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Abstract. Early validation of software running on multi-processor plat-
forms is fundamental to guarantee that real-time constraints will be fully
met. In the domain of timing analysis probabilistic simulation techniques
tackle the problem of scalability. However, creation of probabilistic Sys-
temC models remains a difficult task and is not well supported for multi-
processors systems. In this paper we present a modeling workflow that
will then be used for an experimental evaluation of probabilistic simula-
tion techniques. For the modeling process a measurement-based approach
is proposed to favor the creation of trustful models. The evaluated prob-
abilistic simulation techniques demonstrate good potential to deliver fast
yet accurate estimations for multi-processor systems.

Keywords: Statistical Model Checking · Probabilistic SystemC Model
· Multi Processor

1 Introduction

Multi-processor systems are increasingly adopted to implement high performance
time critical systems. In the design of such systems, early verification that real-
time constraints are fully met is fundamental to prevent costly design cycles.
Timing analysis of parallel software running on multi-processors is hard, espe-
cially because of possible interferences among application tasks due to contention
at the shared resources of the processor (i.e., communication bus, shared mem-
ory, shared caches). In this context, appropriately capturing and analyzing low-
level influences of platform shared resources early in the design process represents
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a challenging effort. Existing real-time analysis methods, i.e., simulation-based
and formal mathematical approaches, show limitations to deliver fast yet accu-
rate estimation of timing properties.

Probabilistic models represent a possible solution to capture variability caused
by shared resources on parallel software execution [14]. Quantitative analysis of
probabilistic models can then be used to quantify the probability that a given
time property is satisfied. Numerical approaches exist that compute the exact
measure of the probability at the expense of time-consuming analysis effort. An-
other approach to evaluate probabilistic models is to simulate the model for many
runs and monitor simulations to approximate the probability that time prop-
erties are met. This approach, which is also called Statistical Model Checking
(SMC), is far less memory and time intensive than probabilistic numerical meth-
ods and it has been successfully adopted in different application domains [11].
In the field of embedded system design, executable specifications built with the
use of the SystemC language are now widely adopted [1]. SystemC models used
for the purpose of timing analysis typically capture workload models of the ap-
plication mapped on shared computation and communication resources of the
considered platform. Timing annotations are commonly expressed as average
values or intervals with estimated best case and worst case execution times. The
adoption of SMC techniques to analyze SystemC models of multi-processor sys-
tems is promising because it could deliver a good compromise between accuracy
and analysis time, yet it requires a more sophisticated timing model based on
probability density functions, inferred from measurements on a real prototype.
Thus, the creation of trustful probabilistic SystemC models is challenging. Since
SMC methods have rarely been considered to analyze timing properties of ap-
plications mapped on multi-processor systems with complex hierarchy of shared
resources, exploring their application on trustful probabilistic SystemC models
remains a significant research topic.

In this paper, we present an experimental modeling setup that is used to
evaluate the efficiency of SMC methods for multi-processor systems. The contri-
butions of this paper are twofold. The first contribution deals with the modeling
process, including a measurement-based approach, to appropriately prepare tim-
ing annotations and calibrate SystemC models. The second contribution is about
the evaluation of SMC methods efficiency with respect to accuracy and analysis
time. Evaluation is done by comparing a real multi-processor implementation
with related estimation results. To restrict the scope of our study, we have con-
sidered applications modeled as Synchronous Data Flow Graphs (SDFGs). We
have evaluated our setup on a Sobel filter case study. Two configurations of the
hardware platform with different levels of complexity are considered to analyze
the relevance and effectiveness of SMC methods.

This paper is organized as follows. In Section 2 we provide an overview and
discussion of relevant related work. Section 3 presents the established modeling
and analysis approach. The experimental results are described in Section 4.
Section 5 discuss the benefits and limitations of the presented approach.
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2 Related Work

Timing analysis approaches are commonly classified as (1) simulation-based ap-
proaches, which partially test system properties based on a limited set of stimuli,
(2) formal approaches, which statically check system properties in an exhaustive
way, and (3) hybrid approaches, which combine simulation-based and formal
approaches.

