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Abstract 
The severe side effects associated with the use of anthracycline anticancer agents continues to 

limit their use. Herein we describe the synthesis and preliminary biological evaluation of three 

enzymatically activatable doxorubicin-oligosaccharide prodrugs. The synthetic protocol allows 

late stage variation of the carbohydrate and is compatible with the use of disaccharides such as 

lactose as well as more complex oligosaccharides such as xyloglucan oligomers. The enzymatic 

release of doxorubicin from the prodrugs by both protease (plasmin) and human 

carboxylesterases (hCE1 and 2) was demonstrated in vitro and the cytotoxic effect of the 

prodrugs were assayed on MCF-7 breast cancer cells. 

 

 

Introduction 
Despite continuing efforts in oncogenic drug development, surgery remains an important form 

of treatment for solid tumours. This approach generally includes a postoperative drug therapy 

to prevent reoccurrence of the tumour. Currently used drugs for such adjuvant treatment include 

the anthracycline antibiotic Doxorubicin (Dox).1 While the details of the mechanism of action 

of anthracyclines are still under investigation,2 the cytotoxic activity is suggested to be a result 

of intercalation with DNA3 and inhibition of topoisomerase II.4 Due to the unselective nature 

of the anthracyclines, treatments are often associated with severe side effects such as cardiac 

toxicity.5 This has led to extensive efforts in reducing the systemic toxicity of Dox and other 

anticancer drugs by different types of prodrug approaches.6 In these strategies, the drug is 

modified in a way that minimizes its off target activity while allowing activation at the intended 

site. Prodrug approaches for Dox include both non-covalent and covalent modifications. A 

notable example of noncovalent prodrugs of Dox is the inclusion of Dox in liposomes.7 Lipid 

encapsulation of the drug contributes to decreasing toxic side effects, since liposomes can 

penetrate endothelial lesions found in the neovasculature of tumors but not in normal blood 

vessels. FDA approved pegylated and non-pegylated liposomal Dox formulations, namely 

Doxil® and Myocet® respectively for treating Aids related Kaposi’s sarcoma, ovarian cancer 

and breast cancer.8 The covalent approach typically involves modification either on the primary 

amine to form carbamates,9, 10 or on the ketone functionality by forming hydrazones. The pH-

sensitive hydrazone can be cleaved in the acidic microenvironment of the tumour11 and the 

carbamate can be attached to an enzymatically hydrolyzable oligopeptide. Both approaches 

have been used to design cell-targeting prodrugs through the conjugation to antibodies.12, 13 

The diverse functionalities of carbohydrates make them potential candidates for use in 

prodrugs. Amazingly, there are very few examples of glycosylated prodrugs reported in the 

literature to date. Carbohydrates have mainly been used as a triggering group for the drug 

release since they can be hydrolyzed by the glycosidases overexpressed by cancer cells. The 

most prominent example is that of glucuronic acid14, 15 that is degraded by β-glucuronidase 



which have been found at high levels in tumour tissue.16 Assets of carbohydrates are not 

restricted to their biocompatibility and biodegradability. They also present a large range of 

remarkable biological and physico-chemical properties. Carbohydrate-protein interactions play 

an important role for regulating biochemical processes, such as cell differentiation, proliferation 

and adhesion, inflammation, and immune response. The feasibility of using carbohydrate 

ligands to target protein receptors, termed 'glycotargeting', was first demonstrated in 1971.17 

Since then the potential of using carbohydrates to design drug-delivering systems has been 

made clear. However, small molecule drugs, no matter how heavily glycosylated they are, have 

the potential to pass into the kidneys, through glomerular filtration, and be rapidly cleared. For 

this reason, much effort are devoted to designing macromolecular glycosylated carriers and 

there is little work on the development of such glycotargeting prodrugs.18 

Carbohydrates also interact with other carbohydrates through the establishment of an extensive 

network of hydrogen bondings and of hydrophobic interactions. In particular, polysaccharide-

polysaccharide interactions play an important role in the control of the architecture of animal 

and plant cells. Cellulose and xyloglucan (XG) assemble to form the cellulose/XG network, 

which is considered the dominant load-bearing structure in the growing cell walls of non-

graminaceous land plants. In a biomimetic approach, Brumer et al. reported the efficient 

modification of cellulosic materials with different molecules including enzymes and the cell 

adhesion peptide RGD through anchorage of xyloglucan-based glycoconjugates at their 

surface.19, 20 A particular advantage of such non-covalent modification is to circumvent the 

limited reactivity of insoluble cellulose and to preserve the fibre’s integrity. 

In the present work, we report the synthesis and preliminary biological evaluation of new 

enzymatically activated Dox glyco-prodrugs aimed at being administered in situ at the tumor 

site after resection. The carbohydrates, lactose and XGO, the oligosaccharide-repeating unit of 

xyloglucan, were chosen to address two specific roles. Lactose binds to galectins, a family of 

β-galactoside binding proteins associated with tumour malignancy.21, 22 Interaction between 

lactose and galectins is expected to decrease diffusion of the glyco-prodrug and to hamper its 

rapid clearance thus allowing a sustained release of the Dox when administered in solution. On 

the other hand, the use of XGO could allow the immobilization of the Dox prodrug onto 

cellulosic wound dressing. The synthetic route consisted in the conjugation of furan-modified 

carbohydrates and maleimide-activacted Dox by a metal free Diels Alder cycloaddition (Figure 

1). We have previously used thiol-maleimide Michael-type addition23 coupling for conjugation 

of reducing-end functionalized carbohydrates. While being a metal-free reaction, this reaction 

requires handling sulfurylated molecules susceptible to oxidation. Another type of ligation 

reaction is the Diels-Alder cycloaddition.24 The inverse electron demand Diels–Alder reaction 

(iEDDA) between 1,2,4,5-tetrazines and olefins has increasingly gained importance in chemical 

biology as a fast and metal-free bioorthogonal ligation reaction.25, 26 Furan-maleimide 

cycloaddition is another type of popular Diels-Alder reaction having the advantage of using 

widely available reactants. This conjugation method recently allowed us to prepare glycosylated 

chromatographic matrices for the capture of carbohydrate-binding proteins.27 This reaction 

allows catalysis-free introduction of the carbohydrate part in water or in organic solvent at a 

late stage, avoiding extensive carbohydrate protecting group strategies. The presence of a 

peptide- or ester-containing spacer arm between the maleimide group and the anthracycline 

should allow the enzymatic release of the Dox by endogenous peptidases or esterases.  

 



 
Figure 1. General scheme of the enzymatically activated glyco-prodrugs of Dox. D.A.=Diels –

Alder. 

 

Results and Discussion 
Synthesis  

We sought to obtain two types of glyco-prodrugs of Dox with different activating mechanisms. 

Our first strategy was to link the drug to the carbohydrate part through ester formation, 

permitting the release of the drug by esterases, particularly human carboxylesterase 2 that is 

commonly expressed in tumor tissues.28 The ester functionality is linked to the primary amine 

of Dox by a p-aminobenzyl alcohol (PABA) spacer. Hydrolysis of the ester bond will initiate a 

cascade reaction of this so-called self-immolative spacer, first reported by Katzenellenbogen,29 

ultimately resulting in the release of Dox.  Our second strategy sought to enable Dox release by 

specific proteases. To this goal, we chose a tripeptide linker (D-Ala-Phe-Lys)30 known to be 

cleaved by plasmin, which has been identified as a potential target protease for prodrug 



activation of cancer drugs.31 This linker has previously been used in combination with the 

PABA self-immolative linker in the synthesis of Dox32 and Dox derivative prodrugs.33 The 

latter were shown to be stable in human plasma and poorly membrane permeable, thereby 

limiting activation to locally secreted proteolytic activity and reducing the likelihood of severe 

side effects. 

