N

N

Parallel embedded processor architecture for
FPGA-based image processing using parallel software
skeletons

Hanen Chenini, Jean Pierre Dérutin, Romuald Aufrere, Roland Chapuis

» To cite this version:

Hanen Chenini, Jean Pierre Dérutin, Romuald Aufrere, Roland Chapuis. Parallel embedded processor
architecture for FPGA-based image processing using parallel software skeletons. EURASIP Journal
on Advances in Signal Processing, 2013, 2013 (1), 10.1186/1687-6180-2013-153 . hal-02115059

HAL Id: hal-02115059
https://hal.science/hal-02115059
Submitted on 27 Feb 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02115059
https://hal.archives-ouvertes.fr

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153
http://asp.eurasipjournals.com/content/2013/1/153

® EURASIP Journal on
Advances in Signal Processing

a SpringerOpen Journal

RESEARCH Open Access

Parallel embedded processor architecture for
FPGA-based image processing using parallel
software skeletons

Hanen Chenini'", Jean Pierre Dérutin', Romuald Aufrére? and Roland Chapuis'

Abstract

Today, the problem of designing suitable multiprocessor architecture tailored for a target application field raises the
need for a fast and efficient multiprocessor system-on-chip (MPSoC) design environment. Additionally, the
implementation of image processing applications on MPSoC system will need to exploit the parallelism and the
pipelining in algorithms with the hope of delivering significant reduction in execution times. To take advantage of
parallelization on homogeneous MPSoCs and to reduce the programming effort, the proposed design methodology
offers more opportunities for accelerating the parallelization of sequential processing image algorithms on pipeline
architecture. Our approach provides rapid prototyping tool as a graphic programming environment (CubeGen).
Further, it offers a set of parallel software skeletons as a communication library, providing a software abstraction to
enable quick implementation of complex image processing applications on field-programmable gate array (FPGA)
platform. The design of homogeneous network of communicating processor is presented from the hardware and
software specification down to synthesizable hardware description. Then, we extend our approach to support more
complex applications by implementing a soft multiprocessor for ‘multihypotheses model-driven approach for road
recognition” and show the impact of various configuration choices (hardware and software) to match the specific
application needs. Using the images of a real road scene, the performance results of the road recognition algorithm

on a Xilinx Virtex-6 FPGA platform not only achieve the desired latency but also further improve the tracking
performance which depends mainly on the number of hypotheses.

1 Introduction

In recent years, the complexity of embedded sys-
tems based on multiprocessor system-on-chip (MPSoC)
architectures dedicated to very computationally demand-
ing tasks in particular image processing applications has
led to the emergence of new enhanced MPSoC design
methodologies. However, as more processing nodes (het-
erogeneous or homogeneous) are integrated in a single
chip, the fitting of computational tasks to hardware
resources is still a challenging task since its related
to the optimal exploitation of the different types and
degrees of parallelism among multiple processing ele-
ments available in the MPSoC design. Unfortunately,
hardware development tailored to multitasks application

*Correspondence: Hanen.Chenini@etudiant.univ-bpclermont.fr
Tinstitut Pascal-UMR 6602 CNRS, Blaise Pascal University, 24 Avenue des
Landais, Clermont-Ferrand 63177, France

Full list of author information is available at the end of the article

@ Springer

is more difficult; generally, it can be performed only by
expert users.

Indeed, our general problem requires the rapid hard-
ware prototyping of complex image processing applica-
tions (multitasks applications) in embedded devices and
multiprocessors design in this case. These latter must
be able to satisfy real-time and embedding constraints
found especially in the field of intelligent sensor for mobile
robots. In real world, sensors are usually embedded on
board a moving vehicle, and consequently, the embed-
ded systems are constrained to face the hard real-time
constraints imposed by moving vehicle applications. The
approach that we have taken in solving these multiple
requirements consists in moving the computing architec-
ture to the sensor itself to achieve the necessary process-
ing power to run the algorithms near the camera. We
have focused on combining cameras and algorithms to
understand the vehicle environment and to provide some

© 2013 Chenini et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153

http://asp.eurasipjournals.com/content/2013/1/153

intelligent processing directly into the camera. Since the
final aim of this work is to integrate these applications
on a mobile vehicle, it is necessary to execute these algo-
rithms under several requirements using an architecture
with high computation capability, low power consump-
tion, flexibility, low memory, and small size. Thus, the
use of field-programmable gate array (FPGA)-based par-
allel multiprocessor design allows us to manage a large
amount of data and work within these multiple require-
ments. Moreover, it is important to use the minimum
required resources to allow the entire system to be inte-
grated on the same chip. This allows the reduction of the
SoC complexity and cost.

These issues increase the demand for providing a frame-
work that is able to automatically generate a suitable
multiprocessor configuration according to the real-time
requirements and the features of a given image processing
application. More precisely, our goal is to develop rapid
prototyping tools for image processing applications, using
parallel homogeneous architecture, as will be described
in the next section. In response to that, we have pro-
posed a new MPSoC approach [1] that aims at raising the
abstraction level of the specifications for both software
and hardware providing the necessary tools supporting
the design from the specification down to the embedded
implementation. In addition, our methodology proposes
a complete generic architecture from which code can
be generated automatically. Furthermore, our new design
methodology is able to support parallelization of complete
image processing applications using multiple instruction
multiple data processors (MIMD). From a sequential
application, the proposed graphic programming environ-
ment (CubeGen) leads us to generate MPSoC system
implementation on an FPGA with the parallelized appli-
cation implemented onto it only in few hours. To this
end, we build a programming environment dedicated
to the fast prototyping of embedded vision applications
based on parallel algorithmic skeletons. Due to compu-
tationally intensive nature of processing algorithms, the
corresponding software code for each processing node is
also generated automatically using specific skeleton and
its associated communication functions that facilitate the
conversion from sequential algorithm to a parallel C code.
These tools represent an important step towards simpli-
fication of application implementation in FPGA platform.
Another important advantage is that the proposed FPGA
design flow offers great potentials for quickly making sev-
eral experiments with different MPSoCs and exploring
configuration choices during the design process. There-
fore, the development time for applications running on
these architectures is easier and faster than for hand-
designed architecture. Evidently, the use of such approach
makes it possible to adjust the architecture by refin-
ing of the material architecture where it is needed to

Page 2 of 23

efficiently meet the requirements of a given application.
This often implies that the software has to be developed
at the same time the hardware architecture is refined to
provide a design with enough calculation capacity and
flexibility.

In this current work, we focused on real-time image
processing algorithm (as object recognition, feature
extraction, learning, tracking, 3D vision, etc.) in FPGA
suitable for embedded vision systems to develop real-
time algorithms that are able to assist the driving activity.
In particular, the ability to recognize objects from data
acquired by sensors is important for building intelligent
systems. Based on the proposed MPSoC methodology, we
propose a real-time, embedded vision solution for mul-
tihypothesis approach for road recognition implemented
on parallel multistage architecture. In fact, the proposed
road recognition algorithm-based lane model is able to
recognize a wider range of lane structures such as straight,
curve, and parabolic models according to various driving
environment. In addition, it is robust against shadows,
noises, etc. due to the use of the parallel knowledge
of road, vehicle, and camera parameters. Hence, this
approach relies on roadway sensors to obtain the lateral
vehicle position in its lane as well as the steer angle and
the road curvature. The lane detection problem is formu-
lated by determining the set of localization parameters. In
addition to its ability of road detection, our architecture is
able to recognize the roadsides by taking into account the
coherence of the two sides of the road which is performed
by a flexible interconnection network.

The rest of this paper is organized as follows. We briefly
present in Section 2 the state of some design methodolo-
gies that are able to automate the hardware implementa-
tion of an application algorithm on MPSoC architecture.
We describe in Section 3 the proposed fast prototyp-
ing methodology which helps the software and hardware
designer to obtain quickly an efficient implementation of
this application on HNCP architecture. In Section 4, we
use a motivating example of image processing applica-
tion multihypotheses recognition approach to illustrate
the proposed design flow. Section 5 describes the paral-
lel structure of the algorithm and the choices made while
porting the application software to the embedded system.
We show in Section 6 the results of the implementation
of the road recognition into Xilinx FPGA following the
proposed design methodology. Section 7 concludes the

paper.

2 Related work

Creating an embedded multiprocessor system which
meets its performance, cost, and design time goals is a
hardware-software co-design problem where the design
of the hardware and software components influences
each other. Actually, co-design [2] is usually used as the

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153

http://asp.eurasipjournals.com/content/2013/1/153

design method for embedded systems. For example, the
co-design approach MoPCoM [3] allows the use of generic
unified modeling language(UML) tools based on the mod-
eling and analysis of real-time and embedded systems
(MARTE) standard [4]. In fact, the MoPCoM methodol-
ogy is performed using three abstraction levels: abstract,
execution, and detailed modeling levels (AML, EML, and
DML, respectively).Whereas, we have to respect multiple
design rules to build UML models for embedded sys-
tems in order to perform automatically VHDL (VHSIC
hardware description language) code generation. In addi-
tion, for MPSoC cases, the multicomponent architec-
ture raises problems in terms of application distribution
related to the manual data transfers and synchronizations
which become very complex and result in loss of time
and potential deadlocks. Subsequently, for programming
these architectures efficiently using co-design approaches,
hardware description languages (HDL), such as Verilog
or VHDL, are required. Unfortunately, the users espe-
cially the programmers work with high-level program-
ming languages (C, C++), and they do not know how to
deal with hardware description languages. Hence, they
have to focus on low-level system issues, and they have
to manage low-level communication problems such as
deadlocks and parallelism details which require a tech-
nical background rarely found among non-expert users.
Consequently, designing an interconnection architecture
for MP-SoCs while simultaneously reducing power con-
sumption and satisfying the performance constraints is a
difficult problem.