Simulation-based approaches require extensive architecture analysis under
various possible working scenarios. However, due to insufficient corner case cov-
erage, simulation-based approaches are limited to determine guaranteed limits
about system properties.

Statistical Model Checking (SMC) has been proposed as an alternative to
formal approaches to avoid an exhaustive exploration of the state-space model.
SMC refers to a series of techniques that are used to explore a sub-part of the
state-space and provides an estimation about the probability that a given prop-
erty is satisfied. Various probabilistic model-checkers support statistical model-
checking, as for example UPPAAL-SMC [5], Prism [9], and Plasma-Lab [7].

We have presented a comparison of formal model checking with SMC in [17].
A multi-processor system was modeled using timed automata and probabilistic
timed automata in UPPAAL-SMC. While formal methods use only best and
worst case execution times the SMC method allows to model the distribution
of execution times between those limits. The possibilities of modeling such a
distribution is limited due to UPPAALs modeling language. In contrast to that
work, our new SystemC approach allows to not only use a rough model of the
distribution but the actual measured execution times. Furthermore we refined
the communication model to better cover the computation overhead on the CPUs
that accesses the communication infrastructure.

Authors in [3,4] propose a measurement-based approach in combination with
hardware and/or software randomization techniques to conduct a probabilistic
worst-case execution time (pWCET) through the application of Extreme Value
Theory (EVT). In difference to their approach, we apply a Statistical Model
Checking (SMC) based analysis capturing the system modus operandi. This
enables the obtainement of tighter values compared to the EVT approach. Yet
our method could benefit from their measurement methodology.

An iterative probabilistic approach has been presented by Kumar [8] to model
the resource contention together with stochastic task execution times to provide
estimates for the throughput of SDF applications on multiprocessor systems.
Unlike their approach, we apply an SMC based analysis which enables a proba-
bilistic symbolic simulation and the estimation of probabilistic worst-case timing
bounds of the target application with estimated confidence values.

In [15] integration of SMC methods in a system-level verification approach
is presented. It corresponds to a stochastic extension of the BIP formalism and
associated toolset [2]. An SMC engine is presented to sample and control simu-
lation execution in order to decide if the system model satisfies a given property.
The preparation process of time annotations in the system model is presented
in [14] where a statistical inference process is proposed to capture low-level plat-
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Fig. 1. Overview showing where and how the models introduced in Section 3 are used.
The circled numbers reference the sections where more details can be found.

form effects on application execution. A many-core platform running an image
recognition application is considered and stochastic extension of BIP is then
used to evaluate the application execution time.

A solution is presented in [13] to apply SMC analysis methods for systems
modeled in SystemC. The execution traces of the analyzed model are monitored
and a statistical model checker is used to verify temporal properties. The monitor
is automatically generated based on a given set of variables to be observed. The
statistical model-checker is implemented as a plugin of the Plasma-Lab. In the
scope of our work, we adopt the approach presented in [13] to analyze time
properties of multi-core systems modeled with SystemC.

To the best of our knowledge, no other work attempted to systematically
evaluate the benefits of using SMC to analyze the timing properties of SDF based
applications on multi-processor systems, targeting more tightness of estimated
bounds and faster analysis times.

3 Characterization and Modeling Approach

Fig. 1 shows a detailed insight in our approach, highlighting the models we use
(purple rectangle). The circled number above those rectangles references the sec-
tion where those models are explained in detail. Other references point to the
related experiment Sec. 4. We design our system following the hardware (HW)
and software (SW) models in Sec. 3.1. The HW and SW designed following those
models get extended by a measurement infrastructure introduced in Sec. 4.1 and
described in detail in [16]. The mapped and scheduled software gets mapped and
executed on the designed hardware that gets instantiated on an FPGA. This real
system is used to characterize the timing behavior of the HW components as
well as the software. The insight in the instantiated system allows modeling the
communication in detail, considering the computational overhead by the soft-
ware (derived from its instructions) that manages the communication between
shared resources (See Sec. 3.3). For the computational part of our application,
we can model its timing behavior on a specific hardware in detail as described
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Fig. 2. a) A Sobel filter modeled as an SDFG. A pixel matrix gets processed in GX
and GY and returned to the ABS actor that calculates the resulting pixel.
b) Our platform consisting of two tiles. In the first experiment, all actors are mapped
to Tile 0, in the second experiment both tiles are used. The order of the mapped actors
represents their scheduling.

