
HAL Id: hal-02114831
https://hal.science/hal-02114831v1

Preprint submitted on 29 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint Games for stable and optimal allocation of
demands in SDN

Anthony Palmieri, Arnaud Lallouet, Luc Pons

To cite this version:
Anthony Palmieri, Arnaud Lallouet, Luc Pons. Constraint Games for stable and optimal allocation
of demands in SDN. 2019. �hal-02114831�

https://hal.science/hal-02114831v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Constraint Games for stable and optimal
allocation of demands in SDN

Anthony Palmieri1,2 · Arnaud Lallouet1,2 ·
Luc Pons1

Received: Monday 29th April, 2019

Abstract Software Defined Networking (or SDN) allows to apply a centralized con-
trol over a network of commuters in order to provide better global performances. One
of the problem to solve is the multicommodity flow routing where a set of demands
have to be routed at minimum cost. In contrast with other versions of this problem,
we consider here problems with congestion that change the cost of a link according
to the capacity used. We propose here to study centralized routing with Constraint
Programming and Column Generation approaches. Furthermore, selfish routing is
studied through with Constraint Games. Selfish routing is important for the perceived
quality of the solution since no user is able to improve his cost by changing only his
own path. We present real and synthetic benchmarks that show a good scalability.

Keywords Constraint Programming · Game Theory · Optimization · Integer Linear
Programming · Column Generation · SDN · multicommodity Flow

1 Introduction

With the internet of things, all kinds of devices are going to communicate, from
washing machines, lightbulbs to autonomous cars. By 2020, the forecasts estimate
the number of connected devices to the internet is growing to over 31 billion [34]. The
amount of data transfer increases with the rise in the number of connected devices.
Recently, Software Defined Networking (or SDN) is replacing traditional network
routing because it allows fast and remote network reconfiguration, which enables a
plethora of flexible architectures, like the upcoming network slicing [52]. SDN (see
Figure 1) allows centralized control over a network of commuters in order to increase
the overall performance. A full SDN controller is a nice source for many optimization
problems [25] including online ones. Due to this dynamic aspect and the increasing
size of the controlled networks, it is very likely that decentralized algorithms will be
mandatory to provide both the expected quality of service and short time response.

Huawei Technologies Ltd, French Research Center · GREYC - Université de Caen - Normandie

2 Anthony Palmieri1,2 et al.

Fig. 1 Software Defined Networking

In this paper, we consider the independent routing of multiple demands across a net-
work, also called the multicommodity flow routing problem. Each demand requires to
be routed from a source to a destination in a network with limited capacity (i.e. each
link has a limited capacity). The overall goal is to assign a route to each demand that
minimizes the global cost of routing. This problem and other variants such as robust
SDN networks have been studied for a long time [14,7] with some computational
approaches including linear programming [2]. A survey can be found in [28]. Inter-
esting theoretical results have been found, like the one which states that when the
problem has a sufficient size and capacity, all flows are actually routed along single-
paths [40]. This justifies the modern interest in unsplittable routing of demands. The
demands are routed in a network with limited capacity constraining the shortest paths
computations, which is known as a NP-complete problem. In our approach, we do not
consider other side constraints such as must-pass/cannot-pass or redundant routing,
although they can be easily introduced in our constraint model. However, we consider
a congestion model increasing the cost of a link according to the traffic routed.
Furthermore, SDN is based on a centralized vision of networking but this does not
mean that all algorithms have to be centralized [32]. Indeed, with the growth of the
size of the controlled zone and the large increase in the volume of the demands, de-
centralized algorithms will be necessary to achieve the expected level of performance
for future SDN with millions of demands coming online. A common way of model-
ing agreement between a set of agents is to reach a Nash equilibrium. Also, some
instances of the problem correspond to networks of aggregated traffic for which the
users (often network providers) are very sensitive to the quality of service. This is
why an allocation at Nash equilibrium is desirable as it ensures the user that his qual-
ity of service cannot be improved by any selfish move. While a centralized approach
is sure to converge to an optimal solution, it is not guaranteed for Nash equilibriums.
The equilibriums costs can be far from the global optimum. Braess’s paradox [5] is
a good illustration. It states that in congested roads network, building a new route
creates even more congestion due to the selfishness of agents. This degenerative be-
havior is one of the motivations to compute Price of Anarchy [15] which allows to
evaluate the potential loss of efficiency of decentralized algorithms (i.e. the loss of
being at Nash equilibrium).

Constraint Games for SDN 3

We propose two approaches for the centralized approach: a Constraint Programming
(or CP) model and an Integer Linear Programming (or ILP) model using Column
Generation. Only the Constraint Programming model is able to model closely the
congestion problem and can be used to solve the problem to optimally. For this, we
use a natural and dedicated heuristic based on increasing paths and a relaxation based
on shortest path to prune efficiently the search space. Note that increasing path have
been introduced as CP heuristics in [36].
The Constraint Programming model is implemented using the Choco constraint solver
[39] and the ILP one with CPLEX [13]. The model computing the Nash equilibriums
uses Constraint Games framework: ConGa which is an extension of the Choco solver
for Constraint Games [35]. In the benchmarks, we show networks with hundreds or
even thousands of commodities solved to optimality including the Nash equilibriums
computations. These results show that practical use of game theory is now possible
at industrial scale.
The paper is organizing as follow: first we introduce the problem in Section 2, then in
Section 3 and 4 we present the CP model and the heuristics used to compute a solution
in practice. In section 5 we present the ILP model, in Section 6 the Constraint Games
framework used to compute selfish routing, the Section 7 gives a litterature review, in
Section 8 the evaluation on a set of benchmarks on real-world and synthetic instances
and lastly we present the conclusion.

