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Abstract

Background: Ichthyosaurs are Mesozoic reptiles considered as active swimmers highly adapted to a fully open-marine life.
They display a wide range of morphologies illustrating diverse ecological grades. Data concerning their bone
microanatomical and histological features are rather limited and suggest that ichthyosaurs display a spongious,
‘‘osteoporotic-like’’ bone inner structure, like extant cetaceans. However, some taxa exhibit peculiar features, suggesting
that the analysis of the microanatomical and histological characteristics of various ichthyosaur long bones should match the
anatomical diversity and provide information about their diverse locomotor abilities and physiology.

Methodology/Principal Findings: The material analyzed for this study essentially consists of mid-diaphyseal transverse
sections from stylopod bones of various ichthyosaurs and of a few microtomographic (both conventional and synchrotron)
data. The present contribution discusses the histological and microanatomical variation observed within ichthyosaurs and
the peculiarities of some taxa (Mixosaurus, Pessopteryx). Four microanatomical types are described. If Mixosaurus sections
differ from those of the other taxa analyzed, the other microanatomical types, characterized by the relative proportion of
compact and loose spongiosa of periosteal and endochondral origin respectively, seem to rather especially illustrate
variation along the diaphysis in taxa with similar microanatomical features. Our analysis also reveals that primary bone in all
the ichthyosaur taxa sampled (to the possible exception of Mixosaurus) is spongy in origin, that cyclical growth is a common
pattern among ichthyosaurs, and confirms the previous assumptions of high growth rates in ichthyosaurs.

Conclusions/Significance: The occurrence of two types of remodelling patterns along the diaphysis, characterized by bone
mass decrease and increase respectively is described for the first time. It raises questions about the definition of the osseous
microanatomical specializations bone mass increase and osteoporosis, notably based on the processes involved, and reveals
the difficulty in determining the true occurrence of these osseous specializations in ichthyosaurs.
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Introduction

Ichthyosaurs represent one of the most successful groups of

Mesozoic marine reptiles, as shown by their cosmopolitan

distribution and their extensive fossil record [1–3]. They lived

from the Early Triassic to the early Late Cretaceous, i.e. from

about 245 to 90 million years ago. Ichthyosaurs are among the first

air-breathing vertebrates that adapted to a pelagic life style [3].

These latter forms are considered as the reptiles most strongly

morphologically adapted to a fully open-marine life. Among

extant aquatic amniotes, only cetaceans are as highly modified for

a pelagic lifestyle as ichthyosaurs were. Ichthyosaurs appear thus

as a particularly interesting group to understand the evolutionary

processes involved in secondary adaptation to an aquatic life.

Although ichthyosaurs are very often represented as dolphin-

like or tuna-shaped, they display a wide range of morphologies

illustrating diverse ecological grades. The earliest forms, showing a

long, slender body with a straight and long tail (cf. Utatsusaurus),

were probably anguilliform swimmers [4]. Conversely, most of the

post-Triassic forms display a fusiform stiff body with an upright

bilobate (fish-like) tail on a narrow peduncle (cf. Stenopterygius) and

are considered as thunniform swimmers [5], whereas the Middle

Triassic taxon Mixosaurus displays an intermediary pattern [4].

Several additional intermediary morphologies between these two

‘extremes’ (with differences for example in body size, shape,

elongation and flexibility) were illustrated (e.g., [6,7]).

Bone microanatomical organization mainly relies on the

biomechanical constraints undergone by organisms (e.g., [8–12]).

The analysis of the microanatomical characteristics of various

ichthyosaur long bones should thus provide information about

their locomotor abilities. Data concerning ichthyosaur bone

microanatomical and histological features consist only of a few
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long bone, vertebra and rib sections (except for Mixosaurus, for

which more bones were analyzed; see [13]) of Utatsusaurus,

Mixosaurus, Pessopteryx, Caypullisaurus, Mollesaurus, Stenopterygius,

Ichthyosaurus and Platypterygius (misidentified as Ichthyosaurus by

Kiprijanoff, [14]) [13,15–24]. Although representing several

genera, the data are too heterogeneous to permit significant

intrageneric comparisons, as well as homologous intergeneric

ones.

