

bounded in R+ ×Rn.

By the standard strong parabolic maximum principle, we conclude that the first in-

equality is strict, i.e., 0 < v(t,x), for all (t,x) ∈ (0,+∞) × Rn, since v(0, ⋅) = q0 is con-

tinuous, nonnegative and not identically equal to 0. Furthermore, since the inequality

in (38) is then strict for all (t,x) ∈ (0,+∞) × (Rn ∖ {O}), we get that ψ(t,x) < 0, i.e.,

v(t,x) < (Kt ∗ q0)(x), for all (t,x) ∈ (0,+∞) ×Rn.

In order to connect (34) and (8), we need the following lemma.

Lemma 4.2. The function:

t↦mv(t) ∶= ∫
Rn
m(x) v(t,x)dx, (39)

is real-valued and continuous in R+ and, for every t ≥ 0, there holds:

1 + ∫
t

0
mv(s)ds = 1 + ∫

t

0
∫
Rn
m(x)v(s,x)dxds = ∫

Rn
v(t,x)dx > 0. (40)

Proof. First of all, denote:

µ ∶= min(µ1, . . . , µn) > 0 and µ ∶= max(µ1, . . . , µn) > 0. (41)

It follows from the assumptions on q0 that mv(0) is a nonpositive real number. Consider

now any t > 0 and let us check that mv(t) defined in (39) is a nonpositive real number. The

function x ↦ m(x) v(t,x) is nonpositive and continuous in Rn. Furthermore, it follows

from Theorem 4.1 and the assumptions on q0 that:

∫
Rn

∣m(x)∣ v(t,x)dx ≤ 1

2(2πt)n/2µn ∫Rn
∫
Rn

exp(−∥x − y∥2

2µ2t
) g(∥y∥) ∥x∥2 dy dx

= µn

2πn/2µn ∫Rn
∫
Rn

exp(−∥z∥2) g(∥x − µ
√

2tz∥) ∥x∥2 dzdx

≤ µn

2πn/2µn ∫Rn
(∫

∥z∥≤∥x∥/(2µ
√
2t)

exp(−∥z∥2) g(∥x∥/2)dz

+∫
∥z∥>∥x∥/(2µ

√
2t)

exp(−∥z∥2) g(0)dz) ∥x∥2 dx

≤ µn

2πn/2µn
(πn/2∫

Rn
g(∥x∥/2) ∥x∥2 dx + g(0)∫

Rn
ht(∥x∥) ∥x∥2 dx) ,
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where

ht(r) ∶= ∫
∥z∥≥r/(2µ

√
2t)

exp(−∥z∥2)dz = O(exp(−r)), as r → +∞.

Since the integral ∫Rn ∥x∥2 g(∥x∥)dx converges by assumption, one concludes that the

integral ∫Rn ∣m(x)∣ v(t,x)dx converges as well, hence mv(t) is a nonpositive real number.

Furthermore, since the quantities ht(r) are non-decreasing with respect to t > 0, the same

arguments together with Lebesgue’s dominated convergence theorem imply straightfor-

wardly that the function mv is continuous in R+.

The convergence of the integral defining mv(t) for every t ≥ 0, together with the

nonnegativity and continuity of v and x ↦ −m(x) = ∥x∥2/2, immediately implies that

the integral ∫Rn v(t,x)dx is a nonnegative real number for each t ≥ 0. Moreover, since

v(t,x) > 0 for all (t,x) ∈ R∗
+ ×Rn, we infer that:

∫
Rn
v(t,x)dx > 0 for all t > 0.

As in the previous paragraph, the function t↦ ∫Rn v(t,x)dx is also continuous in R+.

Fix now an arbitrary t > 0. For R > 0, denote BR = {x ∈ Rn, ∥x∥ < R}, ν the outward

unit normal on ∂BR and dσ(x) the surface measure on ∂BR. For every ε ∈ (0, t) and

every R > 0, the integration of (34) over [ε, t] ×BR yields:

∫
BR
v(t,x)dx − ∫

BR
v(ε,x)dx = 1

2 ∫
t

ε
∫
∂BR

n

∑
i=1

µ2
i νi ∂iv(s,x)dσ(x)ds

+ ∫
t

ε
∫
BR
m(x) v(s,x)dxds.

Since the first term of the right-hand side converges to 0 as R → +∞ from standard

parabolic estimates (see [14]), one gets that:

∫
Rn
v(t,x)dx − ∫

Rn
v(ε,x)dx = ∫

t

ε
mv(s)ds,

by passing to the limit R → +∞. The limit ε→ 0+ then yields:

∫
Rn
v(t,x)dx − 1 = ∫

Rn
v(t,x)dx − ∫

Rn
q0(x)dx = ∫

t

0
mv(s)ds, (42)

which gives the desired result (40) for t > 0. Formula (40) for t = 0 is trivial since v(0, ⋅) = q0
has unit mass. The proof of Lemma 4.2 is thereby complete.

Proof of Theorem 2.1. Let v ≥ 0 be the unique classical solution of (34) given in Theo-

rem 4.1. From Lemma 4.2, the function mv defined by (39) is continuous in R+. Let us

then set:

q(t,x) = v(t,x)
1 + ∫

t

0 mv(s)ds
, (43)

for every (t,x) ∈ R+×Rn. We recall that the denominator in the right-hand side of (43) is

positive from Lemma 4.2. From Theorem 4.1 and Lemma 4.2, the function q is nonnegative
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and of class C1,2(R+ × Rn). Furthermore, q(0, ⋅) = v(0, ⋅) = q0 in Rn and it follows from

Lemma 4.2 that:

∀ t ≥ 0, ∫
Rn
q(t,x)dx = 1 and m(t) ∶= ∫

Rn
m(x) q(t,x)dx = mv(t)

1 + ∫
t

0 mv(s)ds
,

hence the function m is real-valued, nonpositive and continuous in R+. Lastly, it is

immediate to see that q obeys (8). Furthermore, since v is bounded in R+ × Rn, the

function q is bounded in (0, T ) ×Rn for every T > 0.

