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Abstract

Motivation. A docking algorithm working without charge calculations is needed for molecular modeling
studies. Two sets of n points in the d–dimensional Euclidean space are considered. The optimal translation
and/or rotation minimizing the variance of the sum of the n squared distances between the fixed and the moving
set is computed. An analytical solution is provided for d–dimensional translations and for planar rotations. The
use of the quaternion representation of spatial rotations leads to the solving of a quadratically constrained non–
linear system. When both spatial translations and rotations are considered, the system is solved using a projected
Lagrangian method requiring only 4–dimensional initial starting tuples.
Method. The projected Lagrangian method was used in the docking algorithm.
Results. The automatic positioning of the moving set is performed without any a priori information about the
initial orientation.
Conclusions. Minimizing the variance of the squared distances is an original and simple geometric docking
criterion, which avoids any charge calculation.
Availability. The FORTRAN source is available within framework of scientific collaborations. Contact:
petitjean@itodys.jussieu.fr.
Keywords. Geometric docking; optimal rotation and translation; constrained optimization.

1 INTRODUCTION

The geometric docking problem comes from the molecular modeling field. Basically, two sets of
punctual charges should face one to the other following some criterion. Since years, docking
operations with energy and/or force feedback have been carried out by translating or rotating one
molecule relative to another [11]. Charge and energy calculations being too time consuming, it was
desirable to elaborate a purely geometric algorithm able to produce the desired optimal orientation. 
Let {x0i, i = 1, …, n} and {x1i, i = 1, …, n} be the two sets of n points in the d–dimensional
Euclidean space. X0 and X1 are their respective associated (n, d) arrays. R is a d–dimensional
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rotation and t a d–dimensional translation. The transposed of a vector x is denoted x', and the vector 
product of two vectors x and y is denoted yx . We consider the population of the n squares of the 

distances di:

))(()')((2
iiiiid x0tx1Rx0tx1R (1)

This population of n squared distances has a mean and a variance. The scope of this paper is to 
compute the optimal translation t and rotation R minimizing the variance. The pairwise 
correspondence between the members of the two sets {x0i} and {x1i} is assumed to be known, or is 
computed with an adequate algorithm [9]. 

Although the minimization of the mean is a well–known problem [3,6,8,10], it seems to be the
first time that the variance minimization is considered. The major difficulty in these two constrained
optimization problems comes from the condition that R is a pure rotation rather than an orthogonal 
matrix. Minimizing the mean when R is an orthogonal matrix is known as the orthogonal Procrustes 
problem, and has received a general solution using a singular value decomposition algorithm [5,7]. 
When R is indeed a pure rotation, minimizing the mean has received solutions only for planar sets 
[8] and for spatial sets [3,6,10]. The solution for planar sets involves angles rather than 2D–rotation
matrices, and the solution for spatial sets involves quaternions, either in their (4,4) matrix
representation [3,6], or in their unit 4–vector representation [10]. The matricial expression of R,
subject to R'·R = I and to det(R) = +1 has not been used, explaining why the pure rotation 
Procrustes problem has not received a general solution. For the same reasons, computing the 
rotation minimizing the variance has been done only for d  3.

2 MATERIALS AND METHODS 

2.1 The Optimal Translation 
The rotation is constant. For clarity, R is set to I. The mean points are g0 = ( x0i)/n and g1 = 

( x1i)/n. Setting ei = (x1i – g1) – (x0i – g0) and  = t + (g1 – g0), equation (1) becomes:

)()'(2 ee iiid (2)

The mean of the population of the squared distances is: 

nd ii /)'('2 ee (3)

The sum of the ei is null. The variance is: 
2

24 /)( dndV i

nnnnV iiiiiiii /)')('(4/)'(4)/'(/)'( 222 eeeeeeee

Let Vp be the initial variance prior translation, K be the covariance matrix of the {ei} population, 
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and l be the third order term:
22 )/'(/)'( nnV iiiip eeee (4)

nii /)'( eeK (5)

niii /)'( eeel (6)

Thus the variance is a quadratic expression of :

lK '4'4pVV (7)

The optimal translation is get by solving the linear system:
02 lK (8)

Provided that the {ei} population is fully d–dimensional, the optimal translation t exists and is 
unique: . The minimized variance is:)2/( 1 lKg0g1t

lKl 1'pm VV (9)

When the {ei} population has a dimensionality  < d, the projection of  in the –subspace is 
computed first, and the projection of  in the orthogonal (d – )–subspace is free. This situation
arises when n d.