 

Starting with the linker drug end of the prodrugs, the synthesis of the maleimidyl ester linked 

Dox (MalEsterDox 1) was performed starting from ω-aminocapronic acid 2 (Scheme 1). The 

five-carbon spacer length provided by the use of ω-aminocapronic acid has previously been 

reported for enzymatically cleaved prodrugs of Dox.34 

 

 

 
Scheme 1. Synthesis of 1. a) (Boc)2O (1.1 equiv.) in NaOH(aq.), 1,4-dioxane 1:2, 16 h, 89%. 

b) DCC (1 equiv.), DMAP (20 mol%), p-methoxybenzaldehyde (0.95 equiv.) in CH2Cl2, 0 ℃ 

to r.t., 21 h, 86%. c) NaBH4 (0.95 equiv.) in CF3CH2OH, 0 ℃, 1 h 20 min, 90%. d) TFA: CH2Cl2 

1:1, r.t. 20 min, then e) 3-(N-maleimido)propionic acid (1.1 equiv.), DCC (1.1 equiv.), NMM 

(3 equiv.) in CH2Cl2, 0 ℃ to r.t., 17 h, 51% over 2 steps. f) Bis(4-nitrophenyl) carbonate (1.5 

equiv.), DIPEA (3 equiv.) in CH2Cl2, r.t., 4 h, 70%. g) Dox*HCl (0.9 equiv.), Et3N (2 equiv.) 

in DMF, r.t., 22h, 59%. 
 

 

tert-Butyloxycarbonyl (tBoc) protection of the amine with di-(tert-butyl)dicarbonate in the 

presence of sodium hydroxide (NaOH) gave carboxylic acid 3 which was coupled with p-

hydroxybenzaldehyde by Steglich esterification to give ester 4 in 86% yield. The next step was 

the reduction of the aldehyde to the corresponding alcohol. Performing the reduction with 

NaBH4 in THF at 0°C resulted in multiple products as observed by TLC already after 15 min. 

Trifluoroethanol has previously been reported as a co-solvent for NaBH4 reductions.35, 36 

Reduction of aldehyde 4 with NaBH4 in trifluoroethanol at 0°C resulted in full conversion after 

one hour and allowed us to isolate hydroxyl 5 in high yield (90%). Next, the maleimide (Mal) 



was introduced by tBoc deprotection with trifluoroacetic acid (TFA) followed by amidation 

with 3-maleimidopropionic acid in the presence of dicyclohexylcarbodiimide (DCC) and N-

methylmorpholine (NMM). MalEsterOH 6 was isolated in 51% over two steps. To introduce 

the carbamate-linked Dox, the hydroxyl of 6 was converted to a mixed anhydride by reaction 

with bis p-nitrophenoxyanhydride in the presence of N,N-diisopropylethylamine (DIPEA) in 

dichloromethane (DCM) (70% yield). Stirring 7 in dimethylformamide (DMF) at room 

temperature (r.t.) with Dox in the presence of triethylamine resulted in MalEsterDox 1 in 59% 

yield. 

 

The synthesis of the peptide-linked glyco-prodrug started with the synthesis of the D-Ala-Phe-

Lys tripeptide.  The synthesis of this tripeptide has previously been described both in solution32 

and on solid support.33 Our synthetic strategy for the Dox tripeptide motif started from Nα-

Fmoc-Nε-Alloc-Lysine 8 which was activated by iso-butylchloroformate and functionalized 

with p-aminobenzylalcohol to give 9 in 72 % yield (Scheme 2).  

 



Scheme 2. Synthesis of 13. a) ibutylchloroformate (1.1 equiv.), p-aminobenzylalchohol (1.2 

equiv.), NMM (2.3 equiv.) in THF, - 40 ℃, 72%. b) 1,4-dioxane:MeOH: 2M NaOH (aq.), r.t., 

20 min, then c) DMTMM (1 equiv.), FmocPheOH (1 equiv.), NMM (1.1 equiv.) in CH3CN, 

r.t., 19h, then d) 1,4-dioxane:MeOH: 2M NaOH (aq.), r.t., 20 min, then e) DMTMM (1 equiv.), 

Boc-D-AlaOH (1 equiv.), NMM (1.1 equiv.) in CH3CN, r.t., 14 h, 47% over 4 steps. f) TFA: 

CH2Cl2 0.8:1, r.t., 15 min, then g) DMTMMBF4 (1.1 equiv.), 3-(N-maleimido)propionic acid 

(1.2 equiv.), NMM (1.1 equiv.) in CH3CN, r.t., 22 h, 43% over two steps. h) bis(4-nitrophenyl) 

carbonate (5 equiv.), DIPEA (3 equiv.) in DMF, r.t., 46 h then i) Dox*HCl (0.9 equiv.), Et3N 

(2 equiv.) in DMF, r.t., 24h, 75%. 

 

The tripeptide linker was synthesized by solution phase peptide synthesis with N-Fmoc 

protected amino acids using 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium 

tetrafluoroborate (DMTMMBF4)
37, 38

 as coupling reagent followed by deprotection with NaOH 

(aq.). The tripeptide 10 was obtained in 47% yield over 4 steps. The maleimide was introduced 

in a similar way as for the previously described linker by TFA deprotection of the tBoc followed 

by amidation to give MaltriPep 11 in 43% yield over two steps. The hygroscopic nature of the 

tripeptide in combination with the risk of hydrolyzing the maleimide made it necessary to 

thoroughly dry (high vacuum pump) and store all following intermediates below -15℃. As for 

the ester-based linker described above, the hydroxyl function of 11 was activated as a mixed 

anhydride by reaction with five equivalents of bis p-nitrophenoxy carbonate in the presence of 

DIPEA. The mixed anhydride 12 was isolated by precipitation in diethyl ether and was used in 

the following substitution without further purification. Stirring 12 with Dox and Et3N in DMF 

at room temperature gave MaltriPepDox 13 in 75% yield and high purity as confirmed by HPLC 

(see SI).  

 

The next step was the conjugation of the drug-linker part with the carbohydrate moiety. The 

furfuryl-functionalized carbohydrates were obtained through a two steps method for 

synthesizing N-glycosylamides first introduced by Lokhoff et al.39 and utilized in our group to 

synthesize a range of reducing-end functionalized oligosaccharides.23, 27 The unprotected 

carbohydrate was stirred in neat furfurylamine for 72 hours to afford a transient glycosylamine 

that was made non-hydrolyzable by acylation of the nitrogen with acetic anhydride. The 

synthesis of furfuryl-lactose 14 was previously published for the production of conjugatable 

glycosaminoglycans.40 The furfuryl-XGO 15 was synthesized for this study from the 

oligosaccharide-repeating unit of tamarind seed xyloglucan. First, the XGO repeating unit, 

which consists in a mixture of hepta-, octa- and nona-saccharides in a ratio of 15/35/50, was 

obtained quantitatively by enzymatic hydrolysis of the polysaccharide as reported previously.41 

The furfuryl-XGO was then obtained in 90% yield following the same protocol as for lactose. 

