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ABSTRACT

Reference star differential imaging (RDI) is a powerful strategy for high contrast imaging. Using

example observations taken with the vortex coronagraph mode of Keck/NIRC2 in L′ band, we demon-

strate that RDI provides improved sensitivity to point sources at small angular separations compared

to angular differential imaging (ADI). Applying RDI to images of the low-mass stellar companions

HIP 79124 C (192 mas separation, ∆L′=4.01) and HIP 78233 B (141 mas separation, ∆L′=4.78), the

latter a first imaging detection, increases the significance of their detections by up to a factor of 5

with respect to ADI. We compare methods for reference frames selection and find that pre-selection

of frames improves detection significance of point sources by up to a factor of 3. In addition, we use

observations of the circumstellar disks around MWC 758 and 2MASS J16042165-2130284 to show that

RDI allows for accurate mapping of scattered light distributions without self-subtraction artifacts.

Keywords: techniques: high angular resolution, planets and satellites: detection, protoplanetary disks,

stars: imaging, stars: individual: MWC 758, stars: individual: 2MASS J16042165-2130284

1. INTRODUCTION

Adaptive optics (AO) imaging surveys determine cru-

cial occurrence statistics for giant exoplanet populations

with masses &1 MJup at orbital separations >10 au
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and provide unique insight into their formation and mi-

gration histories (Bowler 2016; Meshkat et al. 2017).

Furthermore, resolving low-mass companions from their

host stars reduces measurement noise allowing for in-

depth spectral characterization, which yields a wealth

of information about the physical properties of their at-

mospheres (Biller & Bonnefoy 2017). AO observations

also allow for the detailed mapping of scattered light

from dust in circumstellar disks providing context for

planet formation theories.
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Current and future infrared, high-contrast imaging

programs seek to (1) bridge the gap between the search

completeness of direct imaging and radial velocity sur-

veys, (2) characterize the atmospheres of lower mass

planets, and (3) understand the interaction between

planets and the circumstellar disks from which they

form. All of the above science cases benefit from min-

imizing the angular separations from the host star at

which instruments are sensitive enough to detect and

characterize the planets and disks of interest.

Reducing the inner working angle (i.e. the separa-

tion at which the transmission is 0.5) of ground-based,

high-contrast imaging systems to their theoretical lim-

its (i.e. ∼ λ/D, where λ is the wavelength and D is the

telescope diameter; Guyon et al. 2006) opens a critical

search space at solar system scales (1-30 au) for stars

within a few hundred parsecs. From a technical point of

view, it will also pave the way to studies of temperate

exoplanets in reflected light with future large aperture

telescopes (D ∼30 m), especially in the habitable zones

of nearby, late-type stars where the planet-to-star flux

ratio is expected to be ∼10−8 for planet radii of ∼ 1R⊕
(see e.g. Guyon 2018). Looking further into the future,

these developments will also help maximize the number

of Earth-like planets orbiting solar-type stars available

for study with future exoplanet imaging space missions,

such as the Habitable Exoplanet Observatory (HabEx;

Gaudi et al. 2018) and Large UV/Optical/IR Surveyor

(LUVOIR; The LUVOIR Team 2018) concepts.

The vortex coronagraph mode (Foo et al. 2005; Mawet

et al. 2005) of the NIRC2 instrument at W.M. Keck Ob-

servatory (Serabyn et al. 2017; Mawet et al. 2017; Ruane

et al. 2017; Huby et al. 2017; Guidi et al. 2018; Reggiani

et al. 2018; Xuan et al. 2018) has the optical through-

put needed to search for giant planets down to λ/D, or

∼100 mas, for L′ and Ms bands (λ=3.4-4.8 µm). How-

ever, pairing the Keck adaptive optics system with a

small inner working angle coronagraph does not immedi-

ately provide sensitivity to point sources with ∆mag&3

within 0.′′5 of the host star in our experience. Surpass-

ing this level also requires optimized observing strategies

and post-processing (Mawet et al. 2012).

1.1. The limitations of ADI

High contrast imaging surveys with Keck/NIRC2 tra-

ditionally make use of angular differential imaging (ADI,

Marois et al. 2006) in the search for giant planets, such

as the four planets discovered orbiting HR 8799 (Marois

et al. 2008, 2010; Konopacky et al. 2016). In this strat-

egy, the telescope’s field rotator is set to vertical angle

mode, which keeps the beam fixed in azimuthal orien-

tation with respect to the elevation axis and detector
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Figure 1. Parallactic angle rotation during a one hour ob-
servation from Maunakea, Hawaii (latitude 19.8◦ N) as func-
tion of target declination δ. The dashed blue line represents
an observation initiated exactly 30 min before the object
crosses the meridian. The thin black lines represent observa-
tion windows shifted by ∆t=15 min. The other thick dashed
lines indicate the observation with maximum allowable tim-
ing error to achieve a PA rotation that moves a planet by
an arclength equal to 1.0×FWHM and 0.5×FWHM at an
angular separation of λ/D. Specifically, achieving 60◦ and
30◦ PA rotations at the most favorable δ requires the timing
error to be <36 min and <68 min, respectively.

while the field of view rotates over the course of an ob-

servation. This assists in differentiating between true

astrophysical objects, which revolve in the image, and

starlight that leaks through the coronagraph, which typ-

ically leaves a residue of speckles in the image.

Although ADI is the most successful observational

strategy for detecting giant planets at wide separations

to date (see recent review by Chauvin 2018), it has some

innate limitations. In order to clearly identify compan-

ions, each target must be observed for long enough to

allow enough parallactic angle (PA) rotation such that

a companion would move by a substantial fraction of

the width of the point spread function (PSF). For in-

stance, at the inner working angle of a vortex corona-

graph (0.′′08-0.′′1 for NIRC2 L′ and Ms bands), the mini-

mum desired PA rotation is ∼30◦, which moves the PSF

of a companion by an arclength of roughly half of its

full width at half maximum (FWHM). However, due to

practical limitations, observations from ongoing surveys

with Keck/NIRC2 vortex coronagraph have a median

PA rotation of ∼11◦ (Xuan et al. 2018).