To show the uniqueness, assume now that we have two nonnegative classical solutions

q1 and q2 of (8) in C1,2(R+×Rn)∩L∞((0, T )×Rn) (for every T > 0), with the same initial

condition q0 satisfying (5)-(7), and such that the functions:

m1(t) ∶= ∫
Rn
m(x) q1(t,x)dx and m2(t) ∶= ∫

Rn
m(x) q1(t,x)dx

are real-valued and continuous in R+. Define:

vi(t,x) = qi(t,x) exp (∫
t

0
mi(s)ds),

for i = 1,2, and (t,x) ∈ R+×Rn. The two functions v1 and v2 satisfy (34) and are bounded

in (0, T )×Rn for every T > 0. From Theorem 4.1, we get v1 ≡ v2 in R+×Rn. Furthermore,

for all i = 1,2 and t ∈ R+, there holds:

mvi(t) = ∫
Rn
m(x) vi(t,x)dx =mi(t) exp(∫

t

0
mi(s)ds) =

d

dt
[exp(∫

t

0
mi(s)ds)] .

Hence, for all (t,x) ∈ R+ ×Rn, we get:

q1(t,x) =
v1(t,x)

1 + ∫
t

0 mv1(s)ds
= v2(t,x)

1 + ∫
t

0 mv2(s)ds
= q2(t,x).

The proof of Theorem 2.1 is thereby complete.

Proof of Corollary 2.2. It is a straightforward calculation to check that the function q

defined by (10)-(11) is a classical bounded solution of (8) with initial condition given

by (9). The conclusion then follows from the uniqueness part of Theorem 2.1.

4.2 A degenerate parabolic PDE satisfied by p(t,m)

Proof of Proposition 2.3. We recall that the phenotypes are represented by n traits, and

so by a vector in Rn and that we have a constant optimum O, which is fixed to (0, . . . ,0)
up to translation. We define, for each ε = (ε1, . . . , εn) ∈ {±1}n, the subset:

Qε = {x ∈ ε1R∗
+ ×⋯ × εnR∗

+} ⊂ Rn.

For any time t ≥ 0, we get from the law of total probability that:

∫
Rn−

p(t,m)dm = ∫
Rn
q(t,x)dx = 1,

21



and that, for any m ∈ Rn
−,

p(t,m) = ∑
ε∈{±1}n

p(t,m ∣ x(m) ∈ Qε) P(x(m) ∈ Qε), (44)

with p(t,m ∣ x(m) ∈ Qε) the conditional density of the fitness vector m, given that the

associated phenotype x(m) is in Qε, and P(x(m) ∈ Qε) the probability that x(m) ∈ Qε,

i.e.,

P(x(m) ∈ Qε) = ∫
Qε
q(t,y)dy.

In the above formula (44), we also use the fact that ∫H q(t,x)dx = 0 with:

H = ⋃
1≤i≤n

{x ∈ Rn, xi = 0},

since q(t, ⋅) is continuous in Rn.

As the fitness function x ∈ Qε ↦ m(x) = (m1(x), . . . ,mn(x)) with mi(x) = −x2i /2 is

one-to-one from Qε to (R∗
−)n, with inverse m ↦ xε(m) = (ε1

√
−2m1, . . . , εn

√
−2mn), we

infer that, for every t ≥ 0 and m ∈ (R∗
−)n,

p(t,m ∣ x(m) ∈ Qε) =
1

∣detJε∣
⋅ q(t,xε(m))
P(x(m) ∈ Qε)

= 2−n/2√
∣m1⋯mn∣

q(t,xε(m))
P(x(m) ∈ Qε)

,

with Jε = diag(−ε1
√
−2m1, . . . ,−εn

√
−2mn). Finally, we get:

p(t,m) = 2−n/2√
∣m1⋯mn∣

∑
ε∈{±1}n

q(t,xε(m)),

and:

m(t) =
n

∑
i=1
∫
Rn
−
x2i
2
q(t,x)dx =

n

∑
i=1
∫
Rn∖H

−
x2i
2
q(t,x)dx

=
n

∑
i=1

∑
ε∈{±1}n

∫
{ε1x1>0,...,εnxn>0}

−
x2i
2
q(t,x)dx

=
n

∑
i=1

∑
ε∈{±1}n

∫
(R∗−)n

miq(t,xε(m)) 2−n/2√
∣m1⋯mn∣

dm =
n

∑
i=1
∫

(R∗−)n
mip(t,m)dm.

Notice that all integrals in the last sum converge since all integrands are nonpositive and

the sum of these integrals is a real number. Observe lastly that ∫
(R∗−)n

mip(t,m)dm =

∫
Rn−
mip(t,m)dm, for every 1 ≤ i ≤ n, since p(t, ⋅) is an L1(Rn

−) function. The proof of

Proposition 2.3 is thereby complete.

Proof of Theorem 2.4. Formula (14) implies that the function p is of class C1,2(R+×(R∗
−)n)

with initial condition p0 given by (16). Furthermore, it is straightforward to check that,

for all t ≥ 0 and m ∈ (R∗
−)n:

2−n/2 ∂ip(t,m) = − q#(t,x11(m))
2mi

√
∣m1⋯mn∣

− 1√
2∣mi∣

∂iq#(t,x11(m))√
∣m1⋯mn∣

,

2−n/2 ∂iip(t,m) = 3

4

q#(t,x11(m))
m2
i

√
∣m1⋯mn∣

+ 3

2

∂iq#(t,x11(m))
mi

√
2∣mi∣

√
∣m1⋯mn∣

− 1

2mi

∂iiq#(t,x11(m))√
∣m1⋯mn∣

,
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with x11(m) = (
√
−2m1, . . . ,

√
−2mn) ∈ (R∗

+)n. Hence, we have:

n

∑
i=1

µ2
i (mi∂iip(t,m) + 3

2
∂ip(t,m))

= −
n

∑
i=1

2n/2√
∣m1⋯mn∣

µ2
i

2
∂iiq

#(t,x11(m))

= −2n/2
∂tq#(t,x11(m)) − (m(x11(m)) −m(t)) q#(t,x11(m))√

∣m1⋯mn∣

= −∂tp(t,m) + (
n

∑
i=1

mi −m(t)) p(t,m).

Theorem 2.4 is thereby proven.