The conjugation of MalEsterDox 1 with furfuryl-lactose 14 in DMF and water (1:1) at 37 ºC 

gave LacEsterDox 16 in high yield (91%, Scheme 3). The XGOEsterDox prodrug 17 was 

prepared under similar reaction conditions but was isolated in 35% yield only after purification 

on reverse phase C18 cartridges. The yield is lower than typically observed in this type of 

cycloaddition and is partly explained by extensive chromatographic purification. The reaction 

conditions and the purification procedure should be optimized but sufficient quantities for drug 

release and cell toxicity studies were isolated and no attempt to improve the yield have been 

done so far. 

 



 
Scheme 3. Synthesis of 16 and 17. DMF:H2O 1:1, 37 ºC, 3 and 4 days for 16 and 17, 

respectively. 

 

To obtain the tripeptide linked glyco-prodrug (LactriPep(Alloc)Dox) (18, Scheme 4), 13 and 

furfuryl-lactose 14 were stirred in a mixture of DMF and H2O (2:1) at 37℃ for 7 days. 18 (57% 

yield) was isolated in high purity as confirmed by HPLC (see SI) after purification on silica 

eluting with 10% water in acetonitrile.  

 



 
 

Scheme 4. Synthesis of 19. a) DMF:H2O 2:1, 37℃, 7 days, 58%. b) Pd(PPh3)4 (1.2 equiv.), 

CH2Cl2:AcOH 5:1, r.t., 30 min, 59%. 

 

The last step of removal of the Alloc protecting group from the lysine side chain was more 

tricky. Commonly used conditions for Alloc removal include catalytic amounts of Pd0 in the 

presence of an allyl scavenger such as morpholine, tributyltin hydride or silane.42 However, 

using catalytic amounts of Pd(PPh3)4 (20 mol%) and morpholine as allyl scavenger, we were 

unable to isolate the desired product, only observing degradation on TLC. Eliminating the 

scavenger and running the reaction with equimolar amount of Pd(PPh3)4 in a mixture of acetic 

acid and dichloromethane as described by Barthel et al.33 gave the desired product 19 

(LactriPepDox) in 59% yield after precipitation from diethyl ether. 

 

Enzymatic release of Dox from glyco-prodrugs 

To confirm the intended enzymatic release of Dox, the LactriPepDox 19 (100 µM) was 

incubated in vitro in the presence 15 µg/ml of human plasmin at 37 ºC in phosphate buffer (pH 

7.5). The disappearance of prodrug and appearance of Dox was followed by HPLC (Figure 2). 

We first checked the stability of the prodrugs in these conditions in the absence of plasmin (no 

release after up to 25h at 37°C, data not shown). In the presence of plasmin, nearly full 

conversion of the prodrug into Dox was achieved after 2 h. 

 



 
Figure 2. In vitro protease mediated release of Dox (•) from LactriPepDox 19 (100µM) using 

15µg/ml plasmin in phosphate buffer (pH 7.5) at 37 ºC. 

 

The release of Dox from LacEsterDox 16 was performed in 50 mM Tris buffer (pH 7.4). 

Incubating 16 (100µM) at 37 ºC in the presence of human carboxylesterase 1 (hCE1) (100 

µg/ml) resulted in only minor (~5%) release of Dox after 22 h (Figure 3). 

 
Figure 3. In vitro esterase mediated release of Dox using 100µg/ml esterase in 50 mM Tris 

buffer (pH 7.4) at 37 ºC from LacEsterDox 16 with hCE2(▲), from LacEsterDox 16 with 

hCE1(♦), from XGOEsterDox 17 with hCE2(■) and LacEsterDox 16 without enzyme (x).The 

values for hCE2 measurements are mean values of duplicate experiments. 

 

 

In contrast, incubating 16 with human carboxylesterase 2 (hCE2) under identical conditions 

resulted in full release after 23h. The rate of hydrolysis for XGOEsterDox 17 was slightly 

slower than for 16 (83% after 23h), possibly owing to the steric effect of the larger 

oligosaccharide. Nevertheless, after 48h, 98% of 17 had been hydrolyzed. The difference in rate 

between hCE1 and hCE2 could be explained by the presence of a phenyl on the alcohol side 

since hCE2 is known to hydrolyze esters with bulkier alcohol groups at a higher rate than 

hCE1.43 As was observed for the tripeptide prodrug 19, incubating the ester prodrug 

(LacEsterDox) in the absence of esterase resulted in less than 2% Dox after 27h (data not 

shown). These results confirm that Dox is enzymatically released from prodrugs 16, 17 and 19 

and that these three prodrugs are stable in the buffers in absence of enzyme. 

 

Biological evaluation 

As a preliminary test for verifying the biological interest of the prodrugs, the cytotoxicity of 

compounds 16, 17 and 19 was assayed on MCF-7 breast cancer cells and compared with that 

of free Dox (Table 1).  
 
 



Compound IC50 (µM) 

16 0.51 ± 0.07 

17 0.31 ± 0.15 

19 1.11 ± 0.11 

Dox 0.53 
 

Table 1. Inhibition of MCF-7 breast cancer cell growth by the glyco-prodrugs and free Dox as 

reference. IC50 values were calculated as the concentration of compound needed to reduce cell 

growth by 50%. Values are reported as mean ± the standard deviation (SD) of triplicate 

measurements.  
 

The plasmin-activated prodrug 19 displayed a slightly higher (~2 fold) IC50 compared to Dox 

while the esterase activated prodrugs 16 and 17 showed IC50 values similar to that of the parent 

drug. Since it has been previously shown that protection of the primary amine of Dox results in 

a significant decrease in activity,44 these results are a clear indication of Dox release from 

prodrugs 16, 17 and 19 in presence of the MCF-7 cells. One would have probably expected a 

more pronounced difference between the IC50 of the ester and amide prodrugs as plasmin 

(which is not over-expressed on MCF-7 cells) has not been added in the cell culture medium), 

and further experiments are now required to study the mode of action of the glyco-prodrugs.  

Nevertheless, the similar IC50 obtained for XGOEsterDox 17 and LacEsterDox 16 are very 

encouraging since they show that the release of Dox is not dependent on the size and therefore 

steric hindrance of the oligosaccharide moiety. In a forthcoming work, we wish to implement 

the use xyloglucan glycoconjugates to the development of drug-functionalized cellulosic 

biomaterials.    

 

Conclusion 
 

We have synthesized a small series of enzymatically activatable glyco-prodrugs of Dox. We 

demonstrated the release of the drug by enzymatic cleavage in vitro and in cellulo on MCF-7 

cancer cells, as the prodrugs and Dox itself display similar IC50. The late stage metal free 

cycloaddition used to ligate the oligosaccharide and the drug allows this methodology to be 

used with different oligosaccharides and potentially with different drugs. Current work in our 

groups includes extending this ligation to synthesize prodrugs of other drug classes. 

 

Experimental procedures 

 
General considerations 

All commercial chemicals were used without prior purification. 1H- and 13C-NMR spectra were 

obtained at 400 and 101 MHz respectively, using a Bruker Advance DRX 400 spectrometer. 