To illustrate the problems associated with schedul-

ing ADI observations, Figure 1 shows the PA rotation
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achieved from Maunakea, Hawaii (latitude 19.8◦ N) in a

one hour observation versus the target’s declination and

the timing of the observation. An “on-time” observa-

tion (thick, blue, dashed line) in this case starts 30 min

before the target crosses the meridian. The thin black

lines shows how the PA rotation degrades when obser-

vation is initiated too early or too late by multiples of

∆t=15 min.

Figure 1 has several important implications:

• Timing constraints: ADI observations must be

carried out during a relatively narrow time win-

dow to achieve a PA rotation needed to avoid self-

subtraction effects (Marois et al. 2006). For exam-

ple, in order for a planet to move 30◦, or roughly

an arclength of 0.5×FWHM at an angular separa-

tion of λ/D, an observation at the most favorable

δ must be initiated within ±68 min of the opti-

mal time. Increasing the path length requirement

to 1.0×FWHM (i.e. a PA rotation of 60◦) reduces

the allowable timing error to ±36 min. The timing

requirement is even more strict at other δ values.

• Limited sky coverage: Although targets with

declination >-40◦ are observable from Maunakea,

achieving a PA rotation of >30◦ during a one hour

observation is only possible on targets between

δ=-8◦ and δ=48◦ (assuming the observations are

timed perfectly). For PA rotation >60◦, the δ

range becomes 8◦ to 32◦, ruling out more than

90% of the sky.

• Inefficient surveys of star forming regions:

Many of the most attractive targets for high-

contrast imaging in the infrared are in nearby star

forming regions (distances 120-150 pc), such as the

Taurus and ρ Ophiuchi molecular clouds (see e.g.

Bowler 2016). However, these regions only extend

over a few square degrees, allowing for one or two

ADI sequences on these targets per night. There-

fore, an ADI survey of these regions would need to

be carried out over many nights.

• Limited “effective” inner working angle:

Unless the star falls within the declination ranges

described above and the observations are well-

timed, self-subtraction effects at small angular

separations (Marois et al. 2006) ultimately limit

the sensitivity near to the star and inner working

angle of the coronagraph.

• Erases rotationally symmetric circumstel-

lar disks: Imaging scattered light from close to

pole-on protoplanetary, transitional, and debris

disks with ADI may not be possible because rota-

tionally symmetric features self-subtract in post-

processing and complex dust disk distribution be-

come confounded by artifacts (Milli et al. 2012).

1.2. The limitations of SDI

An alternate speckle subtraction method known as

spectral differential imaging (SDI; Sparks & Ford 2002)

is applied on instruments with integral field spectro-

graphs, such as Palomar/P1640 (Hinkley et al. 2011),

Gemini/GPI (Macintosh et al. 2014), VLT/SPHERE

(Vigan et al. 2016), and Subaru/SCExAO/CHARIS (Jo-

vanovic et al. 2015; Groff et al. 2017). SDI decouples

speckles from astrophysical objects based on their wave-

length dependence rather than azimuthal rotation and

therefore alleviates some of the aforementioned limita-

tions of ADI. Between the shortest and longest wave-

lengths, speckles move radially by α × ∆λ/λ, where α

is the angular separation in units of λ/D. For instance,

a radial change in the position of > λ/D is only seen

at angular separations >5 λ/D using a typical filter

with ∆λ/λ ≈ 0.2. Therefore, SDI also suffers from self-

subtraction effects and is not ideal for imaging close-in

point sources or pole-on circumstellar disks. Addition-

ally, Keck/NIRC2 does not have an integral field spec-

trograph for this purpose, making contemporaneous SDI

impossible.

1.3. Reference star differential imaging

Reference star differential imaging (RDI; Lafrenière

et al. 2009; Soummer et al. 2011; Gerard & Marois 2016)

is an alternative approach that uses images of other stars

to build a model of the stellar PSF. RDI is a commonly

used observational strategy for Hubble Space Telescope

imaging observations of debris disks (Golimowski et al.

2006; Schneider et al. 2009; Schneider et al. 2014; Cho-

quet et al. 2016) and vortex coronagraph observations

with the Hale telescope at Palomar Observatory (Mawet

et al. 2010; Serabyn et al. 2010; Mawet et al. 2011)

where ADI is not possible due to its equatorial mount.

In addition, RDI will very likely be applied for high-

contrast imaging with future space telescopes, includ-

ing the James Webb Space Telescope (JWST; Green

et al. 2005) and the Wide Field Infrared Survey Tele-

scope (WFIRST; Spergel et al. 2015; Bailey et al. 2018)

as well as the HabEx (Gaudi et al. 2018) and LUVOIR

(The LUVOIR Team 2018) mission concepts. The latter

two may push to very small angular separations using

vortex or other small inner working angle coronagraphs

(Ruane et al. 2018; Pueyo et al. 2017).

Here, we demonstrate how RDI with Keck/NIRC2

mitigates practical issues associated with ADI (and po-

tentially SDI on other instruments). We demonstrate
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the benefits of the RDI observing strategy for ground-

based imaging studies, especially the detection of point

sources at small angular separations and mapping of

scattered light from circumstellar disks. In the follow-

ing sections, we detail the RDI method and strategy

(Sec. 2) using three example observing nights that il-

lustrate the benefits of RDI for point source detection

(Sec. 3) and for imaging of circumstellar disks (Sec. 4)

with Keck/NIRC2. Section 5 discusses our findings and

the limitations of RDI, including error sources and po-

tential artifacts. Section 6 summarizes our conclusions.

2. RDI METHOD AND STRATEGY

RDI requires the observer to decide which reference

frames and algorithms to use in order to model the stel-

lar PSF. Reference frames may be specific reference stars

purposely taken on the same night as the primary obser-

vation (e.g. Ruane et al. 2017), frames from other stars

that were coincidentally observed on the same night in

the same observing mode (e.g. Xuan et al. 2018), or

from an archive of frames across observing programs

(e.g. Choquet et al. 2016). Example PSF reconstruction

algorithms include subtracting a scaled version of the

reference image (Schneider et al. 2009), principal com-

ponents analysis (PCA; Soummer et al. 2012), and non-

negative matrix factorization (NMF; Ren et al. 2018).

Xuan et al. (2018) showed that using all frames from

a given night (excluding the target of interest) as refer-

ence frames and applying PCA improves the sensitivity

to point sources at small angular separations with re-

spect to ADI for many of the targets in our database of

Keck/NIRC2 vortex coronagraph observations. In the

following, we will discuss improvements to this strategy

by combining this approach with frame pre-selection.