One suitable design process solution consists of using
rapid prototyping methodology. The aim is then to go
from a high-level description of the application to its
real-time implementation on target architecture as auto-
matically as possible. This automation saves development
time and prevents conflicts and deadlocks. In this way,
some works have shown that the major challenges of rapid
prototyping image processing applications in multipro-
cessor system-on-chip design are mainly the program-
ming model, the design flow, and the communication
infrastructure. Addressing successfully these issues would
extremely enhance the performance of the computing
architectures in terms of power consumption, design cost,
faster execution times, and shorter development cycles.
Recently, many research works proposed a high-level pro-
gramming environment for designing MPSoC architec-
ture and testing complex image processing systems. An
example of rapid prototyping methodology based on the
SynDEXx tool is presented in [5]. This work presents the
use of this rapid prototyping methodology suitable for
image processing systems and heterogeneous multicom-
ponent architectures. The SynDEx tool generates syn-
chronized distributed executives from both application
and target architecture description models. To illustrate

Page 3 of 23

their methodology, experimental results are presented
using a complex multilayer application including video
and digital communication layers, going from its high-
level description to its distributed and real-time imple-
mentations on heterogeneous platforms. Unfortunately,
for designers of such embedded architectures, the chal-
lenge is to find an optimal configuration for several
units (including processors, memories, communication
devices, etc.) and optimize the interconnections among
heterogeneous processing units and memories. Conse-
quently, they cannot react rapidly to satisfy the user’s
needs and to increase the performance/power consump-
tion ratio of these embedded systems.

Other methodologies provide functionalities that
improve or ease the software/hardware specification and
the hardware implementation of algorithm application
onto multiprocessor architecture. These design meth-
ods used often a high-level description (for example,
in SystemC) such as ROSES [6] and GRACE++ [7] and
therefore depends heavily on synthesis tools to optimize
the design. When using this high-level component-based
approach, the overall experiment took about 4 months
(not counting the effort to develop library elements and
debug design tools). Running all wrapper generation
tools, the designer has to write the virtual architecture
model with all the necessary configuration parameters.
Other examples of related work Koski MPSoC design
flow and SystemC-based design methodology can be
found in [8] and [9], respectively. Koski provides a single
infrastructure for modeling of applications, automatic
architectural design space exploration, and automatic
system-level synthesis, programming, and prototyping
of selected MPSoCs. The methodology in [9] supports
automated design space exploration, performance evalu-
ation, and automatic platform-based system generation.
The main disadvantage of these two methods is the need
for automated parallelization of applications and design
space exploration at application level. Moreover, these
works require applications to be specified by hand in
UML or SystemC. Early interesting Daedalus ‘system-level
design for multiprocessor system-on-chip’ framework
[10] offers a fully integrated tool flow in design space
exploration (DSE), system-level synthesis, application
mapping, and system prototyping of MPSoCs architec-
tures. It provides the parallelization of the application
through KPNgen, the architecture exploration through
SESAM, and the synthesis of the system through ESPAM.
Whereas, their MPSoC system performance was limited
by the available on-chip FPGA memory resources and the
available intellectual property (IP) cores in Daedalus RTL
library. In [11], the authors have developed a high-level
design methodology for FPGA-based multiprocessor
architecture. This methodology enables the architec-
ture development and the application mapping onto

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153

http://asp.eurasipjournals.com/content/2013/1/153

an FPGA-based runtime reconfigurable multiprocessor
accelerator. They proposed a tool based on integer linear
programming to explore the micro-architectures and allo-
cate application tasks to maximize throughput. Using this
tool, we implement a soft multiprocessor for IPv4 packet
forwarding that achieves a throughput of 2 Gbps. Their
exploration framework ignores the arbitration overhead
when computing the communication access time. This
can be a significant source of error when there are a large
number of masters on a bus. They need to extend the
framework to include arbitration overhead to eliminate
this source of error.

Our work differs from those cited by focusing espe-
cially on matching tasks into the homogeneous-based
FPGA system. The particularity of our approach aims at
proposing a high-level framework for FPGA-based image
processing to provide user guidance and automatic tools
for designing and implementing complex image process-
ing applications. Hence, the designers need only to opti-
mize their applications, keeping the same input-output
functionality of the software applications and the design
of the underlying hardware platform. Given a complete
algorithm specification(C or C++), the designer iden-
tifies where to introduce parallelism through software
skeletons for data and/or task parallelism which are com-
pletely different from hardware skeletons. Traditionally,
the concept of hardware skeletons has been first pre-
sented by [12]. In their study, they have discussed the use
of the notion of hardware skeletons, specific to applica-
tion field which is novel to the hardware domain. They
implemented their hardware skeleton library as a hierar-
chy of three levels of hardware blocks: arithmetic core
library, basic image operation library, and finally, high-
level (compound) skeleton library. However, this approach
employed high-level descriptions of task-specific archi-
tectures specifically optimized only for Xilinx XC4000
FPGAs. In this case, the application designers have man-
ually selected the appropriate implementation among dif-
ferent alternative solutions, and also, this approach needs
to be extended to support more complex applications (i.e.,
to support more arithmetic types and providing other
skeletons).

Without loss of generality and work with Xilinx or
Altera FPGAs, our proposed homogeneous system can
be implemented on any FPGA as long as it is large
enough. Additionally, the developers will not find prob-
lems related to hardware specification or optimization
to efficiently embed their applications. Here, the users
can easily choose which parameters are needed in their
implementation in order to either save memory or meet
performance requirements. Additionally, they do not deal
with low-level system issues and they have not manage
low-level communication problems such as deadlocks and
parallelism details.

Page 4 of 23

3 Proposed parallel architecture

3.1 Motivation

Due to the increasing complexity of MPSoC embedded
systems and image processing applications, the perfor-
mance of multicore systems is greatly constrained by the
memory wall, the communication wall, and the applica-
tion complexities wall. Despite the efficiency of heteroge-
neous system, designers as well as system architects are
facing completely new challenges to quickly and efficiently
design parallel architectures tailored to complex applica-
tions to meet performance, power, and cost goals. Two
major problems are (1) hardware language knowledge
required to deal with the development of heterogeneous
systems (global communication interconnect, intercon-
nect interfaces, complex memory hierarchies, etc.) and (2)
the difficulty of programming applications to use diverse
computing cores. Since many engineers have knowledge
of C prior to program their applications, we suggest the
use of homogeneous processors for rapid prototyping of
software application coded in high-level language (C or
C++). Consequently, in our approach, the challenge is to
adapt these algorithms to homogeneous system. Over-
all system performance can be improved by allowing the
homogeneous cores to work collaboratively on differ-
ent sequential parts of an application and increasing the
number of processors to achieve the high computational
requirement for such applications. In fact, these appli-
cations can be decomposed into a number of subtasks
that need to be performed in sequence and with each
subtask being executed in a dedicated hardware architec-
ture that will operate concurrently with all other subtasks.
With the management of the parallelism in these appli-
cations, the user can further distinguish the algorithms
by the type of parallelism (task or/and data) that takes
into account its structure to propose efficient solutions
with task-parallel or/and data-parallel computations in a
homogeneous architecture. A way to expose and exploit
increased parallelism, to in turn achieve higher scalabil-
ity and performance, is to write parallel applications that
use both task and data parallelism. In the face of real-time
requirements, we have designed a pipeline architecture
which offers parallel processing capability for more effi-
cient at executing the complex algorithms used for inten-
sive tasks. Indeed, the developed homogenous multistage
architectures are well suited to the computational needs
and real-time performance of multitask real-time appli-
cation requiring much parallelism. The use of pipelining
improves the performance as compared to the traditional
sequential execution of tasks. By exploiting efficiently the
processing power, the execution of algorithms will be bal-
anced between the parallel computing stages, which will
improve greatly the overall performance. Moreover, the
proposed architecture is composed of a set of parallel
computing stages connected in serial where each stage

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153

http://asp.eurasipjournals.com/content/2013/1/153

contains an hypercube of processors. Each stage holds
several computational nodes connecting through commu-
nication links and running in parallel, each processing
part of an application (single task). In addition, two con-
secutive stages are connected via unidirectional first in,
first out (FIFOs) in charge of control and synchronization.
Indeed, designing an image and video processing sys-
tem can be complex and time-consuming; as a result, the
design process can take months depending on the system’s
complexity. The adopted method developed to ease this
bottleneck is to create a graphical tool called ‘CubeGen’
which automatically generates the hardware for a given
application. In practice, with this framework, the system
is built entirely hiding unnecessary hardware complexi-
ties and you can only focus on optimizing the sequential
code and investigating improvements of the parallel code.
The user does not need to know anything about hard-
ware language; its application can be designed in C lan-
guage and implemented automatically into our hardware
architecture. For rapid prototyping of complex sequential
applications, we address these issues by providing:

e Hardware architectures supporting the simultaneous
use of data parallelism and task parallelism.
Communication at each pipeline stage is mostly
depending in the type of parallelism (for example for
static data or task parallelism, communication
point-to-point links are required).

e Parallel programming libraries enable developers to
accelerate applications. Depending on the structure
of the application (i.e., given the sequential code of
each subtask), the user can generate the parallel
application code by deciding which is the appropriate
skeleton from a set of parallel skeletons making the
basis of our programming environment (split,
compute, and merge (SCM) skeleton, FARM for
data/task parallel processing, and PIPE for task-
parallel parallelism, split, compute, communication
all to all and Merge (SCComCM), etc.).