A comment on Pessopteryx is in order here because it is

noteworthy that this material was assigned to Omphalosaurus in

earlier histological studies [18,19]. Pessopteryx is a taxon erected by

Wiman [25] for cranial and limb material found together in the

Lower Triassic of Spitsbergen. The cranial part of this material is

now assigned to the possible ichthyosaur Omphalosaurus [26],

whereas the limb material is considered to pertain to an

ichthyosaur for which the name Pessopteryx nisseri seems most

appropriate [2,27,28]. However, the possibility cannot be exclud-

ed that the limb bones do belong to the same taxon as the cranial

material, after all. In addition, the systematic affinities of

Omphalosaurus remain controversial because it is either one of the

most primitive ichthyosaurs [26,29] or the sister group of

Ichthyosauria [30]. Inclusion of Pessopteryx in this study seems

justified because its histology will be informative under either

phylogenetic hypothesis and because of the important earlier work

that was done on its histology under the ichthyosaur affinity

hypothesis [18,19].

Based on the data available, it is currently generally considered

that ichthyosaurs display a spongious, ‘osteoporotic-like’ bone

inner structure, i.e. that their inner bone structure is characterized

by a loss of bone, a pattern exemplified by extant cetaceans [31–

33]. It must be pointed out that this broad statement relies on the

analysis of only a few sections and has been generalized for all

ichthyosaurs. Buffrénil and Mazin [19] described differences in the

limb microanatomy between Pessopteryx (Omphalosaurus in their

study) on the one hand and Ichthyosaurus and Stenopterygius on the

other hand, notably consisting of the occurrence of a small free

medullary cavity and of cyclical growth in Pessopteryx. It should also

be noted that the ‘Ichthyosaurus’ humerus of the study of Buffrénil

and Mazin [19] is Kimmeridgian in age and actually closely

resembles the humerus of ophthalmosaurine ophthalmosaurids, a

clade of highly derived ichthyosaurs [34]. Moreover Kolb et al.

[13] observed a relatively higher inner compactness in Mixosaurus,

as compared to the other ichthyosaurs, which they interpreted as a

possible characteristic of a near-shore or shelf habitat. Bone

microanatomy appears thus to confirm the diversity observed

based on anatomical features within ichthyosaurs.

The aim of this study is to discuss these various hypotheses

based on the analysis of new material (and of previously analyzed

sections) encompassing various ichthyosaur taxa. It discusses the

histological and microanatomical variations observed within

ichthyosaurs, notably along the diaphysis, but also the peculiarities

of some taxa.

Materials and Methods

We are very thankful to R. Schoch (Staatliches Museum für

Naturkunde Stuttgart, Stuttgart, Germany), H. Furrer (Paläonto-

logisches Institut und Museum der Universität, Zurich, Switzer-

land), R. Hauff (Urwelt-Museum Hauff, Holzmaden, Germany),

and S. Stuenes (Paleontological Museum of Uppsala University,

Uppsala, Sweden) for the loan of specimens and permission to

section, to O. Dülfer and R. Hofmann (Steinmann-Institut,

Universität Bonn, Bonn, Germany) for the preparation of casts

and thin sections, and to J. Lindgren (Lund University, Sweden)

for the loan of some sections.

The material essentially consists of sections from humeri and

femora (Table 1) because stylopodial bones have a stronger

ecological signal than zeugopodial ones [35,36]. Material from

various ichthyosaurs could be accessed for histological investiga-

tions and was thus analyzed: Mixosaurus, Temnodontosaurus,

Ichthyosaurus, Stenopterygius, and Ophthalmosaurus, as well as Pessopteryx

(Table 1). The six taxa sampled encompass the breadth of

ichthyosaurian phylogeny, with all major lineages being repre-

sented.

Some sections were already made for previous studies [13,19];

see Table 1. All sections are mid-diaphyseal transverse sections

and were processed using standard procedures (see [13]). Prior to

sectioning, most new specimens were photographed and cast.

Sections were observed under a Leica DM 2500 compound

polarizing microscope equipped with a Leica DFC 420C digital

camera, scanned at high resolution (i.e., between 6400 and

12800 dpi) using an Epson V750-M Pro scanner and transformed

into binary images using Photoshop CS3 (where black and white

represent bone and cavities respectively). Compactness was

calculated by means of the software ImageJ [37]. However, for

several sections, compactness was difficult to estimate because the

bone underwent some crushing during fossilization. This process is

naturally more intense in the less compact parts of the bone.

Taking into consideration this crushing, approximate compactness

indices were calculated as an estimate. The bone maximal

diameter was measured directly on the sections.