For each observation, we apply basic pre-processing

steps (see Appendix A for details) and PCA to estimate

and subtract the starlight from the images using the Vor-

tex Image Processing (VIP) software package (Gomez

Gonzalez et al. 2017). Following Soummer et al. (2012),

a single frame may be written as X = I +A, where I is

the stellar PSF after the coronagraph (a speckle field)

and A is the planet PSF. The stellar PSF is

I =

K∑
k=1

〈
X,Z(k)

〉
Z(k), (1)

where {Z(k)}k=1,...,N are a basis set of images derived

from a series of N reference frames {R(k)}k=1,...,N ,〈
X,Z(k)

〉
is the projection of the frame onto the kth

basis image, and K represents the number of basis vec-

tors used for the PSF model with K ≤ N . Here, the

basis modes are computed using PCA. In the case of

point sources, we empirically determine the number of

basis vectors, K, that provides the best sensitivity to

fake companions injected in post-processing. Whereas

in ADI-processed images the value of K can drastically

affect the sensitivity to point sources (Pueyo 2016) and

the occurrence of disk artifacts (Milli et al. 2012), RDI

results tend to be relatively insensitive to the choice of

K (Soummer et al. 2012). Rather, the choice of which

reference frames to use to model the stellar PSF has a

dominant effect on the quality of the final image.

We explored a number of different methods for refer-

ence frame pre-selection. In each case, we compared the

potential reference frames, Xi, with the temporal me-

dian of the science frames, M , over a speckle noise dom-

inated region of the image (typically within 5-10 λ/D).

We assigned a score to each reference frame using three

metrics: the mean square error (MSE), the Pearson cor-

relation coefficient (PCC), and the structural similarity

index metric (SSIM) as defined in Wang et al. (2004).

The MSE of the kth reference frame is given by

MSE(k) =
1

Npix

Npix∑
i=1

(
X

(k)
i −Mi

)2
, (2)

where Npix is the number of pixels in the comparison

region. The PCC is

PCC(k) =
cov(X(k),M)

std(X(k))std(M)
, (3)

where cov(.) and std(.) represent the covariance and

standard deviation. Specifically, the covariance is given

by

cov(P,Q) =
1

Npix − 1

Npix∑
i=1

(Pi − P̄ )(Qi − Q̄), (4)

where P and Q are the images being compared, with

pixel-wise means P̄ and Q̄. The standard deviation is

std(P ) =

√√√√ 1

Npix − 1

Npix∑
i=1

(Pi − P̄ )2. (5)

The final metric we consider is the mean SSIM:

SSIM(k) =
1

Npix

Npix∑
i=1

L
(k)
i C

(k)
i S

(k)
i , (6)

where L, C, and S are the luminance, contrast,

and structural terms, which are computed over a

FWHM×FWHM window centered on pixel i. The lu-

minance term is

Li =
2 X̄M̄ + c1

X̄2 + M̄2 + c1
, (7)
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Table 1. Keck/NIRC2 vortex observations in L′ band on UT 2016 Apr 13

Star name Alt. Name RA Dec Spec. Type Nframes tint (min) PA rot. V W1a

HIP 41152 HD 70313 08 23 48.5 +53 13 11.0 A3V 30 10.0 12.9◦ 5.54 5.21

DX Leo HD 82443 09 32 43.8 +26 59 18.7 G9V 30 15.0 55.0◦ 7.01 5.15

TW Hya TWA 1 11 01 51.9 -34 42 17.0 K6V 70 35.0 21.6◦ 10.5 7.10

V1249 Cen TWA 25 12 15 30.7 -39 48 42.6 M0.5 30 15.0 7.91◦ 11.2 7.26

V1252 Cen TWA 10 12 35 04.2 -41 36 38.5 M2V 30 15.0 7.82◦ 13.0 8.09

HIP 66704 HD 119124 13 40 23.2 +50 31 09.9 F7.7V 30 15.0 17.9◦ 6.32 4.92

HIP 78233 HD 142989 15 58 29.3 -21 24 04.0 F0V 36 18.0 32.4◦ 9.10 7.63

HIP 79124 HD 144925 16 09 02.6 -18 59 44.0 A0V 23 11.5 16.9◦ 7.78 6.96

2MASS J16430128-1754274 16 43 01.3 -17 54 27.4 M0.5 30 15.0 11.8◦ 12.6 8.44

2MASS J17520294+5636278 17 52 02.9 +56 36 27.8 M3.5V 30 15.0 11.4◦ 13.3 8.20

V4046 Sgr HD 319139 18 14 10.5 -32 47 34.4 K5+K7 20 10.0 5.63◦ 10.7 7.12

Note—aWise W1 mag (3.4 µm; Wright et al. 2010).
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Figure 2. The MSE (shown as negative logarithm), PCC, and SSIM for all frames from UT 2016 Apr 13 (grouped by target in
an arbitrary order) compared to the median science frame of the science observations: (a) HIP 79124 and (b) HIP 78233. MSE
and PCC responds to differences in the image counts and structure, respectively; SSIM is correlated with both.

the contrast term is

Ci =
2 std(X)std(M) + c2

std(X)2 + std(M)2 + c2
, (8)

and the structural term is

Si =
cov(X,M) + c3

std(X)std(M) + c3
. (9)

c1, c2, and c3 are small constants chosen to prevent

instability when the denominator is otherwise close to

zero. Qualitatively, Li is the relative change in lumi-

nance and responds similarly to MSE to differences in

the pixel counts. Si is almost identical to the PCC.

Thus, SSIM can be thought of as a mixture between the

MSE and PCC metrics.
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Table 2. Best fit photometry and astrometry for the detected companions.

Companion Dist. (pc)a ∆L′ Sep (mas) PA (◦) F/σF Mass (MJup)b Proj. sep (au)

HIP 79124 B 132±1 2.49±0.04 971.5±1 100.61±0.03 >31 630±17 128±1

HIP 79124 C 132±1 4.01±0.03 192±2 246.5±0.8 36 199±4 25.3±0.3

HIP 78233 B 256±4 4.78±0.12 141±3 6±1 8.6 198±19 36.0±0.9

Note—aBailer-Jones et al. (2018). bLower bound on mass; assumes the BT-Settl model (Allard et al. 2012)
and an age of 10 Myr.