Solvent residual peaks were used as reference and calibrated as follows; CDCl3: 7.26ppm; 

MeOD-d4: 3.31ppm; DMSO-d6: 2.50 ppm. Reactions were monitored by TLC (Merck Silica 

gel 60 F254) and analyzed under UV (254 nm). Reactions involving carbohydrates were 

followed by staining TLC plates with H2SO4: MeOH : H2O (3:45:45). Column chromatography 

was performed by manual flash chromatography (wet-packed silica, 0.04-0.063 mm) or by 

automated column chromatography on a Grace Reveleris instrument using prepacked silica 

columns. Analytical high performance liquid chromatography (HPLC) was performed using a 

Waters µBondapak C18-column (3.9 x 300mm, 125Å pore size, 10 µm particle size) connected 

to a Waters photodiode array detector 996. HPLC method A: 10-100% MeOH in water 



(phosphoric acid pH 2.5) over 5 min, 2 ml/min. HPLC method B: 0-100% MeOH in water 

(phosphoric acid pH 2.5) over 5 min, then 100% water for 5 min, 2 ml/min. Mass analyses (ESI) 

were recorded on a Bruker Daltonics Esquire 3000+ instrument and HRMS analyses were 

obtained on a Waters Xevo G2-S QTOF instrument. 

 

6-((tert-Butoxycarbonyl)amino)hexanoic acid (3) 

Following a published procedure,45 NaOH (4.0 g, 0.1 mol) was dissolved in water (130 ml) and 

1,4-dioxane (260 ml) was added. ω-Aminocapronic acid (13.1 g, 99.9 mmol) was added, 

allowed to dissolve and the solution was cooled to 0 °C. Di-tert-butyl dicarbonate (24.0 g, 110 

mmol) was added in three portions, the reaction mixture was stirred at 0 °C for 30 min and then 

at r.t. for 16 h. The 1,4-dioxane was removed by rotary evaporation and the crude was diluted 

with water (400 ml) and washed with EtOAc (2 x 200 ml). The aqueous phase was acidified by 

addition of 1 M HCl (aq.) and extracted with EtOAc (3 x 300 ml). The organic phases from the 

second extraction were collected and dried over MgSO4. Removal of the solvents gave the 

expected product 3 as an oil that crystallizes to light pink crystals (20.6 g, 89% yield). Rf : 0.20  

(2% MeOH in CH2Cl2). 
1H NMR (400 MHz, CDCl3) δ 10.85 (br s, 1H), 5.97 (br s, 0.3H, -

CONH-), 4.63 (br s, 0.7H, -CONH-), 3.08 (br s, 2H), 2.32 (t, J = 7.4 Hz, 2H), 1.62 (p, J = 7.5 

Hz, 2H), 1.53 – 1.18 (m, 13H) ; ESI-MS m/z [M+Na]+ : 254.2. 

 

4-Formylphenyl-6-((tert-butoxycarbonyl)amino)hexanoate (4) 

3 (10.0 g, 43.2 mmol) was dissolved in dry CH2Cl2 (43 ml) in a two necked flask under argon. 

DCC (8.9 g, 43.2 mmol) and DMAP (1.0 g, 8.2 mmol) were added, the reaction mixture was 

cooled to 0 °C and p-hydroxybenzaldehyde (5.0 g, 41.2 mmol) was immediately added. The 

reaction was stirred at 0 °C for 30 min and then at r.t. for 21 h. The white precipitate that formed 

was filtered off and washed twice with a small volume of CH2Cl2. The solvents were removed 

from the filtrate which gave an off-white solid that was redissolved in CH2Cl2 (200 ml), washed 

with 0.5 M HCl (50 ml), sat. NaHCO3 (50 ml) and brine (50 ml). The organic phase was dried 

over MgSO4 and filtered. Removal of the solvents by rotary evaporation gave the crude as an 

off white solid. Purification by column chromatography on silica eluting with 2% MeOH in 

CH2Cl2 gave 4 as a white solid (12.5 g, 86% yield). Rf : 0.36  (2% MeOH in CH2Cl2); 
1H NMR 

(400 MHz, CDCl3) δ 9.98 (s, 1H), 7.95-7.86 (m, 2H), 7.30-7.20 (m, 2H), 4.57 (br s, 1H), 3.14 

(q, J = 6.7 Hz, 2H), 2.59 (t, J = 7.4 Hz, 2H), 1.77 (p, J = 7.5 Hz, 2H), 1.61 – 1.49 (m, 2H), 1.48 

– 1.38 (m, 11H); 13C NMR (101 MHz, CDCl3) δ 191.0, 171.4, 156.1, 155.5, 134.1, 131.3, 122.5, 

79.3, 40.5, 34.3, 29.9, 28.5, 26.3, 24.5; MS (ESI) m/z: [M+Na]+: 358.3 HRMS m/z [M+Na]+ 

calculated for C18H25NO5Na: 358.1630, found: 358.1627.  

 

4-(Hydroxymethyl)phenyl-6-((tert-butoxycarbonyl)amino)hexanoate (5) 

4 (1.00 g, 2.98 mmol) was dissolved in trifluoroethanol (6 ml) and the flask was cooled on ice. 

NaBH4 (107 mg, 2.83 mmol) was added and the reaction was stirred on ice. Full consumption 

of 4 was observed after 1 h on TLC (2% MeOH in CH2Cl2). The reaction was kept on ice and 

quenched by slow addition of sat. NH4Cl (7 ml) after 1h 20 min. The mixture was allowed to 

reach r.t. and stirred for 40 min. Water (5 ml) was added and the aqueous phase was extracted 

with EtOAc (3 x 30 ml). The organic phases were pooled, dried over Na2SO4 and filtered. 

Removal of the solvents gave a colorless oil, which was purified by flash column 

chromatography on silica eluting with 1% MeOH in CH2Cl2 to obtain 5 as a white solid (900 

mg, 90% yield). Rf : 0.32 (2% MeOH in CH2Cl2);
 1H NMR (400 MHz, CDCl3) δ 7.37-7.29 (m, 

2H), 7.06-6.99 (m, 2H), 4.62 (s, 3H,-CH2- and –CONH-), 3.10 (q, J = 6.6 Hz, 2H), 2.5 3 (t, J = 

7.4 Hz, 2H), 2.49 (br s, 1H), 1.74 (p, J = 7.5 Hz, 2H), 1.56 – 1.46 (m, 2H), 1.45 – 1.35(m, 11H) ; 
13C NMR (101 MHz, CDCl3) δ 172.2, 156.1, 150.0, 138.7, 128.0, 121.6, 79.2, 64.6, 40.4, 34.3, 



29.8, 28.5, 26.3, 24.6; MS (ESI) m/z: [M+Na]+: 360.2; HRMS m/z [M+Na]+ calculated for 

C18H27NO5Na: 360.1787, found: 360.1786. 