Proof of Theorem 2.5. Since by definition p(t,m)dm is the pushforward measure, at each

time t ≥ 0, of the measure q(t,x)dx by the map x↦ −∥x∥2/2, it follows from the layer-cake

formula that:

p(t,m) = (2∣m∣)n/2−1∫
Sn−1

q(t,
√

2∣m∣σ)dσ = (2∣m∣)n/2−1Q(t,
√

2∣m∣),

for all (t,m) ∈ R+ ×R∗
+, where Sn−1 denotes the unit Euclidean sphere of Rn and:

Q(t, r) = ∫
Sn−1

q(t, r σ)dσ,

for (t, r) ∈ R+ ×R+. Since q is of class C1,2(R+ ×Rn), it is easy to see that the function:

(t,x) ↦ q̃(t,x) ∶= ∫
Sn−1

q(t, ∥x∥σ)dσ,

is of class C1,2(R+ × Rn) too, hence the function Q is of class C1,2(R+ × R+) and p is of

class C1,2(R+ ×R∗
−). Furthermore, q̃(0, ⋅) is of class C2+α(Rn) since q(0, ⋅) = q0 is of class

C2+α(Rn).
Since q solves (8), which is invariant by rotation in the present isotropic case (µi = µ

for every 1 ≤ i ≤ n) and since m(t) = ∫Rnm(x) q(t,x)dx = ∫Rnm(x) q̃(t,x)dx, for every

t ≥ 0, it follows that q̃ solves (8) as well, with initial condition q̃(0, ⋅). As a consequence,

Q satisfies:

∂tQ(t, r) = µ
2

2
(∂rrQ(t, r) + n − 1

r
∂rQ(t, r)) + ( − r

2

2
−m(t))Q(t, r),

for all (t, r) ∈ R+ ×R∗
+. But since:

Q(t, r) = r2−n p(t,−r
2

2
),

for all (t, r) ∈ R+ ×R∗
+, it is then straightforward to check that p solves (17) in R+ ×R∗

−.

Lastly, the formula (18) is an immediate consequence of the definitions of p and p, and

the proof of Theorem 2.5 is thereby complete.
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4.3 Generating functions

Proof of Theorem 2.6. Given q0 satisfying (5)-(7), we call v the unique bounded nonne-

gative C1,2(R+ × Rn) solution of (34) defined in Theorem 4.1 with initial condition q#0 .

Notice that the function q#0 satisfies the same assumptions (5)-(7) as q0. By uniqueness

and symmetry of (34) with respect to the change of variable xi into −xi, for any 1 ≤ i ≤ n,

it follows that v(t,x) = v#(t,x) and, as in (43),

q#(t,x) = v#(t,x)
1 + ∫

t

0 mv(s)ds
= v(t,x)

1 + ∫
t

0 mv(s)ds
, (45)

for all (t,x) ∈ R+ ×Rn
+.

As already noticed in Section 2.1, from (13) and the nonnegativity of p, the functions

(t,z) ↦Mp(t,z) and (t,z) ↦ Cp(t,z) given in (19)-(20) are well defined in R+ ×Rn
+. Let

us start by proving the continuity of these functions Mp and Cp in R+ × Rn
+. Owing to

the relations (14) and (45), we see that:

Mp(t,z) =
2n/2

1 + ∫
t

0 mv(s)ds
∫
Rn−

ez⋅m√
∣m1⋯mn∣

v(t,x11(m))dm, (46)

for all (t,z) ∈ R+ ×Rn
+, with x11(m) = (

√
−2m1, . . . ,

√
−2mn). Hence, we have:

Mp(t,z) = 2n

1 + ∫
t

0 mv(s)ds
∫
Rn+

exp ( −
n

∑
i=1

zix2i
2

) v(t,x)dx

= 1

1 + ∫
t

0 mv(s)ds
∫
Rn

exp ( −
n

∑
i=1

zix2i
2

) v(t,x)dx.
(47)

Notice that the function t ↦ ∫
t

0 mv(s)ds is continuous in R+. Furthermore, the function

(t,z) ↦ exp(−∑n
i=1 zix

2
i /2) v(t,x) is also continuous in R+ ×Rn

+, for every x ∈ Rn. Lastly,

as in the proof of Lemma 4.2, it follows from (7), (36)-(37) and (41) that, for any z ∈ Rn
+,

T > 0, t ∈ (0, T ] and x ∈ Rn, there holds:

0 ≤ exp ( −
n

∑
i=1

zix2i
2

) v(t,x) ≤ v(t,x)

≤ 1

(2πt)n/2µn ∫Rn
exp ( − ∥x − y∥2

2µ2t
) q#0 (y)dy

≤ µn

πn/2µn ∫Rn
e−∥y

′∥2 g(∥x − µ
√

2ty′∥)dy′

≤ µn

πn/2µn
[∫

∥y′∥≤∥x∥/(2µ
√
2t)
e−∥y

′∥2 g(∥x∥/2)dy′+g(0)∫
∥y′∥>∥x∥/(2µ

√
2t)
e−∥y

′∥2 dy′]

≤ µn

πn/2µn
[πn/2g(∥x∥/2) + g(0)∫

∥y′∥>∥x∥/(2µ
√
2T )

e−∥y
′∥2 dy′].

(48)

Call h(x) the quantity given in the right-hand side of the last inequality. Since by (7)

the function g(∥ ⋅ ∥) is in L∞(Rn) ∩ L1(Rn), the function h belongs to L1(Rn), and is
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independent of z ∈ Rn
+ and t ∈ (0, T ]. One then infers from (47) and Lebesgue’s dominated

convergence theorem that the function Mp is continuous in R+ ×Rn
+. As Cp = logMp, the

cumulant generating function Cp is also continuous in R+ ×Rn
+.

Let us then check that Mp and Cp are C0,1(R+ × Rn
+), meaning that the functions

∂iMp = ∂Mp

∂zi
and ∂iCp = ∂Cp

∂zi
exist and are continuous in R+ × Rn

+, for every 1 ≤ i ≤ n.