In the following section, we investigate the perfor-

mance gains achieved by modeling the stellar PSF us-

ing the principal components (PCs) of a set of reference

frames selected based on their MSE, PCC, and SSIM

values, as compared to the median science frame.

3. POINT SOURCE DETECTION

To illustrate the utility of and trade-offs associated

with using RDI for point source detection, we revisit

Keck/NIRC2 observations taken during commissioning

of the vortex coronagraph mode on UT 2016 Apr 13.

Table 1 gives the full list of observations, consisting of

11 targets observed over the course of a full observing

night for various scientific purposes. The targets span

a large range of elevations, spectral types (Spec. type),

and magnitudes, which we list in V and Wise W1 bands

(3.4 µm; Wright et al. 2010). The observations also vary

in the number of frames (Nframes) and total integration

times (tint).

Hinkley et al. (2015) previously identified low-mass

stellar companions orbiting at ∼20 au from two of the

observed targets, HIP 79124 and HIP 78233, using aper-

ture masking interferometry. HIP 79124 and HIP 78233

are classified as A0V and F0V stars, which reside in the

Upper Scorpious subgroup of the Scorpius-Centaurus

(USco) association at a distance of ∼120-150 pc (de

Zeeuw et al. 1999) and, thus, have an estimated age

of 5-20 Myr (Pecaut et al. 2012; Song et al. 2012).

HIP 79124 is a triple system with an additional compan-

ion, HIP 79124 B, at ∼1′′ from HIP 79124 A (Lafrenière

et al. 2014). RDI allows us to directly image their

close-in companions, HIP 79124 C and HIP 78233 B,

even though their angular separation from the host star

is <0.′′2, or 2 λ/D in L′ band. We use these pre-

viously reported astrometric measurements along with

data presented in this study (Table 2) to check for com-

mon proper motion and confirm that HIP 78233 B,

HIP 79124 B, and HIP 79124 C are all gravitationally

bound to their host star.

Figure 2 shows the MSE, PCC, and SSIM for each pos-

sible reference frame from UT 2016 Apr 13, compared

to the median frame in the HIP 79124 and HIP 78233

observations. As predicted, the MSE and PCC respond

to different attributes, whereas the SSIM shows similar

features to both MSE and PCC. In the case of HIP 79124

and HIP 78233, the brighter stars (HIP 66704, DX Leo,

HIP 41152) had considerably worse MSE and SSIM.

Also, HIP 79124 and HIP 78233 were mutually poor ref-

erence stars for one another according to the PCC and

the SSIM despite being observed consecutively. This is

likely due to variable observing conditions at that point

in the night.

Figures 3 and 4 show the ADI and RDI images

of HIP 79124 C and HIP 78233 B, respectively.

HIP 79124 C was previously imaged by Serabyn

et al. (2017) using RDI. However, we have recovered

HIP 78233 B for the first time. We show both examples

here to demonstrate that, using PCA, the companions

are detected at higher significance with RDI compared

to our ADI reduction.

In order to determine which reference frames to use,

we ordered the reference frames according to the MSE,

PCC, and SSIM and varied the number of frames from

which we derive the PCs (see Fig. 5). In each case, we

compute a forward model of the companion’s PSF (see

e.g. Lagrange et al. 2009; Soummer et al. 2012). We

subtracted a copy of the off-axis PSF at the location of

the planet in each pre-processed science frame, varied its

location and brightness, and repeated the PCA reduc-

tion until the values were minimized in the final images

in a 2×FWHM radius about the companions position

using a downhill simplex algorithm. The forward model

is defined as the difference between the original PCA re-

duction without injected or subtracted companions and

the best-fit residuals.

The signal-to-noise ratio, S/N , is defined as the ra-

tio between estimated flux, F , and the error in the flux

fit, σF , as calculated using the method outlined in Ap-

pendix B. We find that the MSE and SSIM metrics lead

to higher S/N for these objects compared to PCC, with

SSIM offering a slight improvement. The optimal num-

ber of frames according to SSIM is 237 (out of 336) and
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Figure 3. Observation of HIP 79124 C. (a) Image after subtracting stellar PSF using ADI. (b) Best forward model of the
point source. (c) Residuals after subtracting the point source from the data. (d)-(f) Same as (a)-(c), but using RDI for the
stellar PSF subtraction. North is up and East is left. The companion was retrieved at higher S/N in RDI compared to ADI.
(a)-(c) and (d)-(f) are shown on the same scale.

Figure 4. Same as Fig. 3, but for HIP 78233 B.

202 (out of 323) for HIP 79124 C and HIP 78233 B, re-

spectively. We also optimized K in this fashion for each

number of reference frames considered, but found that

K has much less of an influence on the S/N . At the opti-

mal number of reference frames, we used 11 and 15 PCs

for HIP 79124 C and HIP 78233 B, respectively. Figures

3 and 4 show the result using the optimal combination of

parameters. The S/N has a steep drop when using more

than ∼230 frames ordered by MSE and SSIM, which oc-

curs when the reduction includes frames from the bright-

est stars (HIP 66704, DX Leo, HIP 41152). This is ex-

pected since we found previously in Xuan et al. (2018)

that the contrast in Keck/NIRC2 images is strongly cor-

related with stellar magnitude.
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Figure 5. Estimated photometric S/N = F/σF achieved with RDI versus the number of reference frames for the three frame
selection methods. For the sake of finding the best set of reference frames, we injected a fake companion into the RDI residual
cube with the best-fit flux and separation obtained using the maximum number of reference frames.

Table 2 reports the astrometry and photometry val-

ues derived from the highest S/N case. There are a

few important differences between the values in Fig. 5

and the final fits. First, we used the flux and position

we retrieved using all reference frames to compute the

fitting error in Fig. 5. In the final fits, we used the

actual flux and position retrieved at the optimal num-

ber of reference frames and PCs for the injected, fake

companion. Second, we applied a correction to the re-

trieved flux values to account for the throughput of the

coronagraph, which was 81% and 68% for HIP 79124 C

and HIP 78233 B, respectively, according to our opti-

cal model. In the end, we arrived at lower S/N val-

ues for each companion than the estimates in Fig. 5.

The final S/N was better with RDI than ADI for both

stars. Specifically, for HIP 79124 C, the S/N in RDI

was 36 whereas the best we could achieve in ADI was

7.9 with K = 2 and a PA rotation of 17◦. Similarly, for

HIP 78233 B, the S/N in RDI was 8.6, but the best we

achieved in ADI was 5.1 with K = 6 despite having a

PA rotation of 32◦.