 

MalEsterOH (6) 

5 (400 mg, 1.19 mmol) was dissolved in dry CH2Cl2 (1.5 ml) and TFA (1.5 ml) was added. The 

reaction was stirred at r.t. for 20 min. Full consumption of 5 was observed by TLC (10% MeOH 

in CH2Cl2). Solvents were removed and coevaporated four times with CH2Cl2. The resulting 

clear oil was redissolved in dry CH2Cl2 (2 ml) and basified (pH approx. 8) by addition of N-

methylmorpholine (400 µl). 3-(Maleimidyl)propanoic acid (220 mg, 1.30 mmol) was added, 

the reaction was cooled on ice and DCC (268 mg, 1.30 mmol) was added. The ice bath was 

removed and the reaction was stirred at r.t. for 17 h. The white precipitate that had formed was 

filtered off and the filtrate was concentrated. The yellow oil that resulted was redissolved in 

CH2Cl2 (20 ml), washed with 0.5 M HCl (5 ml) and dried over MgSO4 and filtered.  Removal 

of the solvents gave a white solid, which was purified by flash column chromatography on silica 

eluting with 25% cyclohexane in EtOAc to obtain 6 as a white solid (236 mg, 51% yield). Rf : 

0.52 (10% MeOH in CH2Cl2); 
1H NMR (400 MHz, CDCl3) δ 7.41-7.34 (m, 2H), 7.09-7.02 (m, 

2H), 6.68 (s,2H), 5.74 (br s, 1H), 4.67 (s, 2H), 3.81 (t, J = 7.2 Hz, 2H), 3.28-3.19 (m, 2H), 2.55 

(t, J = 7.3 Hz, 2H), 2.48 (t, J = 7.2 Hz, 2H), 1.86 (br s, 1H), 1.75 (p, J = 7.4 Hz, 2H), 1.58 – 

1.48 (m, 2H), 1.46 – 1.36 (m, 2H); 13C NMR (101 MHz, CDCl3) δ172.3, 170.7, 169.6, 150.2, 

138.7, 134.3, 128.2, 121.8, 64.8, 39.4, 34.9, 34.4, 34.2, 29.2, 26.4, 24.5; MS (ESI) m/z: 

[M+Na]+: 411.3; HRMS m/z [M+H]+ calculated for C20H25N2O6: 389.1713, found: 389.1714. 

 

MalEsterPNP (7) 

6 (178 mg, 0.46 mmol) and bis(p-nitrophenyl)carbonate (210 mg, 0.69 mmol) were added to a 

dry flask filled with argon which was capped, evacuated and refilled with argon (repeated 3 

times). Dry CH2Cl2 (4.6 ml) was added followed by diisoproylethylamine (245 µl, 1.38 mmol). 

The yellow reaction mixture was stirred at r.t. for 4 h in the dark. Full consumption of 6 was 

observed on TLC (2% MeOH in CH2Cl2). The reaction mixture was diluted with CH2Cl2 (25 

ml) and washed with aq. citric acid (10 % w/v). The organic phase was dried over Na2SO4 and 

filtered. Removal of the solvents gave a yellow oil. DEE (25 ml) was added and brief sonication 

resulted in a white precipitate. The precipitate was filtered off, washed with DEE repeatedly, 

collected and redissolved in a minimum of CH2Cl2. The solution was added dropwise to stirred 

DEE (25 ml). The white precipitate that formed was collected by filtration and dried to give 7 

as a white solid (178 mg, 70% yield). Rf : 0.28 (2% MeOH in CH2Cl2); 
1H NMR (400 MHz, 

CDCl3) δ 8.31-8.23 (m, 2H), 7.50-7.43 (m, 2H), 7.41-7.35 (m, 2H), 7.16-7.09 (m, 2H), 6.70 (s, 

2H), 5.64 (br s, 1H), 5.28 (s, 2H), 3.84 (t, J = 7.2 Hz, 1H), 3.31-3.20 (m, 2H), 2.58 (t, J = 7.4 

Hz, 1H), 2.51 (t, J = 7.1 Hz, 1H), 1.82-1.72 (m, 2H), 1.58 – 1.50 (m, 2H), 1.49 – 1.38 (m, 2H); 

13C NMR (101 MHz, CDCl3) δ 172.0, 170.7, 169.6, 155.6, 152.6, 151.3, 145.6, 134.4, 131.9, 

130.2, 125.5, 122.2, 121.9, 70.4, 39.4, 34.9, 34.4, 34.3, 29.3, 26.4, 24.5; MS (ESI) m/z: [M+H]+: 

554.2 and  [M+Na]+: 576.2; HRMS m/z [M+H]+ calculated for C27H28N3O10: 554.1775, found: 

554.1776. 

 

MalEsterDox (1) 

7 (132 mg, 0.24 mmol) was dissolved in dry DMF (2.2 ml) and the solution was added to 

Doxorubicin hydrochloride (128 mg, 0.22 mmol). Et3N (61 µl, 0.44 mmol) was added and the 

dark red reaction mixture was stirred under argon. After 22 h,  the reaction mixture was added 

dropwise to stirred DEE (75 ml) resulting in a red precipitate which was collected by filtration 

and further purified by flash column chromatography eluting with 2-5% MeOH in CH2Cl2. 1 

(124 mg, 59% yield) was isolated as a red foam. Rf : 0.29 (5% MeOH in CH2Cl2); 
1H NMR 

(400 MHz, CDCl3) δ 13.96 (s, 1H), 13.23 (s, 1H), 8.02 (dd, J = 7.7, 1.1 Hz, 1H), 7.82 – 7.73 



(m, 1H), 7.39 (dd, J = 8.6, 1.1 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 6.68 

(s, 2H), 5.73 (s, 1H), 5.49 (d, J = 3.8 Hz, 1H), 5.28 (br s, 1H), 5.22 (d, J = 8.6 Hz, 1H), 5.08-

4.91 (m, 2H), 4.75 (dd, J = 5.0, 1.4 Hz, 2H), 4.57 (s, 1H), 4.18 – 4.08 (m, 1H), 4.07 (s, 3H), 

3.85 (br s, 1H), 3.81 (t, J = 7.2 Hz, 2H), 3.66 (d, J = 7.2 Hz, 1H), 3.32 – 3.16 (m, 3H), 3.08-

2.94 (m, 2H), 2.53 (t, J = 7.3 Hz, 2H), 2.48 (t, J = 7.2 Hz, 2H), 2.39-2.27 (m, 1H), 2.25-2.10 ( 

m, 2H), 1.91 – 1.68 (m, 4H), 1.52 (p, J = 7.1 Hz, 2H), 1.46-1.33 (m, 2H), 1.28 (d, J = 6.5 Hz, 

3H); 13C NMR (101 MHz, CDCl3) δ 214.0, 187.2, 186.8, 172.2, 170.7, 169.7, 161.2, 156.3, 

155.8, 155.6, 150.6, 135.9, 135.6, 134.3, 134.1, 133.7, 129.5, 121.8, 121.0, 120.0, 118.6, 111.7, 

111.6, 110.1, 100.8, 76.8, 69.7, 69.6, 67.5, 66.2, 65.7, 56.8, 47.2, 39.4, 35.8, 34.9, 34.4, 34.2, 

34.1, 30.3, 29.2, 26.4, 24.5, 17.0; MS (ESI) m/z: [M+Na]+ : 980.3;  HRMS m/z [M+H]+ 

calculated for C48H52N3O18: 958.3246, found: 958.3235. 
 

FmocLys(Alloc)PABOH (9) 

Following a published procedure,32 FmocLys(Alloc)OH (1.44g, 3.18 mmol) was dissolved in 

dry THF (20 ml) under argon in a two-necked flask equipped with an addition funnel. The 

solution was cooled to -40 °C and N-methylmorpholine (0.39 ml, 3.54 mmol) and isobutyl 

chloroformate (0.45 ml, 3.47 mmol) were added. The turbid mixture was stirred at -40 °C for 3 

h after which a solution of p-aminobenzylalcohol (470 mg, 3.82 mmol) and N-

methylmorpholine (0.42 ml,  3.82 mmol) in dry THF (6 ml) was added dropwise over 10 min. 

