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1 Steinmann Institut für Geologie, Paläontologie und Mineralogie, Universität Bonn, Bonn, Germany, 2Department of Geology, Lund University, Lund, Sweden, 3New

Jersey State Museum, Trenton, New Jersey, United States of America, 4Department of Anatomy, Midwestern University, Glendale, Arizona, United States of America,
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Abstract

Background: During their evolution in the Late Cretaceous, mosasauroids attained a worldwide distribution, accompanied
by a marked increase in body size and open ocean adaptations. This transition from land-dwellers to highly marine-adapted
forms is readily apparent not only at the gross anatomic level but also in their inner bone architecture, which underwent
profound modifications.

Methodology/Principal Findings: The present contribution describes, both qualitatively and quantitatively, the internal
organization (microanatomy) and tissue types and characteristics (histology) of propodial and epipodial bones in one
lineage of mosasauroids; i.e., the subfamily Mosasaurinae. By using microanatomical and histological data from limb bones
in combination with recently acquired knowledge on the inner structure of ribs and vertebrae, and through comparisons
with extant squamates and semi-aquatic to fully marine amniotes, we infer possible implications on mosasaurine evolution,
aquatic adaptation, growth rates, and basal metabolic rates. Notably, we observe the occurrence of an unusual type of
parallel-fibered bone, with large and randomly shaped osteocyte lacunae (otherwise typical of fibrous bone) and particular
microanatomical features in Dallasaurus, which displays, rather than a spongious inner organization, bone mass increase in
its humeri and a tubular organization in its femora and ribs.

Conclusions/Significance: The dominance of an unusual type of parallel-fibered bone suggests growth rates and, by
extension, basal metabolic rates intermediate between that of the extant leatherback turtle, Dermochelys, and those
suggested for plesiosaur and ichthyosaur reptiles. Moreover, the microanatomical features of the relatively primitive genus
Dallasaurus differ from those of more derived mosasaurines, indicating an intermediate stage of adaptation for a marine
existence. The more complete image of the various microanatomical trends observed in mosasaurine skeletal elements
supports the evolutionary convergence between this lineage of secondarily aquatically adapted squamates and cetaceans
in the ecological transition from a coastal to a pelagic lifestyle.
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Introduction

Mosasauroidea includes medium-sized to giant lizards that

evolved in the oceans of the Late Cretaceous between 98 and

66 Ma ago (e.g. [1,2]). During their evolution, mosasauroids

acquired a worldwide distribution, accompanied by a marked

increase in body size (some forms exceed 15 meters in length) and

open-ocean adaptations [3,4,5]. Three general morphotypes have

been recognized [6,7] that seemingly illustrate progressive steps in

the adaptation of mosasauroids to open-ocean habitats, as well as

increasing abilities for more energy-efficient swimming. These

morphotypes include: (1) rather small forms (typically ,2 meters

long) that display terrestrial-like (plesiopedal) limbs and a typical

squamate pelvic girdle (i.e., a plesiopelvic anatomy); (2) taxa (from

3 to 6 meters long) possessing plesiopedal limbs but where the

pelvic girdle has been transformed so that there is no sacral contact

with the ilium (i.e., a hydropelvic anatomy); and (3) forms (from 4

to 15 meters long) that have both paddle-like (hydropedal) limbs

and a hydropelvic anatomy.

Certain aspects of the biomechanics and physiology of

mosasauroids are reflected in their postcranial skeleton. At the

microanatomical level (i.e., in the bone inner organization) are

notably observed specializations related to the mechanical

constraints of locomotion and to the hydrostatic or hydrodynamic
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control of buoyancy (i.e., in order to remain submerged) and body

trim (i.e., to retain a horizontal body orientation) in water. For

instance, plesiopelvic forms are known to display bone mass

increase (sensu [8]) in at least their vertebrae and ribs [9,10] and,

conversely, hydropelvic forms have a spongious inner bone

organization [9,11,12]. Specializations at the histological (tissue)

level also occur; the prevalence of highly vascularized parallel-

fibered bone has been associated with relatively high growth rates

and maintenance of relatively high core body temperatures

suggesting elevated basal metabolic rates compared to extant

squamates [12,13].

Osteohistological studies of mosasauroids have hitherto been

limited to ribs [11,12,14,15] and vertebrae [9,10,12,16,17],

whereas mosasauroid long bones have been analyzed solely from

a skeletochronological perspective [18]. This lack of information

precludes meaningful histological and microanatomical compar-

isons with other groups of obligate marine reptiles for which only

long bone data are available [13]. Accordingly, in the present

contribution, we describe, both qualitatively and quantitatively,

microanatomical and histological specializations observed in mid-

diaphyseal sections of pro- and epipodial bones (see [19]) in one

lineage of mosasauroids; i.e., the subfamily Mosasaurinae, and

compare these features with those observed in extant squamates

and extant and extinct semi-aquatic to fully marine amniotes. We

conclude with a discussion on the implications for mosasaurine

evolution, including increased growth rates and elevated basal

metabolic rates.

Materials and Methods

The material selected for osteohistological analysis comprises

pro- and epi-podial bones representing six genera of mosasaurine

mosasaurs (i.e., the plesiopedal and hydropelvic Dallasaurus, and

the hydropedal and hydropelvic Clidastes, Globidens, Mosasaurus,

Plotosaurus, and Prognathodon) that collectively record approximately

26 million years of evolution in a single mosasauroid lineage

(Table 1). We chose humeri whenever possible because propodials

have a stronger ecological signal than epipodials [20,21] and

because femora are rare in collections. Comparative material

includes sectioned humeri, femora and ribs of extant squamates

and semi-aquatic to fully marine tetrapods (Tables 2–4).