¢ New design framework ‘CubeGen’ targeting
FPGA-based image and video processing applications
with the purpose of accelerating the development
time by utilizing a set of parallel software skeletons
and pre-built hardware blocks.

In the following, we describe the architecture including
hardware and software aspects, highlighting the auto-
matic generation of homogeneous network of communi-
cating processor(HNCP).

3.2 Pipelined homogeneous design

Figure 1 illustrates the concept of the pipelined archi-
tecture. Each stage of the pipeline consists of 2° nodes,
each containing a soft processor P; j, with private memory

Page 5 of 23

(Mem) for application software and data storage, and a
communication device (Comm) (simple FIFO point-to-
point (FSL link) communication, or more complex com-
munication such as direct memory access (DMA) router
packet). The arrangement of the various element nodes
in each stage is a static network with regular hypercube
topology.

We have defined a set of rules to build a multistage
homogeneous architecture, from which hardware code
is automatically generated by means of CubeGen frame-
work. Suppose now that we have a pipeline architecture
with K pipeline stages which work in parallel, each stage
comprises N; = 2P nodes (i € [1,K]). Here, we define
two different types of multistage architecture as illustrated
in Figures 2 and 3. Taken two consecutive pipeline stages
(i and i + 1), if the cube nodes in each stage are con-
nected by bi-directional communication links (point-to-
point connections), each processor P; ; in the stage i will
communicate with the processor P;;1 j in the next stage
via point-to-point fast simplex link (FSL) which is unidi-
rectional (for j € [0,N — 1] where N = min(N;, Nj;+1)
and N; and N;; are the number of processors in the stage
iand i+ 1, respectively). Consequently, each processor in
a given stage can send their output to the processors in the
next stage, but they cannot receive from these processors.
Figure 2 illustrates this point, a multistage architecture
which contains three consecutive stages based on bidirec-
tional point-to-point FSL, with 16 processors in the first
stage, 8 processors in the second stage, and only 4 proces-
sors in the last stage. Whereas, if we have two consecutive
stages where the first is based on point-to-point (FSL)
links and the second is based on hardware router, only
processor P; o in the stage i will communicate with the
processor P11 ¢ in the stage i+1 (only the processors with
index 0 are connected via unidirectional link (Figure 3)).

The processing latency on parallel applications in such
pipeline architecture depends on the execution time of
the slowest pipeline stage. Consequently, the processing
time for the proposed pipeline architecture is equal to the
execution time of the first stage fstage, OF the execution
time of the second stage fstage, Whichever is the maxi-
mum max(£stage, Lstage,)- 10 boost the performance of the
application, CubeGen framework is able to generate mul-
tiple pipeline stages with different network dimensions,
communication links, software skeletons, etc. Of course,
this has an effect on the performance of each individ-
ual stage; further, it can improve significantly the overall
performance of the complete design.

3.3 Hardware-software video streaming modules

In practice, image and video processing applications
require large amount of data transfers between the input
and output of a system. For example, a 256 x 256
color image has a size of 196,608 bytes. The penalty in

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153

http://asp.eurasipjournals.com/content/2013/1/153

Page 6 of 23

Stage 1

Figure 1 Homogeneous parallel processor architecture.

Stage 2

Stage 3

performance for these applications comes from the high
latency communication between the different processing
units. The image acquisition blocks play a vital role of
capturing the incoming video and thus, determine the sys-
tem’s overall performance. In fact, MPSoC-based systems
are for the majority of the time unsuitable under real-
time constraints. They cannot achieve the required high
performance that is expected when working with video
frame rates. Therefore, dedicated embedded architectures
need to be designed. In our approach, video data are cap-
tured from a PC using the Ethernet input port with frame
resolutions up to 256 x 256 at frequency fixed by the
user. Then, these video data need to be stored in mem-
ory, transferred to processing nodes, and displayed on the
monitor through the VGA output port after processing it.
With dedicated video input device design offering parallel
processing capability for video applications, we have built

a flexible architecture that enables the user to perform
real-time processing on a single frame or multiple frames.

3.3.1 Ethernetvideo module

The proposed IP Ethernet module receives the data com-
ing from the FPGA Ethernet port. Therefore, the devel-
oped IP employs the TriMode Ethernet MAC hardware
block available in the utilized FPGA. In our system,
we have used the reduced gigabit media independent
interface (RGMII) to realize the communication between
Ethernet MAC and PHY (the block PHY (physical) imple-
ments the Ethernet physical layer of OSI network model).
For management data input/output (MDIO) ports on the
Virtex-6 Embedded Tri-Mode Ethernet MAC (VOEMAC)
are used to access the registers in the internal and external
PHY. The proposed module is configured through a set of
Ethernet-accessible registers. The reliability and efficiency

.U
W
o
.U
w

-
[
s

Stage 1

— Bidirectional link
(FIFO link)

Stage 2
Unidirectional inter-stage Buffer

Figure 2 Hardware architecture with three pipeline stages (connected through point-to-point connections).

Stage 3

(FIFO link)

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013,2013:153

http://asp.eurasipjournals.com/content/2013/1/153

Page 7 of 23

|33_0 P3_1
T P> 3.3
Stage 1 Stage 2 Stage 3
— Bidirectional link ~ ____. Unidirectional inter-stage ... Bidirectional link
(FIFO link) Buffer (FIFO link) (DMA-router)
Figure 3 Three-stage pipelined architecture (connected through point-to-point connections and hardware router IPs).

is ensured by data completeness test and retransmission
mechanism. It is intended that this design can be quickly
adapted and downloaded onto an FPGA to provide a
hardware test environment.

3.3.2 Busvideo module

To send the video source to a large number of computing
nodes, we have proposed video input device composed of
frame generator with multiple frame grabbers (Figure 4).
In fact, we use this design when only a portion (window)
of input image needs to be captured by the processing
nodes for processing. In practice, the developed frame
generator module receives the output signals from the IP
Ethernet module seen previously via point-to-point con-
nections (FSL links) and transfers the input image to one
or more frame grabber modules. The received pixels (each

pixel is coded in 8-bit gray level) are collected in local
memories of size 64 kB of block RAM (random access
memory) (BRAM) associated to the soft processors. Each
local memory stores at least one complete frame and is
used if the bandwidth of the bus is not small to transport
the digitized video data stream without loss. The max-
imum size of each received frame is 256 x 256 pixels,
and the time between two successive images is fixed by
the user when he/she sends the frame via Ethernet port.
Thereafter, it is possible to collect the digitized video data
stream directly in the main memory (e.g., the input buffer)
of each frame grabber module associated to process-
ing nodes. Thankfully, these grabbers used sync signals
to control the synchronization pulses between the input
(incoming data from video bus) and the output buffer
(outgoing data to processing nodes). The vertical swap

Video Frames
Input

Video Windowed Frames Output

8 S g
© e
@ = 2 =
T bx Er bt
35 >0 QS >0
oo a oo o
LT & 1t 4
LR =2
>|a
Frame Grabber |3 z Frame Grabber |3 z
3| 3S|e
g2 #n g2
o o
V_Sync V_Sync
B >
N /] N /]
Input Output Input Output
Buffer Buffer Buffer Buffer
(X1xY1) (X1xY1) (XnxYn) (XnxYn)

Ethemet || Ethernet to FSL FSL
Link Link
Interface

V_Swap

|

Frame Generator|

Video Bus

Input Output
Buffer Buffer
(XxY) (XxY)

Figure 4 1/0 architecture-based frame grabbers.

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153 Page 8 of 23

http://asp.eurasipjournals.com/content/2013/1/153

(V-Swap) indicates the beginning of new frame; the hor-
izontal sync (H-Sync) indicates the last pixel frame line,
whereas the vertical sync (V-Sync) indicates the last pixel
of each frame.

3.4 Algorithmic skeletons

To embed the software application written as serial com-
putation into the MPSoC design, there are many problems
related to the decomposition, distribution, code and data
sharing, communication and synchronization, etc. To this
end, we have developed a set of common and recurrent
forms of parallelism algorithmic skeletons corresponding
to static data parallelism, dynamic data parallelism, task
parallelism, or flow parallelism in order to implement a
sequential algorithm onto our MPSoC architectures. In
this way, we have proposed a set of high-level communi-
cation functions to easier prototype the target application
and to make them readily available for the application
programmer. To help the designer, the communication
functions are automatically generated by the CubeGen
framework for each dimension of the MPSOC system.
This makes it much easier for a developer to produce a
parallel program tuned for the developed architectures.

3.4.1 SCM skeleton

This skeleton is based on a static geometric decompo-
sition (row-based, column-based, or rectangular subim-
ages) over data where the data is divided up into a num-
ber of equal-sized parts, and each part is processed by
a different worker (Figure 5). In a basic case, the split
function is just a synchronization barrier (all processing
nodes have their data subsets) but also can contain a pre-
processing function and/or a send function of each data

subset. Moreover, the processes of distributing the input
data and gathering the output data need to be included
in the skeleton’s definition, done by the same processing
node. Some other skeletons are derived from this skele-
ton such as SCComCM (Split, Compute, Communication
all-to-all,Compute, Merge) and SCComMC (Split, Com-
pute, Communication all-to-all, Merge, Compute) which
are introduced to the parallel implementation of multi-
layer neural network [13] and dynamic neural field (DNF),
respectively. Nevertheless, some image processing appli-
cations require irregular data set processing, for instance,
an arbitrary list of different sizes of windows changing at
each iteration (image). In this case, a static allocation of
computing processes is not always suitable because of an
uneven workload between processors.