Comparing to Hinkley et al. (2015), the change in as-

trometry since 2010 is consistent with orbital motion,

leading to the first confirmation that HIP 78233 B is

bound. We updated the distances to HIP 79124 and

HIP 78233 based on Gaia DR2 (Bailer-Jones et al. 2018),

which gave 132±1 pc and 256±4 pc for the respective

stars, rather than the distances of 123 pc and 145 pc

used in Hinkley et al. (2015). Our measured flux ratio

for HIP 79124 C, ∆L′ = 4.01±0.03, is inconsistent with

both Hinkley et al. (2011) and Serabyn et al. (2017)

by a small margin, who report ∆L′ = 4.3 ± 0.1 and

∆L′ = 4.2 ± 0.1, respectively. The increased flux es-

timate and updated stellar distance predicts a higher

mass for both companions. Assuming the BT-Settl

evolutionary model (Allard et al. 2012) and an age of

10 Myr, we estimate minimum masses of 199±4 MJup

and 198±19 MJup, which are well above the hydrogen-

burning limit.

For each point source companion, we use previously

reported astrometry along with new data presented in

this study to constrain the orbits of each companion

around their host stars. Although two data points

do not provide a well-constrained orbit, the long base-

line provides some constraint on the actual semimajor

axis and eccentricity. We use the “Orbits of the Im-

patient” (OFTI; Blunt et al. 2017) algorithm as im-

plemented by the orbitize software package1. OFTI

is a Bayesian rejection-sampling method that excels at

finding constraints on long period orbits with sparse

data points. We determine the median semimajor

axis and 68% confidence intervals to be 37+31
−12 au for

HIP 78233 B, 157+82
−37 au for HIP 79124 B and 26+20

−8 au

for HIP 79124 C. We also found that the data favors

lower eccentricity orbits over high eccentricity orbits.

Details of these orbit fits and the asymmetrical posteri-

ors are discussed in Appendix C. The posteriors are also

1 https://orbitize.readthedocs.io/

https://orbitize.readthedocs.io/
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available online as supplementary data for use in other

studies.

In the two examples above, we have demonstrated

that RDI offers significantly improved S/N for com-

panions at angular separations of . 2 λ/D and that

frame pre-selection is critical for maximizing the perfor-

mance achieved with RDI. However, previous versions

of the data reduction pipeline used by our team for

Keck/NIRC2 vortex coronagraph observations (Xuan

et al. 2018) used all available reference frames from a

given night by default. Although there is often an S/N

improvement at small separations using all frames over

ADI, we are working towards using SSIM or similar met-

rics to perform the pre-selection of frames in a robust

way and reprocessing archival NIRC2 data to reveal new

point sources at close separations.

4. CIRCUMSTELLAR DISK IMAGING

In addition to improving the sensitivity to point

sources at small angular separations, RDI is also advan-

tageous for disk imaging. In the following two examples,

we use Keck/NIRC2 observations of circumstellar disks.

In each case, reference stars were specifically chosen to

be close in elevation when observed and to have simi-

lar brightness in R and L′ bands, where the wavefront

sensor and science camera are sensitive.

4.1. MWC 758

MWC 758 (HD 36112) is a young (3.5±2.0 Myr; Meeus

et al. 2012) stellar object in the Taurus star-forming re-

gion (distance of 160 pc; Bailer-Jones et al. 2018) sur-

rounded by a prominent protoplanetary disk with at

least two massive spiral arms seen in scattered light ob-

servations (Grady et al. 2013; Benisty et al. 2015; Reg-

giani et al. 2018; Ren et al. 2018). ADI images with

Keck/NIRC2 from Reggiani et al. (2018) showed evi-

dence of a potential third spiral arm.

Here, we reprocessed one of the epochs presented in

Reggiani et al. (2018) using reference stars observed di-

rectly before and after the previously published ADI se-

quence. Table 3 gives the list of observations we used

in the reduction. For ADI, we used all of the science

frames and K = 6. For RDI, we used similar methods

as the previous section keeping the best 70% (50 out

of 75) of reference frames according to the SSIM met-

ric and used the projection of 25 out of 50 PCs in the

PSF model. However, since the reference stars were a

good match to the science targets and conditions were

stable during these observations, the variation in MSE,

PCC, and SSIM was similar to that of one of the well-

correlated observations in Fig. 2. Therefore, the RDI

image of the disk is visibly unchanged, barring some

background variation, whether we use 10% more or less

frames or change the number of PCs by ∼20%, while

the ADI image is very sensitive to number of PCs.

Figure 6 shows the ADI and RDI images of MWC 758.

In addition to the famous North and South spirals (la-

beled ‘1’ and ‘2’ in Fig. 6b), we recovered the proposed

third spiral arm feature (labeled ‘3’) with both ADI and

RDI for the first time. The ADI image is dominated

by self-subtraction effects, while the RDI image is likely

more representative of the true morphology of scattered

light features. Although we have confirmed that the

proposed third spiral arm was not an ADI artifact, it is

unclear from the RDI image whether the feature is truly

a third spiral arm or a continuation of the north arm

wrapping almost 360◦ about the star. Nevertheless, this

observation demonstrates that RDI is beneficial for map-

ping scattered light distributions in circumstellar disks

without the sharpening of azimuthal features seen in the

ADI images.

4.2. J16042165-2130284

We present an observation of the young stellar ob-

ject 2MASS J16042165-2130284 (from here on ‘J1604’).

J1604 is a K2 star at a distance of 150 pc (Bailer-

Jones et al. 2018) and a likely member of USco (Carpen-

ter et al. 2014) suggesting an age of 5-20 Myr (Pecaut

et al. 2012; Song et al. 2012). J1604 is surrounded by

a nearly pole-on (7◦ inclination; Mathews et al. 2012)

pre-transitional disk (Espaillat et al. 2007), the most

massive known (∼ 0.1 MJup) in USco (Mathews et al.

2012). Several previous works identified a ring-like disk

in scattered light (Mayama et al. 2012; Pinilla et al.

2015; Canovas et al. 2017; Pinilla et al. 2018). This disk

has received considerable attention owing to its variabil-

ity (Pinilla et al. 2015, 2018) and evidence of planet-

induced dust filtration (Rice et al. 2006; Canovas et al.