The specimens were loaned and permission for histological

sampling was given by all institutions listed in Table 2.

Prior to sampling, the bones were measured, molded and

casted. Approximately 5 mm thick blocks (transverse to the long

axis) were removed from the mid-diaphyseal region of each

element using a diamond saw, and then vacuum-embedded in a

clear polyester resin to prevent shattering during slide preparation.

Two thin sections approximately 50–100 mm thick were made

from each block. The sections were observed under a LeicaH DM

2500 compound polarizing microscope equipped with a LeicaH

DFC 420C digital camera. Additionally, the sections were scanned

at high resolution (i.e., between 6400 and 12800 dpi) using an

Epson V750-M Pro scanner, transformed into single-bit digital

images using Photoshop CS3 (where black and white represent

bone and cavities respectively), and analyzed using Bone Profiler

[22].

Bone profile parameters for each section were measured or

calculated following Laurin et al. [23]. These include: (1) C:

compactness of the whole section; (2) P: the extent of the

medullary cavity as measured by the relative distance from the

center of the section to the point where the most abrupt change in

compactness occurs; (3) S: the width of the transitional zone

between the compact cortex and the medullary cavity as measured

by the reciprocal of the slope of the compactness profile at the

inflection point; (4) MD: maximum bone diameter at the level of

section, which is considered as a proxy for body size; and (5) R/t:

outside radius of the bone divided by the thickness of the cortex (cf.

[24]).

In order to infer the lifestyle of the basal mosasaurine Dallasaurus

we follow the methodology described by Germain and Laurin [25]

by performing a linear discriminant analysis (LDA) to distinguish

between: (1) essentially terrestrial; (2) essentially or exclusively

aquatic poorly active swimmers; and (3) active swimmers. Prior to

analysis, all data were transformed in order to meet assumptions of

normality and homoscedasticicy: !P, logitS, logMD, and logR/t,

except for compactness index (C), for which transformation was

unnecessary (see Text S1). Moreover, the phylogenetic significance

of the parameters was tested for all three categories of bones (i.e.,

humerus, femur and rib) on a consensus phylogeny (cf. [26]).

Species mean values were used when several specimens (of

comparable ontogenetic stage) were available for the same taxon.

The descriptive K-statistic, which compares the observed phylo-

genetic signal in a trait (based only on the reference tree structure)

with the signal under a Brownian motion model of trait evolution

2 following Blomberg et al. [27] 2 was provided. K values lower

than 1 imply less similarity between relatives than expected under

Brownian motion. Randomization tests were performed to test the

phylogenetic signal of each parameter. Statistical analyses were

performed using R Development Core Team [28].

The histological terminology is based primarily on Francillon-

Vieillot et al. [29], and the systematics follow Bell and Polcyn [6].

Results

(a) Histological Features
Humerus. All sections, except that of Dallasaurus (see below),

consist mainly of a spongiosa surrounded by a peripheral layer of

compact cortical bone (Fig. 1). The cortical bone is rather thin in

most taxa, but it is somewhat wider in Clidastes. Given the overall

similarity in bone architecture between the different mosasaurine

genera, we here provide a generalized description of humeri

assigned to Clidastes, Globidens, Mosasaurus, and Prognathodon.

In most sections 2 except IRScNB 1624, here referred to

Prognathodon sp. 2 the spongiosa is poorly preserved and most deep

trabeculae are broken (Fig. 1A; IRScNB: Institut Royal des

Sciences Naturelles de Belgique, Bruxelles, Belgium). However,

the spongiosa is clearly heterogenous and various zones with

distinct patterns occur (Fig. 1A). It is denser in the posterior part of

the section, with reduced intertrabecular spaces (Figs. 2B–3A),

whereas is it looser in the antero-lateral part, and much looser in

the central part. This is in accordance with the observation that

the central region is generally crushed during diagenesis (Fig. 1A).

Antero-laterally, the trabeculae are oriented parallel to one

another and they show a predominantly radial orientation (Figs.

2AB–3B); however, they appear more randomly oriented toward

the central part of the section (Fig. 2C).

Four types of bone tissues are present in the cortex: (1) lamellar

bone, with the lamellae displaying an alternate extinction in

polarized light (Fig. 2D–F). The osteocyte lacunae are highly

elongate and aligned parallel to the main direction of bone deposit;

(2) a bone tissue with a mass birefringence in polarized light, which

is characteristic of parallel-fibered bone. The cell lacunae are

elongate and aligned parallel to the direction of bone deposit

(Fig. 2G); (3) a tissue with mass birefringence under polarized light

(a feature typical of parallel-fibered bone), but where large cell

lacunae are present (a feature generally encountered only in

fibrous bone; Fig. 2G). The osteocyte lacunae are either aligned

Mosasaur Long Bone Histology and Microanatomy
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Table 1. List of the mosasauroid long bones analyzed in this study.

Taxon Coll. Nb. Age Locality/Stratigraphy Bone

Clidastes sp. UCMP 34536 Niobrara Fm, Kansas USA H

Prognathodon kianda MGUAN-PA Unnb. M Latest Campanian, Bentiaba, Angola LH

Prognathodon or Mosasaurus MJP Unnb. M Latest Campanian, Bentiaba, Angola H

Prognathodon or Mosasaurus MGUAN-PA Unnb. M Latest Campanian, Bentiaba, Angola RH

Mosasaurus sp. MGUAN-PA Unnb. M Latest Campanian, Bentiaba, Angola LH

Prognathodon sp. IRScNB 1624 M Ciply Phosphatic Chalk, Belgium H*

Mosasaurinae indet. SMU 76406 C Ozan Fm, Texas, USA H

Mosasaurinae indet. SMU 76407 C Ozan Fm, Texas, USA H?