As a matter of fact, since p(t, ⋅) is a probability density function in Rn
− for any t ≥ 0

and since the integral ∫Rn− ∥m∥p(t,m)dm converges by formula (13) in Proposition 2.3,

it easily follows from Lebesgue’s dominated convergence theorem that ∂iMp(t,z) exists

for all (t,z) ∈ R+ ×Rn
+ and 1 ≤ i ≤ n, with:

∂iMp(t,z) = ∫
Rn−
mi e

z⋅mp(t,m)dm, (49)

hence, as in (46)-(47),

∂iMp(t,z) = 2n/2

1 + ∫
t

0 mv(s)ds
∫
Rn−
mi

ez⋅m√
∣m1⋯mn∣

v(t,x11(m))dm

= − 1

1 + ∫
t

0 mv(s)ds
∫
Rn

x2i
2

exp ( −
n

∑
i=1

zix2i
2

) v(t,x)dx
(50)

from (14) and (45). On the one hand, the function t ↦ ∫
t

0 mv(s)ds is continuous in R+

and so is the function (t,z) ↦ x2i exp(−∑n
i=1 zix

2
i /2) v(t,x) in R+ × Rn

+, for every x ∈ Rn.

On the other hand, as in the previous paragraph, it follows from (36)-(37) and (41) that,

for any 1 ≤ i ≤ n, z ∈ Rn
+, T > 0, t ∈ (0, T ] and x ∈ Rn, there holds:

0 ≤ x2i exp ( −
n

∑
i=1

zix2i
2

) v(t,x)

≤ ∥x∥2 v(t,x) ≤ µn

πn/2µn
[πn/2∥x∥2g(∥x∥/2) + g(0)∥x∥2∫

∥y′∥>∥x∥/(2µ
√
2T )

e−∥y
′∥2 dy′].

Call h̃(x) the quantity given in the right-hand side of the last inequality. Since by (7)

the function x ↦ ∥x∥2g(∥x∥) is in L1(Rn), the function h̃ belongs to L1(Rn), and is

independent of z ∈ Rn
+ and t ∈ (0, T ]. One then infers from (50) and Lebesgue’s dominated

convergence theorem that the function ∂iMp is continuous in R+ × Rn
+, and so is the

function ∂iCp = ∂iMp/Mp.

In this paragraph, we are interested in the differentiation of Mp with respect to t.

By (34), we already know that:

∣∂tv(t,x)∣ ≤
n

∑
i=1

µ2
i

2
∣∂iiv(t,x)∣ + ∣m(x) v(t,x)∣, (51)

for all (t,x) ∈ R+ ×Rn. Fix T > 0 and let S > 0 be the constant given in (35). Thus, for

all (t,x) ∈ [0, T ] ×Rn, there holds:

∣∂iiv(t,x)∣ ≤ ∥v(t, ⋅)∥C2+α(Rn) ≤ S∥q#0 ∥C2+α(Rn) ≤ S∥q0∥C2+α(Rn). (52)
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Let us now focus on the boundedness of the second term of the right-hand side of (51),

that is, the boundedness of the function (t,x) ↦ m(x)v(t,x) in [0, T ] × Rn. Since this

function is continuous in R+ × Rn, let us show its boundedness in (0, T ] × Rn. Thanks

to (7) and (36)-(37), we get, as in (48), that:

∣m(x)v(t,x)∣ ≤ ∫
Rn

µn∥x∥2
2πn/2µn

q#0 (x − µ
√

2ty) e−∥y∣∣2 dy,

for all (t,x) ∈ (0, T ] ×Rn. Thus, we have:

∣m(x)v(t,x)∣ ≤ µn

πn/2µn ∫Rn
(∥x − µ

√
2ty∥2 + 2tµ2∥y∥2) g(∥x − µ

√
2ty∥) e−∥y∥2 dy

≤ C µn

πn/2µn
+ 2µn+2T g(0)

πn/2µn ∫
Rn

∥y∥2 e−∥y∥2 dy,

where the constant C is such that ∥x′∥2q#0 (x′) ≤ ∥x′∥2g(∥x′∥) ≤ C, for all x′ ∈ Rn. There-

fore, the function (t,x) ↦ m(x)v(t,x) is bounded in [0, T ] ×Rn for any T > 0, and so is

∂tv by (51)-(52). Together with (35), (45) and the continuity of mv in R+, it follows that

the function ∂tq# is bounded in [0, T ] ×Rn, for every T > 0. Finally, (14) implies that for

all (t,z) ∈ [0, T ] ×Rn
+ and m ∈ (R∗

−)n,

∣ez⋅m ∂tp(t,m)∣ ≤ 2n/2∥∂tq#∥L∞([0,T ]×Rn)
ez⋅m√

∣m1⋯mn∣
.

Since the integrals:

∫
Rn−

ez⋅m√
∣m1⋯mn∣

dm = 2n/2∫
Rn+

exp ( −
n

∑
i=1

zix2i
2

)dx,

converge for all z ∈ (R∗
+)n, it then easily follows from the previous estimates and from

Lebesgue’s dominated convergence theorem that the function Mp is differentiable with

respect to t in R+ × (R∗
+)n, with:

∂tMp(t,z) = ∫
Rn−
ez⋅m ∂tp(t,m)dm, (53)

and that the function ∂tMp is itself continuous in R+ × (R∗
+)n. So is the function ∂tCp =

∂tMp/Mp. The continuity of the functions ∂tMp and ∂tCp in the closure R+ × Rn
+ of

R+ × (R∗
+)n will be obtained as a consequence of the equations satisfied by these two

functions, which shall be established below.

Let us then turn to find an equation satisfied by Mp, in order to derive the equa-

tion (21) satisfied by Cp. Fix (t,z) ∈ R+ × (R∗
+)n. Thanks to (15), we have:

ez⋅m ∂tp(t,m) = −
n

∑
i=1

µ2
imie

z⋅m∂iip(t,m) − 3

2

n

∑
i=1

µ2
i e

z⋅m∂ip(t,m)

+ (
n

∑
i=1

mi −m(t)) ez⋅m p(t,m), (54)
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for all m ∈ (R∗
−)n.

We are now going to integrate (54) over Rn
−. To do so, let us first focus on the first

two terms of the right-hand side of (54). Fix an index i ∈ J1, nK and consider the cubes:

Bε = {m = (m1, . . . ,mn) ∈ Rn
−, −ε−1 <mj < −ε, for each j ∈ J1, nK} = (−ε−1,−ε)n,

with 0 < ε < 1. Denote B̂ε = (−ε−1,−ε)n−1 and:

m̂ = (m1, . . . ,mi−1,mi+1, . . . ,mn), mρ = (m1, . . . ,mi−1,−ρ,mi+1, . . . ,mn),

for ρ ∈ R. By using Fubini’s theorem and integrating by parts with respect to the variable

mi, one infers that:

∫
Bε

(mie
z⋅m∂iip(t,m) + 3

2
ez⋅m∂ip(t,m))dm

= ∫
Bε

(zi
2
+miz

2
i ) ez⋅m p(t,m)dm

+∫
B̂ε

[zi ε ez⋅m
ε

p(t,mε) − zi ε−1 ez⋅m
1/ε

p(t,m1/ε)] dm̂

+∫
B̂ε

[ez⋅mε (p(t,mε)
2

−ε∂ip(t,mε)) − ez⋅m1/ε (p(t,m1/ε)
2

−ε−1∂ip(t,m1/ε))] dm̂.