2017).

The observing list from UT 2017 May 10 (see Table 4)

consists of seven observations, including J1604 and a

reference star, 2MASS J19121875-2137074 (from here

on ‘J1912’), specifically selected prior to the observing

night because its similar brightness and elevation. The

remaining five targets were observed as part of an on-

going survey of M stars (PI: Mawet). The first three

M star targets were significantly worse reference stars

according to their SSIM values because they were much

fainter (W1 > 9) than J1604 (W1 = 7.61). The other

two M stars had SSIM values close to that of J1912.

Figure 7 shows the ADI and RDI images of J1604.

Since the disk is nearly rotationally symmetric, the ADI

image is consistent with noise for all values of K. How-

ever, the ring of scattered light is clearly visible in the
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Table 3. Keck/NIRC2 vortex observations in L′ band on UT 2016 Oct 24.

Name Alt. Name RA Dec Type Nframes tint (min) PA rot. V W1

TYC 1845-2048-1 HD 284115 05 02 41.3 +24 07 19.5 K2 25 16.7 23.1◦ 8.13 3.98±0.10

MWC 758 HD 36112 05 30 27.5 +25 19 57.1 A8V 80 53.3 173◦ 8.27 4.60±0.08

TYC 1867-221-1 HD 249769 05 58 47.2 +25 15 28.8 K7 50 33.3 171◦ 8.83 4.14±0.09

Figure 6. The circumstellar disk around MWC 758 after subtracting the stellar PSF using (a) ADI and (b) RDI. Labels ‘1,’
‘2,’ and ‘3’ indicate the prominent North and South spiral arms and the potential third arm, respectively.

RDI reduction. For the RDI image in Fig. 7b, we used

the best 88 reference frames, according to their SSIM

values, out of the 150 available and projected 44 PCs

to build the stellar PSF model. Again, the morphol-

ogy of the disk did not change much when changing the

number of reference frames or PCs by ∼ 20% in this

case. After removing poorly matching reference frames

according to the SSIM, the projection coefficients for the

first few PCs dominate.

Polarized intensity maps of J1604 from Pinilla et al.

(2018) show azimuthal dips attributed to shadowing by

an inner disk. We see similar features labeled ‘1’, ‘2’, and

‘3’ in Fig. 7b. These dips change with time indicating

that the inner regions are highly dynamic, which may be

evidence of a close-in massive companion. In the south-

ern part of the disk, we estimate the inner and outer

edges of the bright scattering feature appear at 440 and

500 mas, respectively. Compared to J-band (1.2 µm)

observations taken with VLT/SPHERE by Pinilla et al.

(2018) who measured a scattered light peak at 430 mas,

the scattering surface appears slightly further from the

star in L′ band (3.8 µm), which may be evidence of

spatial segregation of dust particle sizes and/or lower

opacities at longer wavelengths. In future work, we will

fit a forward model of the disk using radiative transfer

and further investigate the wavelength dependence of

the scattered light surface and shadowing effects in the

disk (Wallack et al., in prep.), all of which would not be

possible using ADI.

5. DISCUSSION

The above sections exemplify that (1) combining the

small inner working angle vortex coronagraph and RDI
is a sensitive technique for discovering faint companions

∼100 mas from the star and imaging scattering light

from circumstellar disks with Keck/NIRC2 and (2) op-

timizing the reference frame selection process leads to

significant improvement in the quality of the stellar PSF

subtraction. In this section, we describe the noise char-

acteristics, artifacts, and limitations unique to this ob-

serving mode.

5.1. Treatment of false positives

Given the typical number of reference frames available

per night and the limited diversity they provide, sub-

traction of the stellar speckle field is imperfect, and the

residual speckles in RDI images tend to obey a highly

non-Gaussian noise distribution (Goodman 1975; Aime

& Soummer 2004), especially within a few λ/D of the

star. However, the standard detection methods used in
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Table 4. Keck/NIRC2 vortex observations in L′ band on UT 2017 May 10.

Name RA Dec Type Nframes tint (min) PA rot. V W1

2MASS J11110358-3134591 11 11 03.6 -31 34 59.1 M 20 15.0 6.99◦ 14.4 9.35±0.02

2MASS J11431742+1123126 11 43 17.4 +11 23 12.6 M 20 15.0 10.1◦ 12.3 9.12±0.03

2MASS J13412668-4341522 13 41 26.7 -43 41 52.2 M3.5 20 15.0 6.18◦ 14 9.70±0.02

2MASS J16042165-2130284 16 04 21.7 -21 30 28.5 K2 73 54.8 36.2◦ 11.9 7.61±0.03

2MASS J18580415-2953045 18 58 04.2 -29 53 04.5 M0V 20 15.0 7.25◦ 11.8 7.86±0.02

2MASS J19121875-2137074 19 12 18.8 -21 37 07.4 M 50 37.5 19.8◦ 11.3 7.42±0.03

2MASS J20013718-3313139 20 01 37.2 -33 13 13.9 M1 20 15.0 6.95◦ 12.3 8.14±0.02

Figure 7. The 2MASS J16042165-2130284 disk after subtracting the stellar PSF using (a) ADI and (b) RDI. Labels ‘1,’ ‘2,’
and ‘3’ indicate the the position of potential shadow features in the disk.

high-contrast imaging, including this work, estimate the

standard deviation of the speckle noise, σn, as a function

of angular separation from the star and set a fixed detec-

tion threshold (typically 5σn), which leads to a substan-

tial increase in the number of false positives compared

to what is expected from normally distributed noise. In

addition, since the spatial scale of speckles is roughly

the FWHM of the off-axis PSF, σn is estimated using

only a few independent samples at small angular sep-

arations (Mawet et al. 2014). It is therefore especially

challenging to differentiate between bright speckles and

true companions in a single observation and to set ro-

bust upper limits on the brightness of unseen compan-

ions (see e.g. Ruffio et al. 2018) within a few λ/D of

the star. More work is needed to accurately model the

residual speckle noise distribution given a set of science

and reference frames.

5.2. Typical artifacts

In addition to the non-Gaussian properties of the stel-

lar speckle noise, there are other artifacts that may

lead to false positives. For instance, several dust spots

on the vortex focal plane mask in Keck/NIRC2 resem-

ble point sources in RDI images because their bright-

ness is not correlated with that of the star and back-

ground and therefore they are not well subtracted in

post-processing. This requires the observer rule out de-

tections corresponding to the location of the dust. We

find that having a large amount of PA rotation helps

blur these effects in the de-rotation step.