In addition, three humeri (Ichthyosaurus IPB R222, IPB R 216

and Ophthalmosaurus ULg 2013-11-19) and one femur (Stenopterygius

IPB R 633) were scanned using a high-resolution helical CT

scanner (GEphoenix|X-ray v|tome|xs, resolution between 40.7

and 77.1 mm) at the Division of Paleontology, Steinmann Institute

for Geology, Mineralogy, and Paleontology, University of Bonn

(Germany). Moreover, in order to obtain a better contrast between

bone and the infilling sediment, the Ophthalmosaurus ULg 2013-11-

19 humerus was scanned using phase contrast at the European

Synchrotron Radiation Facility (ESRF, Grenoble, France) on the

beamline BM5 (resolution: 28.4 mm, reconstructions performed

using a phase retrieval approach based on Paganin’s algorithm; see

[38]). Image segmentation and visualization were performed using

VG-Studio Max (Volume Graphics) version 2.0. and 2.2.

Results

(a) Microanatomical features
All bones analyzed are spongious without a medullary cavity

(except for already published sections of Pessopteryx). However,

distinct microanatomical patterns occur between taxa, but also

within a single taxon and even within a single bone.

Humeri. Mixosaurus sections differ from those of the other

taxa analyzed. The sections essentially consist of a loose spongiosa

surrounded by a layer of compact cortical bone (Microanatomical

Type [MiT] 0; see [13]; Fig. 1A). This rather compact cortical

bone, its thickness and the looseness of the spongiosa (i.e., few

trabeculae surrounding rather large intertrabecular spaces) differ

from what is observed in the other taxa (notably the thinner and

more numerous trabeculae surrounding smaller and more

numerous intertrabecular spaces).

Concerning the other taxa, variation also occurs: Some sections

almost exclusively consist of a relatively loose spongiosa with

randomly shaped (especially in the medullary region) intertrabe-

cular spaces, surrounded by a relatively thin compact peripheral

layer exhibiting rather small cavities (Fig. 1F). Conversely, other

Ichthyosaur Long Bone Microanatomy and Histology
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sections correspond to a relatively compact spongiosa with small

cavities (even in the core of the section) displaying a circumfer-

ential organization in the outer and inner cortex and being

randomly shaped and oriented in the core (Fig. 1B–C). Various

sections are intermediate between these two ‘extremes’ with a

variable percentage of the medullary region consisting of a

relatively loose poorly organized spongiosa, whereas the surround-

ing spongiosa exposes a rather laminar organization (Fig. 1D–E).

These various patterns are usually observed within a single

genus and are thus not correlated with taxonomy. Moreover, they

are correlated neither with species size, nor with ontogeny (size

being estimated from section maximal diameter; see Table 1).

Observation of two sections taken at a very short distance at bone

mid-diaphysis highlighted already significant differences in the

respective proportion of the unorganized versus laminar spongio-

sae and thus suggested important variability along the diaphysis.

Indeed, if all sections are mid-diaphyseal, they probably do not all

exactly correspond to the same homologous plane. The reference

plane, or ‘perfect’ mid-diaphyseal section, is the one intercepting

the point where growth originated and where all the bone

originally consisted of periosteal bone. Virtual longitudinal and

transverse sections from the specimens scanned highlighted the

important difference in the thickness of the compact bone layer of

periosteal origin along the diaphysis and the important resulting

differences in microanatomical organization (Fig. 2). The parts

Table 1. List of the material analyzed in this study.

Taxon Coll. Nb. Locality/Stratigraphy B C MD MiT

Ichthyosaurus PIMUZ A/III 843 No information H 68.0 15 -

IPB R222 Lyme Regis, Dorset, England H 68.5 29 2

Lower Jurassic

SMNS Unnumbered Lyme Regis, Dorset, England H 83.3 39 1

Lower Jurassic 87.5

LO 11904t Lyme Regis, Dorset, England F 68.3 16 2

Lower Jurassic

SMNS Unnumbered Holzmaden, Baden Wurttemberg, Germany F 51.3 9 2

Lower Jurassic

IPB R216 Lyme Regis, Dorset, England F 34 1

Lower Jurassic

Mixosaurus PIMUZ T5844 [13] Monte San Giorgio, Ticino, Switzerland H 73.3 - 0

Middle Triassic 78.1

PIMUZ T2046 [13] Monte San Giorgio, Ticino, Switzerland H 60.9 - 0

Middle Triassic 62.4

F 52.4

Pessopteryx PMU uncatalogued Spitsbergen E 60.5 35 2

Lower Triassic 54.0

Ophthalmosaurus SMNS 10170 Lower Oxford Clay, England H 78.1 85 1

Peterborough Member, Middle Jurassic 76.5

ULg 2013-11-19 Kimmeridgian, Dorset, England H - 43 -

Kimmeridge Clay Fm.