2 Multicommodity path routing in SDN

2.1 Problem statement

A multicommodity path routing problem (MCPRP) consists of a graph defining a
network and a set of commodities (flow demands) to be routed on this graph. We
consider in this article the problem in which we compute for each demand a single
route from the source to the destination node such that the sum of bandwidth routed
by a link does not exceed its capacity. Congestion occurs when a link is taken and
is reflected by a congestion cost which helps to ensure a homogeneous distribution
of the routes. The overall objective is to minimize the sum of costs of the routed
demands.
We assume we have a network N = (V,E), which is a directed graph composed of
a set of vertices (or nodes) V and a set of edges (or links) E ⊆ V 2. For each edge
e = (x, y) ∈ E, we associate a cost cost(e) ∈ R+ and a capacity cap(e) ∈ R+. Let
D be the set of demands to be routed. For a demand d ∈ D, we define src(d) ∈ V
and dst(d) ∈ V to be respectively the source and destination node, and bw(d) ∈ R+

to be the required bandwidth for this demand.
A path is a sequence of nodes p = (vi)i∈[0..n] such that ∀i ∈ 0..n−1, (vi, vi+1) ∈ E.
We denote by src(p) the node v0 and by dst(p) the node vn. We consider here only
acyclic paths, i.e. such that i 6= j → vi 6= vj . By a slight abuse of notation, we write
(x, y) ∈ p to denote that the arc (x, y) is taken in the path p.

4 Anthony Palmieri1,2 et al.

A solution for the MCPRP is the assignment of a path path(d) to each demand d
such that we ensure correctness:

∀d ∈ D, src(path(d)) = src(d)

∀d ∈ D, dst(path(d)) = dst(d)

and admissibility with respect to the capacity constraints:

∀e ∈ E,

 ∑
{d∈D | e∈path(d)}

bw(d)

 ≤ cap(e)

2.2 Congestion model

In order to ensure a good balance over the network, we incorporate to the model a
model of congestion. Basically, congestion will increase the cost of a link when this
link is close to saturation. For this, we define the load of an edge e to be:

load(e) =

 ∑
{d∈D | e∈path(d)}

bw(d)

 / cap(e) (1)

Fig. 2 A plot of the congestion function for MaxC = 1000 and cong′(0.2) = 1

The congestion model we use for a given arc e has an exponential increase of the
form:

cong(e) = exp (a× load(e) + b) (2)

Constraint Games for SDN 5

In order to choose the parameters a and b, we pose some conditions on the function.
First we should have a sufficiently high value of cong(e) when the load is 1. By
sufficiently high we mean that a demand should not prefer to take a heavily congested
link while there are some (maybe longer) available paths. It can be done by fixing
this limit to the highest link cost of the network MaxC. We then have the equation
ea+b = MaxC. Then, in order to set when the exponential starts to overtake on
a linear increase, we impose a condition on the derivative to be 1 at a given point
α. The derivative of the congestion function is given by cong′(x) = aeax+b. If we
impose that the derivative should be 1 for x = α, we get the equation aeaα+b = 1. By
solving numerically these equations we get the values of a and b for a given problem.
For example, in Figure 2 is a plot of the congestion function for MaxC = 1000 and
cong′(0.2) = 1. We assume that the same values of a and b are set for all the links of
the network, although this can be easily changed.

2.3 Optimization

Solving a MCPRP P to optimality means finding a solution minimizing the global
cost of the demands. For this, we first define the cost to route a demand. It is obtained
by aggregating the cost of each traversed arc with the cost coming from congestion:

cost(d) = bw(d)×
∑

e∈path(d)

(cost(e) + cong(e)) (3)

Then the cost of the whole problem is given by:

cost(P) =
∑
d∈D

cost(d) (4)

Note that this function is strictly monotonic, resulting in that each addition of demand
increases the edge cost.

3 Constraint model

In order to implement this problem as a constraint program, we need to first represent
paths, which will be the solutions of our problem. Then we need to link the com-
puted paths to the network data: costs, capacity and provide a support to compute
congestion.

3.1 Path modelling

A path is represented by an array path of |V | variables which correspond to the set
of arcs in the path. Each variable’s value corresponds to the node’s successor (i.e. the
next node along the path). The initial domain of a variable associated with a node v is
given by the set of neighbors of v in the graph. In order to ensure the correct represen-
tation of a path, we use the global constraint subPath(path, src, dst) which ensures

6 Anthony Palmieri1,2 et al.

that the node from src to dst form a valid subpath of the graph. This constraint is
a variant of subCircuit. Unused nodes of the path point to themselves and an extra
variable is appended to the array to indicate which vertex starts the path.

Example 1 (Path model)
The figure 3 describes the model for finding a path having the node 2 as a source
and the node 5 as the destination. In the beginning, the variables domains are filled
with all the possibles neighbors including itself. For example, the node 0 can have
as successor the nodes: 0, 1or2. Only the source and the destination are treated dif-
ferently. Since a path can be seen as a circuit between the source and the destination
nodes. That is why their domains are adapted: no self-loop for the source node(i.e. a
successor is required) and the destination’s successor is the source. A solution to the
problem instance is depicted in the array line labeled by path. This array encodes the
path (2, 1, 4, 3, 5). It has to be read as follow: the node 0 has 0 as successor (not in
the path), the successor’s of 1 is 4, the successor’s node of 2 is 1 ...