in 3.2. The modeled communication and computation time then get integrated
into a probabilistic SystemC model. This model then gets used for execution
time analysis focusing on the distribution of the execution time. Using the ar-
chitecture and computation model for designing our system allows us to do some
assumptions on our performance models (visualized as dotted lines in Fig. 1).
We analyze this model using a statistical model checker as explained in Sec. 3.4.
In our experiments (Sec. 4) we compare the analysis results with the observed
behavior of the system.

3.1 System Model

This section explains our software and hardware model, as well as the mapping
and scheduling of the SW on the HW. These models are the input models we use
to constraint our HW platform and our SW. This allows us to do assumptions
on the resulting system we can later use to model its timing behavior.

Model of Computation (SDF): The Sobel filter (see Fig. 2a), used in our
experiments, follows SDF semantics that was proposed by [10]. SDF model of
computation offers a strict separation of computation and communication phases
of actors. During the computation phase, no interference with any other actor
can occur. The actors are statically scheduled and will not be preempted.

The channels used for communication between actors are implemented as
FIFO buffers on a shared memory. For the single processor setup (Fig. 2b, Exp.
1), the communication time will be deterministic because the shared memory is
actually only used by a single processor. Beside the data dependencies, and so
the communication channels, there is no further synchronization.

On the multi processor setup (Fig. 2b, Exp. 2) application iterations can
overlap over time. During the read an write phases the actors are polling on the
FIFO states until the buffer is full or empty. Mapping the application onto more
than one processor, the communicational parts interfere each other.
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Model of Architecture: Our hardware architecture allows us to design
a composable multi processor system that uses multiple independent tiles to
execute applications as deterministic as possible. A tile consists of one processing
element and a private memory only associated to that processing element via
a separate bus. It can execute software without interfering with other tiles as
long as the software only accesses the private memory. For our example we use
a MicroBlaze as processing element.

To improve the determinism for our experiments, we start with a single
processor. This allows the assumption that accessing the shared memory (see
Fig. 2b) will always be exclusive. Later we add a second processor and change
the mapping of the application to add communication interference to the system.

The whole execution platform consists of multiple tiles, buses and shared
memories. While a tile can be connected to multiple interconnects, we assume
that every memory is connected to only one interconnect. Furthermore we as-
sume that tiles can only communicate via a shared memory. In the experiments,
without loss of generality, the used interconnects support a first-come first-serve-
based communication protocol.

All channels buffers are mapped onto shared memory, while the actors are
stored on private memory of the tiles they get executed on (Fig. 2b). This setup
is fully composable such that the computation phases of any actor (taking place
locally on private memory) can be considered independent from communication
phases (taking place via the data bus supporting a single-beat transfer style).

3.2 Computation Model

All computation times are related to the mapped software (i.e. SDF actors and
channels) on a specific hardware architecture. For this reason, the annotation of
any delays (in cycles) to the models takes place after the mapping process as
shown in Fig. 3 top left corner.

The execution of an actor’s computation phase for a specific architecture can
be represented by a single delay d ∈ Dc for each execution. To model an actor,
its execution time gets measured and the delay vector Dc gets derived from the
measured values in a way that the distribution of possible delay in Dc follows
the distribution measured delays of the characterizing actor. Each element in Dc

of an actor is a sample from the measurement. In the SystemC implementation,
those values get selected by a GetDelay function as shown in Fig. 3 top left part.

3.3 Communication Model

The communication timing model requires more effort compared to the compu-
tation model. To cover interference on the shared resources inside the analysis,
there are four things to consider:
– The communication between actors includes computational parts for access-

ing the private memory data and calculating addresses.
– The amount of traffic generated on the interconnect depends on the number

of tokens that get communicated.
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{

channel->tokens[i] = inputtokens[i];
}

// Flag buffer as full
*(channel->full) = 1;

}

void ReadTokens(channel_t *channel,
token_t outputtokens[])

{ /* … */ }
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Fig. 3. This figure shows the whole process of creating a SystemC model (purple) from
a real system (top left corner). In blue, the approach to model the computation time
is showed, in green the process for modeling communication.