The reaction mixture was stirred at -40 °C for 2 h and then at room temperatrure for 1 h. The 

solvents were removed and the yellow residue was taken up in CH2Cl2 (250 ml). The organic 

phase was washed with 0.5 M NaHCO3 solution (100 ml), 0.5 M NaHSO4 solution (100 ml) 

and brine (100 ml). The organic solvents were removed under reduced pressure and the yellow 

residue was purified by flash column chromatography on silica (2-10% methanol in CH2Cl2) to 

provide 9 as a white solid (1.28 g, 72% yield). 1H NMR (400 MHz, dmso-d6) δ 9.96 (s, 1H), 

7.89 (d, J = 7.5 Hz, 2H), 7.74 (dd, J = 7.5, 4.9 Hz, 2H), 7.62 (d, J = 7.9 Hz, 1H), 7.55 (d, J = 

8.4 Hz, 2H), 7.41 (t, J = 7.3 Hz, 2H), 7.37-7.29 (m, 2H), 7.24 (d, J = 8.3 Hz, 2H), 7.19 (t, J = 

5.8 Hz, 1H), 5.89 (ddt, J = 17.2, 10.5, 5.3 Hz, 1H), 5.30-5.20 (m, 1H), 5.18 – 5.12 (m, 1H),5.10 

(t, J = 5.7 Hz, 1H) 4.52-4.39 (m, 4H), 4.34 – 4.06 (m, 4H), 3.07 – 2.91 (m, 2H), 1.75-1.56 (m, 

2H), 1.51 – 1.21 (m, 4H). 13C NMR (101 MHz, DMSO-d6) δ 171.0, 156.1, 155.9, 143.9, 143.8, 

140.7, 137.5, 137.4, 133.8, 127.6, 127.0, 126.9, 125.3, 120.1, 118.9, 116.8, 65.6, 64.1, 62.6, 

55.4, 46.7, 31.6, 29.1, 22.9. HRMS m/z [M+H]+ calculated for C32H36N3O6: 558.2604, found: 

558.2606. 

 

Tripep (10) 

Compound 9 (560 mg, 1.00 mmol) was dissolved in a premade mixture of 1,4-

dioxane:MeOH:2M NaOH(aq.) (14:5:1, 20 ml).46 After 30 min (TLC, CH2Cl2:MeOH 90:10), 

the solution was neutralized by addition of acetic acid. The solvents were removed by 

evaporation and coevaporated with 1,4-dioxane (2 x 20 ml). The oily solid residue was washed 

with DEE (3 x 10 ml) and then with CH2Cl2 (10 x 10 ml). The CH2Cl2 fractions were collected 

and the solvent was removed to yield the free amine as a pale yellow oil (326 mg) which was 

used in the next step without further purification. 

A solution of DMTMMBF4 (365 mg, 1.11 mmol), FmocPheOH (390 mg, 1.01 mmol) and N-

methyl morpholine (121 µl, 1.10 mmol) in CH3CN (5 ml) was stirred for 10 min and then added 

to a solution of the crude form the previous step (326 mg) in CH3CN (5 ml). The reaction 

mixture was stirred at r.t for 19 h (TLC, CH2Cl2:MeOH 90:10). The solvents were removed by 

evaporation and CH2Cl2 (100 ml) was added and the organic phase was washed with water (25 

ml), 0.5 M NaHCO3 (25 ml), 0.5 M NaHSO4 (3 x 25 ml) and water (50 ml). The solvents were 

removed from the organic phase to give an off-white solid (665 mg) which was used in the next 

step without further purification. 



A premade mixture of 1,4-dioxane:MeOH:2M NaOH(aq.) (14:5:1, 20 ml) was added to the 

crude from the previous step and the reaction mixture was stirred at r.t. for 50 min (TLC, 

CH2Cl2:MeOH 90:10). The reaction was neutralized by addition of acetic acid. The solvents 

were removed by evaporation and coevaporated with 1,4-dioxane (20 ml). The resulting white 

residue was washed with DEE (3 x 5 ml) and then with CH2Cl2 (10 x 20 ml). The white 

precipitate formed in the DEE phase was collected by filtration, dissolved in CH2Cl2 and pooled 

with the other CH2Cl2 fractions. The CH2Cl2 fractions were collected and the solvent was 

removed to yield the free amine as an off white solid (463 mg) which was used in the next step 

without further purification.  

A solution of DMTMMBF4 (360 mg, 1.10 mmol), Boc-D-AlaOH (190 mg, 1.00 mmol) and N-

methyl morpholine (121 µl, 1.10 mmol) in CH3CN (5 ml) was stirred for 10 min and then added 

to a solution of the crude from the previous step (463 mg) in CH3CN (6 ml). The reaction 

mixture was stirred at r.t for 14 h (TLC, CH2Cl2:MeOH 90:10). The solvents were removed by 

evaporation and CH2Cl2 (70 ml) was added and the organic phase was washed with water (40 

ml), 0.5 M NaHSO4 (2 x 20 ml), 0.5 M NaHCO3 (3 x 20 ml) and water (20 ml). The solvents 

were removed from the organic phase to give an off-white solid, which was purified by flash 

column chromatography on silica eluting with 2-5% methanol in CH2Cl2. The product was 

dryloaded on to the column after being dissolved in 10% methanol in CH2Cl2 and dried on to 

silica.  Compound 10 was isolated as a white solid (309 mg, 47% over 4 steps). 1H NMR (400 

MHz, MeOD-d4) δ 7.61 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 7.28 – 7.09 (m, 5H), 5.91 

(ddt, J = 16.3, 10.7, 5.5 Hz, 1H), 5.28 (dd, J = 17.1, 1.7 Hz, 1H), 5.16 (d, J = 10.5 Hz, 1H), 4.60 

(dd, J = 9.8, 4.5 Hz, 1H), 4.56 (s, 2H), 4.50 (d, J = 5.0 Hz, 2H), 4.43 (dd, J = 9.6, 4.9 Hz, 1H), 

4.00 (q, J = 7.1 Hz, 1H), 3.30-3.23 (m, 1H), 3.11 (t, J = 6.7 Hz, 2H), 2.95 (dd, J = 14.2, 9.8 Hz, 

1H), 2.02 – 1.78 (m, 2H),1.59-1.40 (m, 4H) 1.33 (s, 9H), 1.13 (d, J = 7.1 Hz, 3H). 13C NMR 

(101 MHz, MeOD-d4) δ 176.9, 173.6, 172.2, 158.8, 157.9, 138.8, 138.5, 138.4, 134.5, 130.2, 

129.5, 128.5, 127.8, 121.4, 117.4, 80.7, 66.3, 64.8, 56.4, 55.7, 51.8, 41.5, 37.9, 32.3, 30.5, 28.7, 

24.5, 17.7. HRMS m/z [M+H]+ calculated for C34H48N5O8: 654.3503, found: 654.3496. 