Mosasaurinae indet. SMU 76407 C Ozan Fm, Texas, USA H?

Dallasaurus turneri SMU 76386 T Cedar Hill, Texas, USA H*

SMU 76529 T Cedar Hill, Texas, USA F* & Ri*

Plotosaurus bennisoni UCMP 152664 M Moreno Fm, California, USA RRa

UCMP 152554 M Moreno Fm, California, USA RRa

Globidens sp. MGUAN-PA Unnb. M Latest Campanian, Bentiaba, Angola LH

Mosasaurine indet. MGUAN-PA Unnb. M Latest Campanian, Bentiaba, Angola LH

*elements included in the LDA. Abbreviations- T: Turonian, S: Santonian, C: Campanian; M: Maastrichtian; L: left, R: right, H: humerus, Ra: radius, Ri: rib, T: tibia; Unnb:
unnumbered. MGUAN-PA: Geological Museum, Universidade Agostinho Neto, Luanda, Angola (PaleoAngola collection).
doi:10.1371/journal.pone.0076741.t001

Table 2. Non-mosasauroid humeri analyzed.

Systematic Position Taxon Abb. Ecol. Coll. Nb. & Reference

Ichthyosauria Stenopterygius sp. St AS Unnb, [20]

Placodontia Placodont indet. Pl PAS IGWH-9, [56]

Pachypleurosauria Anarosaurus sp. An PAS Wijk08–183, [56]

Wijk09–58, [56]

Nothosauria Nothosaurus sp. No PAS IGWH-7, [56]

IGWH-3, [56]

Cymatosauridae ?Cymatosaurus sp. Cy PAS IGWH-6, [56]

Squamata Amblyrhynchus cristatus Am ET MZLUXX/6432

Tupinambis teguixin Tu ET MZLUXX/6410

Varanus bengalensis Vben ET MZLUXX/6393

Varanus candolineatus Vca ET MZLU896/3041

Varanus gouldi Vgo ET MZLU867/3039

Varanus indicus Vin ET MZLUXX/6390

Varanus niloticus Vni ET MZLU878/3026

Crocodilia Crocodylus sp. Cr PAS Unnb., [57]

Sirenia Trichechus manatus Tr PAS ZFMK 73.223

Pinnipedia Lutra lutra Lu PAS MNHN1906-236, [57]

Amblonyx cinereus Amb PAS MNHN277, [57]

Mirounga leonine Mi AS Unnb., [57]

Cetacea Delphinius delphis De AS MNHN AC 1880-1310

Phocoena phocoena Ph AS MNHN AC 1881-232

Tursiops truncatus Tur AS MNHN AC 1978-09

Abb: Abbreviations; lists of abbreviations used in Figure 5. Ecol: Ecological categories used in the LDA; ET: essentially terrestrial taxa; PAS: essentially or exclusively
aquatic poorly active swimmers; AS: active swimmers. IGWH: Institute of Geosciences of the Martin-Luther-University Halle-Wittenberg, Germany; MZLU: Museum of
Zoology, Lund University, Sweden; MNHN: Muséum National d’Histoire Naturelle, Paris, France; Wijk: Winterswijk collection in the National Museum of Natural History
Naturalis, Leiden, The Netherlands; ZFMK: Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.
doi:10.1371/journal.pone.0076741.t002
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parallel to one another (Fig. 2G) or more or less randomly

arranged, which also indicates variations in growth speed; (4)

Isotropic bone under polarized light with large and randomly

shaped cell lacunae, corresponding to true fibrous bone (Fig. 2E–

F). These four types of osseous tissue are hereafter referred to as:

(1) lamellar bone (LB); (2) traditional parallel-fibered bone (PFB);

(3) unusual parallel-fibered bone (UPFB); and (4) fibrous bone

(FB).

In the cortex, LB is only rarely observed. It occurs in osteons

and as secondary bone in areas of active remodelling (which are

Table 3. Non-mosasauroid femora analyzed.

Systematic Position Taxon Abb. Ecol. Coll. Nb. & Reference

Placodontia Placodont indet. Pl PAS IGWH-23, [56]

Pachypleurosauria Anarosaurus sp. An PAS Wijk07–11, [56]

Nothosauria Nothosaurus sp. No PAS Wijk05–10, [56]

Cymatosauridae ?Cymatosaurus sp. Cy PAS IGWH-24, [56]

NME48000074, [56]

Squamata Amblyrhynchus cristatus Am ET MZLUXX/6432

Tupinambis teguixin Tu ET MZLUXX/6410

Varanus bengalensis Vben ET MZLUXX/6393

Varanus candolineatus Vco ET MZLU896/3041

Varanus gouldi Vgo ET MZLU867/3039

Varanus indicus Vin ET MZLUXX/6390

Varanus niloticus Vni ET MZLU878/3026

Dallasaurus turneri Da ET SMU 76386

Thalattosuchia Teleosaurid indet. Te PAS BHN 2R883, [58]

Crocodilia Alligator mississipiensis Al PAS SMNS 10481, [59]

Abbreviations are as in Table 2. BHN: Musée d’Histoire Naturelle de Boulogne-sur-Mer, France; NME: TwentseWelle, Enschede, The Netherlands; SMNS: Staatliches
Museum für Naturkunde, Stuttgart, Germany.
doi:10.1371/journal.pone.0076741.t003

Table 4. Comparative rib material analyzed.