The RDI approach assumes that stellar speckle noise

dominates in both the science and reference frames.

Generally speaking, RDI tends not to provide improved

sensitivity at small angular separations on targets where

spatially resolved circumstellar material dominates the

speckle noise. In fact, projecting reference frames of

point sources onto the science frames in an attempt

to model the stellar PSF modifies the appearance of

the circumstellar disk and generates additional speckle

noise, which may obscure the true scattered light fea-

tures and generate point-like false positives. Spatially

resolved sources also have a mismatch in the radial size



12 Ruane et al.

of the main stellar residuals that leaves behind a ring-

like residual at the outer edge of the central lobe of the

stellar PSF. A similar effect may occur for objects with

vastly different colors, though we have not come across

a clear example where chromatic effects dominate.

Lastly, there are speckles that appear in NIRC2 im-

ages at ∼ 7 λ/D from the star whose brightness depends

on the telescope elevation. We attribute these speckles

to segment-to-segment phasing errors that depend on

the direction of the gravity vector with respect to the

primary mirror and the azimuthal position depends on

the position of the rotator. For this reason, it may be

beneficial to use reference stars at similar declination to

the science target and similar instrument settings, in-

cluding the rotator angle.

5.3. Sources of night-to-night variance

The methods outlined above may be generalized to

include reference frames from multiple observing nights.

However, although the stellar PSF is relatively stable

throughout an observing night, it tends to vary consid-

erably from night-to-night for a number of reasons.

The calibration of static wavefront error within NIRC2

uses a phase retrieval algorithm to reconstruct the wave-

front from defocused images of the internal source. The

solution changes on a nightly basis. Additionally, wave-

front errors due to the primary mirror must be sensed

and corrected by the Shack-Hartmann wavefront sensor

in the Keck AO system (Wizinowich et al. 2000), but

segment piston errors (or the “terrace” modes) are not

seen by the wavefront sensor and are therefore not cor-

rected. This issue may be mitigated by the pyramid

wavefront sensor under development at Keck Observa-

tory (Bond et al. 2018).

For these reasons, reference frames are generally not

well correlated from night-to-night. Nevertheless, there

may be correlations with instrument settings (e.g. the

rotator angle and wavefront sensor parameters) or ob-

serving conditions that can assist in frame pre-selection,

which will be investigated in future work.

6. CONCLUSION

Using the examples of HIP 79124 C and HIP 78233 B,

we have demonstrated that RDI offers improved detec-

tion of point sources at small angular separation, by up

to a factor of 5 with respect to ADI, further unlocking

the potential of the vortex coronagraph on Keck/NIRC2.

Furthermore, the observations of MWC 758 and 2MASS

J16042165-2130284 show that RDI is beneficial for imag-

ing of circumstellar disks because it preserves the mor-

phology, which allows observers to directly interpret the

imaged scattered light distribution. We find that frame

pre-selection using image comparison metrics, such as

the SSIM, significantly improves the performance of

RDI, particularly for point source detection, astrome-

try, and photometry. RDI may help other current and

future ground-based instruments achieve better perfor-

mance at small angular separations, especially when

used in conjunction with small inner working angle coro-

nagraphs, and perform more efficient surveys by relax-

ing PA rotation requirements. RDI may also be the

primary strategy for high-contrast imaging with future

space missions, including JWST, WFIRST, HabEx, and

LUVOIR.
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APPENDIX

A. OBSERVING AND IMAGE PROCESSING DETAILS

In this section, we outline the details of our observations and the image processing steps used in our team’s

pipeline (Xuan et al. 2018). All observations were carried out using the Keck II telescope, natural guide star adaptive

optics, the NIRC2 instrument, and the vortex coronagraph mode in L′ band (3.7 µm). The angular resolution was

0.08′′ and the plate scale was 0.01′′ per pixel (Service et al. 2016). The field rotator was set to vertical angle mode,

such that the telescope pupil tracks the elevation axis, to enable ADI. In addition to the science frames (see Tables 1,

3, and 4), we took several images of the off-axis PSF with a discrete integration time (DIT) of 0.008 seconds and 100

coadds as well as images of the sky background with integration times matching that of the science and off-axis PSF

frames. The sky, off-axis PSF, and background frames were taken approximately every 30 min during the observing

sequence. The alignment of the star and the center of the vortex focal plane mask was maintained by the QACITS

tip-tilt control algorithm (Huby et al. 2015, 2017).

In the pre-processing stage, bad pixels identified in the dark frames and sky flats were replaced by the median of

neighboring values in all frames. The sky flat was the median of 10 images of a blank patch of sky with the coronagraph

focal plane mask removed (DIT of 0.75 s, 10 coadds each). We then subtracted sky background frames, taken with

the coronagraph in place, from each frame individually using a scale factor to account for background variability. The

frames were centered based on the position of the optical vortex core in the median of the science frames and each of

individual science and reference frames were registered using the peak of the cross correlation with the median science

frame. Our pipeline crops the raw 1024×1024 pixel frames to 587×587, which is the largest allowable square frame

centered on the vortex focal plane mask.

We applied PCA (Soummer et al. 2012) to estimate and subtract the stellar contribution from each image using the

VIP software package (Gomez Gonzalez et al. 2017). In the case of ADI, the PCs of a subset of pixels in the science

frames make up the stellar PSF model. Although our standard pipeline uses a set of default annular reduction regions,

we generally modify these regions to bound the companion or disk of interest on a case-by-case basis. For RDI, we

derive the PCs and the stellar PSF model only from the reference frames. Each frame is de-rotated such that North

is in the vertical direction and the ADI/RDI image is taken to be the temporal median of the de-rotated frames. We

repeat these steps for all possible number of PCs. Later, an optimal number of PCs may be defined by maximizing

the detection significance of a real or injected companion, depending on the scientific goal. For instance, an observer

may wish to use a different number of PCs for point source detection and disk imaging.