– The communication function needs to wait and check repetitively the state
of the channels buffer to have tokens or space available (aka polling).

– To model bus contention as precisely as possible, the moment of shared
memory access must be as accurate as possible.

Since the communication model is crucial, the behavior of this part is modeled
in detail to come as close as possible to the real system. The process to get this
model can be applied for many different architectures, we demonstrate it for a
MicroBlaze architecture. The whole process is visualized in Fig. 3 on the bottom
half using WriteTokens as example. The following paragraphs explain the single
steps of this process. The same process has been done for ReadTokens as well.

Communication Implementation: Communication is done by two func-
tions used in the implemented software. One function is WriteTokens that write
tokens onto the shared memory (Used as example in Fig. 3 bottom left) and
the other function is ReadTokens that reads from shared memory. So only those
two functions need to be modeled in detail, while all other parts of the SDF
application gets represented by its computation time d ∈ Dc (Sec. 3.2). The
functions were analyzed in detail via static code analysis on instruction set level
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Static Code Analysis: After disassembling the two communication func-
tions, the amount of clock cycles to execute each instruction needs to be an-
notated to the code. This requires some understanding of the code and the
architecture. Fig. 3 A○ shows the annotated assembly code. There are two in-
structions marked by a 1○. The first instruction is a branch that will never be
taken as long as it is guaranteed that the token rate will not be zero. So this
branch instruction can be considered a No Operation instruction and will only
take one cycle. The same is for the last line, also marked as 1○. This instruction
gets executed due to the pipeline implementation of the MicroBlaze.

Other lines are marked with 2○. These lines are commented with SR and
SW to mark instructions that read and write to shared memory. Shared memory
access takes more cycles than just the execution of the instruction. These are the
points where the simulation of the model needs to consider resource contention.

Macro Block Identification: After annotation the cycles to the instruc-
tions, the code gets separated into its macro blocks. In Fig. 3 B○ the execution of
the macro blocks is visualized as a flowchart. The colors highlight those blocks
in the original source code and the resulting instructions.

Both functions consists of a polling part that depends on the amount of
polling iterations n (Fig. 3 B○ upper loop), and a part where the tokens get
copied which depends on the amount t of tokens (Fig. 3 B○ lower loop). The
amount n of polling iterations is determined during the analysis of the model
and varies between each SDF execution iteration i. For a single processor setup
with a valid scheduling, the amount of polling will always be one (n = 1 ∀ i).
The token transfer rate t equals the consume and produce rate of the actors that
access the channel.

There may be some instructions that need to be considered for two macro
blocks. For example in the instruction listing Fig. 3 A○ mark 3○ shows a situation
where not only a branch instruction but also the one after is part of the Copying
block and the Managing block. While for the branching instruction it is obvious
since it can be taken or not, the next instruction gets executed in both situations
due to the architecture specific pipeline implementation.

Communication Modeling: Next, the SystemC model can be built out of
the macro blocks. This is shown in Fig. 3 C○ for the Copying block. This block
must be split into three parts. The 1st and the 3rd parts are the instructions
before and after the shared memory access ( 3○) and can be represented by
a SystemC wait statement. The 2nd part is the shared memory access. The
instruction for the shared memory access gets represented by a function call
that will trigger the interconnect module of the SystemC system model. The
read and write access to a shared resource gets represented by the delay vectors
Dr and Dw that is represented the same way as for computation in Sec. 3.2.