Systematic Position Taxon Abb. Ecol. Coll. Nb. & Reference

Squamata Varanus rudicollis Vru ET MNHN AC 1983–6

Varanus varius Vva ET MNHN AC 1910–12

Carentonosaurus mineaui Ca PAS MNHN IMD 51

Dallasaurus turneri D TMM 43209-1, [31]

Clidates sp. (juvenile) Cj AS UCMP 34536, [60]

Clidates sp. (subadult) Csa AS RMM 1287, [61]

Clidates sp. Ca AS RMM 1788, [31]

Tylosaurus sp. (early juvenile) Tej AS RMM 5610, [60]

Tylosaurus sp. (late juvenile) Tlj AS UW 1501.5, [60]

Platecarpus sp. (late juvenile) Plj AS UCMP 34781, [60]

Platecarpus sp. (subadult) Psa AS AMNH 1645, [61]

Platecarpus sp. Pa AS AMNH 1543, [11]

Thalattosuchia Metriorhynchid indet. Me AS MHBR 208, [58]

Crocodilia Crocodylus sp. Cr PAS Unnb., [62]

Pinnipedia Phoca vitulina Ph AS IPB M 60

Zalophus californianus Za AS ZFMK 49.98

Mirounga leonine Mi AS ZFMK 62.105

Cetacea Balaenoptera brydei Ba AS NSM M 32599

Abbreviations are as in Table 2. AMNHN: American Museum of Natural History, New York, USA; IPB: Institute for Paleontology, University of Bonn, Germany; MHBR:
Muséum d’Histoire Naturelle du Havre, France; NSM: National Science Museum, Tokyo, Japan; RMM: former Red Mountain Museum, Birmingham, Alabama, USA (the
collection is currently housed at the McWane Science Center, Birmingham, Alabama, USA); TMM: Texas Memorial Museum, Dallas, Texas, USA; UW: University of
Wisconsin, Madison, Wisconsin, USA. The ontogenetic stage is indicated for non-adult specimens.
doi:10.1371/journal.pone.0076741.t004
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essentially restricted to the inner cortex). It is possible, especially in

the medial and lateral parts of the sections, to observe distinct

phases of growth through zones and annuli (Fig. 2E–G). Annuli

are characterized by the unique occurrence of PFB, whereas zones

exhibit UPFB, sometimes associated with local deposits of FB

(Fig. 2E–F).

The vascularization consists of simple vascular canals and

primary osteons oriented both longitudinally (Fig. 2E–F) and

radially (Fig. 2G). Some oblique orientations also occur, as do a

few anastomoses. The degree of vascularization and the orienta-

tion of the vascular canals are not homogeneous in any section. A

predominantly longitudinal orientation is observed in the medial

region, and only in the zones. The degree of vascularization is

generally rather high. Substantial secondary endosteal deposits

occur in the osteons, resulting in the quasi-obliteration of some

vascular spaces (Fig. 2H). However, large cavities organized in

concentric rows in the inner part of the cortex indicate strong

resorption of the primary osteons (Fig. 3A–B). In the external

spongiosa, the trabeculae often display some remains of primary

bone (Fig. 3C–E), whereas they are completely remodelled in the

deep spongiosa, where they instead consist of PFB and LB

(Fig. 3E).

The humerus of Dallasaurus differs markedly from that of

other hydropelvic mosasaurines. The osseous organization is not

spongious; instead, the bone is relatively compact (Fig. 3F). A

thick dense layer surrounds the medullary area, which contains

a few large and randomly shaped intertrabecular spaces

separated from one another by thick trabeculae. The periosteal

bone consists in its periphery of PFB with aligned, elongate

lacunae. Vascular canals are almost completely absent from this

layer (Fig. 3F–G). Towards the medullary region, the osteocyte

lacunae are larger and randomly oriented, as in UPFB, and

simple, radially oriented vascular canals are present (Fig. 3G).

Interestingly, locally in the periphery of the cortex, the cell

lacunae are also larger, but elongated parallel to the direction of

bone deposit. Remodelling has only occurred in the medullary

region, where secondary deposits of parallel-fibered and lamellar

bone are observed.

Other appendicular elements. The Plotosaurus radius

sections show microanatomical (Fig. 2H) and histological

features similar to those of the humeri described above.

However, some differences are observed in the tightness of

the spongiosa; it is tighter (i.e., more numerous trabeculae but

smaller intertrabecular spaces) in UCMP 152554 than in

UCMP 152664 (UCMP: University of California Museum of

Paleontology, University of California, Berkeley, California,

USA). This difference is consistent with the increase in number

but decrease in the size of cavities with increased size of the

individual, a condition also observed in extant squamates and

hydropelvic mosasauroid vertebrae [12,30].

The femur and ribs of Dallasaurus show a tubular structure with

a compact cortex and a large, open medullary cavity (Fig. 4A;

[31]). The histological features of the femur are similar to those

observed in the humerus (Fig. 4B), with the exception that

secondary bone deposits are extremely rare. In the ribs, the

cortical thickness is variable. The periosteal bone of the ribs

consists essentially of PFB. A few deposits of UPBF are present

locally in the periphery of the cortical bone, and a remnant of

UPFB is located close to the medullary cavity. A few endosteal

deposits of secondary PFB and LB occur in this area (Fig. 4C). The

vascularization consists of only a few primary osteons oriented

longitudinally, in that region of the bone where the cortex is the

thickest (Fig. 4D).