(55)

Let us pass to the limit as ε → 0 in the three integrals of the right-hand side of (55).

Firstly, since p(t, ⋅) is nonnegative and the functions m↦ p(t,m) and m↦mip(t,m) are

in L1(Rn
−), it follows from Lebesgue’s dominated convergence theorem together with (19)

and (49) that:

∫
Bε
(zi

2
+miz

2
i ) ez⋅m p(t,m)dm→∫

Rn−
(zi

2
+miz

2
i ) ez⋅m p(t,m)dm = zi

2
Mp(t,z)+z2i ∂iMp(t,z),

as ε→ 0. Secondly, by denoting:

Ĉε = (
√

2ε,
√

2ε−1)n−1, ẑ = (z1, . . . , zi−1, zi+1, . . . , zn),

and:

x̂ = (x1, . . . , xi−1, xi+1, . . . , xn), xρ = (x1, . . . , xi−1,
√

2ρ, xi+1, . . . , xn),

for ρ ≥ 0, it follows from (14) that:

∫
B̂ε
zi ε e

z⋅mε

p(t,mε)dm̂ = zi
√
ε e−ziε∫

B̂ε

2n/2 eẑ⋅m̂ q#(t,x11(mε))√
∣m1⋯mi−1mi+1⋯mn∣

dm̂

= zi
√
ε e−ziε 2n−1/2∫

Ĉε
exp ( −∑

j≠i

zjx2j
2

) q#(t,xε)dx̂.

Since the continuous function q#(t, ⋅) is bounded in Rn by (35) and (45), and since z ∈
(R∗

+)n, one then gets that:

∫
B̂ε
zi ε e

z⋅mε

p(t,mε)dm̂→ 0, as ε→ 0.
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Similarly, we prove that:

∫
B̂ε
zi ε

−1 ez⋅m
1/ε

p(t,m1/ε)dm̂ = zi
√
ε−1 e−zi/ε 2n−1/2∫

Ĉε
exp ( −∑

j≠i

zjx2j
2

) q#(t,x1/ε)dx̂→ 0,

as ε → 0. Thirdly, from the computations done in the proof of Theorem 2.4, we already

know that, for all m ∈ (R∗
−)n:

1

2
p(t,m) +mi∂ip(t,m) = 2n/2∂iq#(t,x11(m))√

2∣m1⋯mi−1mi+1⋯mn∣
.

Hence, we have:

∫
B̂ε
ez⋅m

ε (p(t,mε)
2

− ε∂ip(t,mε)) dm̂ = e−ziε∫
B̂ε

2n/2−1/2 eẑ⋅m̂ ∂iq#(t,x11(mε))√
∣m1⋯mi−1mi+1⋯mn∣

dm̂

= e−ziε 2n−1∫
Ĉε

exp(−∑
j≠i

zjx2j
2

) ∂iq#(t,xε)dx̂.

Since the function ∂iq#(t, ⋅) is continuous and bounded in Rn by (35) and (45), since

∂iq#(t,x0) = 0, by #-symmetry of q#(t, ⋅), and since z ∈ (R∗
+)n, one then infers from

Lebesgue’s dominated convergence theorem that:

∫
B̂ε
ez⋅m

ε (p(t,mε)
2

− ε∂ip(t,mε)) dm̂→ 0, as ε→ 0.

Furthermore, the integral:

∫
B̂ε
ez⋅m

1/ε (p(t,m
1/ε)

2
−
√
ε−1∂ip(t,m1/ε)) dm̂ = e−zi/ε 2n−1∫

Ĉε
exp
⎛
⎝
−∑
j≠i

zjx
2
j

2

⎞
⎠
∂iq

#(t,x1/ε)dx̂,

converges to 0 as ε→ 0. Coming back to (55) and passing to the limit as ε→ 0, it follows

from the previous estimates that:

∫
Bε

(mie
z⋅m∂iip(t,m) + 3

2
ez⋅m∂ip(t,m))dm Ð→

ε→0

zi
2
Mp(t,z) + z2i ∂iMp(t,z). (56)

Let us finally remember (54) and that the functions:

m↦ ez⋅m∂tp(t,m), m↦mie
z⋅mp(t,m) and m↦ ez⋅mp(t,m),

are in L1(Rn
−) with integrals given by (53), (49) and (19), respectively. Together with (55)

and (56), one concludes that:

∂tMp(t,z) =
n

∑
i=1

(1 − µ2
i z

2
i )∂iMp(t,z) −

1

2

n

∑
i=1

µ2
i ziMp(t,z) −m(t)Mp(t,z), (57)

for every (t,z) ∈ R+×(R∗
+)n. Since the right-hand side of the above equation is continuous

in R+ × Rn
+, one infers that the function ∂tMp is extendable by continuity in R+ × Rn

+
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and (57) holds in R+ ×Rn
+. Owing to the definition Cp = logMp, one concludes that ∂tCp

is continuous in R+ ×Rn
+ (finally, Cp is of class C1,1(R+ ×Rn

+)) and:

∂tCp(t,z) =
n

∑
i=1

(1 − µ2
i z

2
i )∂iCp(t,z) −

1

2

n

∑
i=1

µ2
i zi −m(t) = A(z) ⋅ ∇Cp(t,z) − b(z) −m(t),

for all (t,z) ∈ R+ ×Rn
+, where A and b are as in (22). Therefore, (21) holds in R+ ×Rn

+ and

the proof of Theorem 2.6 is thereby complete.

Before going into the proof of the remaining results, let us first observe that, in (21)-

(22), m(t) = 1 ⋅ ∇Cp(t,O), with:

1 = (1, . . . ,1) ∈ Rn.