srcdst
2

0

1

2

4

3

5

6

0 1 2 3 4 5 6

0,1
2

0,1
2,3
4

0,1
2,3
4

1,2
3,4,5

6

1,2
3,4
6

7
3,4
5,6

#var

initial
domain

path 0 4 1 5 3 7 6

src

dst

Fig. 3 Encoding of a path

For each demand d ∈ D we associate an array pathd = (vdi)i∈V constrained by:

subPath([vd1 , . . . , v
d
n], src(d), dst(d))

3.2 Graph model

In order to ensure that no link is overloaded and in order to compute congestion,
we need to know which demands are routed by a given arc. In this model, we use a
Boolean variable EdgeIsUsedd(i,j) which is true if the path [vd1 , . . . , v

d
n] assigned to

demand d uses the arc (i, j). This connection is made with the following channeling
constraints:

∀(i, j) ∈ E,∀d ∈ D, EdgeIsUsedd(i,j) ↔ vdi = j

Constraint Games for SDN 7

We compute the amount of bandwidth routed by an arc in a variable f(e) with the
constraint:

∀e ∈ E, f(e) =
∑
d∈D

EdgeIsUsedde × bw(d)

We ensure that the capacity of each arc is not exceeded:

∀e ∈ E, f(e) ≤ cap(e)

Then we can compute the congestion of a given edge in a variable cong(e):

∀e ∈ E, cong(e) = ea×
f(e)

cap(e)
+b

The cost cost(d) of routing a demand by a given path is given by the constraint:

∀d ∈ D, cost(d) =
∑
e∈E

EdgeIsUsedde × bw(d)× (cost(e) + cong(e)) (5)

A variable ProblemCost sums the costs to route all demands:

ProblemCost =
∑
d∈D

cost(d) (6)

We shall minimize this variable.
This model is quite standard and intuitive. It defines one Boolean variable by edge
and by demand. Since the number of edges is quadratic in the number of vertices, this
number may grow a lot for some large networks.

4 Heuristics and problem’s relaxation

We have tried a variety of combinations of search strategy and problem’s relaxation
to improve the resolution of this problem. In this paper, we will refer to a partic-
ular combination by A/B/C where A is the variable selection strategy, B the value
selection strategy and C the type of relaxation to compute the problem’s bound, as
explained below. At a given node of the search tree, some demands or some partial
paths may already be assigned. Apart from classical CP heuristics, all heuristics and
lower bound computations use the residual graph obtained by considering this part
already fixed.

4.1 Residual graph

For each demand, a residual graph is maintained all along the search. This graph is the
cornerstone to solve efficiently this problem. It is used by the search heuristics and the
relaxation technique. A residual graph is modified incrementally at each search tree
node. We refer as path the edges belonging to the path as it is in the current search
tree (i.e. the instantiated variables) and as future path the path’s part which is
not instantiated in the search tree but computed by the Dijkstra algorithm. A residual
graph is built such that:

8 Anthony Palmieri1,2 et al.

– It exists a directed edge from the node i to j ↔ j ∈ D(Vi)
– The cost of an edge is dynamically set and updated by the variables’ values. When

a variable is instantiated (i.e. an edge is added to the path), the edge’s minimal cost
is then updated. For instance, when a demand goes through an edge, its congestion
cost is automatically updated with the current demand’s bandwidth and that for
all residual graphs. However, it is not possible to take into account the congestion
in future path. It means that two demands which can take the same link act like if
they do not create congestion in their future paths.

The residual graphs are constructed with the CP variables, therefore the graphs are
modified at each decision or propagation automatically.

Example 2 (residual graph) Two demands d1 and d2 having each a bandwidth of 2,
have to be routed in the 4 nodes networks shown in Figure 4. In this network, the cost
of each edge is 0 and the congestion parameters are respectively a = 1 and b = −0.5.
At first, the residual graphs are constructed at the root of the search tree (the edge sets
representing the paths are empty). The costs are initialized only with the bandwidth
induced by the demand. For instance in Figure 4a, the residual graph costs of d1 are
computed only knowing the bandwidth of d1, no assumption can be done about d2.
The costs are thus 2 obtained by :2 × e 2

4−0.5. In the next step shown in Figure 4b,
d1’s path is expanded with the edge between nodes 0 and 1. This decision updates
the cost of the residual graph of d2. The new cost is 2 × e0.5, it corresponds to the
cost when the two demands take the same edge. In Figure 4c, d2 is going through the
same edge as d2, thus the residual graph of d1 is updated.

4.2 Search strategies

Path-oriented problems are particularly sensitive to search strategy, and not surpris-
ingly, a standard dynamic CP search strategy (denoted by CP in this paper) like impact
or activity would be of weak efficiency for this type of problem. Indeed, it is likely
that this search strategy will label any node in the path without knowing if it could
be linked to the source or destination. Therefore, we propose a variable’s value se-
lection strategy as well as three variable selection strategy, all dedicated to this SDN
problem.

4.2.1 Value selection

For each variable, the value search strategy determines the path’s direction. Since the
goal is to find the best path for each demand, it would be inefficient to start the path
in a wrong direction. We have chosen to label path variables in order of increasing
path cost. In order to start with the most promising path, we maintain at each node
of the search tree the shortest path to the destination in the residual network for each
demand in isolation. In other words, given a variable vdi and the shortest path SPd for
the demand d the variable is going to be instantiated as follow:

Constraint Games for SDN 9

(a)

3

0

21

4 3

0

21

4 3

0

21

4

Graph Residual
graph d

1

Residual
graph d

2

12

2 1

3

0

21

3

0

21

3

0

21

Graph

d
1

d
2

2 2

2

2

2 2

2

2

(b)