(b) Microanatomical Comparative Analysis
Humerus. The Linear Discriminant Analysis (LDA) for the

humerus was very efficient: it correctly attributed the habitat for

97% (28 out of 29) of the taxa (100% of the ‘‘essentially

terrestrial’’ [ET], 100% belonging to the ‘‘essentially or

exclusively aquatic poorly active swimmers’’ [PAS] grouping,

and 83% of the ‘‘active swimmers’’ [AS] grouping). The long

bones of the ET taxa (i.e., all extant squamates) are

characterized by a tubular structure with a layer of compact

cortex surrounding an open medullary cavity. Variations in the

relative proportions of the latter feature are observed between

different taxa: for instance, Varanus caudolineatus has the smallest

medullary cavity, whereas V. indicus and V. bangalensis have the

widest. Most PAS display a relatively high compactness and a

reduced medullary cavity with no clear contours in some taxa.

Lutrines, in addition to one specimen of Nothosaurus, differ from

this general trend with their subtubular and tubular structure

(i.e., cortical ‘‘tube’’ surrounding the medullary area), respec-

tively. Although this does not prevent these animals to group

with the other PAS in the LDA, this difference should not be

neglected. All AS (including Mosasaurus) are characterized by a

spongious inner bone organization, generally surrounded by a

thin layer of compact cortical bone. Stenopterygius (a ‘‘dolphin-

like’’ ichthyosaur), which displays a much tighter spongiosa than

do the other taxa, is the only fossil that does not group with the

AS (but rather with the PAS) in the LDA analysis. The lifestyle

of Dallasaurus was inferred as PAS (Fig. 5A), which is consistent

with its highly compact inner bone structure and absence of a

medullary cavity.

Femur. The LDA for the femur included only two ecological

categories (ET and PAS). The two parameters S and P do not

show a normal distribution for this sample. This is probably

because the two categories have strongly distinct microanatomical

features, as shown by the extreme efficiency of the LDA that

correctly attributed the habitat for all taxa. ET taxa are

characterized by a distinct tubular structure with a large medullary

cavity, whereas the PAS taxa display a much higher compactness

and a reduced medullary cavity (which is sometimes surrounded

by a spongiosa). The lifestyle of Dallasaurus was inferred as similar

to those of ET taxa (Fig. 5B).

Ribs. The LDA was also efficient for the ribs. The habitat was

correctly attributed for 90% (18 out of 20) of the taxa (80% of the

ET, 100% of the PAS and 92% of the AS). The ribs of ET (extant

squamates) display a typical tubular structure. The PAS show a

very compact structure with a much reduced medullary cavity. AS

Figure 1. Humeral mid-diaphyseal sections. A, Clidastes sp. UCMP
34536. B, Prognathodon sp. IRScNB 1624. Ant: anterior, Med: medial.
Scale bar equals A, 2 mm; B, 5.6 mm.
doi:10.1371/journal.pone.0076741.g001
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Figure 2. Microanatomical and histological features of mosasaurine humeri. A–C, Prognathodon sp., IRScNB 1624. Spongiosa with different
tightness and organization of the trabecular network between the A, posterior, B, antero-lateral and C, inner regions. D–E, Clidastes sp., UCMP 34536.
D, broken inner trabeculae displaying secondary lamellar bone (LB). E, cortex illustrating the different primary osseous tissues observable (parallel-
fibered bone [PFB], unusual parallel-fibered bone [UPFB] and fibrous bone [FB]) in zones (Z) and annuli (A), and longitudinally oriented primary
osteons (PO). F–G, Mosasaurinae indet., SMU 76406. F, as in E but also with clearly distinguishable lamellar bone (LB). G, cortex illustrating the change
from PFB to UPFB between annuli and zones, and radially oriented simple vascular canals. H, Mosasaurinae indet., SMU 76407. Detail of osteons with
extreme obliteration of the vascular spaces. SMU: Southern Methodist University, Shuler Museum of Paleontology, Dallas, Texas, USA.
doi:10.1371/journal.pone.0076741.g002
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are generally characterized by a relatively lower compactness of

their bones and a spongious inner organization. Presumably as a

result of its low tightness (i.e., few cavities and thick trabeculae), the

Clidastes adult section was erroneously attributed to the PAS

Figure 3. Histological and microanatomical features in mosasaurine long bones. A–G, Humeri. A, Globidens sp., PA Unnumbered. B-E,
Mosasaurinae indet., SMU 76406. A–B, cortex showing the circumferential organization of the longitudinally oriented osteons and the increased
resorption centripetally. C–D, external spongiosa in C, natural and D, polarized light (with gypsum filter) showing secondary deposits of parallel-
fibered (PFB) and lamellar (LB) bone. E, transition from the external spongiosa (top) with important remains of primary (UPF) bone in the core of the
trabeculae (as pointed by arrows), and inner spongiosa with exclusively secondary deposits of PFB and LB (bottom). F–G, Dallasaurus turneri, SMU
76386. F, part of the section illustrating the rather compact micro-organization. G, transition from the avascular external cortex made of PFB and the
inner cortex made of UPFB and displaying radially oriented simple vascular canals. H, radius section of Plotosaurus bennisoni, UCMP 152664.
Abbreviations as in Figure 2.
doi:10.1371/journal.pone.0076741.g003
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grouping. The V. varius section does not show a tubular structure

but instead several cavities are present in the periphery of the

medullary cavity. This probably explains why the LDA attributed

it to the AS grouping. The lifestyle of Dallasaurus, as suggested by

its distinct tubular rib organization, was inferred as that of the ET

(Fig. 5C).