It turns out that, if A(z) = 1, then equation (21) can be solved explicitely by the method

of characteristics, as the following lemma shows (this lemma is used later in the proof of

Proposition 2.8 in the general case A(z) given in (22)).

Lemma 4.3. The Cauchy problem:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tQ(t,z) = 1 ⋅ (∇Q(t,z) − ∇Q(t,O)) − b̃(z), t ≥ 0, z ∈ Rn
+,

Q(0,z) = Q0(z), z ∈ Rn
+,

Q(t,O) = 0, t ≥ 0,

(58)

with b̃ ∈ C1(Rn
+) and Q0 ∈ C1(Rn

+) such that b̃(O) = Q0(O) = 0, admits a unique C1,1(R+×
Rn
+) solution, which is given by the expression:

Q(t,z) = ∫
t

0
(̃b(s1) − b̃(z + s1))ds +Q0(z + t1) −Q0(t1). (59)

Proof. First of all, it is immediate to check that the function Q given by (59) is a C1,1(R+×
Rn
+) solution of (58). Let now Q1 and Q2 be two C1,1(R+×Rn

+) solutions of (58) and denote

Q = Q1 −Q2. The function Q is of class C1,1(R+ ×Rn
+) and obeys:

∂tQ(t,z) = 1 ⋅ (∇Q(t,z) − ∇Q(t,O)) ,

for all (t,z) ∈ R+ × Rn
+, together with Q(0,z) = 0 for all z ∈ Rn

+ and Q(t,O) = 0 for all

t ≥ 0. It remains to show that Q = 0 in R+ ×Rn
+. Fix any (t,z) ∈ R+ ×Rn

+. If t = 0, then

Q(0,z) = 0, so let us assume that t > 0. Consider the C1([0, t]) function R defined by

R(s) = Q(t − s,z + s1) −Q(t − s, s1) for s ∈ [0, t] (which is well defined since z + s1 ∈ Rn
+).

It follows from the equation satisfied by Q that, for all s ∈ [0, t], there holds:

R′(s) = −∂tQ(t − s,z + s1) − ∂tQ(t − s, s1) + 1 ⋅ (∇Q(t − s,z + s1) − ∇Q(t − s, s1)) = 0.

Hence, Q(t,z) = Q(t,z) −Q(t,O) = R(0) = R(t) = Q(0,z + t1) −Q(0, t1) = 0, which is the

desired conclusion.
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Proof of Proposition 2.8. In order to derive a general formula for the C1,1(R+ × Rn
+) so-

lution Cp of (21), we make a substitution of the spatial variable and use the previous

special case described in Lemma 4.3. To do so, we set, for t ≥ 0 and z ∈ Rn
+,

Q(t,z) = Cp(t,y(z)),

where y(z) = (y1(z), . . . , yn(z)) and yi(z) = tanh(µizi)/µi for every 1 ≤ i ≤ n. Notice that

y(z) ∈ Rn
+ for every z ∈ Rn

+. The function Q is of class C1,1(R+ ×Rn
+) and:

1 ⋅ ∇Q(t,z) =
n

∑
i=1

∂iQ(t,z) =
n

∑
i=1

(1 − tanh2(µizi))∂iCp(t,y(z)) = A(y(z)) ⋅ ∇Cp(t,y(z)),

for all (t,z) ∈ R+ ×Rn
+, where A is given in (22). As m(t) = 1 ⋅ ∇Cp(t,O) = 1 ⋅ ∇Q(t,O)

and Q(t,O) = Cp(t,O) = logMp(t,O) = 0 by (13) and (19), it follows from (21) that:

⎧⎪⎪⎨⎪⎪⎩

∂tQ(t,z) = 1 ⋅ (∇Q(t,z) − ∇Q(t,O)) − b(y(z)), t ≥ 0, z ∈ Rn
+,

Q(t,O) = 0, t ≥ 0,

and Q(0,z) = Cp(0,y(z)) for all z ∈ Rn
+. The functions Cp(0,y(⋅)) and b̃ ∶= b ○ y are of

class C1(Rn
+) and Cp(0,y(O)) = b̃(O) = 0. Therefore, Lemma 4.3 implies that:

Q(t,z) = ∫
t

0
[b(y(s1)) − b(y(z + s1))] ds +Cp(0,y(z + t1)) −Cp(0,y(t1)), (60)

for all (t,z) ∈ R+ × Rn
+. Consider now any t ∈ R+ and z = (z1, . . . , zn) ∈ [0,1/µ1) × ⋯ ×

[0,1/µn). Set:

z′ = (atanh(µ1z1)
µ1

, . . . ,
atanh(µ1z1)

µ1

) ∈ Rn
+,

and observe that y(z′) = z. Hence, we have:

Cp(t,z) = Cp(t,y(z′))

= Q(t,z′) =∫
t

0
[b(y(s1))−b(y(z′ + s1))] ds +Cp(0,y(z′+t1)) −Cp(0,y(t1)),

which leads straightforwardly to the formulae (24)-(25). Furthermore, for every t ∈ R+,

the formula m(t) = 1 ⋅ ∇Q(t,O) together with (60) easily yields (26). The proof of

Proposition 2.8 is thereby complete.

Proof of Corollary 2.7. Let p be the fitness distribution, that is, p(t,m)dm is the push-

forward measure of q(t,x)dx by the map x↦ −∥x∥2/2. Let:

Mp(t, z) = ∫
0

−∞
ezm p(t,m)dm,

be the moment generating function of p. As the fitness m ∈ R− is the sum of the fitness

components (m1, . . . ,mn) ∈ Rn
−, we have:

Mp(t, z) = ∫
0

−∞
ezm p(t,m)dm = ∫

Rn−
ez(m1+⋯+mn) p(t,m)dm =Mp(t, z1),
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for all (t, z) ∈ R+ ×R+. This implies that Cp(t, z) = Cp(t, z1) for all (t, z) ∈ R+ ×R+ and

that Cp is of class C1,1(R+ ×R+), with initial condition Cp(0, ⋅) = Cp0(⋅1). Thanks to the

equations (21)-(22) satisfied by Cp, it follows that

∂tCp(t, z) =
n

∑
i=1

[(1 − µ2z2)∂iCp(t, z1) − ∂iCp(t,O) − µ
2

2
z]

= (1 − µ2z2)∂zCp(t, z) − ∂zCp(t,0) −
n

2
µ2z,

for all (t, z) ∈ R+ ×R+. This is the desired result and the proof of Corollary 2.7 is thereby

complete.