3

0

21

4 3

0

21

4 3

0

21

4

Graph Residual
graph d

1

Residual
graph d

2

12

2 1

3

0

21

3

0

21

3

0

21

Graph

2

2

2

2.e0.5 2

2

2

(c)

3

0

21

4 3

0

21

4 3

0

21

4

Graph Residual
graph d

1

Residual
graph d

2

12

2 1

3

0

21

3

0

21

3

0

21

Graph

2

2

2.e0.5

2

2

2.e0.5

Fig. 4 Residual graph updates examples

vdi = SPi(v
d
i), if vdi ∈ SPd

vdi = i, otherwise

Where SPd(vdi) gives the successor of the node vdi for the demand d ’s shortest path.
We call this value strategy SP (for Shortest Path). It is done with Dijkstra’s algorithm,
considering the progression of the already assigned part of the other demands. This

10 Anthony Palmieri1,2 et al.

information on the best future path is used to choose the next node of the path when
needed (i.e. the variable value). Note that the Dijkstra algorithm only considers the
nodes of the paths already assigned at a given point of the search tree for computing
the congestion. In particular, the congestion is not cumulative for two demands which
share the same future link. The same idea has been implemented in [10] but with
specific path variables.

3

s
1

1 2

4

5

6 7

8

s
2

d
1

d
2

3

s
1

1 2

4

5

6 7

8

s
2

d
1

d
2

3

s
1

1 2

4

5

6 7

8

s
2

d
1

d
2

3

s
1

1 2

4

5

6 7

8

s
2

d
1

d
2

3

s
1

1 2

4

5

6 7

8

s
2

d
1

d
2

3

s
1

1 2

4

5

6 7

8

s
2

d
1

d
2

3

s
1

1 2

4

5

6 7

8

s
2

d
1

d
2

3

s
1

1 2

4

5

6 7

8

s
2

d
1

d
2

3

s
1

1 2

4

5

6 7

8

s
2

d
1

d
2

3

s
1

1 2

4

5

6 7

8

s
2

d
1

d
2

3

s
1

1 2

4

5

6 7

8

s
2

d
1

d
2

3

s
1

1 2

4

5

6 7

8

s
2

d
1

d
2

(a) (c) (d)

(e) (f) (g)

3

s
1

1 2

4

5

6 7

8

s
2

d
1

d
2

3

s
1

1 2

4

5

6 7

8

s
2

d
1

d
2

(b)

3

s
1

1 2

4

5

6 7

8

s
2

d
1

d
2

3

s
1

1 2

4

5

6 7

8

s
2

d
1

d
2

(h)

Fig. 5 Labeling of paths for two demands

Example 3 In Figure 5 is represented a small example of two demands being routed
on a 8-nodes network (5a) by shortest path heuristic. This example aims to show the
dynamical aspect of the shortest path computation. The demand r1 has to be routed
from the nodes 1 to 8 and the demand r2 from the nodes 2 to 8. The source and
destination of r1 (resp. r2) are the nodes labeled by respectively s1 and d1 (resp.
s2 and d2). Actual paths taken by the demands are depicted by solid arrows while
shortest paths computed by the search strategy are with hatched lines. In other words,

Constraint Games for SDN 11

the solid lines represent the variables already instantiated in the problem while the
hatched ones represent the current shortest path computed by the value search strat-
egy. At first (5b), the two demands compute their shortest paths: (1− 3− 6− 8) for
r1 and (2− 3− 6− 8) for r2. The shortest future paths correspond to hatched lines.
In (5c), one labeling step is performed for r1. Since there is no change on r2’s path,
no update of r2’s shortest path is necessary. Hence in (5d) one step is performed for
r2. In (5e), the next move of r1 causes congestion on the link from 3 to 6. Thus r2
updates its shortest path to (2 − 3 − 5 − 7 − 8) in (5f) to lower its minimal cost.
It yields a next move by r2 in the direction of node 5 in (5g). Then the last edge is
selected, resulting in the complete paths instantiation (5h).

4.2.2 Variable Selection

Once again, a variable strategy selecting the variables outside a path scope would
be very inefficient, this is why we choose to select the variables all along the paths.
In other words, our variable selection respects the path order, it selects the next unin-
stantiated successor variable along the path. Note that this is a partial variable selector
since it is only once the demand is chosen that the actual variable is determined by the
next step to be extended. For the variable selection to be completely defined, we have
considered three strategies for choosing the demand. The first one, called MB (for
Max Bandwidth), consists in routing the next remaining demand with the maximum
asked bandwidth up to its completion. Then we have defined two strategies based on
conflicts analysis. The strategies react on a solution (by MB if no fail occurs) or when
a fail occurs. For each demand and each link, we compute the marginal cost (with
congestion) induced by the presence of the demand on this very link. The marginal
cost corresponds to the difference between the cost with and without routing the de-
mand, all being equals. Then, we sum up all these numbers for each demand along
the taken path to obtain a score. The first one, called CO (for Conflict), chooses the
demand of the highest score and develop its path up to the destination. The second
one, called CO1 (for Conflict 1 Step), also chooses the demand of the highest score
but only develops one step in the path before reconsidering the situation. In CO1, the
conflicts are stored for each path variable and for each demand and scores are only
computed for the uninstantiated variables.

Example 4 (Strategies in action) In this example, we show the selection process of
the three strategies with SP value search strategy. Three demands d1, d2 and d3 with
respectively a bandwidth of 4, 3 and 2 have to be routed in a 6-nodes network. To keep
things easy, all edges have a capacity of 7, a cost of 0 and congestion parameters are
set to a = 1 and b = −0.5. The selection process of MB, CO and CO1 are shown
respectively in Figure 6, Figure 7 and Figure 8.