Phylogenetic signal. The K values for all bones are lower

than 1. For the humerus, they vary between 0.57 and 0.89.

However, the randomization tests indicate a significant phyloge-

netic signal for all parameters. For the femur, K values vary

between 0.41 and 0.77. The randomization tests indicate a

significant phylogenetic signal for C, R/t and P. As for the ribs, K

values vary between 0.38 and 0.49 and the randomization tests

indicate an absence of any significant phylogenetic signal for all

parameters. This discrepancy strongly suggests that, if some

parameters do display a phylogenetic signal, it should be rather

weak. Moreover, it is probably linked to the small size and

phylogenetic diversity of our sample.

Figure 4. Dallasaurus turneri, SMU unnumbered specimen, microanatomical and histological features. A–B, femur. A, whole mid-
diaphyseal section. B, transition from the avascular external cortex made of PFB to the inner cortex made of UPFB and displaying radially oriented
simple vascular canals. C–D, rib. C, transitional area between the cortex and the medullary region showing some secondary LB and PFB as well as
some remains of primary UPFB in the core of one of the remodelled trabeculae. D, longitudinally oriented primary osteons (indicated by arrows) in
the cortex.
doi:10.1371/journal.pone.0076741.g004

Figure 5. Results of the Linear Discriminant Analyses (LDA) performed on A, humeri, B, femora and C, ribs. LD1 and LD2: first and
second discriminant axis, respectively. Polygons represent the boundaries of the ecological categories based on the comparative material (see
Tables 2–4). Da, Dallasaurus.
doi:10.1371/journal.pone.0076741.g005
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Discussion

(a) Adaptive and Evolutionary Implications
During the early Late Cretaceous, mosasauroids radiated

rapidly in the marine realm [32]. Over a few million years, they

became larger, more diverse, adapted to an open-marine life, and

attained an intercontinental distribution [1,32,33]. Members of

the Russellosaurina were the first ones to do so, and by the Middle

Turonian (,92 Ma) the largest taxa reached body lengths of

about six metres [34]. In contrast to russellosaurines, the best

known mid-Turonian mosasaurine, Dallasaurus, was small and had

a monitor lizard-like body with plesiopedal limbs [6]. Subsequent

mosasaurines during the Late Turonian to Santonian interval

showed modest increases in body size and remained endemic to

the Gulf margins and Western Interior Seaway of North America

[34]. Only later in the Campanian did mosasaurines disperse

geographically and eventually become truly colossal in size (i.e.,

10–15 meters in overall body length) [3,35].

The transition of mosasauroids from land-dwelling forms to

highly derived marine-adapted forms is not only manifested at the

gross anatomic level (e.g., [4,5,19,36]), but is also readily apparent

in the microanatomical and histological features of their skeleton,

which undergo profound modifications. For instance, plesiopedal

and plesiopelvic mosasauroids display bone mass increase (BMI) in

at least their dorsal vertebrae and ribs [10], which suggests that

they utilized hydrostatic buoyancy and body trim control when

submerged. From these presumably poorly active swimmers

distinct patterns of mosasaurine evolution illustrate trends toward

more energy-efficient locomotion and optimization for a pelagic

lifestyle, including: (1) the development of a streamlined body

powered by a two-lobed tail fin [4,5]; (2) the exploitation of

increasingly offshore foraging habitats [37]; and (3) the worldwide

distribution during the Campanian-Maastrichtian interval [1,33].

In active swimmers, buoyancy and body trim control is ensured

hydrodynamically [38]. The transition from a hydrostatic to a

hydrodynamic buoyancy and body trim control is evidenced as

profound changes in the microanatomy of mosasaurine axial and

appendicular bones (Fig. 6); a shift in microanatomical speciali-

zations that is comparable to that observed in early Cetacea (cf.

[39,40]). A shift from bone mass increase (BMI) (as in some

archaeocetes) to a spongious osseous organization (as in all

neocetes) is known to have occurred early in cetacean evolution

(e.g. [39]), and presumably reflects a similar shift in ecology, from

poorly active swimmers in shallow waters to active pelagic foragers

in open-sea environments.

(b) Mosasaurine Growth Rates and Basal Metabolic Rates
Parallel-fibered bone (PFB) has previously been recorded in

the cortex of vertebrae belonging to hydropelvic mosasauroids

[12,17]. PFB is also the dominant type of periosteal tissue found

in the pro- and epipodials of mosasaurines; however, even

though the organization of the collagenous wave is similar to

that of typical PFB, the osteocyte lacunae are unusually large,

irregularly shaped and randomly oriented. A relatively poor

degree of osseous organization is generally attributed to elevated

growth rates [41,42], and is thus normally encountered only in

fibrous bone (FB). The peculiar sort of PFB found in

mosasaurine long bones, herein referred to as unusual paral-

lel-fibered bone (UPFB), may correspond to a tissue described

by Ricqlès et al. ([43], p. 75) as illustrating a ‘‘modification of

the fibro-lamellar complex’’, whose ‘‘cortex appears lamellar

under polarized light at low magnification, because this kind of

tissue is not as woven as in typical dinosaurian fibro-lamellar

bone tissues’’. The occurrence of UPFB probably reflects a

growth rate intermediate between that of typical PFB and FB. A

reinvestigation of the vertebral sections described by Houssaye

and Bardet [12] revealed local occurrences of UPFB, but to a

much lesser extent than in long bones (A.H. pers. obs.). These

observations suggest that, at least during late ontogeny (the

record of earlier ontogenetic stages is lost to bone resorption)

the long bones of mosasaurines grew faster in width than did

the vertebrae. Because bone shape is maintained during

ontogeny, this suggestion can be generalized to the whole bone

growth. This is in agreement with a previous observation [44]

that the greatest allometric growth occurs within the humerus in

Clidastes. A positive allometry of the humerus when compared to

vertebrae and/or overall body size was also noticed in the basal

ichthyosaur Chensaurus chaoxianensis (Grippidae; [45]).