Stenopterygius SMNS 81194 Staatswald Ohmden, Kirschmann quarry,
Germany

H 73.7 31 1–2

Early/Lower Toarcian, Lower Jurassic 79.6

SMNS A [19] Holzmaden, Baden-Wurttemberg, Germany H 55.3 42 3

SMNS 50093 Lower Jurassic H 71.5 24 -

SMNS 50328 H 58.1 - 2

SMNS B [19] F 63.6 22 2

IPB R633 Holzmaden, Baden-Wurttemberg, Germany F - - -

Lower Jurassic

Temnodontosaurus PIMUZ SMNS 50329 No information H 57.3 53 2

56.4

F - 44 2

B: bone, H: humerus, F: femur, E: epipodial indet.; C: compactness (in %), MD: maximal diameter (in mm), MiT: microanatomical type. The included references refer to
papers where some sections, which were reanalyzed in the present study, were previously described. IPB: Institute for Paleontology, University of Bonn, Germany; LO:
Lund Original, Department of Geology, Lund University, Sweden; PIMUZ: Paläontologisches Institut und Museum, Universität Zürich, Switzerland; SMNS: Staatliches
Museum für Naturkunde Stuttgart, Germany; ULg: Palaeontological Collections, Université de Liège, Belgium.
doi:10.1371/journal.pone.0095637.t001
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where the spongiosa is looser are naturally less resistant during

diagenesis and, as a result, are often crushed.

Compactness indices for the humerus vary from 55.3% in the

Stenopterygius section SMNS A to 87.5% in the Ichthyosaurus section

SMNS Unnumbered A.

Femora. The organization of the few femora available

appears similar to that observed in the humeri and the same

variations seem to occur (Fig. 3A–B). Compactness indices range

from 51.3 to 68.3%.

Epipodials. Pessopteryx epipodials show an organization sim-

ilar to that observed in the humeri analyzed (except Mixosaurus;

Fig. 3C). Compactness indices were estimated between 54.0% and

60.5%.

(b) Histological features
Various histological features are observed depending on the

sections. As differences between the different types of bones appear

rather inconsequential, all bones are hereafter described together.

We first focus on the most compact sections, with no or almost

no central area of rather loose spongiosa, which are therefore

considered to expose only spongiosa of periosteal origin (MiT 1;

e.g., Ichthyosaurus SMNS Unnumbered, Ophthalmosaurus SMNS

10170; see Table 1). In these sections, cortical bone consists of

fibro-lamellar bone, i.e., a matrix of woven-fibered bone – as

shown by the isotropy of the tissue and by the large irregularly

shaped and randomly oriented osteocyte lacunae – with numerous

primary osteons (Fig. 4A–B). The primary osteons are longitudi-

nally oriented and organized in circumferential layers. Numerous

anastomoses occur; they are, depending on the position on the

section, essentially circular, or circular and radial, thus character-

izing a laminar or plexiform tissue (see [39]; Fig. 4B). Locally,

primary osteons can also be essentially radially oriented, thus

characterizing radiating fibro-lamellar bone. Primary bone can

also locally consist of ‘unusual parallel-fibered bone’ sensu [40]

that is parallel-fibered bone with large, randomly shaped and

oriented osteocyte lacunae (Fig. 4C). Resorption is limited in the

outermost cortex, so that remains of primary bone are abundant

(Fig. 4B), but increases toward the core of the section. Remodelling

is generally important; secondary bone essentially consists of

parallel-fibered bone. Numerous secondary osteons occur. Impor-

tant centripetal bone deposits of lamellar or parallel-fibered bone

fill the vascular and intertrabecular spaces, so that the spongiosa is

secondarily compacted (Fig. 4D–E). As a result, most of the section

almost exclusively consists of a dense network of primary and

secondary bone in the outer cortex and of secondary bone with

interstitial remains of woven-fibered bone in its core (Fig. 4D–E).

In sections with a significant area of loose spongiosa, i.e. of

supposed endochondral spongiosa (MiT 2; e.g., Ichthyosaurus R222;

Pessopteryx epipodial; Table 1; Fig. 1D–E), primary bone also

essentially consists of fibro-lamellar bone (Fig. 4F–H). However,

the laminar or plexiform organization, as well as radiating fibro-

lamellar bone, only occur in the outer cortex (Fig. 4F–G), i.e. in

the spongiosa of periosteal origin. Important remains of primary

woven bone are observed in the core of the trabeculae (Fig. 4H).