By representing all macro blocks with wait statements and interconnect ac-
cesses, the communication can be modeled in detail. The interconnect module
itself can now represent the behavior of the interconnect and the shared memory
that is connected to the interconnect.
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3.4 Statistical Model-Checking of Probabilistic SystemC Models

Statistical Model Checking (SMC) refers to a series of simulation-based tech-
niques that can be used to answer two types of question [12]: (i) What is the
probability that the system satisfies a property (quantitative analysis) and (ii) Is
the probability that the system satisfies a property greater or equal to a thresh-
old value (qualitative analysis)? The core idea of SMC is to monitor a finite set
of simulation traces which are randomly generated by executing the probabilis-
tic system. Then, statistical algorithms can be used to estimate the probability
that the system satisfies the property. In the scope of this paper, we consider
two algorithms: Monte Carlo with Chernoff-Hoeffding bound (Monte Carlo) for
quantitative analysis and Sequential Probability Ratio Test (SPRT) for qualita-
tive analysis (see details in [14]). Although SMC only provides an estimation,
the algorithms presented below offer strict guarantees on the precision and the
confidence of the test.

The statistical model-checker workflow that we consider takes as inputs a
probabilistic model written in SystemC, a set of observed variables, a Bounded
Linear Temporal Logic property (BLTL), and a series of confidence parame-
ters needed by the statistical algorithms. First, users create a configuration file
that especially contains the properties to be verified, the observed variables and
the temporal resolution. The configuration file is then used by the Monitor and
aspect-advice generator (MAG) tool proposed by V.C Ngo in [13] to generate an
aspect-advice file and a monitor model. The aspect-advice file declares the mon-
itor as a friend class, so that the monitor can access to the private variables of
the observed model. Then, the generated monitor and the probabilistic SystemC
model are instrumented and compiled together to build an executable model.

In the simulation phase, Plasma Lab iteratively triggers the executable model
to run simulations. The generated monitor observes and delivers the execution
traces to Plasma Lab. An execution trace contains the observed variables and
their simulation instances. The length of traces depends on the satisfaction of
the formula to be verified. This length is finite because the temporal operators
in the formulas are bounded. Similarly, the required number of execution traces
depends on the statistical algorithms in use supported by Plasma Lab.

In the Sobel filter case study, we create the probabilistic SystemC model
by using the distributions provided by GNU Scientific Library (GSL) [6]. These
distributions represent the variation of the computation time of four actors of
the Sobel filter. In the scope of this paper, we use the uniform and normal
distributions. In each iteration of simulation of the probabilistic SystemC model,
the computation time is assigned to a value that is randomly chosen following
the distributions. In the SystemC model, the communication time is represented
by wait statements. Wait durations depend on the estimated read/write delays
and the number of polling states.

To apply the uniform distribution, the computation time is randomly chosen
from a value in the interval of [BCET, WCET] of the measured data. While
in the normal distribution, we consider the mean µ and the variance σ of the
corresponding measured delays. It is desired to create a probability distribution
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that accurately reflects the distribution of the measured delays to verify the
accuracy of the uniform/normal distributions. This is realized by reading a delay
value of every actor from a text file that provides the raw measured computation
time of this actor. We refer these raw data to the injected data. The distribution
of the randomly selected delay values from the raw measured data file is uniform.

4 Experiments

In this section we describe our experiments and discuss the results. We use
a SystemC implementation of our models described in Section 3. The timing
behavior got characterized as described in Subsection 3.2 and Subsection 3.3.

4.1 Experiment Definition

In our experiment we successively consider a single processor system and a multi
processor system as shown in Fig. 2b. For the single processor setup, all actors
of the SDF application shown in Fig. 2a are mapped to Tile 0. For the multi
processor setup, two actors are mapped to Tile 0 and two to Tile 1. This allows
us to do an analysis with and without having to consider bus contention. We
then compare the analysis results with focus on the communication model.

A shared memory is used for the data exchange between actors for both se-
tups. In a multi processor setup, all processors have access to the shared memory,
but not to the private memory of the different processors. The interconnect to
the shared memory uses First-Come First-Serve arbitration and a Single-Beat
transfer protocol. The channels are organized as FIFO buffers with 4 Bytes for
each token and have a fixed buffer size.

The measurement technique we use in the experiments to get the different
delay vectors of different components is based on one presented in [16]. An IP-
Core which is connected via a dedicated AXI-Stream bus to communicate with
each MicroBlaze processor without interfering with the main system buses, is
used. The measured cycle-accurate timings were forwarded via an UART inter-
face without influencing the timing behavior of the platform under observation.
In order to achieve that, the code of the application is instrumented in a minimal
way (for details refer to [16]).