Proof of Corollary 2.9. We have seen in the proof of Corollary 2.7 that Cp(t, z) = Cp(t, z1)
for all (t, z) ∈ R+×R+. Thus, formulae (24)-(26) straightforwardly yield (27)-(28) for t ≥ 0

and z ∈ [0,1/µ).

4.4 Stationary states

Proof of Theorem 2.10. Formulae (24)-(25) in Proposition 2.8 imply that, for every z ∈
[0,1/µ1) ×⋯ × [0,1/µn), one has:

Cp(t,z) →
1

2

n

∑
i=1

log [exp (−atanh (µizi)) cosh (atanh (µizi))] = −
1

2

n

∑
i=1

log(1 + µizi), (61)

as t→ +∞. It then follows from the generalization of the Curtiss theorem [46] that, if the

limit as t→ +∞ of the cumulant generating functions Cp(t, ⋅) is the cumulant generating

function of p∞ given by (29) in some subset of Rn
− with non-empty interior, then the

distributions p(t, ⋅) weakly converge to p∞ as t→ +∞. So let us compute the CGF of p∞.

For all z ∈ Rn
+, Fubini’s theorem yields that:

∫
Rn−
ez⋅mp∞(m)dm = 1

πn/2
(

n

∏
i=1

µ
−1/2
i ) ∫

Rn−
(

n

∏
i=1

∣mi∣−1/2) exp(
n

∑
i=1

mi/µi) ez⋅m dm

= 1

πn/2

n

∏
i=1

[µ−1/2i ∫
0

−∞
∣mi∣−1/2 exp ((1 + µizi) mi/µi) dmi]

= 1

πn/2

n

∏
i=1

[ 1√
1 + µizi ∫

+∞

0
∣xi∣−1/2 e−xi dxi] =

n

∏
i=1

(1 + µizi)−1/2 .

Hence, the CGF of p∞ is equal to the function z = (z1, . . . , zn) ↦ −(1/2)∑n
i=1 log (1 + µizi),

that is, the limit in (61). As a consequence, the distributions p(t, ⋅) weakly converge to

p∞ in Rn
− as t→ +∞.

On the other hand, thanks to Proposition 2.8, we also know that:

m(t) = A(ψ(t,O)) ⋅ ∇Cp(0, ψ(t,O)) − b(ψ(t,O)),

for every t ≥ 0, with A(z) = (1 − µ2
1z

2
1 , . . . ,1 − µ2

nz
2
n) and b(z) = ∑n

i=1 µ
2
i zi/2. Notice that

ψ(t,O) → (1/µ1, . . . ,1/µn), A(ψ(t,O)) → O and b(ψ(t,O)) → ∑n
i=1 µi/2, as t → +∞.
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Hence, m(t) → −∑n
i=1 µi/2 =∶m∞, as t→ +∞. It is also straightforward to check that:

n

∑
i=1
∫
Rn−
mip∞(m)dm =m∞,

and that p∞ is a classical C2((R∗
−)n) solution of (30) (this property is also a consequence

of the fact that p satisfies (15) and the distributions p(t, ⋅) weakly converge to p∞ as

t→ +∞). The proof of Theorem 2.10 is thereby complete.

Proof of Corollary 2.11. By the same arguments as in the proof of Theorem 2.10, thanks

to (27), we see that, for all z ∈ [0,1/µ), Cp(t, z) → −(1/2) log(1 + µz) as t → +∞. This

limiting function corresponds to the cumulant generating function of a random variable

distributed according to −Γ(n/2, µ). Since a distribution is uniquely determined by its

cumulant generating function, this implies that p∞ is the probability density function of

this random variable, i.e., for all m < 0,

p∞(m) = 1

Γ(n/2)µn/2
∣m∣n2 −1 exp(m

µ
) ,

where Γ(x) = ∫
+∞

0 tx−1e−tdt is the standard Gamma function.

Proof of Corollary 2.12. We assume here that q0 is #-symmetric, that is, q0 = q#0 . As

already emphasized in Section 2.1, the uniqueness for problem (8) implies that q(t, ⋅) is

also #-symmetric at each time t ≥ 0. Proposition 2.3 (or formula (14)) yields:

q(t,x) = 2−n∣x1⋯xn∣p(t,−
x21
2
, . . . ,−x

2
n

2
),

for all (t,x) ∈ R+ × (R∗)n and, for each function φ ∈ C∞
c ((R∗)n),

∫
Rn
q(t,x)φ(x)dx = 2−n∫

Rn
∣x1⋯xn∣p(t,−

x21
2
, . . . ,−x

2
n

2
)φ(x)dx

= ∫
Rn+

∣x1⋯xn∣p(t,−
x21
2
, . . . ,−x

2
n

2
)φ#(x)dx

= ∫
Rn−

p(t,m)φ#(x11(m))dm

→ ∫
Rn−

p∞(m)φ#(x11(m))dm = ∫
Rn
q∞(x)φ(x)dx,

as t→ +∞, with x11(m) = (
√
−2m1, . . . ,

√
−2mn) and:

q∞(x) = 2−n ∣x1⋯xn∣p∞( − x
2
1

2
, . . . ,−x

2
n

2
).

The above formula corresponds to (31). Furthermore, since ∫Rn q∞(x)dx = 1 and since

∫Rn q(t,x)dx = 1, for every t ≥ 0, it then easily follows from the previous estimates that

∫
Rn
q(t,x)φ(x)dx Ð→

t→+∞
∫
Rn
q∞(x)φ(x)dx

for every φ ∈ C∞
c (Rn). In other words, the distributions q(t, ⋅) weakly converge in Rn to q∞

as t → +∞. Lastly, the formula limt→+∞m(t) =m∞ = ∫Rnm(x) q∞(x)dx is a consequence

of the previous arguments and Theorem 2.10. The proof of Corollary 2.12 is thereby

complete.
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4.5 Plateaus

We show in this section that, given an initial phenotype x0 = (x0,1, . . . , x0,n) ∈ Rn, a

value µ1 > 0, and a duration T > 0, we can choose some positive real numbers µ2, . . . , µn

(here, n ≥ 2) such that the mean fitness:

t↦m(t) ∶=
n

∑
i=1

(
x20,i
2

( tanh2(µit) − 1) − µi
2

tanh(µit)),

is close to each of the plateaus:

m∞,k = −
n

∑
i=k+1

x20,i
2

−
k

∑
i=1

µi
2
, for k = 1, . . . , n − 1,

at least during a time interval of duration T . We recall that the above formula for m(t)
corresponds to the limit of formula (26), when the initial conditions q0 approach the Dirac

distribution δx0 .