As in MiT 1, parallel-fibered bone (or unusual parallel-fibered

bone) also locally occurs (Fig. 4I–J). In the periphery, some

vascular spaces are not yet filled with lamellar bone deposits and

thus do not yet consist of primary osteons (Fig. 4J). In the core of

the section, i.e., in the spongiosa of endochondral origin,

remodelling is intense and characterized by an imbalance between

bone resorption and reconstruction with a resorption prevalence.

As a result, the deep spongiosa, where trabeculae are almost

exclusively made of secondary lamellar bone, is loose. Secondary

osteons occur in both areas.

In some sections (MiT 3; Stenopterigius SMNS A; Table 1;

Fig. 1F), the circumferential organization is absent or only occurs

in the outermost cortex (Fig. 5A,E). The cortex is very thin and

consists of primary woven-fibered bone with primary and

secondary osteons rather randomly distributed and with random

size and shapes (Fig. 5B). Remains of primary bone quickly

diminish away from the bone periphery and are absent in the core

of the section (Fig. 5C–D). Remodelling is very intense, even in the

outer (but not outermost) cortex. In the Ichthyosaurus section

PIMUZ A/III 843, the outer cortex essentially displays primary

and numerous secondary osteons and restricted remains of

Figure 1. Schematic drawings illustrating the microanatomical
types observed in ichthyosaur humeri. A, Mixosaurus PIMUZ T
2046; B, Ichthyosaurus SMNS Unnumbered; C, Ophthalmosaurus SMNS
10170; D, Ichthyosaurus IPB R222; E, Stenopterygius SMNS 81194; F,
Stenopterygius SMNS A; A: Microanatomical type (MiT) 0; B–C: MiT1; D–E:
MiT2; F: MiT3. Scale bars equal 10 mm.
doi:10.1371/journal.pone.0095637.g001

Figure 2. Virtual longitudinal sections of the humerus of
Ophthalmosaurus ULg 2013-11-19I. The dotted lines indicate the
transition between the osseous tissues of periosteal (left-right) and
endochondral (top-bottom) origin. Note the visible LAGs on the primary
periosteal bone. The cross indicates the point of origin of growth. Scale
bars equal 10 mm.
doi:10.1371/journal.pone.0095637.g002
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primary bone (Fig. 5F). The latter diminish centripetally and are

almost absent in the core of the section, where remodelling is

characterized by a resorption prevalence, and which is thus much

looser than the cortex (Fig. 5G–H). The core of the section

corresponds to Haversian tissue. Such sections are considered as

essentially exposing spongiosa of endochondral origin, surrounded

by a very thin layer of periosteal bone. The outermost cortex is

mostly compact, with areas deprived of any vascularization.

Several sections (see Fig. 6) display evidence of cyclical bone

deposition. Indeed, some layers with large intertrabecular spaces

alternate with layers characterized by spaces of much lower size,

thus probably illustrating a slowing in growth (Fig. 6A). These

features are rarely observable on the whole section. They are

generally localized, probably as a result of bone remodelling,

which prevents their use for skeletochronological analyses. Some

sections display in their outer cortex a vascularized layer deposited

after an avascular one, which clearly suggests that growth resumed

after a slow-down (Fig. 6B).

Discussion

(a) Histological features
The cortical spongiosa of Ichthyosaurus and Stenopterygius was

described as resulting from the inner resorption of primary

compact tissues, and thus as being secondary in origin, as opposed

to that of Pessopteryx, which was assumed to be of primary origin

[19]. Our study shows that primary bone in all the ichthyosaurian

taxa sampled (to the possible exception of Mixosaurus, whose

microanatomical organization appears peculiar within ichthyo-

saurs) is spongy in origin.

The presence of highly vascularized fibrolamellar bone confirms

the previous observations to suggest high growth rates in

ichthyosaurs (see [41] for details).

(b) Microanatomical variation along the diaphysis
Our analysis reveals an important diversity in microanatomical

organization among ichthyosaur long bones, which is not

correlated with size. The analysis of virtual longitudinal sections

of the long bones scanned (see Material and Methods section)

revealed an important change in microanatomy along the

diaphysis, which probably explains the variations observed.