4.2 End-to-end Timing Validation

In this subsection, we evaluate the best-case and worst-case end-to-end latencies,
denoted in the following as BC latency and WC latency. We declare the estimated
latency as an observed variable t latency in the configuration file used for the Sys-
temC model generation for Plasma Lab. To quantitatively evaluate the latency,
the analyzed property is: ”What is the probability that the end-to-end latency
stays within an interval [d1, d2]?”. This property can be expressed in BLTL with
the operators F for ”eventually”: ϕ = F≤T ((t latency ≥ d1)&(t latency < d2)).
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Fig. 4. Analysis results using the different distributions (normal/uniform) or the in-
jected data for the computation time comparing with the measured results in the (a)
single processor and (b) dual processors experiments.

This property is then analyzed through a finite set of simulations controlled
by Plasma Lab. In each simulation, Plasma Lab observes the end-to-end latency
of a particular iteration to determine the probability that the latency stays in the
interval [d1, d2]. Fig. 4 presents the probability distribution of the analysis results
comparing to the measured results of the single processor and dual processors
experiments. We use the Monte Carlo algorithm to analyze this property with
the absolute error δ = 0.02 and the confidence 98 %.

In the single processor experiment, the normal distribution and the injected
data show a similar shape of the distribution to the measured data (Fig. 4a). The
uniform distribution shows the same range of variation comparing to the mea-
sured data (600 cycles), while a smaller variation (400 cycles) is observed in the
case of the normal distribution and the injected data. The uniform data presents
the most over-estimation comparing to injected and the normal distributed.

In the dual processors experiment, the analyzed results of the normal dis-
tribution and the injected data (Fig. 4b) show the similar range of variation
(around 400 cycles) and the shape of the distribution comparing to the mea-
sured data. All the analyzed results clearly over-estimate the measured data and
the uniform distribution still shows a more pessimistic over-estimation.

The fact that the uniform distribution can show a more pessimistic over-
estimation is because in that case the WC computation time of each actor has
a higher probability to be taken into account during the analysis process than
in the normal distribution and the injected data.

4.3 Evaluation of Statistical Model Checking Methods

We want now to bound the WC latency within a threshold value d for the two
experiments. Thus, we analyze the property: ”The cumulative probability that the
end-to-end latency (t latency) stays below time bound d”. This property can be
translated in BLTL with the operator G for “always”: ϕ = G≤T (t latency ≤ d).
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Table 1. Estimation of the WC latency with the analysis accuracy and duration.

Subject 1 Tile 2 Tiles

Measured data End-To-End in Cycles 28527 20097

Over-approximation
Uniform 3.55 % 11.71 %
Normal 3.11 % 11.01 %
Injected data 3.53 % 11.51 %

Analysis time
Monte Carlo (5757 simulations) 4.25 min 12 min
SPRT (342 simulations) 11 sec 22 sec

The temporal modal operator G is applied that allows us to check whether
all the latencies of several successive iterations during the simulation time T stay
below d. To analyze this property, we apply two statistical algorithms: Monte
Carlo (the absolute error δ = 0.02 and the confidence 98 %) and SPRT (α = β =
0.001, δ = 0.01). Tab. 1 summarizes the results of the over-approximation of the
three cases and the analysis time for the uniform distribution.

In the single processor experiment, the WC latency of the probabilistic Sys-
temC model applying the uniform, normal and injected data is bounded to 29541,
29415 and 29535 cycles, respectively, comparing to 28527 cycles of the WC
measured latency. The uniform distribution shows the most pessimistic over-
estimated WC latency of 3.55 % compared to the measured data. In the dual
processors experiment, we also get the over-estimation of the WC latency in
all three cases and the over-estimation results is around 11 %. The uniform dis-
tribution still presents the most pessimistic over-estimated results of 11.71 %
compared to the measured data.

For each experiment, the statistical algorithms observe the same number of
simulation runs (see Tab. 1). Since SPRT observes a smaller number of simulation
than Monte Carlo, it takes less analysis time to analyze one property. In the
second experiment, the higher analysis time for each iteration leads to a higher
overall analysis time compared to the first experiment. In the case that we only
want to bound a probability with a threshold value, SPRT is more efficient than
Monte Carlo in terms of analysis time.