More precisely, we are given x0 = (x0,1, . . . , x0,n) ∈ Rn, T > 0, ε > 0 and µ1 > 0, and we

shall prove the existence of (µ2, . . . , µn) ∈ (R∗
+)n−1 such that, for each k ∈ J1, n − 1K, the

set:

{t ≥ 0, ∣m(t) −m∞,k∣ ≤ ε}, (62)

contains an interval of length at least equal to T . In that respect, we firstly define some

functions:

si ∶ (µ, t) ∈ R∗
+ ×R+ ↦ ∣

x20,i
2

tanh(µ t) − µ
2
∣ for i = 1, . . . , n − 1.

Secondly, by iteration for k = 1, . . . , n − 1, we can then define:

◇ a function Sk ∶ t ∈ R+ ↦
k

∑
i=1

∣
x20,i
2

( tanh(µit) + 1) − µi
2
∣,

◇ a time τk > τk−1 + T , (with τ0 = −T ) such that:

( max
t∈[τk,τk+T ]

Sk(t)) × (1 − tanh(µkτk)) ≤ ε
n + k
n

, (63)

◇ a real number µk+1 ∈ (0, µk) such that:

∀ i ∈ J1, kK, ∀ t ∈ [τi, τi + T ], sk+1(µk+1, t) tanh(µk+1(τi + T )) ≤ ε

2n
.

Note that the last property implies that:

∀k ∈ J1, n − 1K, ∀ i ∈ Jk + 1, nK, ∀ t ∈ [τk, τk + T ], si(µi, t) tanh(µi(τk + T )) ≤ ε

2n
. (64)

Fix now an index k ∈ J1, n − 1K and a time t ∈ [τk, τk + T ] (⊂ R∗
+). There holds:

∣m(t) −m∞,k∣ = ∣
k

∑
i=1

(
x20,i
2

( tanh2(µit) − 1) − µi
2

( tanh(µit) − 1))

+
n

∑
i=k+1

(
x20,i
2

tanh2(µit) −
µi
2

tanh(µit))∣

≤
k

∑
i=1

∣
x20,i
2

( tanh(µit) + 1) − µi
2
∣ (1 − tanh(µit))

+
n

∑
i=k+1

∣
x20,i
2

tanh(µit) −
µi
2
∣ tanh(µit).

(65)
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As t ∈ [τk, τk+T ], we have 0 < 1−tanh(µit) ≤ 1−tanh(µk τk) for every i ∈ J1, kK (remember

that 0 < µk < µk−1 < ⋯ < µ1), whereas tanh(µi t) ≤ tanh(µi (τk +T )) for every i ∈ Jk + 1, nK.
It then follows from (63)-(65) that, for every k ∈ J1, n − 1K and t ∈ [τk, τK + T ],

∣m(t)−m∞,k∣ ≤ Sk(t) (1−tanh(µkτk))+
n

∑
i=k+1

si(µi, t) tanh(µi (τk+T )) ≤ εn + k
2n

+
n

∑
i=k+1

ε

2n
= ε.

Thus, with this choice of (µ1, . . . , µn) ∈ (R∗
+)n, each set defined in (62) contains an interval

of length at least equal to T .

A A formal derivation of the diffusive approximation

of the mutation effects

The goal of this appendix is to give a formal justification of the diffusion term in (3).

The case n = 1 is classical and can be found e.g. in [37, 43]. The anisotropic case n ≥ 2 is

less standard, but it will easily follow from the same arguments.

Namely, we assume that the mutation effects on phenotypes follow a normal distri-

bution N(0,Λ), with Λ = diag (λ1, . . . , λn) and λi > 0 for each i ∈ J1, nK, and that these

mutations occur with a rate U > 0. In other words, the dynamics of the phenotype dis-

tribution under the mutation effects only (i.e., without selection) can be described by an

integro-differential equation:

∂tq(t,x) = U (J ⋆ q − q)(t,x), t ≥ 0, x ∈ Rn,

where ⋆ is the standard convolution product in Rn defined by:

(J ⋆ q)(t,x) = ∫
Rn
q(t, x1 − y1, . . . , xn − yn)J(y1, . . . , yn)dy1 . . . dyn,

and J the (Gaussian) probability density function associated with the normal distribution

N(0,Λ).
Formally, by writing a Taylor expansion of q(t,x − y) at x:

q(t,x − y) =
∞

∑
k1,...,kn=0

(−1)k1+⋯+kn y
k1
1 ⋯y

kn
n

k1!⋯kn!

∂k1+⋯+knq

∂xk11 ⋯∂x
kn
n

(t,x),

and by defining the central moments of the normal distribution:

ωk1,...,kn = ∫
Rn
yk11 ⋯yknn J(y1, . . . , yn)dy1 . . . dyn,

we then get that:

(J ⋆ q)(t,x) =
∞

∑
k1,...,kn=0

(−1)k1+⋯+kn
ωk1,...,kn
k1!⋯kn!

∂k1+⋯+knq

∂xk11 ⋯∂x
kn
n

(t,x).
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Since ωk1,...,kn = 0 if at least one of the ki’s is odd, and since

ωk1,...,kn = (
n

∏
i=1

ki!

2ki/2(ki/2)!
) × (

n

∏
i=1

λ
ki/2
i ),

otherwise, one infers in particular that the second-order moments with even indexes are

such that ω0,...,0,ki=2,0,...,0 = λi. Assuming that max
1≤i≤n

λi << 1, we may formally neglect the

moments of order k1 +⋯ + kn ≥ 4, leading to:

(J ⋆ q)(t,x) ≈ q(t,x) +
n

∑
i=1

λi
2
∂ii(t,x).

Finally, setting µ2
i = U λi, we obtain:

U (J ⋆ q − q)(t,x) ≈
n

∑
i=1

µ2
i

2
∂iiq(t,x).
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