3.4.2 FARM skeleton

This skeleton shows its utility when the application
requires the processing of irregular data, for instance an
arbitrary list of windows of different sizes (Figure 6). This
method is only efficient, however, if there are more data
elements than processors and one data element does not
dominate all the others. In the data-farming case, the
data is split up into many more subelements (for example,
region of interest in the picture) than there are workers
processors, and in this case, it represents specific pro-
cesses. The farmer processor transmits the work packets
on demand until none are left, and the workers are no
longer processing any data. Then, it waits for a result from
a worker and immediately sends another work item to it.
On the other side, each worker simply receives a work
packet, processes it, and returns the result to the farmer
until it receives a stop condition from the farmer.

Processor 0 Processor 1

B W

2

Data transmission

Data decomposition

Figure 5 SCM skeleton.

Network link
Image data 3 4—> 4
Physical processor Processor 2 Processor 3

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013,2013:153 Page 9 of 23

http://asp.eurasipjournals.com/content/2013/1/153

Processor 0 Processor 1

<> 0

Data decomposition N\
— \

Network link Y

- Image data T

Physical processor

Figure 6 FARM skeleton.

Processor 2 Processor 3

3.4.3 PIPE skeleton

The decomposition of image processing application into
many independent and sequential tasks introduces new
skeleton (pipe skeleton). Starting from a basic set of skele-
tons, more complex skeletons can be built by combining
the basic ones (SCM, FARM, etc.). Consequently, the var-
ious tasks can be computed simultaneously on different
pipeline stages. The basic idea of the pipeline skeleton
is to split the processing of an application into a series
of sequential steps, with storage at the end of each step
(Figure 7). This enables the final design to issue instruc-
tions at the processing rate of the slowest step, which is
much faster than the time needed to perform all steps at
once.

In the following, we are motivated to develop a new
design flow that enables describing parallel hardware
architecture at a much higher abstraction level than tradi-
tional hardware description languages.

3.5 Automatic generation of the proposed MPSoC
architecture

3.5.1 Design flow overview

The design flow applied for the generation of FPGA-

based multiprocessor implementations ideally suited for

Xilinx or Altera FPGA platform has seven steps as illus-
trated in Figure 8 which are the (1) design configurations,
(2) design generation, (3) parallelization of sequential
application, (4) compilation of the parallel algorithm, (5)
design synthesis, (6) design verification, and (7) design
implementation.

During the design configurations, the designer has to
specify, via a graphical interface ‘CubeGen’ framework,
some architectural parameters including network dimen-
sion, MicroBlaze parameterization, memory size allocated
to each processor, type of communication link, and use
or not of the special IP for I/O (VHDL block designed
to control the I/O directly from the video flow). Based
on these configuration choices, the CubeGen framework
automatically generates the complete system. It includes
a homogeneous network of communicating processors
(HNCP), the memory components which must be con-
figured to match the application memory requirements
(due to program code and image data) of the software
application; therefore, communication devices that enable
very low latency communication (one using direct point
to point links and the other using a hardware router),
debug devices which can be configured to test our MPSoC
design (UART, JTAG, MDM, etc.) and I/O IPs (from our

Figure 7 PIPE skeleton.

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153

http://asp.eurasipjournals.com/content/2013/1/153

Page 10 of 23

YSequentiaI Algorithm

@

Configuration Choices

v

Parallel Skeletons

—_—

L 5, CUBEGEN |

Available IPs

.

Y
Communication functions

@

Y
Hardware description

Y

|5 Parallel Programming

| ®

Y

Synthesis

@ ‘

Y
Compilation

L ®

l

Simulation, Validation

e

1®

@

Figure 8 The proposed design flow.

FPGA Imp+ernentation

IPs library) which are necessary for processing the video
data coming from the PC.

Parallelization of multitask application is based on the
main idea that most of the parallel applications were built
upon a limited number of recurring schemes of paral-
lelization (parallel skeletons) such as SCM for data or
static task parallelism, FARM for dynamic data sharing
(or dynamic task sharing), and PIPE for task-parallel par-
allelism, etc. Taken as input, the application which is
programmed using imperative languages such as C, C++,
CubeGen framework also generates specific lightweight
communication functions that are tuned to the net-
work configuration (number of processors, communi-
cation links, parallelization scheme...). Thanks to these
communication functions, the designer can easily con-
vert sequential algorithm into a parallel C code. During
the compilation, the parallel program is compiled on the
HNCP architecture using compiler GCC or G++.

During the design synthesis, the whole system is instan-
tiated on SoPC Xilinx (or Altera) platform using high-
level design tools such as the embedded development kIT
(EDK) from Xilinx or Quartus II design software from
Altera. Afterwards, the HDL code can be verified. Here,
if the design does not meet the area constraints, a first
loop enables to re-configure and re-generate the HNCP
for efficient utilization of resources.

During the design verification, we offer the possibil-
ity to simulate the whole system before synthesizing the

code. Here, the simulator addresses the evaluation of
HNCP architecture performance early in the simulation
and validation step. For maximum throughput and per-
formance, the application is executed on the architecture
and the execution behavior is captured by using a cycle-
accurate industrial RTL simulator (Modelsim). All the
relevant characteristics for performance estimation can
then be easily extracted: application throughput, latency,
utilization of resources, memory utilization, etc.

According to the estimated performance, the designer
can change the architecture configuration and/or modify
the parallel application to converge to a suitable solution.
The designer is responsible for setting these parameters
with relevant values according to his background and the
technology. The obtained performance results are tightly
linked to the chosen parameters to generate the HNCP
architecture. Finally, the complete code of the design is
implemented in Xilinx Virtex FPGA board (or Altera
Stratix FPGA board) using EDK tool (Quartus) to gen-
erate the bitstream that configures the FPGA and even
upload it.

3.5.2 CubeGen framework for Altera/Xilinx environment

To ease the design of a network of communicating pro-
cessors, we advance an automated framework to assist the
designer in specifying and designing of the homogenous
network. The objective is to identify the best configura-
tions choices of multiprocessor on the FPGA for a target

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013,2013:153

http://asp.eurasipjournals.com/content/2013/1/153

application and optimally execute the application tasks
with appropriate communication links.

First, the designer starts by specifying their own work
environments (Xilinx or Altera environment) and the
target platform FPGA (Figure 9a). Second, the designer
may select the network dimension and the number of
stages of the desired architecture (Figure 9b). Finally, the
designer has to specify the different parameters chosen
for the network (for each stage), including the soft pro-
cessor (MicroBlaze, NIOSII) parameterization, memory
size allocated to each processor, type of communication
link, and use or not of the special IP for I/O (VHDL
block designed to control the I/O directly from the video
flow) (Figure 10). Actual hardware architecture is done
by the choice and parameterization of readily available
reconfigurable hardware modules and customizable com-
mercially available IPs. To offer more choices, our library
is under development and currently contains for exam-
ple two soft processors: NIOSII (Altera) and MicroBlaze
(Xilinx) and several dedicated HW IPs, etc. Earlier work-
ers aim at including SecretBlaze (soft processor), generic
IP Ethernet, etc.

In fact, CubeGen automates the high-level description
of the HNCP in few seconds. As result, the developed
framework generates the configuration file creation ded-
icated to the embedded development kit (EDK) of Xilinx
Company or to the Quartus II design software of Altera
Company. This generated file contains the description of
the system with the connection between the different IPs.
The randomly selected designs are then simulated to iden-
tify the suitable parameter values in order to balance the
performance and cost of the desired implementation.

Finally, the designer launches the synthesis of the system
with specific target to check if this configuration of the

Page 11 of 23

HNCP can be implemented. This methodology matches
perfectly with the concept of fast prototyping on SoPC.
The designer obtains quickly an architecture tailored for
the target application. In addition, CubeGen provides a
well-suited library (regarding architecture configuration
choice) of specific lightweight communication functions
that facilitate conversion from sequential algorithm to a
parallel C code.

In the rest of the paper, the effectiveness of the proposed
design methodology is shown through parallelized road
recognition application on MPSoC architecture.

4 Multihypotheses model-driven approach for
road recognition

In this section, we particularly focus on the task of road-
side recognition which is widely used for vision-guided
vehicle navigation. The proposed algorithm is inspired by
the road recognition approach developed by [14]. This
application is usually the main part of the lane keep-
ing systems which are designed to provide the roadside
location through a video sequence.

Generally, the road edges are characterized by a high-
contrast region with low curvature and constant width.
With real road images, a determinist description of the
road geometry can be a challenge since the road may vary
in the form of various road conditions and quality of road
markings used to demarcate lane boundaries. Actually,
detection strategy proposed by [14] presents a conceptu-
ally simple approach for edge detection, followed by edge
grouping and pruning. However, as a single hypothesis is
used, the recognition process still has problems to follow
the lane road through video sequence due to false detec-
tions. To keep track of the roadsides, a multihypotheses
approach of road recognition can be employed by using

M Dialog @@
Stage Dimension
1 v g v
[[J processor Display

Il New Project El@
Projet : |« :fenad_kerngntnn @
Topologic : Hypercube &

Iarhnnlogw ¢ Xlny W
Versiun e [EDK : [ISE/EDK v.12.2 ¥ | Carle JeDév. : oliui - -

Target device

Architecture Device Size Package Speed Grade

virraxh ¥ xrtwhosdair L AR RETY v - v
Ann iler AN >

(b)

Figure 9 GUI of the CubeGen tool. The target platform, the network topology (a), the number of stage and the network dimension (b).