The transition from the rather compact to the looser spongiosa

illustrates the transition between the spongiosa of periosteal and

endochondral origin respectively. Such a variation in proportion,

along the diaphysis, between the two types of spongiosa, exhibiting

important differences in compactness, was already described in

Pessopteryx [18]. However, even the periosteal spongiosa was not

previously described as particularly compact.

The denser sections, exhibiting only a spongiosa of periosteal

origin (MiT 1), are considered to correspond to the ‘perfect’ mid-

diaphyseal sectional plane, i.e. the one intersecting the point of

origin of growth. In these sections, remodelling is active, especially

in the medullary area, and characterized by excessive secondary

bone deposits filling the intertrabecular spaces, coupled with a

slight inhibition in primary bone resorption, notably in the outer

cortex, conferring to the whole section a high compactness. In the

sections that are considered the further away from the ‘perfect’

mid-diaphyseal sectional plane (MiT 3), and which are assumed to

essentially consist of a spongiosa of endochondral origin,

remodelling is active and characterized, notably in the medullary

area, by a reconstruction deficit, so that the spongiosa is more

loosely organized. Bone remodelling varies thus strongly locally

along the diaphysis, as these two transverse sectional planes are

close in the ichthyosaur bones, which characteristically exhibit a

short diaphysis.

A deficit in secondary bone deposits during remodelling

generally characterizes what has been called an osteoporotic-like

pattern, responsible for a decrease in bone mass [32]. Conversely,

additional deposits filling the intertrabecular spaces correspond to

one pattern of osteosclerosis, engendering bone mass increase (cf.

[42]). Various bones from a single skeleton can display these two

types of osseous specializations (e.g., bone mass increase in the

rostrum of Mesoplodon; probably bone lightening in its long bones;

[43]). However, the two types of remodelling patterns have never

been described in a single bone yet. Our study thus raises questions

about the definition of these specializations, notably based on the

processes involved.

Based on MiT 3 sections, it was previously suggested that

ichthyosaurs, like modern cetaceans, displayed osteoporotic-like

bones [19,32]. The lowest compactness indices obtained in our

sample are slightly above 50% (51.3 and 52.4% in Ichthyosaurus and

Mixosaurus femora, 54% in a Pessopteryx epipodial and 55.3% in a

Stenopterygius humerus; see Table 1). These values, although among

the lowest values within amniotes, are not particularly low, as

several amniote taxa display similar compactness indices in their

humeri and femora (cf. [44]). These bones thus do not seem to

illustrate a true osteoporotic-like pattern. They are indeed not

really characterized by a loss in bone mass, but rather by a

spongious organization, with the absence of a medullary cavity.

The highest compactness indices in the sections studied, range

around 80–85% (83.3 and 87.5% in Ichthyosaurus, 78.1% in

Mixosaurus, 78.1 and 76.5% in Ophthalmosaurus). These values are

Figure 3. Sections of ichthyosaur long bones. A–B, Ichthyosaurus femora; A, LO 11904t; B, SMNS Unnumbered. C, Pessopteryx epipodial PMU
uncatalogued. Scale bars equal 10 mm.
doi:10.1371/journal.pone.0095637.g003
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Figure 4. Histological features of ichthyosaur humeral sections. A–C and D–E, Ichthyosaurus SMNS Unnumbered outer and inner parts of the
section respectively. A, primary fibrolamellar bone (FLB) in natural light (NL); note the isotropic nature of the primary fibrous bone (FB); B, FLB in
polarized light (PL) illustrating the variable orientations of the primary osteons; C, ‘unusual parallel-fibered bone’ (UPFB) in PL with gypsum filter; D–E,
extremely compact core of the section made of almost exclusively secondary bone in PL and PL with gypsum filter. F–I, Ichthyosaurus IPB R222 outer
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rather high within amniotes (cf. [44]) but, again, bones that are

clearly osteosclerotic usually display much higher values (cf. [44]).

As a consequence, if based on one or another type of diaphyseal

section it would be tempting to attribute an osteoporotic-like or

osteosclerotic state to these bones, this would probably be a

mistake. It would appear logical to determine the possible

occurrence of a microanatomical specialization based on the

whole bone general organization. Mid-diaphyseal sections are

used as reference planes for long bones as they typically reflect the

three-dimensional organization. However, this does not seem to be

the case in ichthyosaurs, which complicates the understanding of

their microanatomical specialization.