2.2 The Optimal Planar Rotation 
The translation is constant. For clarity, t is set to zero. The planar rotation is: 

)sin()cos( rrR (10)

where I is the identity matrix (i.e. the null rotation), and  is the antisymmetric matrix associated to 
the +90 degrees rotation. Using (10), equation (1) is rewritten: 

iiiiiiiii rrd x1x0x1x0x1x1x0x0 ')sin(2')cos(2''2 (11)

Let us define: iiiiit x1x1x0x0 '' , iiic x1x0 '  and iiis x1x0 ' . Thus: 

iiii srcrtd )sin(2)cos(22

The variance of the population V = Var({di
2}) is:

}){},({COV)cos()sin(8
}){},({COV)sin(4}){},({COV)cos(4

})({Var)(sin4})({Var)(cos4})({Var 22

ii

iiii

iii

scrr
tsrtcr

srcrtV
(12)

where COV is the covariance operator.

Vp being the variance prior rotation, equation (12) is rewritten:
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}){},({COV)cos()sin(8
}){},({COV)sin(4}){},({COV))cos(1(4

})({Var)(sin4})({Var)(sin4 22

ii

iiii

iip

scrr
tsrtcr

srcrVV
(13)

Let us define: ,})({VarCC ic })({VarSS is , }){},({COVCT ii tc , ,
and CS . The gradient is: 

}){},({COVST ii ts
}){}, ii s({COV c

)cos(ST)sin(CT)2cos()CS2()2sin()SSCC(
4
1 rrrr

r
V

(14)

Using v = tg(r/2), the equation v/ r = 0 leads to nullify the following quartic polynomial:

)STCS2()CT)SSCC(2(2)CS2(6)CT)SSCC(2(2)STCS2()( 234 vvvvvP

V is a smooth periodic function of r, exhibiting therefore at least one minimum and one
maximum over each period. Thus the quartic should have at least two real roots. It can be noticed 
that P(0) + (P(1) + P(–1))/4 is equal to the opposite of the v4 coefficient. Therefore the quartic 
cannot have a constant sign and has indeed real roots. The roots are analytically computable [1]. 

2.3 The Optimal Spatial Rotation 
The translation is constant. For clarity, t is again set to zero. Using the unit 4–vector quaternionic

representation of the spatial rotation, it is known (see appendix in ref. [10]) that equation (1) can be 
rewritten:

qBq ipii dd '222 (15)

where: , and , with k)()'(2
iiiipid x0x1x0x1

ii

i
i Ak

k
B

'0
iii x0x1 , and: 

Ix1x0x1x0x0x1Ix1x0x0x1x1x0x0x1A )'(2)''()''(Trace)''( iiiiiiiiiiiiiii

and q is the unknown unit quaternion. 

Let us define: ndd pip /22 , and ni /BB , and 
2

222
ppii dd , and )(2 BBE ii . The 

variance operator being here insensitive to the terms that do not depend on the summation index,
the variance V  is rewritten: V . Let us define the symmetric

matrices

})({Var 2
id })'({Var 2 qEq ii

niii /)( 2 EIM , which are such that Mi = 0. Since q'q = 1, the variance to be 

minimized is now expressed as a sum of squared quadratic forms:
2)'( qMq iV (16)