B. ERROR BARS FOR ASTROMETRY AND PHOTOMETRY OF COMPANIONS

To estimate the errors in the position and flux estimates, with the best-fit companion subtracted from the data,

we re-injected the PSF into the pre-processed science frames at the same separation and brightness, but varied the

azimuthal angle and retrieved the photometry and astrometry using the same method for each injected companion

tracing a full circle about the star. The step size in azimuthal angle was 360◦/(2πr), where r is the radial position

in units of the FWHM, to ensure that each fit was performed at the location of an quasi-independent speckle sample.

We took the standard deviation of the measured flux and position of the injected companions as the error on each

parameter. The signal-to-noise ratio, S/N , is defined as the ratio between estimated flux, F , and the uncertainty in

the flux, σF .

C. ORBIT FITTING OF POINT SOURCE COMPANIONS WITH ORBITIZE AND OFTI

In this section, we provide more details on the orbit fit and posteriors on the point source companions from the

systems discussed in Section 3. Table 5 summarizes the astrometry used in our fit. We use stellar distances from

Bailer-Jones et al. (2018) of 132±1 pc and 256±4 pc for HIP 78233 and HIP 79124, respectively. We use total system

mass estimates from Hinkley et al. (2015), corresponding to 1.7 ± 0.1 MSun for HIP 78233 and 2.48 ± 0.45 MSun

for HIP 79124. We choose uninformed priors for all parameters. Namely, for the semimajor axis, we choose a

prior probability distribution that is uniformly linear in log space (Jeffreys Prior); for inclination, we choose a prior

probability distribution corresponding to p(x) ∝ sin(x); and for all other parameters, we choose a linearly uniform

prior probability distribution. We fit the companions as point masses and for the HIP 79124 triple system, we treat each

companion independently as their large mutual separation would make interactions between the B and C companions
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Table 5. Input astrometry for orbit fitting via orbitize

UT date Separation (mas) Position Angle (◦) Reference

HIP 78233 B astrometry

2010 Apr 26 133 ± 3 20 ± 1 Hinkley et al. (2015)

2016 Apr 13 141 ± 64 6 ± 1 this work

HIP 79124 B astrometry

2008 May 25 990 ± 1 98.11 ± 0.05 Lafrenière et al. (2014)

2016 Apr 13 971.5 ± 1 100.61 ± 0.03 this work

HIP 79124 C astrometry

2010 Apr 5 177 ± 3 242 ± 1 Hinkley et al. (2015)

2016 Apr 13 192 ± 2 246.5 ± 0.8 this work

very small. The inclination convention is that 0◦ ≤ i < 90◦ orbits are counter-clockwise and 90◦ ≤ i < 180◦ are

clockwise.

Using orbitize’s OFTI algorithm, we sample 100,000 orbits for each of the three point source companions and

compute posterior probabilities. Figure 8 shows the marginalized posterior probabilities for orbital semimajor axis,

eccentricity, and inclination. These figures also include the prior probability to demonstrate how well the data con-

strains the orbits. The marginalized posterior on semimajor axis is the best constraint on the companion’s orbit size

when accounting for all available astrometry. For HIP 78233 B and HIP 79124 C, while the eccentricity and inclination

posteriors are not well constrained and are not very different from the prior. The eccentricity posterior distribution

does show that lower values are more likely than higher values and the inclination posterior distribution disfavors a

completely edge-on system (inclination of 90◦). For HIP 79124 B, the majority of the eccentricity distribution is at

values below 0.5 and the inclination distribution strongly favors an inclination less than 90◦, indicating that the object

is orbiting counter-clockwise from our viewing angle. These posteriors are available as part of this article’s online data

for use in further calculations as a table of orbit samples.
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Figure 8. Marginalized probability density functions (pdfs) for three orbital parameters from orbit fits of three point source
companions. The blue histogram shows the posterior pdf while the orange curve shows the prior pdf. For the semimajor axis
pdf, the median and 68% confidence region centered on the median is labelled as a point with horizontal bars. The posterior
samples used to generate these pdfs are available as part of the online data.
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2018, ApJ, 852, 104, doi: 10.3847/1538-4357/aaa1f2

Ren, B., Dong, R., Esposito, T. M., et al. 2018, ApJL, 857,

L9, doi: 10.3847/2041-8213/aab7f5

Rice, W. K. M., Armitage, P. J., Wood, K., & Lodato, G.

2006, MNRAS, 373, 1619,

doi: 10.1111/j.1365-2966.2006.11113.x

Ruane, G., Mawet, D., Mennesson, B., Jewell, J., &

Shaklan, S. 2018, J. Astron. Telesc. Instrum. Syst., 4,

015004, doi: 10.1117/1.JATIS.4.1.015004

Ruane, G., Mawet, D., Kastner, J., et al. 2017, AJ, 154, 73,

doi: 10.3847/1538-3881/aa7b81

Ruffio, J.-B., Mawet, D., Czekala, I., et al. 2018, AJ, 156,

196, doi: 10.3847/1538-3881/aade95

Schneider, G., Weinberger, A. J., Becklin, E. E., Debes,

J. H., & Smith, B. A. 2009, AJ, 137, 53,

doi: 10.1088/0004-6256/137/1/53

Schneider, G., Grady, C. A., Hines, D. C., et al. 2014, AJ,

148, 59, doi: 10.1088/0004-6256/148/4/59

Serabyn, E., Mawet, D., & Burruss, R. 2010, Nature, 464,

1018, doi: 10.1038/nature09007

Serabyn, E., Huby, E., Matthews, K., et al. 2017, AJ, 153,

43, doi: 10.3847/1538-3881/153/1/43

Service, M., Lu, J. R., Campbell, R., et al. 2016, PASP,

128, 095004, doi: 10.1088/1538-3873/128/967/095004

Song, I., Zuckerman, B., & Bessell, M. S. 2012, AJ, 144, 8,

doi: 10.1088/0004-6256/144/1/8

Soummer, R., Hagan, J. B., Pueyo, L., et al. 2011, ApJ,

741, 55, doi: 10.1088/0004-637X/741/1/55

Soummer, R., Pueyo, L., & Larkin, J. 2012, ApJL, 755,

L28, doi: 10.1088/2041-8205/755/2/L28

Sparks, W. B., & Ford, H. C. 2002, ApJ, 578, 543,

doi: 10.1086/342401

Spergel, D., Gehrels, N., Baltay, C., et al. 2015, ArXiv

e-prints, 1503.03757

The Astropy Collaboration, Price-Whelan, A. M., Sipőcz,
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