In ichthyosaurs, except in some specimens of Pessopteryx [18,19],

the long bones have clearly lost the medullary cavity. The general

organization appears thus spongious, with no layer of highly

compact bone, with the exception of a very thin one in the bone

periphery of some specimens. If the spongiosa is much compacted

in the ‘perfect’ mid-diaphyseal plane, it is much looser farther

away from this plane.

Remodelling in the periosteal and endochondral areas appears

thus characterized by an increase and decrease in bone

compactness respectively. These antagonistic processes impede

the attribution of a general type of specialization to the whole

bone. It seems thus more cautious not to try to name this atypical

microanatomy based on the specializations already described in

other taxa.

As opposed to the condition described above, the microana-

tomical organization is overall homologous along the diaphysis in

most amniotes, even in other efficient swimmers like cetaceans

([45,46,47]; A.H. pers. obs.). However, it must be pointed out that

such a change also seems to occur in a few taxa, like the sea otter

Enhydra lutris [47] or some plesiosaurs [48]. A compacted mid-shaft

usually results from either an inhibition of primary periosteal bone

resorption or from increased secondary bone deposition during

remodelling. However, it is usually associated with an increase in

compactness of the spongiosa of endochondral origin, which is not

the case in ichthyosaurs. Our study reveals the interest of

analyzing the possible occurrence of variations in microanatomical

organization along the diaphysis in active swimmers characterized

by short shafts, and notably the processes involved, in order to see

if this phenomenon is specific to ichthyosaurs or not.

Bone microanatomy is generally considered to reflect the

physical constraints of locomotion (see e.g., [8,10,11,49]. Bone

mass increase is considered to be an adaptation for hydrostatic

buoyancy and body trim control in poorly active swimmers living

in shallow water environments [42], whereas a spongious light

organization generally characterizes active swimmers relying on a

hydrodynamic control of buoyancy and body trim and requiring

good manoeuvrability and acceleration abilities [32,42]. A

spongious organization with a compacted central area has never

been described in any extant or extinct taxon so far. As a

consequence, it appears too early to try to infer any specifically

associated functional requirement.

(c) Specificity of Pessopteryx
All long bones of Pessopteryx (humerus, femur, tibia) were

described as displaying a small medullary cavity [18,19], which

was interpreted as a specificity of this taxon among Ichthyosauria.

However, we did not observe a medullary cavity in the epipodial

bone of Pessopteryx analyzed.

Remodelling was described as relatively limited in Pessopteryx, as

compared to the more derived Ichthyosaurus and Stenopterygius [19].

However, our analysis shows a high degree of remodelling in

Pessopteryx epipodial bones, as in the other ichthyosaurs.

In addition, the bones of Pessopteryx were described as showing

histological evidence of cyclic growth, which were considered

absent in Ichthyosaurus and Stenopterygius [19]. The evidence of cyclic

growth is suggested in sections of several ichthyosaurs, although

the cycles are generally not continuous and thus cannot be used in

skeletochronology (like the LAGs in Mixosaurus sections; see below,

[13]). These observations nevertheless reveal that cyclical growth is

a common pattern among ichthyosaurs but, as it is only observable

in the primary spongiosa of periosteal origin, it is not seen in all

sections, which probably resulted in this misinterpretation.

The absence of a marked difference between the histology of

Pessopteryx and that of the other taxa in this study would be

consistent with either a very basal position of this taxon among

ichthyosaurs or with this taxon being a sister-group of Ichthyo-

sauria (see above).

(d) Specificity of Mixosaurus
Our study also highlights the clear difference in microanatom-

ical organization between Mixosaurus on the one hand, and the

other ichthyosaurs from our sample on the other hand.

Morphologically, Mixosaurus humeri characteristically show an

anterior flange, as in many other Triassic ichthyosaurs [50]. But

they also differ in their microanatomy. Mixosaurus long bones show

a peripheral layer of compact cortex clearly distinct from the

remainder of the section, which consists of a loose spongiosa [13].

Although it is not clear because of intense distortion, Utatsusaurus

long bones seem to suggest a microanatomical organization closer

to that of the non-Mixosaurus ichthyosaurs [23]. Further investi-

gations are required to check the absence of a compacted mid-

shaft area in Mixosaurus long bones. Another specificity of

Mixosaurus is that it is the only taxon for which remains of

calcified cartilage are observed in the core of sections of

presumably new born and juvenile specimens. However, no

specimen of similar ontogenetic stage has been analyzed for

another taxa yet, so that this peculiarity should be interpreted with

caution. Moreover, it is the only taxon showing LAGs [13], which

remains unexplained.