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153

http://asp.eurasipjournals.com/content/2013/1/153

Page 12 of 23

Peripherique
8 v (] External Memory [J1pvea
Timer unique sur mb0 v
IART] mom
[C] Ethernet Yideo Input

SCM Functions

Farm Functions

SCComCM Functions
OneToAl _broadcast
AllToAll_broadcast
AllToOne_broadcast

l Cancel][Networkqeneratm]

M Global Parameters
Architecture W
Communication Memory Size (Ko)
o 3 processor :
DMA reception :
FIFO Size : 16 v
DMA emission :
router packet size : DMA Video :
Microprocessor Software
Option du MicroBlaze
[reu [] scM Library
[[] Hard Divider
MicroBlaze
[T] Hard Mukiplier
Barel Shift
. = SCComCM Library
Figure 10 Architecture parametrization.

various classifications of zones of interest (representative
of the road region in image). In fact, this method allows
eliminating all the false detections of road edges. The algo-
rithm of sequential recognition is obtained on the basis
of the recursive recognition approach presented in [14]
applied to accomplishing the different hypotheses in order
to identify an optimal hypothesis before the algorithm
converges. In addition, the recognition of the roadsides
is performed by two main steps: learning and multiple
hypothesis recognition. The main feature of this algorithm
can be summarized into three phases:

e The road model initialization or learning step is
presented for providing a good initial position for the
lane model in the image. This algorithm is robust to
noises, shadows, and illumination variations in the
captured road images and is also applicable to both
the marked and the unmarked roads. In practice, the

training information will be deduced directly from
vehicle localization parameters and camera’s
parameters.

e The lane recognition problem is formulated by using
a set of hypotheses to determine the parameters of
road model. Using the detected lines and the image
gradient, lane refinement is performed using IIR filter
and least median of squares to give more exact lane
position by only a local search.

e The road model is updated in time each frame as well
as updated from the measurements via a Kalman
filter.

4.1 Model of road edges

To build the road model, first, the road region is divided
into 2P interest regions as shown in Figure 11 and then
consider that we have P coordinates v; for j € [1,P] to
identify the locations of these regions. To simplify, these

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153

http://asp.eurasipjournals.com/content/2013/1/153

Page 13 of 23

Figure 11 The roadside model. The roadside model deduced from the localization parameters.

coordinates remain fixed in the same locations through
a video sequence. The roadside then has an associated
model represented by a vector X;(P + 1) and a covari-
ance matrix Cx, (2P + 2) which can be represented in the
following form:

X = (uu‘..u(pﬂ)l, ulr...u(pﬂ)r) ,
2
6”1[
2
bt .
Cx, = (D1

2
Up+1r

where u;; and u; (i € [1, P 4 1]) represent the horizontal
image coordinates of the left and right roadside, respec-
tively, for different image rows v; for j € [1, P]. To reduce
the search space, the 8,3” and 85" define a confidence inter-
val of the possible locations of u;; and u;., respectively, in
real road image for i = {1..P + 1}. The initial value of
the model (X, Cx,) is obtained by assuming all parameter
dispersion of a typical road during learning phase.

4.2 Learning phase

The algorithm has an offline learning phase, indepen-
dent of the road image. In fact, the learning step is
used to obtain an initial estimation of the roadside
model (X4, Cx,) according to the vehicle environment
(Figure 12) in order to limit the search region of road-
sides in the image. This phase is necessary to seek only
realistic road configurations in the image. The roadside
model is then performed as the relationship between u;
coordinates of roadsides in the image and v; coordinates,
vehicle localization parameters (xo, 1), camera inclination
parameter («) and the road geometry (Cj,L):

(uill uir)t - G (Vi) X0, Cl; I/IJ L’ (X)

The vector X is calculated as the average of the essen-
tial parameters (v;, x0, Cj, ¥, L,) established from initial
knowledge on the vehicle, the road, the camera, and vari-
ous ordinates v; in the image. Variations of the parameters
(x0, C1, ¥, L, @) according to a normal law in an interval
of dispersion wished will led to a set of realistic road
configurations in the image. From these various configu-
rations, it is easy to extract the covariance matrix Cx, by
using the Jacobian J; of the function G [14]. The search
zone is limited in size once the road model is initialized

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153

http://asp.eurasipjournals.com/content/2013/1/153

Page 14 of 23

Figure 12 Localization parameters of vehicle in the image.

Camera

in the first image during the learning phase; we track the
road lanes using the updated road model computed from
previous images.

4.3 Recognition phase
For a real image with curved roadsides, the proposed
method successfully extracts the current position of the
roadsides by improving the detection of road edges. To
this end, we generate multiple hypotheses representing
possible locations for roadsides. During this phase, we
would evaluate all possible detections of the road edges to
ensure that we find the correct positions of the roadsides.

To answer to this need, the road area is divided
into P interest zones representative of the entire
roadsides. The interest zones are then defined by trape-
zoid forms (Ci(u; — oy, v), Co(u; + 04,vi), C3(uip1 —
0i+1,Vit1), Ca(Uir1 + 0i11,vi+1)) where o; is the variance
of u; deduced from Cx, for i = {1..P + 1} (Figure 11).
In our case, we have used 11 interest zones representative
of the roadsides. The first stage of the algorithm consists
in initializing the roadside model (X, Cx,). According to
confidence intervals deduced from the covariance matrix
Cx,, the different interest zones are ranked according to
their size. The zone of greatest interest has the smallest
variance of the covariance matrix. Then, our approach
relies on the use of multiple hypothesis recognition, cor-
responding to alternative ways of regrouping the different
interest zones. The algorithm flowchart of the recognition
iteration using six interest zones is shown in Figure 13.
More precisely, a hypothesis refers to one possible way of
grouping the zones of interest.

We start by treating the first hypothesis; here, we deter-
mine the area of highest interest. If a segment is detected
in this zone, the model is then updated to obtain new

road model (Xg,, Cx,,,); else, the detection is attempted
in a new zone defined by the next smallest variance of
the covariance matrix and so on. Then, the recognition
algorithm is an iterative procedure; a new optimal zone is
located according to its variance followed by the detection
and the update operations. Finally, if all the interest zones
are tested, the algorithm considers that the roadsides are
found in the image if a certain criterion is reached.

In a similar way, we can obtain more candidate road-
side models for the other hypotheses. The search process
(choice of the interest zone, detection, and update) is
recursively re-iterated for each hypothesis with different
combinations of the interest zones. Depending on this
recursive recognition of each hypothesis, we assign them
a score. Finally, the recognition scores of all the hypothe-
ses are collected, and the road model with maximum score
is selected to be the final estimation for the roadside. As
a result, we obtain the optimal value of X4op and Cyx,,,
representing the roadsides in the image. The calculated
roadside model becomes the reference model for the first
frame, and it is updated in every new input image.

In the following, we will describe the strategies followed
to parallelize a specific image processing application (the
problem of road recognition) using the proposed generic
MPSoC design methodology with refinement of a generic
parallel architecture model to meet the specific applica-
tion computation and communication needs.

5 Parallel implementation of recognition
algorithm

This work presents various FPGA implementations of

the proposed video processing application which not

only achieve the desired latency but also further improve

the tracking performance which depend mainly on the

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013,2013:153

http://asp.eurasipjournals.com/content/2013/1/153

Page 15 of 23

5

A_F /

| | ||
@A g%

g% 4 #FX Vi

/ N g g N /

Figure 13 Multihypotheses recognition approach.

L
~
Interest zones Interest zones T R——
Edge detection
1% zone 2% zone 3%zone 45 Zone
2™ zone) 3° zone 4" zone 5% zone NoL_Detection ?
L 37 zone 4" zone 5" zone 6" zone Vea
4F zone 5% zone 6" zone 1 zone ST UpaetTg
5 zone 6" zone 1% zone 2™ zong)
6" zone 1% zone 2™ zone 3% zone
ecognition value
RS, RS, RS, RS,

number of hypotheses to be executed as well. Within
the desired frequency range, the hardware implemen-
tation must operate at a maximum frequency of 10 Hz.
Additionally, our proposed homogeneous system can be
implemented on any FPGA as long as it is large enough.
In fact, the memory resources will be the limiting factor
in our design with increasing the network dimension
especially if the program code requires important mem-
ory size. Evidently, if we want to make an application
go fast, we must first understand what it spends time
doing. Consequently, most of the work is in enhancing
and modifying the program code to be executed by the
different nodes. We have parallelized a multihypotheses
model-driven approach for road recognition application,
and embedded it in the presented architecture since the
various hypotheses can be done concurrently. As already
mentioned, the proposed multihypotheses recognition
process tries to coincide with the road boundary with the
acquired image content, minimizing the time required for
convergence in general and the hypothesis with the best
score is the process output.

Depending on the structure of the application, we
present the hardware implementations of the road recog-
nition on two separate platforms: (1) a multicore proces-
sor based on hardware router as device communication
and (2) a multistage architecture based on FSL links as
device communication. Then, we will discuss and eval-
uate the fast prototyping facilities allowed by the pro-
posed approach described in the previous section. Using
homogeneous and pipeline computing, it is possible to
achieve high computational performance and satisfy the

communication needs while the target system remains rel-
atively inexpensive in terms of FPGA occupation, memory
size, and power consumption, etc.