MB Strategy. Given the network in Figure 6a), MB selects the demand having the
highest bandwidth to be routed. At first, d1 is chosen and is instantiated from its
source to its destination (see Figure 6b). Afterwards, the next demands to be instan-
tiated are going to be iteratively d2 and d3 (Figure 6c and d).

12 Anthony Palmieri1,2 et al.

(c)(b)

33

1 2

4

5

6

d
1

d
2

d
3

33

1 2

4

5

6

(a)

33

1 2

4

5

6

MB

(d)

33

1 2

4

5

6

Fig. 6 Selection process of MB strategy

CO strategy. Given the network in Figure 7a), where a first solution has been found.
CO analyses the conflicts in the solution to try to redirect the conflicting demands. In
this solution the demands d1 and d2 are in conflict. The marginal costs are computed
for the demands as follow:

∆(priced1) = 2× (7× e 3
7+

4
7−0.5 − 3× e 3

7−0.5) = 20.19

∆(priced2) = 2× (7× e 4
7+

3
7−0.5 − 4× e 4

7−0.5) = 17.47

The demand d1 is the one having the highest score and thus selected to be routed
(see Figure 7c). And then to finish the demand d2 is the last one to be routed until its
destination (see Figure 7d).

(b) (c) (d)

d
1

d
2

d
3

33

1 2

4

5

6

33

1 2

4

5

6

33

1 2

4

5

6

(a)

33

1 2

4

5

6

CO

Fig. 7 Selection process of CO strategy

CO1 strategy. The initial situation of CO1 is the same as CO: a first solution has been
found. CO1 analyses the conflicts as well as CO but instantiates only edge by edge
while selecting the demands with the highest conflict score on the non instantiated
variables. The marginal costs for a demand di, given an edge from the nodes i to j,
named ∆(pricedi(ni, nj)) are computed as follow:

Constraint Games for SDN 13

∆(priced1(1, 3)) = (7× e 3
7+

2
7−0.5 − 3× e 3

7−0.5) = 10.09

∆(priced1(3, 6)) = (7× e 3
7+

2
7−0.5 − 3× e 3

7−0.5) = 10.09

∆(priced2(1, 3)) = (7× e 4
7+

3
7−0.5 − 4× e 4

7−0.5) = 8.74

∆(priced2(3, 6)) = (7× e 4
7+

3
7−0.5 − 4× e 4

7−0.5) = 8.74

(e)(d)(c)(a) (b)

d
1

d
2

d
3

33

1 2

4

5

6

33

1 2

4

5

6

33

1 2

4

5

6

33

1 2

4

5

6

CO1

33

1 2

4

5

6

Fig. 8 Selection process of CO1 strategy

After a solution was found, the solver backtrack until the Figure 8b. Then it selects the
demands with the highest score and instantiates its first element on the path, which
corresponds to the edge between the node 1 and 4 (see Figure 8c). Afterwards, d3 has
the highest score since the edge between the nodes 1 and 4 is not anymore considered
for the demand d1. d3 is routed by the edge between the nodes 1 and 3 (see see Figure
8d). This process is continued until all the destinations are reached (see Figure 8e)

4.3 Problem’s relaxation

Relaxation techniques are commonly used in constraint optimization. However, CP
solvers offer a restricted and uninformed version. When minimizing the variable
ProblemCost and after having found a solution of value A, it simply adds to the
remainder of the search the constraint ProblemCost < A. The CP solver is un-
aware of the problem structure. While efficient, it requires that the lower bound of
ProblemCost to exceed A to cut the search tree and backtrack. In our case, the
possible values of ProblemCost are strongly constrained by the current branch of
the search tree leading to a node, but very loosely for the remaining part of the
problem. In order to cut earlier, we need a better estimation of the lower bound of
ProblemCost. This is done by adding to the lower bound the cost of individual
routing along the path computed by the Dijkstra algorithm used for the value search
strategy. We use the previously defined residual graph in which congestion is taken
into account to estimate the cost lower bound of the current search tree state. We need
this to provide a better yet safe estimate of the lower bound which does not exceed

14 Anthony Palmieri1,2 et al.

the future real cost. We call the classical CP relaxation CP and the one which uses
the bound provided by the shortest path SP.
Let [ad1, . . . , a

d
i , . . . , a

d
nd
] be a demand’s path composed of a first part [ad1, . . . , a

d
i−1]

assigned by the search tree and a second part [adi , . . . , a
d
nd
] computed by the Dijkstra

algorithm from node adi . We have ad1 = src(d) and adnd
= dst(d) and ∀j < i, the

value of adj is given by the instantiated part of the path in [vd1 , . . . , v
d
n] (up to the

current node of the search tree). The cost contribution of demand d is given by:

cost(d) =
∑

{e=(adj ,a
d
j+1) | j<i}

bw(d) ∗ (cost(e) + cong(e)) +

∑
{e=(adj ,a

d
j+1) | i≤j<nd}

bw(d) ∗ cost(e) (7)

Proposition 5 Given a monotonic cost function (see equation (3)), the bound given
in equation 7 is sound.

Proof Suppose by contradiction that the proposition is not correct and the equation
is not sound. This statement implies that it exists at least one node’s cost which is
overestimated by the Dijkstra algorithm. The latter is either located on the instantiated
nodes or on the future path. This is impossible because the given costs corresponds
to the lower bound and are at worst underestimated. That is why Dijkstra algorithm
and thus the computed path is computing correct lower bound for the shortest path
algorithm.

Note that, due to the presence of link capacity constraints, a fail is triggered when
Dijkstra algorithm is unable to find a path from the source to the destination [47].