4.4 Discussion

In the case of experiment with one processor the difference between the mea-
sured and approximated latency is acceptable. In the dual processors experiment
the bias between the real-measured latency and the simulated latencies comes
from a pessimistic communication model and the lack of consideration of data
dependencies between actors.

The different range of variation in the experiments can be explained by the
variation of GX and GY. They have a higher impact on a single processor system
because there they sum up. On the dual processors system, their variation are
less dominant because of the synchronizing behavior ABS that reduce the impact
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of the variation. So the variation of GY execution time does not matter as long
as GX has not finished and vice versa.

The bias between the measured and the simulated latency comes from a pes-
simistic shared memory model and the lack of consideration of data dependencies
between actors. In the real application, the two actors GX and GY have equal
execution time in one iteration due to their symmetry. The ABS actor waits
for the slowest dependent actor (GX, GY ). In our simulation the delay of GX
and GY gets selected independently. Therefore, the measured timings for faster
executions get covered by the slower delays.

In the experiments, worst case end-to-end latency was estimated with an
approximation close to 3 % and 11 % compared to real implementations. With
our old models used inside UPPAAL SMC we got 15 % for 2 tiles [17]. One benefit
of our approach lies in the possibility to control the number of simulation runs
given a level of confidence. In [17] we showed that a simulation (inside UPPAAL
SMC) for low confidence (99.5 %) can be several times faster than analyzing
the same model using a formal approach. The results showed that the SPRT
analysis of the model for the 2-tile configuration took 22 s. The more abstract
Timed Automata model from [17], with a less detailed communication model
and with the same analysis configuration, took about 10.3 s on the same CPU.

5 Summary & Future Work

In this work, we have presented a modeling setup that is used to evaluate the
efficiency of SMC methods to analyze real-time properties of SDF applications
running on multi-processor systems. Our approach uses real measured execution
times to annotate a probabilistic SystemC model. The viability of our approach
was demonstrated on a Sobel filter running on a 2 tile platform implemented on
top of a Xilinx Zynq 7020. In contrast to traditional real-time analysis meth-
ods the SMC approach requires a more sophisticated model of the execution
time distribution and thus can tackle the limitations to deliver fast yet accurate
timing estimations. Our experiments showed that the selection of the proba-
bilistic distribution function is crucial for the quality of analysis results. The
SPRT simulation method proved significantly reduced analysis time compared
to Monte-Carlo. By controlling the number of simulation runs, a trade-off be-
tween high confidence and fast analysis time is possible. In future work we will
increase the number of tiles to evaluate the scalability of our approach. Addi-
tionally we want to improve our model by considering data dependencies since
SystemC allows us to also do a functional simulation of our system.
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G., Sokolsky, O., Tillmann, N. (eds.) Runtime Verification. pp. 122–135. Springer
Berlin Heidelberg, Berlin, Heidelberg (2010)

12. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview.
International conference on runtime verification pp. 122–135 (2010)

13. Ngo, V.C., Legay, A., Quilbeuf, J.: Statistical model checking for systemc models.
2016 IEEE 17th International Symposium on High Assurance Systems Engineering
pp. 197–204 (2016)

14. Nouri, A., Bozga, M., Moinos, A., Legay, A., Bensalem, S.: Building faithful
high-level models and performance evaluation of manycore embedded systems. In:
ACM/IEEE International conference on Formal methods and models for codesign
(2014)

15. Nouri, A., Bensalem, S., Bozga, M., Delahaye, B., Jegourel, C., Legay, A.: Statis-
tical model checking qos properties of systems with sbip. International Journal on
Software Tools for Technology Transfer 17(2), 171–185 (2014)

16. Schlaak, C., Fakih, M., Stemmer, R.: Power and execution time measure-
ment methodology for sdf applications on fpga-based mpsocs. arXiv preprint
arXiv:1701.03709 (2017)

17. Stemmer, R., Schlender, H., Fakih, M., Grüttner, K., Nebel, W.: Probabilistic
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