5.1 Implementation-based FARM skeleton

The aim of the parallel implementation is to improve the
performance by executing the same operation on a set
of data elements (zones of interests) transferred to the
different N available processors. As shown in Figure 14,
the parallel implementation scheme is based mainly on
data parallelism (interest zones) between the N available
processors. To take advantage of this kind of parallelism,
we have to use dynamic data with the enhanced FARM
skeleton provided by our skeleton library, which suggests
working with a larger number of processing nodes where
one processor is selected to be the master and the remain-
ing processors serve as slaves. Starting with this idea, we
have to generate network on chip (NoC) based on a packet
router, by varying the number of processors. The principal
reason why we have chosen hardware router as commu-
nication device is its ability to send parts of input image
(interest zones) with variable sizes. Therefore, we have to
mention here that only the processor 0 can receive the
road image. Generally, from a specific network configura-
tion (size of hypercube, communication link, paralleliza-
tion scheme...), a library of communication functions are
automatically generated by CubeGen tool for all skeletons.
For FARM skeleton, our library offers a pre-implemented
function dedicated to FARM implementation for initial-
ization (Init-FARM), synchronization (Synchro), and work
distribution (FARM) as illustrated below.

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153

http://asp.eurasipjournals.com/content/2013/1/153

void main processor master 0 ()
{

preprocessing (picture) ;

init farm();//Initialization

Page 16 of 23

synchro () ; //the master node sends synchronization pulses to slave nodes to wake up.
while (Nb processor retour < Nb max of Data) {

microblaze_ disable_interrupts();
if (NB_data_slave>0) {
NB data slave --;

microblaze enable interrupts();//Block the send or the receive until the slave

executes the task and delivers
the result back to the master.
compute function master();

NB data master--;//The master itself process the next data.
microblaze_disable_interrupts();//Wait for the request to send or to receive.
farm() ;

Nb processor_ retour++;//Receive/send incoming data(outgoing data from/to slave.

microblaze disable interrupts();

}
}

postprocessing (result) ;

}

void main other processors slave() {
synchro () ;
init_farm();
farm() ;
compute function slave();

}

The designer can use directly these functions to shorten
parallel programming. Thus, we will focus only on imple-
menting our recognition algorithm. At training time,
we are presented with Nb_max_of _Data interest zones
which represents the work item, and in the task-farming
case, it represents specific processes. Here, the farmer
(processor 0) starts by sending a work item to each worker
(from 1 to N). Then, it waits for a result from a worker and
immediately sends another work item to it. This repeats
until no work items are left, and the workers are no longer
processing data. The number of zones to be tested is
Nb_max_of _Data. On the other side, each worker simply
waits for a work item, processes it, and returns the result
to the farmer until it receives a stop condition from the
farmer. More precisely, the search process (detection and
update) is recursively re-iterated by each processor worker
for each new interest zone received (Figure 14). Finally,
we compare the output of the different search hypotheses
looking exhaustively for the best solution. Thereafter, the
best estimation of X; and covariance matrix Cx, (result-
ing from the recognition step) for the input image will be
used in the next frame.

The main feature of this algorithm is that portions
of the database (zones of interest, roadside models, and
score of recognition) must be communicated between
processors to accomplish the necessary treatment. With

regard to the latter, the recognition processes are suit-
ably mapped onto a hypercube topology. However, the
communication cost of this application has continuously
increased, especially when we increase the dimension
of homogeneous architecture based on hardware router.
Inspite of the interesting gain obtained with this archi-
tecture, the road boundary changes with the running of
the vehicle across the frame especially when we treat real-
istic images due to the variation of the roadside region
characteristics and vehicle environment. In this situa-
tion, the algorithm application has no chance to converge
and must be re-initialized (i.e., a naive solution would
be to re-run the learning phase when we lose the road-
sides). In the following section, we present our paral-
lel multistage architecture which brings solution for the
abovementioned problem with the possibility of find-
ing compromises, in terms of communication cost and
performance.

5.2 Implementation-based SCM skeleton

For the quality of road edge detection, the geometrical
knowledge of the roadsides to follow makes recognition
easier. Once the network architecture has been trained
using these initial localization data, it is used to recog-
nize roads in all the next frames. Ideally, these parameters
remain constant throughout one recognition process (i.e.,

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013,2013:153

http://asp.eurasipjournals.com/content/2013/1/153

Page 17 of 23

Figure 14 Data parallel implementation-based FARM skeleton.

< .+>I Detection edge [—»f Model updating [-=Recognition score}—lz >

P, Py P, P. P P

Q0
—

Po

we necessarily keep the same geometric information dur-
ing the vehicle traveling). Considering a camera fixed on
the front of a vehicle, the road boundary changes with
the running of the vehicle across the frame dependent in
the geometric information available in real scenes. There-
fore, the pipelined MPSOC architecture is used to prevent
this problem. The idea is interesting because it shows a
technique that exploits distributed processing to improve
recognition performance.

Since the communication needs for this application are
important and computation needs are much heavier, we
have chosen the simplest hardware communication solu-
tion (using point-to-point connections). Thus, the mul-
tistage architecture-based point-to-point links are used
since it satisfies the application communication needs for
relatively low implementation costs and reduces the com-
munication overhead to have little effect on the global
computation time. To this end, the developed video bus
drives the input image through the parallel architecture
where all processing nodes are independent and perform
different image sizes. Thanks to CubeGen framework, the
parameterization of the parallel architecture makes it pos-
sible to match the specific application needs in terms of
BRAM memory and FIFO size that need to buffer large
amounts of data. In addition, the two-pipeline architec-
ture represents staged computation where parallelism can
be achieved by computing different stages simultaneously

on different inputs, mainly when dealing with more than
one side simultaneously.

The parallel implementation scheme is based mainly
on task parallelism between the N available processors.
The different processors supplied by the road image run
a single hypothesis to compute one candidate model of
roadsides. In this case, our application can be referring
to one or more independent tasks running concurrently.
In other words, each hypothesis may execute a distinct
task. The number of zones to be tested for each task
is Nb_max_of _Data. Consequently, the parallel execu-
tion of multihypothesis process is simply the concurrent
execution of independent tasks (or hypotheses) in the
different available processors. The above presented idea
is shown in Figure 15. With the goal of facilitating the
parallel programming task of the proposed pipeline archi-
tecture, we use our skeleton library which contains a set of
communication functions ‘Split’ and ‘Merge, ‘Pipe’ func-
tions, and two additional functions called ‘Request’ and
‘Acknowledge’ allowing to execute a ‘synchronization bar-
rier’ Given an application, a set of processing nodes, and a
set of communication functions, the most important fea-
tures of this proposed parallel implementation method
can be summarized as follows:

e Broadcast the known roadsides model containing the
vector X; and the covariance matrix Cx, from the

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153

http://asp.eurasipjournals.com/content/2013/1/153

Page 18 of 23

Image input

< .J_—— Det
P, _

-q:‘ K

Figure 15 Task parallel implementation-based SCM skeleton.

ection edge I Model updating‘-[Recognition score'-—-] =

i- e

Po

P

processor O to all PEs in time regarding the previous
roadside model.

e Apply the recursive recognition process including the
two measurement detection and updating in parallel
at each PE. In parallel, each PE generates the different
primitives (or interest zones) with respect to the
received roadside model and sets the recognition
value to its locally calculated detection edges.

e The search process on the distributed set of
hypotheses in parallel is very quick. Finally, they
return their results to the processor 0 which merges
them to get the final result.

e The processor 0 compares the roadside models
(outputs of the different search hypotheses) to look
for the best solution. The roadside model with
maximum score of recognition is selected to be the
final estimation for the roadside.

In the following, the experiments show that the opti-
mization parameters using our methodology which can
increase the performance efficiently in terms of execution
times, power, and area. The results show that the method-
ology allows designers to explore the MPSoC design
space more efficiently with the accurate MPSoC profiling
information.

6 FPGA implementations

In this section, we use our framework to realize FPGA
implementations of the proposed model-driven approach
for real-time road recognition mapped onto Xilinx
Virtex-6 ML605 FPGA. Additionally, we report some of
our results concerning resource costs and the perfor-
mance of the different parallel homogeneous architectures
generated using CubeGen. The main objective of this
work is to design an optimal hardware architecture that
provides the necessary flexibility and performance to best
fit the application needs.

The road recognition algorithm-based model-driven
approach has been tested on real road images. In the
images, it is possible to see that the algorithm is capable of
keeping track of a roadside over a large number of frames
(more than 1,200 input images) even in the presence of
objects of similar colors and under large variations on the
appearance and shape of the roadsides (i.e., road images
include curve and straight road, with or without shadows
and lane marks).

6.1 Sequential implementation

As explained, the complexity of our application depends
mainly on two factors: the number of interest zones and
the number of hypotheses. In our experiments under
sequential mode, the number of search windows (interest

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153

http://asp.eurasipjournals.com/content/2013/1/153

zones) for each road side is set to 8 in order to be better
concentrated around the true state.

In addition to the time required for recognition process,
we have to consider the communication overhead. With
regard to the microprocessor, we use a 32-bit RISC soft
core processor, MicroBlaze, which is developed as soft IP
by Xilinx Company, running at 200 MHz with 64 k data
and instruction memory (BRAM). It can be easily imple-
mented in FPGA-based system. For the sequential imple-
mentation on FPGA platform, the proposed hardware
architecture has been implemented on a Xilinx Virtex-6
ML605 FPGA. In a video sequence, this implementation
has an output latency of approximately 269 ms in the first
image by using four hypotheses. Consequently, the com-
plete acquisition and processing of the next input image
takes less than 269 ms. The search zone deduced from the
Cx, matrix is limited in size for all other frames.