V is a 4th degree polynomial function of q, which is to be minimized subject to q'q = 1.
Furthermore, q and –q are associated to the same rotation, and the first non–null component of the 
solution is to be set positive. When n = 2, M2 = –M1, and there is in fact only one quadratic form to 
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be minimized in modulus. When n  3, no analytical solution appears. A numerical solver is
required, such as the projected Lagrangian method [4]. Let L be the Lagrange multiplier associated
to the quadratic constraint. The function to be minimized is: 

)1'(2)'( 2 qqqMq LF i (17)

))'((4 qqMqqMG Lii (18)

))'2)'(((4 IMqqMMqMqH Liiii (19)

where G and H are respectively the gradient and the Hessian. The solutions of the system are noted
q*, and are such that G* = G(q*) = 0. Setting q*'·G = 0 shows that the optimal value of the 
Lagrange multiplier is L* = F*, i.e. the optimized variance. Then, for each iteration, the value of the 
variance has been retained as an estimate of L. This value of L is such that

0)'(
L
GG

i.e. it minimizes ||G||2 at each iteration. Each random starting q value has been generated via 
normalization of a random 4–vector following the isotropic multinormal distribution and setting the
first non–null component positive. 

2.4 Solving the Full Docking Problem 
Solving the full docking problem requires finding both the optimal translation and the optimal

spatial rotation. According to equation (1), the translation is conventionally performed before the 
rotation. The analytical expression of the translation derived from equation (8) depends now on the 
unknown quaternion, and the 4–dimensional system derived from equations (17)–(19) depends on 
the unknown translation. The full system may be viewed as a quadratically constrained 7–
dimensional non–linear system, ignoring the analytical solution of equation (8). But of course, a 4–
dimensional system is desirable for obvious reasons, such as avoiding the use of numerous 7–
dimensional starting points leading to uninteresting local minima. The full expression of the 
variance as a function of q and t is established hereafter. The analytical expression of di

2 and V
given in equations (15) and (16) have to be updated, x1i being to be replaced by x1i + t. For 
convenience, the updated parameters are followed by :=. According to [2], a rotated vector z is 
written:

zuzuuzuuzR 2'2)'( 2

where  and u are respectively the scalar part and the 3–vector part of q, and are such that 2 + u'u
= 1. Then: 

ttx0x1t ')('2: 22
iipipi dd

iii x0tkk :
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Itx0tx0x0tAA )'(2'': iiiii

Now, the centered values are defined: y0i = x0i – g0 and y1i = x1i – g1, g0 = ( x0i)/n and g1 = 
( x1i)/n being the respective mean points. The matrices Mi are now updated: 

Ity0ty0y0ty0t
y0t

Iy0y1tMM
)'(2'')(

)'(02)('2:
iiii

i
iii nni (20)

It follows from (20) than q'Miq is updated by addition of a linear function of t, which can be 
expressed as the dot product of t by a suitable vector bi depending on q:

tbqMqqMq '': iii' (21)

)'')((4)(2 uuy0y0uuuy0y0y1b iiiiii nn
(22)

The centered values y0i and y1i have a null sum, thus the vectors bi and the updated matrices Mi

have also a null sum. The final expression of the variance is:
2)''( tbqMq iiV (23)

The variance has to be minimized in q and t, subject to q'q = 1. As in equation (17), the 
objective function to minimize is: F = V – 2L(q'q – 1). Writing the Newton step, the unknown

increment
t
q
~
~

 satisfies:

0
0

~
~

t
q

HH
HH

G
G

tttq

qtqq

t

q (24)

where Gq and Gt are the gradients respectively associated to q and t, Hqq and Htt are the Hessians
respectively associated to q and t, Hqt is the rectangular (4,3) matrix of the cross derivatives and Htq

is the transposed of Hqt. Only Gq and Hqq are depending on L. Clearly, applying the optimal
translation at each iteration of the 4–dimensional minimizing procedure described in section 3 
would be equivalent to solving the system (24) with a block diagonal 7–dimensional Hessian, for 
which Hqt and Htq are replaced by blocks of zeroes. But unfortunately, Hqt is not null, even for t = 0 
and R = I:

tbbqMqbG )'(2'2 iiiit (25)