The orientation of the vascular network, which consists of both

primary osteons and simple vascular canals, varies within a

section, from predominately radial to longitudinal. A comparable

variation was also observed in the vertebrae examined by

Houssaye and Bardet [12], and probably expresses local differ-

ences in growth rate.

Mosasaur growth rates have been interpreted to be consid-

erably higher than are those in extant squamates [12], which

display true PFB, where simple, radially oriented vascular canals

only occur in skeletal elements of large-sized taxa [46]. Within

Mosasauroidea, the growth rates of plesiopelvic forms were

considered to be higher than were those of hydropelvic ones by

Figure 6. Evolution of microanatomical features in mosasaurine (from top to bottom) vertebrae, humeri and ribs.
doi:10.1371/journal.pone.0076741.g006

Mosasaur Long Bone Histology and Microanatomy

PLOS ONE | www.plosone.org 9 October 2013 | Volume 8 | Issue 10 | e76741



Houssaye and Bardet [12], based on the exclusively radial

orientation of the vascular network in vertebrae of the former

morphotype (compared to the primarily longitudinal orientation

of those in the latter). However, it has also been suggested [17]

that hydropelvic mosasauroids might have had growth rates

similar to those of plesiopelvic forms at early ontogenetic stages,

and that the rates then decreased during protracted growth.

The long bone histology of plesiopelvic mosasauroids has yet to

be examined, in part due to the rarity of specimens and access

to material that can be subjected to destructive analysis; thus, at

this time no comparisons can be made with these most

primitive mosasauroids.

Bone growth rate is indirectly linked to basal metabolic rate

[47,48,49]. Thus, although with caution, bone tissue can be

used to make inferences about thermal physiology and basal

metabolic rate [50]. The dominance of fibro-lamellar bone (i.e.,

fibrous periosteal bone with lamellar bone in the osteons) in

ichthyosaurs and plesiosaurs (see review in [13]) contrasts with

the largely parallel-fibered bone found in hydropelvic mosasaur-

oids (of comparable ontogenetic stage), and probably reflects

higher growth rates in the former two groups (which have

previously been considered to have had rather high basal

metabolic rates [51,52]). Bernard et al. [53] suggested that

hydropelvic mosasauroids might have been partially homeother-

mic based on the supposedly high body temperatures (between

3562uC and 3962uC) they estimated from dental isotopic data.

Motani [54] indicated that a bias may exist in Bernard et al.’s

[53] results (arising from time dependent depletion of d18O),

and hence lowered these values and suggested that hydropelvic

mosasauroids might have been gigantothermic, i.e., able to

maintain elevated body temperatures by virtue of large body

size and possibly insulation [55]. The predominance of parallel-

fibered bone in mosasauroids, as in the modern leatherback

turtle Dermochelys, supports this conclusion [13]; however, the

occurrence of UPFB suggests that hydropelvic mosasauroid

basal metabolic rates were higher than that of Dermochelys,

although lower than those of plesiosaurs and ichthyosaurs,

supporting the conclusions of Bernard et al. [53].

(c) Dallasaurus – a Peculiar Basal Mosasaurine
Whereas all hydropedal mosasaurines display a spongious inner

bone architecture characteristic of efficient swimmers, Dallasaurus

displays tubular ribs and femora in similarity with extant terrestrial

and semi-aquatic squamates; yet its humeri are osteosclerotic.

Bone mass increase (BMI; including osteosclerosis) is often present

in bottom walkers and poorly efficient swimmers that move slowly

at shallow water depths. However, BMI is generally concentrated

in the antero- and mid-dorsal regions of the body, where it

counterbalances the lightness of the air-filled lungs. This is not the

case in Dallasaurus, whose vertebrae show a microanatomical

organization similar to that of other hydropelvic mosasauroids;

i.e., a largely spongious organization (cf. [12]), and the ribs are

tubular with a wide medullary cavity. The occurrence of BMI

merely in the forelimbs has so far not been encountered in any

other aquatic amniote (cf. [8]).

Dallasaurus possesses UPFB within the shaft of its long bones,

although this osseous tissue is essentially restricted to the inner

part of the cortex, where simple, radially oriented vascular

canals occur in abundance. Conversely, most of the outer cortex

consists of avascular, true PFB. The transition in both

organization and vascularization indicates a decrease in growth

rate during ontogeny. Despite a relatively limited amount of

remodelling, no zonality seems to be present in the propodials,

a feature otherwise frequently found in long bones of marine

reptiles [13]. However, the dissimilarity in bone microarchitec-

ture between the inner and outer cortex might not only reflect a

relative decrease in growth speed, but may also represent a

growth cycle; i.e., a zone (when growth is active) and an

annulus (when growth speed decreases). This conclusion is

corroborated by the local presence of UPFB in the periphery of

the cortex, which could represent the beginning of a second

growth cycle, and which suggests that the organism was still in

an active growth phase at the time of death. If this is true, then

the two specimens analyzed herein would have died within their

second year. A juvenile ontogenetic stage for a third specimen

of Dallasaurus was also suggested by the occurrence of significant

remains of calcified cartilage far from the articular surfaces in

one vertebral centrum (A.H. pers. obs.; cf. [12]). This is

intriguing, because it would imply that Dallasaurus is currently

only known from juvenile (and similar-sized) individuals. An

analysis of the distribution of various anatomical characters

within both juvenile and adult mosasauroids is required in order

to determine which states could diagnose a juvenile ontogenetic

stage; the high degree of paedomorphosis observed in

mosasauroids [31] should naturally been taken into consider-

ation.