Figure 16 shows the processing flow for road
recognition applied to a single image. The model
update/detection steps will be repeated until all the
interest zones in the right side of the road will be
processed. Our results show that it is possible to achieve
real-time tracking even operating at relatively low clock
frequencies. As mentioned before, one can often expect
and frequently achieve an improvement in performance
by using far more hypothesis.

6.2 Parallel implementation

Considering the application computational and commu-
nication needs, our goals now are to show the impact
of taking several configurations choices and therefore
to demonstrate the validity of our original MPSoC. In
this section, we compare our synthesis results with two

Page 19 of 23

different parallel implementations of multiple-hypotheses
approach of real-time road recognition on FPGAs.
Additionally, in order to evaluate the presented solu-
tions previously seen, we will present in the following
subsection some measurement results of the devel-
oped hardware approach in term of hardware area and
clock speed.

6.2.1 Data parallel implementation

Based on the proposed multiprocessor approach, it is pos-
sible to implement various parallel FPGA designs in a
single chip. Our main implementation of model-driven
approach for real-time road recognition employs a Xilinx
SoPC development board and involves many MicroB-
laze processors in a distributed memory multiprocessor
configuration. Figure 17 summarizes the 1, 4, 8, and 16
processing nodes (PNs) architecture resource utilization
(FPGA resource usage). The MPSoC hardware architec-
tures (VHDL code) synthesized on Xilinx Virtex-6 ML605
FPGA. Due to the application memory requirements (pro-
gram code and image data), each node must contain 64 kb
of local memory. To satisfy the communication require-
ments, each soft processor (MicroBlaze) must have 32 kb
for send memory buffers and 8 kb for receive memory
buffers. The results show that the router DMA commu-
nication device takes a significant part of the resources
needed by the whole network of processor. This propor-
tion increases progressively from nearly 66% for a 4-node
network to more than 75% for a 32-node network [15]. As
expected, increasing the number of core leads to higher
speed up and negatively impacts the area occupied. How-
ever, the generation of homogeneous system beyond 16
nodes is not possible because of the memory constraints,

Figure 16 Processing flow for road recognition. (a) Learning phase and the first interest zone, (b, ¢, d, e, f, g, h) the next interest zones,
and (i) the recognition result.

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153

http://asp.eurasipjournals.com/content/2013/1/153

Page 20 of 23

‘ Logic utilization(%)
1204 o
m Slice registers
100 m Slice flip flops
Slice LUTs
80 n
60
40
2
0 -
1processor 4 processors 8 processors 16 processors
Figure 17 Resource utilization comparison (Xilinx xc6v2x240tff 1156-1).

and FPGAs do not currently contain enough resources to
help us implement large parallel designs.

The implementation results for the homogeneous
MPSoCs are depicted in Figure 18. The x-axis represents
the number of MicroBlaze processors in an MPSoC, and
the y-axis depicts the number of clock cycles (in ms).
Figure 14 shows the expected performance of our imple-
mentation and the experimental execution times on our
parallel design with different dimensions (from 1 to 16
processing nodes (PNs)). The time to execute the road
lane detection and tracking (recursive process) depends
greatly on the number of hypotheses which will be dis-
tributed over different computing nodes. Evidently, bet-
ter tracking performance is delivered by increasing the

number of computing nodes, and thus, it allows the user to
significantly increase application performance (tracking
performance) by implementing more hypotheses. Since
the number of available processing nodes is equal to
the number of the hypotheses, there is no difference of
the theoretical processing times for different architecture
sizes (the 4 processor system processes 4 hypotheses in
parallel, the 8 processors system processes 8 hypotheses
in parallel, and lastly the 16 processors system processes
16 hypotheses in parallel, except that the 1-MicroBlaze
system processes 4 hypotheses in sequential). The ideal
graph represents a parallel implementation in which all
processors operate at 100% efficiency. In reality, efficiency
will be less than 100%, and we found some differences in

- !\ﬁme(msl
4 hypotheses
- (btained Processing Time (ms)
0 - Theoretical Processing Time (ms)
150
100 = heses
w——%‘“
i & - -
0 . . . >
1 processor 4 processors 8 processors 16 processors
Number of processors

Figure 18 Application execution time (ms) for 1 to 16 processing nodes.

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153

http://asp.eurasipjournals.com/content/2013/1/153

processing time between experimental findings and theo-
retical assumptions due mainly to communication effects.
For data parallelism, a large amount of data is exchanged,
which has a larger influence on the final communication
time, and must be taken into account. In practice, the
latency of a program using multiple processors in parallel
computing is limited by the time needed for the sequential
fraction of the program. For these parallel implementa-
tions and from up to 16 processors, communication cost
(which is a sequential part) becomes significant. However,
the remaining sequential algorithm part in the paral-
lel algorithm (zones of interest generation and evolution
step) represents a minor part of the processing time in
the sequential implementation, thus allowing an efficient
parallel implementation according the Amadahl’s law. The
improvement in terms of timing and recognition per-
formances of the different generated MPSoCs designs is
given by:

Per = (Tseq(1 — PN)/Tpar(N — PNs))
x (Nb.hypotheses.parallel/Nb.hypotheses.sequential)

where Tseq(1 — PN) is the time needed by one single
processor to execute the sequential algorithm, Tpar (N —
PNps) is the time needed by N processors to execute the
parallel algorithm, and finally, Nb.hypotheses.parallel and
Nb.hypotheses.sequential are the number of hypotheses
to be executed on a one single processor system and N
processors system, respectively. Based on the experimen-
tal results, the performance of 4-MicroBlazes system is
approximately equal to 3.44 x. Whereas, the achieved per-
formance by 8-MicroBlazes system is equal to 5.78 x.
For 16-MicroBlazes system, our algorithm could achieve
a 9.46 x performance improvement compared to a single
processor system. As expected, only a limited increase in
performance could be achieved by adding more proces-
sors due to the communication overhead. In other hand,
regarding to the result of experiments results, our pro-
posed design is successful in detecting roadside boundary
and correctly tracking target side in all frames despite the
changes of vehicle environment. The percentage of cor-
rect lane tracking is over 90%, depending on the real road
conditions and the number of the hypotheses used. To
summarize, the DMA router architecture implementation
achieves the best performance and its throughput scales
very well as the number of cores increases.

6.2.2 Task parallel implementation

Following the design flow, a number of multiprocessor
configurations can be created and programmed easily
using our CubeGen framework. In this section, we will
evaluate the performance of a novel FPGA implementa-
tion of the recognition approach-based task parallelism.
The pipeline design described above was simulated and
implemented targeting Xilinx FPGA. Furthermore, we

Page 21 of 23

present a number of experiments in which we show the
FPGA synthesis results and the execution times of the
image processing algorithm.

Figure 19 shows the space and resources used by
the proposed MPSoC architecture (the pipeline network
architecture) in the function of the number of processing
nodes in each stage (the cases of 1, 4, and 8 processing
nodes (PNs) in each pipeline stage). In these implementa-
tions, we have employed the bus video module designed
to serve as an I/O engine for MPSOC configurations
for varied dimensions. The size of memory for data and
program (BRAM) was set to 64 kB. For the four-node
architecture in each stage, place and route results lead
to an area occupation of 7% for slice registers, 91% for
RAM blocks, and 18% for slice LUTs. Since the proces-
sors are connected through a hypercube network, each
node is associated with frame grabber which contains two
buffers (input/output buffer) and supplied with a 64-k
local memory. This may explain the results of resource uti-
lization in terms of area occupation. Due to the large size
of the contest networks and the limited resources on the
Xilinx Virtex-6 ML605 FPGA, we were only able to imple-
ment two-pipeline architecture composed of eight PNs in
each stage. As expected, the memory resources will be
the limiting factor in our design. To improve the tracking
performance, the number of hypotheses (tasks) executed
in parallel will increase as more processors are added.
As a result, the performance is limited by the maximum
number of tasks that can be allocated during iteration.
However, the communication times to execute the above
algorithm onto our hardware architecture should be sig-
nificantly reduced since the input image is available for all
the processors.

Figure 20 provides the execution times of variety of
MPSoC architectures, ranging from a one-processor per
stage system to an eight-processor system per stage. The
ideal graph represents a perfectly parallel program doing
the same amount of work in which all processors oper-
ate 100% efficiency; communication overheads could be
ignored between processors and assumes static task exe-
cution times. As expected, the communication overheads
have a minor effect in the global processing time, and
hence, the performance of the proposed algorithms is very
close to the theoretical speedup. The achieved perfor-
mances are 3.72 x for a four-processor system per stage
and 6.58 x for an eight-processor system per stage. Com-
paring these results to those when using MPSoC design-
based hardware router (improvements of 3.72 x and 6.58 x,
respectively), this means that the multistage architecture
is capable of significantly further improving the parallel
implementation of such applications. Thus, the execution
time of the recognition application with four computing
nodes per stage is approximately 69 ms, whereas it is 269
ms for the original sequential application. The recognition

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153

http://asp.eurasipjournals.com/content/2013/1/153

Page 22 of 23

100 4
90

ﬁlogic utilization(%)

m Slice registers

80

m Slice flip flops

70
60

dice LUIS
-Block R

50

40

30

20

10
0 -

1 processor

4 processors 8 processors

Figure 19 Resource utilization comparison(Xilinx xc6v2x240tff 1156-1).

function requires 53 ms and 16 ms, respectively, for the
detection and least median of squares methods in the first
frame. Then, their processing times are reduced across all
the next frames. Finally, eight-processor system per stage
is able to achieve a performance speedup of up to 6.58 x
compared to 1-MicroBlaze system. In real practice, we can
achieve a speed of at least 18 frames per second. The per-
centage of correct lane tracking is over 98%, depending on
the real road conditions and the number of the hypotheses
used.