Example 6 The example in Figure 9 illustrates how the relaxation technique based on
shortest paths works. Two demands: d1 and d2 have to be routed through a 5 nodes
network (see Figure 9(a)). Each demand has a bandwidth of 2 and each arc in the
network can transport 4 units of bandwidth. The two demands (d1 and d2) have both
node 0 as source and respectively nodes 3 and 4 as destination. The parameters of
the congestion cost function are a = 1 and b = −0.5. To simplify the problem, each
edge’s cost is 0.
In each subfigure is depicted on the left the state of the current graph with the deci-
sions already taken and on the right the residual graphs of d1 and d2. The shortest path
algorithm of each demand is computed on its own residual graph. Because it is im-
plemented on the CP variables, the SP computation is aware of the current bandwidth
and the successor variables in order to consider only feasible paths.
In the beginning of the problem resolution, the initial propagation is triggered, updat-
ing the minimal reachable global cost. To do so, the cost of each demand is evaluated
(see Figure 9a). The minimal possible cost corresponds to the demand shortest path
without any added congestion due to other demands. For d1 and d2 it is obtained by
the following computation: 2× 2× e 2

4−0.5 = 4. For each demand, the shortest path’s
cost is 4. Then the problem is explored by instantiating a first edge for d1 (Figure
9b). The cost is updated in the residual graphs. Taking the edge from the nodes 0 and
1 costs now 2 × e0.5, this update is done in the residual graph of d2. In the residual

Constraint Games for SDN 15

3

0

21

4 3

0

21

4 3

0

21

4

Graph Residual
graph d

1

Residual
graph d

2

2 2

2

2

2

2

2 2

(a)

3

0

21

4 3

0

21

4 3

0

21

4

Graph Residual
graph d

1

Residual
graph d

2

2 2

2

2

2

2

(a)

3

0

21

4 3

0

21

4 3

0

1

4

Graph Residual
graph d

1

Residual
graph d

2

2

(a)

2

2

2

2

2

3

0

21

4 3

0

21

4 3

0

21

4

Graph Residual
graph d

1

Residual
graph d

2

2 2

2

2

2 2 2

(a)

3

0

21

4 3

0

21

4 3

0

21

4

Graph Residual
graph d

1

Residual
graph d

2

2 2

2

2

2

2

(a)

3

0

21

4 3

0

21

4 3

0

1

4

Graph Residual
graph d

1

Residual
graph d

2

(b)

2

2

2

3

0

21

4 3

0

21

4 3

0

21

4

Graph Residual
graph d

1

Residual
graph d

2

2 2

2

2

2

(a)

3

0

21

4 3

0

21

4 3

0

21

4

Graph Residual
graph d

1

Residual
graph d

2

2 2

2

2

2

(a)

3

0

21

4 3

0

21

4 3

0

4

Graph Residual
graph d

1

Residual
graph d

2

(c)

22

2

2

2

1

3

0

21

4 3

0

21

4 3

0

21

4

Graph Residual
graph d

1

Residual
graph d

2

2 2

2

2

2

(a)

3

0

21

4 3

0

21

4 3

0

21

4

Graph Residual
graph d

1

Residual
graph d

2

2 2

2

2

2

(a)

3

0

21

4 3

0

21

4 3

0

4

Graph Residual
graph d

1

Residual
graph d

2

(d)

12

2 1

1

3

0

21

4 3

0

21

4 3

0

21

4

Graph Residual
graph d

1

Residual
graph d

2

2 2

2

2

2

(a)

3

0

21

4 3

0

21

4 3

0

21

4

Graph Residual
graph d

1

Residual
graph d

2

2 2

2

2

2

(a)

3

0

21

4 3

0

21

4 3

0

4

Graph Residual
graph d

1

Residual
graph d

2

(e)

22

2 2

2.e0.5

d
1

d
2

2.e0.5

2.e0.5

Fig. 9 Problem’s relaxation for SDN

graph of d1 only the possible paths are updated: node 2 cannot be taken anymore.
The same process is repeated when the path of d1 is expanded (Figure 9c). After, it
is the second demand which is routed (Figure 9d and Figure 9e). While taking these

16 Anthony Palmieri1,2 et al.

decisions, the residual graph of d2 is updated by removing the edges between nodes 1
and 3 and nodes 3 and 4. The edges of the residual graph of d1 are not impacted since
d2 does not take the same edges. The solution found has a cost of 8. The Dijkstra
relaxation help to state that it does not exist better solution since at the beginning the
lower bound for the problem was also 8. The problem’s exploration is thus finished.

5 ILP model

ILP techniques are commonly used to solve multicommodity flow problems [3], even
in the context of SDN [37]. However, the model we presented in Section 3 is not
suited to an ILP formulation because it is very difficult to model paths as in CP.
Instead, most formulations either use a flow model or use a pre-computation of paths
for the different demands and associate a Boolean variable to each possible path. We
will use this technique despite it yields an exponential number of variables. But they
can be generated on the fly using column generation.