))('(2'4))('(24)'(4 ttbtqbMtqMqqqMqqMG iiiiiiiiq L (26)

'2)'(2'(4)'(2 iiiiiiiiqt tbgtbqbMqMqH (27)
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derived from (24) would keep some local quadratic convergence property, it should lead to a 
minimum depending on the initial translation. Thus, it is better to extract t from the linear system Gt
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= 0, and report its value in equation (23). The variance V is now a function of q only, and its
minimum is get from solving a 4–dimensional problem subject to q'q = 1. The function to be 
minimized is:

)'()'()''()1'(2)'( 12 qMqbbbqMqbqqqMq iiiiiii LF (28)

Now, it is pointed out that the first and second derivatives are all computed with O(n) loops at
each iteration. On an other hand, performing indeed the translation and the rotation associated to an 
iteration is also done in an O(n) loop, and leads to simpler expressions of the derivatives. In this 
situation, t = 0,  = 1, u = 0, and q = (1,0,0,0)'. Then, 0' qMqb ii . The function and the gradient 

are computable respectively by setting q = (1,0,0,0)' in equations (17) and (18). Computing the 
Hessian is performed by setting q = (1,0,0,0)' in equation (19) and adding a supplementary term 

H. Setting ei = y1i – y0i as in section 2, then ni /i 2eb , and bibi' = 4K, K being the covariance 

matrix defined in equation (5). Then, the first line of i is null, and the (3,3) remaining block of i is
in Y0)4( , Y0i being the antisymmetric matrix build from y0i, such that Y0i·z = y0i z for any 

3–vector z. The first diagonal element of Mi is noted fi. It follows that q'Miq = fi and then fiei = 0. 
Now, the 3–vector mi is defined from the first column of Mi: mi' = [Mi(2,1),Mi(3,1),Mi(4,1)], and
the expression of the supplementary term H being to add to the Hessian is: 

iin K
H 1'0

008
(29)

iiiii f Y0me ' (30)

3 RESULTS AND DISCUSSION

Solving the geometric docking problem needs to find the absolute minima for the variance V of 
the population of the n squared distances between n couples of points in R3. V is a real function of 7 
parameters: 3 for the translation t and 4 for the quaternion q associated to the rotation. The 
constraint q'q=1 means that there are in fact 6 degrees of freedom. The variance V measures the 
dispersion around the mean value of the squared distances, and V is invariant when some constant is
added to the squared distances. Thus, V can be nullified when n = 7. When n < 7, an infinite number
of (q,t) values lead to V = 0. When n > 7, V has a finite number of minima. The non–linear system 
is solved by an iterative procedure, and leads therefore to a local minimum depending of an initial 
value. A part of the system being analytically solvable, the final solving procedure needs only initial
q values. 

It has been observed that the efficiency of the projected Lagrangian procedure described in
section 2.4 is highly dependant on its implementation. It is little sensitive to n, provided that n > 7. 
For n = 7, the efficiency was lower. Practical n values were up to some hundreds. The local 
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quadratic convergence was indeed obtained, and the final absolute minimum was each time checked
using thorough Monte–Carlo experiments. The docking problem in the plane is solved analytically
here, but docking in dimension higher than 3 is currently unsolved. It basically comes from that,
compared to quaternions, derivatives and constraints associated to rotation matrices are more 
difficult to handle, formally and numerically.

4 CONCLUSIONS 

Although minimizing the mean of the squared distances is a well known technique for spatial
superpositions, (see [9] and references cited), minimizing the variance of the squared distances 
seems to be an original docking criterion. The present method offers various advantages in the 
context of molecular docking. The graphs of the molecules are not used, and time–consuming
charge calculations are not needed. Providing a pertinent initial relative orientation of the molecules
is not required here, and this is an original feature of our method.
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