Finally, although in terms of area both implementa-
tions are comparable, our road recognition application is
faster than the designs previously presented. Moreover,
the presented architecture achieves the best performance,
and its throughput scales very well as the number of

cores increases. The benefit of this parallel architec-
ture becomes much clearer in the terms of latency and
performance.

7 Conclusion

In this paper, we present an improved MPSoC approach
to design, test, evaluate, and generate parallel homo-
geneous architectures that satisfies the severe require-
ments of real-time image processing applications. For
embedding multitasks applications efficiently, we applied
our MPSoC-based design flow and design methodol-
ogy to develop an FPGA-based multiprocessor system
with multiple pipeline stages. This homogeneous design
aims at balancing the computation requirement and
providing enough computing performances to ensure

Time(ms
30().A . .= Theoretical Processing Time (ms)
S —+ Obtained Processing Time (ms)
250
200 \\
150
0 2 hypothe: 8 hypotheses
a
50
0 . - - >
1 processor 4 processors 8 processors

Number of processor/stage

Figure 20 FPGA timing performance results.

Chenini et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:153

http://asp.eurasipjournals.com/content/2013/1/153

real-time processing of complex image/video processing
algorithms. Our main objective is to enable quick imple-
mentations on the FPGA by developing a new framework
that aims at generating an optimal MPSoC for a given
application. The user has only to design image and video
processing applications in C language and convert them
into hardware using our CubeGen tool.

To evaluate the effectiveness of our framework, we have
focused on the parallelization and resulting performance
of model-driven approach for real-time road recognition
on parallel-pipelined architecture based on point-to-point
connections. With this work, we have demonstrated that
the MPSoC-based system with multiple pipelines achieves
a high computational performance and speeds up signif-
icantly the execution time using images of a real road
scene. The main goal here was to investigate the proposed
FPGA tools (both hardware and software tools for rapid
development for network architecture) against powerful
and complex tasks in autonomous vehicles and robotics.

Similarly, our current work addresses the parallel imple-
mentation of multilayer neural network (NNs) appli-
cations using our parallel-pipelined architecture. One
possible approach to parallelize an application is to
pipeline the execution of the sequential hidden layers
since our parallel architectures are based on multiple
stages whose outputs constitute the inputs of the next
stage in processing the whole neural network layer by
layer. An important issue in the parallel implementation
of artificial neural networks (ANNSs) is the communi-
cation costs between the different layers. In order to
maintain parallel efficiency, we have started by developing
the appropriate parallel algorithmic skeletons dedicated to
ANN s applications.

On the other side, to extend the choices related to the
processing units, we have used an available soft-core pro-
cessor provided by [16] called SecretBlaze. Consequently,
the processor choices will not be limited to the com-
mercial softcores (such as MicroBlaze or NIOSII). This
open source 32-bit RISC soft-core processor is based on
the instruction set of Xilinx’s MicroBlaze. Our motiva-
tion here was to explore a new parameterized processor
expressed using an HDL (hardware description language)
such as Verilog or VHDL allowing for certain aspects of
the architecture to be varied.

Competing interests
The author declares that they have no competing interests.

Acknowledgements

This work was funded by the French National Research Agency, the European
Commission (Feder funds), Auvergne Region in the framework of the LabEx
IMobS® and the European Project SEAMOVES.

Author details

TInstitut Pascal-UMR 6602 CNRS, Blaise Pascal University, 24 Avenue des
Landais, Clermont-Ferrand 63177, France. 2LIMOS-UMR 6158 CNRS, Blaise
Pascal University, 24 Avenue des Landais, Clermont-Ferrand 63177, France.

Page 23 of 23

Received: 31 January 2013 Accepted: 30 August 2013
Published: 1 October 2013

References

1. HChenini, JP Dérutin, T Chateau, Fast prototyping of embedded image
processing application on homogenous system - a parallel particle filter
tracking method on Homogeneous Network of Communicating
Processors(HNCP). VISAPP. 2, 122-133 (2012)

2. GD Michell, RK Gupta, Hardware/software co-design. IEEE MICRO.

85, 349-365 (1997)

3. JVidal, F de Lamotte, G Gogniat, P Soulard, JP Diguet, in Proceedings of the
Conference on Design, Automation and Test in Europe, Nice, 20-24 Apr
2009. A co-design approach for embedded system modeling and code
generation with UML and MARTE (European Design and Automation
Association Belgium, 2009), pp. 226-231

4. T Arpinen, E Salminen, TD Hamaldinen, M Hannikdinen, Performance
evaluation of UML2-modeled embedded streaming applications with
system-level simulation. EURASIP J. Embedded Syst. 2009, 6:3-6:3 (2009)

5. MRaulet, C Moy, F Urban, JF Nezan, O Déforges, Y Sorel, Rapid
prototyping for heterogeneous multicomponent systems: an MPEG-4
stream over an UMTS communication link. EURASIP J. Adv. Signal Process.
2006, 64369 (2006)

6. O Wander, L Damie, N Gabriela, P Yanick, Y Sungjoo, A Ahmed, G Lovic,
DN Mario, Multiprocessor SoC platforms: a component-based design
approach. IEEE Design Test Comput. 19, 52-63 (2002)

7. TKempf, M Doerper, R Leupers, G Ascheid, H Meyr, T Kogel,

B Vanthournout, in Proceedings of the conference on Design, Automation
and Test in Europe, vol.2, Washington, DC, USA. A modular simulation
framework for spatial and temporal task mapping onto multi-processor
SoC platforms (IEEE, Piscataway, 2005), pp. 876-881

8. TKangas, P Kukkala, H Orsila, E Salminen, M Hannikdinen, TD Hamaldinen,
JRiihimaki, K Kuusilinna, UML-based multiprocessor SoC design
framework. ACM Trans. Embed. Comput. Syst. 5(2), 281-320 (2006)

9. CHaubelt, J Falk, J Keinert, T Schlichter, M Streubuihr, A Deyhle, A Hadert,
J Teich, A SystemC-based design methodology for digital signal
processing systems. EURASIP J. Embedded Syst. 2007, 15-15 (2007)

10. N Hristo, T Mark, S Todor, P Andy, P Simon, R Bose, Z Claudiu, E Deprettere,
in 45th ACM/IEEE Design Automation Conference, Anaheim, 813 Jun 2008.
Daedalus: toward composable multimedia MP-SoC design
(IEEE, Piscataway, 2008), pp. 574-579

11. Y Jin, N Satish, K Ravindran, K Keutzer, in Proceedings of the 3rd
IEEE/ACMVIFIP International Conference on Hardware/software Codesign and
System Synthesis, CODES+ISSS ‘05, Jersey City. An automated exploration
framework for FPGA-based soft multiprocessor systems (IEEE, Piscataway,
2005), pp. 273-278

12. K Benkrid, D Crookes, A Benkrid, Towards a general framework for FPGAs
based image processing using hardware skeletons. Parallel Comput.
28(7-8), 1141-1154 (2002)

13. HChenini, J Dérutin, T Tixier, in International Joint Conference on Neural
Networks 2013 (IJCNN2013), Dallas, USA. Fast parking control of mobile
robot based on multi-layer neural network on homogeneous architecture
(IEEE, 2012)

14. A Romuald, C Roland, C Frederic, A model-driven approach for real-time
road recognition. Mach. Vis. Appl. 13(2), 95-107 (2001)

15. L Siéler, L Damez, B Ballet, A Landrault, J Dérutin, in Proceedings of the 8th
FPGAWorld Conference, FPGAWorld ‘11. A generic packet router IP for
multi-processors network-on-chip (ACM, New York, 2011), pp. 2:1-2:6

16. B Lyonel, VC Luis, B Pascal, T Lionel. The SecretBlaze: a configurable and
cost-effective open-source soft-core processor. IPDPS Workshops,
Shanghai, 16-20 May 2011 (IEEE, Piscataway, 2011), pp. 310-313

doi:10.1186/1687-6180-2013-153

Cite this article as: Chenini et al.: Parallel embedded processor architec-
ture for FPGA-based image processing using parallel software skeletons.
EURASIP Journal on Advances in Signal Processing 2013 2013:153.

	Abstract
	1 Introduction
	2 Related work
	3 Proposed parallel architecture
	3.1 Motivation
	3.2 Pipelined homogeneous design
	3.3 Hardware-software video streaming modules
	3.3.1 Ethernet video module
	3.3.2 Bus video module

	3.4 Algorithmic skeletons
	3.4.1 SCM skeleton
	3.4.2 FARM skeleton
	3.4.3 PIPE skeleton

	3.5 Automatic generation of the proposed MPSoC architecture
	3.5.1 Design flow overview
	3.5.2 CubeGen framework for Altera/Xilinx environment

	4 Multihypotheses model-driven approach for road recognition
	4.1 Model of road edges
	4.2 Learning phase
	4.3 Recognition phase

	5 Parallel implementation of recognition algorithm
	5.1 Implementation-based FARM skeleton
	5.2 Implementation-based SCM skeleton

	6 FPGA implementations
	6.1 Sequential implementation
	6.2 Parallel implementation
	6.2.1 Data parallel implementation
	6.2.2 Task parallel implementation

	7 Conclusion
	Competing interests
	Acknowledgements
	Author details
	References