 

MaltriPep (11) 

10 (150 mg, 0.23 mmol) was suspended in dry CH2Cl2 (1ml) under argon, TFA (0.8 ml) was 

added and the solution was stirred for 15 min. Full consumption of 10 was confirmed by TLC 

(10% methanol in CH2Cl2). The solvents were removed and coevaporated with CH2Cl2 (3 x 1 

ml). The resulting residue was taken up in CH3CN (3.5 ml) and neutralized by addition of NMM 

(150 µl). DMTMMBF4 (82 mg, 0.25 mmol), 3-(maleimidyl)propanoic acid (46 mg, 0.27 mmol) 

and NMM (27 µl, 0.25 mmol) were stirred in CH3CN (1.5 ml) at r.t. until all material dissolved 

(~5 min). The solution of deprotected 10 was then added and the reaction mixture was stirred 

at r.t. for 22 h. The formed precipitate was filtered off and washed with ice cold CH3CN and 

DEE. The filtrate was collected, diluted in CH2Cl2 (100 ml) and washed with 0.5 M NaHSO4 

(30 ml) and water (30 ml). The organic phases were dried over MgSO4 and the solvents were 

then removed to give a white solid which was pooled with the precipitated material. The crude 

was purified by flash column chromatography on silica eluting with 5% methanol in CH2Cl2. 

The crude product was dryloaded on to the column after being dissolved in methanol and dried 

on to silica.  The expected product 11 was isolated as a white solid (72 mg, 43% over 2 steps). 

1H NMR (400 MHz, MeOD-d4) δ 7.60 (app d, 2H),7.29 (app d, 2H), 7.28-7.14 ( m, 5H), 6.76 

(s, 2H) 5.91 (ddt, J = 16.3, 10.6, 5.4 Hz, 1H), 5.28 (dd, J = 17.2, 1.8 Hz, 1H), 5.20 – 5.12 (m, 

1H), 4.62 – 4.52 (m, 3H), 4.50 (dt, J = 5.6, 1.6 Hz, 2H), 4.40 (dd, J = 9.6, 5.0 Hz, 1H), 4.14 (q, 

J = 7.1 Hz, 1H), 3.73-3.57 (m, 2H), 3.30-3.25 (m, 1H, partly overlapping with solvent peak), 

3.13 (t, J = 6.7 Hz, 2H), 2.95 (dd, J = 14.2, 10.0 Hz, 1H), 2.47-2.27 (m, 2H), 2.00 – 1.84 (m, 

2H), 1.62 – 1.36 (m, 4H), 1.14 (d, J = 7.1 Hz, 3H). 13C NMR (101 MHz, MeOD-d4) δ 176.2, 

173.7, 173.2, 172.4, 172.1, 158.8, 138.8, 138.5, 135.4, 134.6, 130.2, 129.5, 128.5, 127.8, 121.4, 



117.4, 112.9, 66.3, 64.8, 56.7, 55.8, 51.1, 41.5, 37.8, 35.2, 35.1, 32.3, 30.5, 24.5, 17.1. MS (ESI) 

m/z: [M+H]+: 705.4 and [M+Na]+: 727.4; HRMS m/z [M+H]+ calculated for C36H45N6O9: 

705.3248, found: 705.3253. 

 

MaltriPepOPNP (12) 

11 (65 mg, 0.09 mmol) and bis(p-nitrophenyl)carbonate (82 mg, 0.27 mmol) were dissolved in 

dry DMF (1.5 ml) under argon. The flask was capped, evacuated and refilled with argon several 

short turns before DIPEA (47 µl, 0.27 mmol) was added by syringe. The reaction mixture was 

stirred at r.t. for 23 h at which time a second portion of bis(p-nitrophenyl)carbonate (55 mg, 

0.18mmol) was added. The reaction was stirred for an additional 23 h after which all 11 was 

consumed as verified by TLC (5% methanol in CH2Cl2). The reaction mixture was diluted in 

CH2Cl2 (40 ml), washed with citric acid solution (10 wt%, 2 x 15 ml) and dried over MgSO4. 

The solvents were removed resulting in a yellow oil, which was dissolved in a small amount of 

CH2Cl2 and added dropwise to DEE (40 ml) while stirring. The product precipitated as a white 

solid (60 mg) containing ~15% p-nitrophenol (estimated from 1H-NMR integrals). The identity 

of the expected product was confirmed by 1H-NMR, ESI-MS and HRMS and the material was 

used without further purification in the following step. 1H NMR (400 MHz, MeOD-d4) δ 8.31 

(app d, 2H), 7.69 (d, J = 8.6 Hz, 2H), 7.46 (app d, 2H), 7.41 (d, J = 8.6 Hz, 2H), 7.31-7.23 (m, 

4H), 7.23-7.16 (m, 1H), 6.74 (s, 2H), 5.97-5.84 (m, 1H), 5.33-5.23 (m, 3H), 5.16 (d, J = 10.5 

Hz, 1H), 4.56 (dd, J = 10.0, 4.4 Hz, 1H), 4.53 – 4.46 (m, 2H), 4.41 (dd, J = 9.6, 5.0 Hz, 1H), 

4.14 (q, J = 7.1 Hz, 1H), 3.73 – 3.44 (m, 3H), 3.14 (t, J = 6.7 Hz, 2H), 2.95 (dd, J = 14.2, 10.1 

Hz, 1H), 2.46-2.25 (m, 2H), 2.08 – 1.81 (m, 1H), 1.63 – 1.37 (m, 4H), 1.15 (d, J = 7.1 Hz, 3H). 

MS (ESI) m/z: [M+Na]+: 892.3; HRMS m/z [M+H]+ calculated for C43H48N7O13: 870.3310, 

found: 870.3318. 

 

MaltriPepDox (13) 

12 (53 mg, 0.061 mmol) was dissolved in dry DMF (1.7 ml) and the hydrochloride salt of 

doxorubicin (35 mg, 0.061 mmol) was added followed by Et3N (18 µl, 0.12 mmol). The reaction 

mixture was stirred at r.t. and followed by TLC (5% methanol in CH2Cl2). After 24 h, the 

reaction mixture was added dropwise to DEE (35 ml) under stirring which resulted in a red 

precipitate. The precipitate was collected by filtration and isolated by washing the filter paper 

with a solution of 5% methanol in CH2Cl2. The solvents were removed to give a red solid, 

which was purified by flash column chromatography on silica eluting with 5% methanol in 

CH2Cl2. The product was dryloaded on to the column after being dissolved in methanol:CH2Cl2 

mixture and dried on to silica. The expected product 13 was isolated as a red solid (59 mg, 

75%). HPLC method A. MS (ESI) m/z: [M+Na]+: 1296.5; HRMS m/z [M+Na]+ calculated for 

C64H71N7O21Na: 1296.4601, found: 1296.4608. Characteristic peaks of maleimidyl (6.96 ppm, 

s, 2H), Vinyl proton from Alloc protecting group (5.86 ppm, m, 1H), methoxy methyl of 

doxorubicin (3.97 ppm, s, 3H), Alaninyl methyl (1.12 ppm, d, 3H) and doxorubicin glycon 

methyl (0.91ppm, d, 3H) with matching integrals found on 1H-NMR (DMSO-d6) (see SI). 
 