Dallasaurus clearly differs from the other hydropelvic mosasaur-

oids in its microanatomical features. Previous studies have shown

that, within mosasauroids at least, bone microanatomical special-

izations do not vary during ontogeny [17]. Hence, the peculiar

inner bone organization seen in Dallasaurus could not be attributed

to a potential juvenile ontogenetic stage. Dallasaurus highlights a

third ecological ‘‘grade’’ within mosasaurines (and mosasauroids)

with spongious vertebrae, tubular ribs and femora, and osteoscle-

rotic humeri, suggesting a more progressive ecological transition

than previously hypothesised.

Conclusions

(1) Our analysis of hydropelvic mosasaurine long bones showed

that the dominant type of periosteal bone tissue is parallel-

fibered. Moreover, our investigation revealed the presence of

a peculiar type of osseous tissue (herein referred to as unusual

parallel-fibered bone), which probably reflects a growth rate

intermediate between that of parallel-fibered and fibrous

bone. Its occurrence in hydropelvic mosasaurines suggests

that their basal metabolic rates were intermediate between

that of the extant leatherback turtle Dermochelys and those

inferred for plesiosaurs and ichthyosaurs.

(2) Dallasaurus microanatomical features differ from those of other

mosasaurines. With its spongious vertebrae, tubular ribs and

femora, and osteosclerotic humeri, Dallasaurus highlights an

intermediate evolutionary stage among mosasauroids, be-

tween plesiopelvic and hydropedal forms. This suggests that

mosasauroid microanatomical adaptations to an obligate

open-marine life were more gradual than previously thought.

The heterogeneity of the microanatomical features in

Dallasaurus’s skeleton also highlights the importance of

analyzing bones from multiple anatomical regions.

(3) The more complete image of the various microanatomical

trends observed in mosasaurine mosasauroids strongly

supports the evolutionary convergence between this squamate

lineage and cetaceans in the ecological transition from a

coastal to a pelagic lifestyle, and suggests a comparable

underlying mechanism of skeletal adaptation to a an open-

marine lifestyle.
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46. Buffrénil V de, Houssaye A, Böhme W (2008) Bone vascular supply in monitor
lizards (Squamata: Varanidae): influence of size, growth, and phylogeny.

J Morph 269: 533–543.

47. Padian K, Ricqlès A de, Horner JR (2001) Dinosaurian growth rates and bird
origins. Nature 412: 405–408.

48. Chinsamy-Turan A (2005) The Microstructure of Dinosaur Bone. The Johns

Hopkins University Press, Baltimore, MD, USA. 216 pp.

49. Montes L, Le Roy N, Perret M, Buffrénil V de, Castanet J, Cubo J (2007)
Relationships between bone growth rate, body mass and resting metabolic rate

in growing amniotes: a phylogenetic approach. Biol J Linn Soc 92: 63–76.

50. Reid REH (1987) Bone and dinosaurian ‘endothermy’. Mod Geol 11: 133–154.

Mosasaur Long Bone Histology and Microanatomy

PLOS ONE | www.plosone.org 11 October 2013 | Volume 8 | Issue 10 | e76741



51. Massare JA (1994) Swimming capabilities of Mesozoic marine reptiles: a review.

In: Maddock L, Bone Q, Rayner JMV, editors. Mechanics and Physiology of

Animal Swimming: Cambridge University Press. 133–149.

52. Motani R (2002) Swimming speed estimation of extinct marine reptiles:

energetic approach revisited. Paleobiology 28: 251–262.

53. Bernard A, Lécuyer C, Vincent P, Amiot R, Bardet N, et al. (2010) Regulation

of body temperature by some Mezoic marine reptiles. Science 328: 1379–1382.

54. Motani R (2010) Warm blooded sea dragons? Science 328: 1361–1362.

55. Paladino FV, O’Connor MP, Spotila JR (1990) Metabolism of leatherback

turtles, gigantothermy, and thermoregulation of dinosaurs. Nature 344: 858–

860.

56. Klein N (2010) Long bone histology of Sauropterygia from the Lower

Muschelkalk of the Germanic Basin provides unexpected implications for

phylogeny. PLoS ONE 5: e11613.

57. Laurin M, Canoville A, Germain D (2011) Bone microanatomy and lifestyle: a

descriptive approach. C R Palevol 10: 381–402.
58. Hua S, Buffrénil V de (1996) Bone histology as a clue in the interpretation of

functional adaptations in the Thalattosuchia (Reptilia, Crocodylia). J Vert

Paleontol 16: 703–717.
59. Klein N, Scheyer TM, Tütken K (2009) Skeletochronology and isotopic analysis

of a captive individual of Alligator mississippiensis Daudin, 1802. Fossil Rec 12:
121–131.

60. Sheldon A (1995) Ontogeny, ecology and evolution of North American

mosasaurids (Clidastes, Platecarpus and Tylosaurus): evidence from bone micro-
structure. Unpublished PhD Thesis, University of Rochester, New York.

61. Sheldon A, Donachy JE (1996) Histological and biochemical analysis of bone
from four genera of mosasaurs. Bull Inst Océanogr 14: 369–375.
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