It must be pointed out that Kolb et al. [13] described the inner

compactness in Mixosaurus long bones as relatively high (essentially

as a result of the compact outer cortex) and interpreted it as a

possible characteristic of a near-shore form or shelf dweller.

However, our study shows that Mixosaurus bones do not display a

higher compactness than the other ichthyosaurs, which challenges

this earlier interpretation. The peculiarity of Mixosaurus microan-

atomical features could nevertheless reflect some differences in

locomotion mode, which needs further investigations to be

specified.

Conclusions

(1) Important variations are observed between the various

ichthyosaur sections. The various patterns do not correlate

with taxonomy (except maybe for Mixosaurus), species size, or

cortex. J, Ichthyosaurus SMNS Unnumbered outer cortex. F–H, primary FLB in PL with gypsum filter; F, laminar organization; G, radiating FLB; H,
important amount of primary FB in the osseous trabeculae. I–J, UPFB in I, PL with gypsum filter and J, NL respectively; note the occurrence of simple
vascular canals. FB: fibrous bone; PFB: parallel-fibered bone.
doi:10.1371/journal.pone.0095637.g004
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ontogeny but seem to essentially illustrate a strong variability

along the diaphysis.

(2) Two types of remodelling patterns occur along the diaphysis,

characterized by bone mass decrease and increase respective-

ly, which has never been described in a single bone before.

This result raises questions about the definition of the osseous

specializations bone mass increase and osteoporosis, notably

based on the processes involved. It suggests that none of these

Figure 5. Histological features of ichthyosaur humeral sections. A–D, Stenopterygius SMNS A; E–H, Ichthyosaurus Unnumbered. A,B,E,F outer
cortex in natural light with numerous primary and secondary osteons. C, trabeculae slightly away from the bone periphery; note the remains of
primary fibrous bone and the secondary lamellar and parallel-fibered bone; D, core of the section; the trabeculae are entirely secondary in origin. G–
H, Haversian tissue in the core of the section. FB: fibrous bone; PFB: parallel-fibered bone; SO: secondary osteon.
doi:10.1371/journal.pone.0095637.g005
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specializations truly occurs in ichthyosaur long bones and

reveals the importance of analyzing the possible occurrence of

variations in microanatomical organization along the diaph-

ysis in other active swimmers, in order to see if this peculiarity

is specific to ichthyosaurs or not.

(3) Our study shows that primary bone in all the ichthyosaur taxa

sampled (to the possible exception of Mixosaurus) is spongy in

origin and that cyclical growth is a common pattern among

these taxa.

(4) Highly vascularized fibrolamellar bone is in accordance with

previous assumptions of high growth rates in ichthyosaurs.
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Paläont Z 74: 1–35.

2. McGowan C, Motani R (2003) Handbook of Paleoherpetology. Part 8.

Ichthyopterygia. Dr. Freidrich Pfeil Verlag, Munich.

3. Motani R (2009) The evolution of marine reptiles. Evo Edu Outreach 2: 224–

235.

4. Motani R, You H, McGowan C (1996) Eel-like swimming in the earliest

ichthyosaurs. Nature 382: 347–348.

5. Lingham-Soliar T (1998) Taphonomic evidence for fast tuna-like swimming in

Jurassic and Cretaceous ichthyosaurs. N Jb Geol Paläont Abh 207: 171–183.

6. Motani R (2008) Combining uniformitarian and historical data to intrepret how

earth environment influenced the evolution of ichthyopterygia. In: Kelley PH,

Bambach RK, editors. From Evolution to Geobiology: Research Questions

Driving Paleontology at the Start of a New Century: Paleontological Society

Papers. pp. 147–164.

7. Buchholtz EA (2001) Swimming styles in Jurassic ichthyosaurs. J Vertebr

Paleontol 21: 61–73.

8. Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone

23: 399–407.

9. Huiskes R (2000) If bone is the answer, then what is the question? J Anat 197:

145–156.

10. Ruimerman R, Hilbers P, Rietbergen Bv, Huiskes R (2005a) A theoretical

framework for strain-related trabecular bone maintenance and adaptation.

J Biomech 38: 931–941.

11. Ruimerman R, Rietbergen Bv, Hilbers P, Huiskes R (2005b) The effects of

trabecular-bone loading variables on the surface signaling potential for bone

remodeling and adaptation. Ann Biomed Engin 33: 71–78.
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