N-Acetamido-N-furfuryl-XGO (15) 

A solution of XGO41 (1.015 g, 8.3 mmol based on the octasaccharide) in furfurylamine (4 mL) 

was stirred for 72h at 25°C. The solution was poured into ethyl acetate (25 mL), cooled to 0°C 

and centrifuged for 20 min at 6000 rpm. The solid was washed with ethyl acetate and 

centrifuged again. The crude solid of glycosylamine was then dissolved in methanol (15 mL) 

and acetic anhydride (7 mL) was slowly added at 0°C to the solution. The reaction mixture was 

then allowed to warm up to room temperature and stirred a further 16h. The solution was then 

concentrated and co-evaporated with toluene. The residue was dissolved in 14% aqueous 

ammonia (50 mL), stirred 1h at room temperature to hydrolyze potential O-acetyl groups. After 



concentration of the solution to half of its initial volume under vacuum, the aqueous phase was 

extracted 3 times with ethyl acetate to remove free N-acetyl furfurylamine and concentrated. N-

acetamido-N-furfuryl-XGO was isolated in 90% yield (998 mg) after purification by flash 

chromatography on silica gel (CH3CN/H2O 7:3 v/v). 1H NMR (400 MHz, D2O) δ 7.51 and 7.45 

(2 x s, rotamers, 1H), 6.46-6.36 (m, 2H), 5.53 (d, J =  9.0 Hz, 0.3H, H1
GlcN rotamer), 5.18 (m, 

1H), 5.13 (d, J = 9.0 Hz, 1H, H1
GlcN rotamer), 4.96 (m, 2H), 4.62-4.55 (m, 5H), 4.06-3.33 (m, 

51H), 2.30 and 2.26 ( 2 x s, rotamers, 3H, NCOCH3). The presence of the amide rotamers was 

confirmed by their disappearance at elevated temperature (323K) as observed by VT-NMR (see 

SI). (ESI) m/z: [M+Na]+ : 1206.4 (DP7), 1368.5 (DP8), 1530.5 (DP9). HR-MS m/z [M+Na]+ 

calculated for DP7; C46H73NO34Na; 1206.3912 Found 1206.3876, m/z [M+Na]+ calculated for 

DP8; C52H83NO39Na; 1368.4440 Found 1368.4401, m/z [M+Na]+ calculated for DP9; 

C58H93NO44Na; 1530.4968 Found 1530.4930.  
 

LacEsterDox (16) 

1 (21 mg, 0.022 mmol) was dissolved in DMF (60 µl) and N-acetamido-N-furfuryl-Lactose40 

(28 mg, 0.06 mmol) was added followed by water (40µl). The reaction mixture was stirred at 

37 °C for 3 days. The solvents were removed by rotary evaporation and the crude material was 

dissolved in CH2Cl2/MeOH, loaded on to silica and purified by flash column chromatography 

eluting with 10-20% H2O in CH3CN. 16 was isolated as a red solid (30 mg, 91%) after 

lyophilization. HPLC method A (see SI); MS (ESI) m/z: [M+Na]+ : 1443.6; HR-MS m/z 

[M+Na]+ calculated for C67H80N4O30Na 1443.4755; Found 1443.4757. 

 

XGOEsterDox (17) 

1 (10 mg, 0.01 mmol) was dissolved in DMF (60 µl) and N-acetamido-N-furfuryl-XGO 15 (66 

mg, 0.05 mmol) was added followed by water (60µl). The reaction mixture was stirred at 37 °C 

for 4 days. The solvents were removed by rotary evaporation and the crude was purified by two 

consecutive C18-columns (1g) eluting with a gradient of 0-100% MeOH in water. The expected 

product 17 was isolated as a red solid (8 mg, 35%) after lyophilization. HPLC method A (see 

SI); (ESI) m/z: [M-H]- : 2140.9 (DP7) , 2302.9 (DP8), 2464.9 (DP9). HR-MS m/z [M+Na]+ 

calculated for DP7; C94H124N4O52Na; 2163.7029 Found 2163.7079, m/z [M+Na]+ calculated for 

DP8; C100H134N4O57Na; 2325.7607 Found 2325.7495, m/z [M+Na]+ calculated for DP9; 

C106H144N4O62Na; 2487.8135 Found 2487.8136.  

 

LactriPep(Alloc)Dox (18) 

13 (15 mg, 0.012 mmol) was dissolved in DMF (80 µl) and N-acetamido-N-furfuryl-Lactose 

(16 mg, 0.035 mmol) was added followed by water (40µl). The reaction mixture was stirred at 

37 °C for 7 days. The solvents were removed by rotary evaporation and the crude material was 

dissolved in CH2Cl2/MeOH, loaded on to silica and purified by flash column chromatography 

eluting with 10% H2O in CH3CN. The expected product 18 was isolated as a red solid (12 mg, 

58%) after lyophilization. HPLC method A (see SI). MS (ESI) m/z: [M+Na]+: 1759.7; HRMS 

m/z [M+Na]+ calculated for C83H100N8O33Na: 1759.6290, found: 1759.6302. 

 

LactriPepDox (19) 

Following a modified procedure for Alloc deprotection,33 18 (7 mg, 4.0 µmol) was dissolved in 

degassed CH2Cl2:AcOH (5:1, 600 µl). Pd(PPh3)4 (6 mg, 5.2 µmol) was added. The reaction was 

stirred at rt in the dark and followed by TLC (CH2Cl2:MeOH:NH4OH 80:18:2). After 30 min, 

the CH2Cl2 was removed and DEE (1 ml) was added which resulted in a red precipitation which 

was washed with DEE (1 ml), EtOAc (2 x 1 ml) and then DEE (1 ml) again. Ultrasonication 

and quick centrifugation was used in each wash cycle. The resulting red pellet was dried in a 

dessicator under low pressure.  The resulting red solid (4 mg, 59%) had a mass on ESI-MS and 



HRMS corresponding with the expected product 19 and consisted of one main compound with 

minor impurities on HPLC-UV. HPLC method A. MS (ESI) m/z: [M+H]+:  1653.6 HRMS m/z 

[M+H]+ calculated for C79H97N8O31: 1653.6260, found: 1653.6244. 

 

Enzymatic release of Doxorubicin 

Plasmin and human carboxylesterases were purchased from Sigma-Aldrich. 

Plasmin 

Following a protocol from the enzyme provider,47 a 100 µM solution of 19 in phosphate buffer 

(pH 7.5) containing 100mM Lysine was incubated at 37 ℃ with plasmin from human plasma 

(15µg/ml). The reaction was followed by reversed phase HPLC (method B) by injecting 15µl 

aliquots from the reaction. The ratio of released doxorubicin over prodrug was calculated from 

integration of the peaks at 480 nm and plotted against time. 

  

Carboxylesterase 
A 100 µM solution of ester linked prodrug (16 or 17) in Tris buffer (50 mM, pH 7.4)48 was 

incubated at 37 ℃ with either recombinant human carboxylesterase 1 isoform b (100µg/ml) or 

recombinant human carboxylesterase 2 (100µg/ml) expressed in baculovirus infected BTI 

insect cells . The reaction was followed by reversed phase HPLC (method B) by injecting 15 

µl aliquots from the reaction. The ratio of released doxorubicin over prodrug was calculated 

from integration of the peaks at 480 nm and plotted against time. 

 

Growth inhibition assay 

The breast cancer cells MCF-7 were seeded at a density of 2×103 cells per well in 96-well plates. 

After 24 h, cells were treated with an increasing concentration of compounds, from 0 to 100 

µM. Cells were incubated for 72 h, and then, 20 μL of MTS (Promega) was added per well for 

one hour at 37 °C. The absorbance was read at 492 nm using a spectrophotometer 

(SPECTRAmax, Molecular Devices). IC50 values were obtained from the cytotoxicity curves 

using SOFTmax PRO software. 

 

Supporting Information description 
The SI contains NMR spectra and HPLC chromatograms. 
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