5.1 Master Problem

First we reformulate the multicommodity flow problems with Boolean path variables
in what we call a Master Problem, then we provide a linearization and the pricing
problem used to introduce new columns. For each demand d ∈ D, we associate the
set Pd of all paths from src(d) to dst(d). By a slight abuse of notation, we also call
p a Boolean variable associated to a path p ∈ Pd because paths are only manipulated
through their Boolean variable. Because a path is statically defined and because we
need to sum up the bandwidths associated to the various arcs of the network in order
to enforce the capacity constraints, we associate to a path variable p and each arc e ∈
E, a variable pe which is true if the arc e is taken by the path p. Note that this variable
pe is used just to simplify the notation and does not belong to the implemented model.
We ensure that exactly one path is chosen for each demand:

∀d ∈ D,
∑
p∈Pd

p ≥ 1 (8)

The capacity constraints become:

∀e ∈ E,
∑
d∈D

∑
p∈Pd

pe × bw(d) ≤ cap(e) (9)

We aggregate all costs in the following expression to be minimized:

min
∑
e∈E

∑
d∈D

∑
p∈Pd

pe × bw(d)× (cost(e) + cong(e)) (10)

Where the congestion is defined by equations 1 and 2. There are two sources of non-
linearity in these formulas. First the load of an arc uses an exponential function. It
yields that it is easier to break up equation 10 in two for its linearization. A first part

Constraint Games for SDN 17

we call cost with congestion cwc(e) for a given arc e and a subsequent aggregation
on the set of demands:

cwc(e) ≥
∑
d∈D

∑
p∈Pd

pe × bw(d)× (cost(e) + cong(e)) (11)

Note that since we deal with a minimization problem, only the ≥ part of the equation
is mandatory to enforce equality. Then the expression to be minimized is:

min
∑
e∈E

cwc(e) (12)

But then a more subtle source of non-linearity is that, since the cost depends on the
load and the load depends on the path chosen for each demand, we have to consider
for the cost the cases where two or more demands are routed by the same arc. It yields
a product between the Boolean variables pde and pd

′

e for any pair d, d′ ∈ D. We now
address these two relaxations.

5.2 Column generation

The problem we get with a model based on paths and its subsequent linearization in-
volves an exponential number of variables (since there are exponentially many paths
between a source and a destination). Moreover, only one variable for each demand
will be set to 1 because we seek a single path for each demand. It is impossible to
represent all these variables but fortunately they can be generated on the fly (along
with the constraints they are subject to) using Column Generation (see Figure 10).
Column Generation alternates between solving the linear Restricted Master Prob-
lem with a limited number of variables (or columns) and generating new variables
by solving a sequence of subproblems called Pricing Problems. The first step before
iterating is to initialize the linear Restricted Master Problem (or RMP) with initial
columns. It is then possible to get dual values and to compute reduced costs. A re-
duced cost is associated to a dual variable and tells how much the objective changes
if this variable increases by a small amount. In other words, it is the first derivative
from a certain point on the polyhedron that constrains the problem.
Column generation methods were invented from the observation that often in prob-
lems many variables do not belong to the optimal solution and thus their values are
set 0 and not used. The idea is to try to generate only the columns useful to solve
optimally the problem. For instance in our problem, often only few paths are needed
to find and prove the optimal solution.
A Pricing Problem is used to determine which column should be introduced. It yields
either to add a new variable or to ensure that there are no further variables with
negative dual feasibility i.e. which can potentially improve over the current solution.
When no more column can be generated, the linear solution is rounded to give an
integer one.
We consider only column generation at the root node. This method can be incomplete
unlike Branch and Price which is a bit different since it considers a tree obtained by
solving the ILP problem for different sets of columns.

18 Anthony Palmieri1,2 et al.

Fig. 10 Column generation procedure

5.3 Linearisation of the master problem

What we call Linearized Master Problem (or LMP) is essentially a linear approxi-
mation of the Master Problem introduced above. It means that the solutions we will
find with ILP are solutions to the approximate model and not exact solutions of the
original problem. However, if the linearization is good, it is likely that the solution
paths for the demands will be the same as if the exact model was solved, although it
cannot be ensured in all cases. In practice, we have not observed any difference.
The first thing to come is to transform the Boolean variables into continuous ones in
the interval [0..1].

5.3.1 Piecewise linear approximation of the exponential function.

One of the relaxation concerns the exponential function. We approximate it with mul-
tiples tangents. Let I be a set of numbers in [0..1]. For each point of the exponential
curve (i, cong(i))i∈I , a tangent ti(x) = aix + bi is computed. In Figure 11 is de-
picted a 3-points approximation of an exponential function. The red lines correspond
to the computed tangents approximating the function. The difference between the ap-
proximation and the real function is shown in light gray. In this zone, the congestion
is underestimated and may induces less filtering. For the sake of simplicity, we use
the same set I for all links of the network.

Constraint Games for SDN 19

Fig. 11 Three pieces linear approximation of the exponential function

The approximation of the exponential correspond to the maximum value of these
tangents maxi∈I ti(load(e)). In order to get a linear formulation of the maximum,
we can introduce for each arc e and each i ∈ I a variable congi(e) giving the value
of each tangent for a given load and one variable cong(e) for the maximal value. The
congi(e) reuses the definition of the load given in equation 1:

∀e ∈ E,∀i ∈ I, congi(e) =

 ai
cap(e)

∑
d∈D

∑
p∈Pd

pe × bw(d)

+ bi

And for each link, the following constraints are added:

∀e ∈ E,∀i ∈ I, cong(e) ≥ congi(e) (13)

5.3.2 Linearization of the products.

Unfortunately, when computing the cost with congestion cwc(e) of an arc e with
equation 11, all demands crossing this arc actually cause the congestion to increase.
If we develop the formula by mixing equations 11 and 13 with respect to each i ∈ I ,
it yields for a given edge e:

∀i ∈ I, cwci(e) ≥∑
d∈D

∑
p∈Pd

pe × bw(d)×

cost(e) +
 ai
cap(e)

∑
d′∈D

∑
p′∈Pd′

p′e × bw(d′)

+ bi

20 Anthony Palmieri1,2 et al.

By splitting the linear and non-linear part we get:

∀i ∈ I, cwci(e) ≥

(cost(e) + bi)
∑
d∈D

∑
p∈Pd

pe × bw(d) +

ai
cap(e)

∑
d∈D

∑
p∈Pd

pe × bw(d)×
∑
d′∈D

∑
p′∈Pd′

p′e × bw(d′)

The last expression is quadratic because it contains a product between pe and p′e. To
get a linear formulation, we introduce new Boolean variables pp′e for each arc e and
each path p for d and each path p′ for demand d′ such that pp′e is true if and only if p
and p′ share e as common arc. Since we model only one simple path by demand, we
can use another trick by summing all the path for each demand. The meaning of the
pp′e can be reformulated as: pp′e is true if and only if it exists p and p′ for respectively
d and d′ that share the arc e.
We implement the logical AND (see chapter 7 of [4]) by this set of linear constraints:

pp′e ≤
∑
p∈Pd

pe, ∀e ∈ E (14)

pp′e ≤
∑
p′∈Pd′

p′e, ∀e ∈ E (15)

pp′e ≥
∑
p∈Pd

pe +
∑
p′∈Pd′

p′e − 1, ∀e ∈ E (16)

Then the cost constraints can be reformulated as follows:

∀e ∈ E,∀i ∈ I, cwci(e) ≥

(cost(e) + bi)
∑
d∈D

∑
p∈Pd

pe × bw(d) +

ai
cap(e)

∑
d∈D

∑
p∈Pd

∑
d′∈D

∑
p′∈Pd′

pp′e × bw(d)× bw(d′)

As in equation 13 we aggregate all costs for the different tangents:

∀e ∈ E,∀i ∈ I, cwc(e) ≥ cwci(e)

And thus the expression to be minimized as in equation 12 becomes:

min
∑
e∈E

cwc(e)

Constraint Games for SDN 21

5.4 Pricing problem

The reduced cost for a given variable determines how the objective changes if the
variable increase of one unit. A Linear problem is optimal if its reduced cost is 0.
However, if the reduced cost is negative, the solution can enter the basis as a new
column. If the reduced cost is greater or equal than zero, the lower bound for the
optimal solution has been found, although this may not be an integer solution. Note
that the reduced cost can be computed on each edge individually. In order to find an
improving path for each demand, we could perform a shortest path computation with
Dijkstra’s algorithm on the graph where arcs are labeled with reduced costs. The new
variable of the discovered path already implicitly exists, and we just compute it on
the fly. When it is not possible to improve the LP solution, it will be also not possible
to find a path such that the reduced costs are negative.
Note that in our problem the decision variables (i.e. the paths) are not directly present
with a coefficient in the objective function but instead appear though pp′e. And thus,
the coefficients of the decision variable do not appear in the pricing problem.
In order to formulate the dual, let us give names to the constraints of the problem.
We consider only the constraints that are potentially affected by the introduction of a
new column. Let us callONEd the constraint given in equation 8,CAPe the capacity
constraint given in equation 9, and AND1e, AND2e, and AND3e respectively the
constraints in equations 14, 15 and 16. By using these dual values found when solving
the RMP, we are able to define the graph of reduced costs for a given demand d. For
each edge e and demand d, we have:

rcostd(e) = −CAPe × bw(d) + (
∑
d′∈D

AND1e +AND2e −AND3e)

Then the pricing problem for each demand d become now finding a shortest path in
the graph of reduced costs, i.e. which minimizes the following formula for a path p
defined by its Boolean variables pe:

min

(
ONEd +

∑
e∈E

pe × rcostd(e)

)

Unfortunately, the network labelled with reduced costs has negative cycles and thus
Dijkstra’s algorithm cannot be used to find a shortest path. Since we are only inter-
ested in simple path (i.e. a path without cycle), the pricing problem can be solved
through a new Integer Linear Problem by the following flow model. Like before, let
pe be the (continuous) variable associated to the arc e.
The following constraints ensure that only one unit of flow comes out from the source
of the demand d and nothing enters in, and the reverse for the destination.∑
e=(src(d),y)∈E

pe = 1
∑

e=(x,src(d))∈E

pe = 0

∑
e=(x,dst(d))∈E

pe = 1
∑

e=(dst(d),y)∈E

pe = 0

22 Anthony Palmieri1,2 et al.

Here are the flow conservation constraints:

∀v ∈ V,
∑

e=(x,v)∈E

pe −
∑

e′=(v,y)∈E

pe′ = 0

Then we state non-splittability and no-cycle constraints:

∀v ∈ V,
∑

e=(x,v)∈E

pe ≤ 1 ∀v ∈ V,
∑

e=(v,y)∈E

pe ≤ 1

The objective becomes:

min

ONEd +∑
v∈V

∑
e=(v,y)∈E

pe × rcost(e)

We extract from this flow the minimum path and introduce the corresponding vari-
able.

5.5 Solution

A solution for the ILP model when using Column Generation is not equivalent to a
solution with the Constraint Programming model. First the approximation introduced
by the linearization of the exponential function tend to underestimate the congestion.
Thus the value of the objective may be lower for the ILP model even if the solution
paths are the same. Second, we solve the ILP problem only when the Column Gener-
ation procedure has ended. It may happen that in some cases this procedure does not
terminate in a reasonable time. Then the integer solution is not computed and we get
no solution.

6 Constraint Games

In this section, we briefly introduce Constraint Games [30,35], which are an exten-
sion of Constraint Programming allowing to find Nash equilibria.

6.1 Game theory and constraint game background

A game [15] is a situation where a set of players P can perform actions and get a
reward which depends on their own choice of action, but also on the actions of the
other players. Players are selfish and always aim to increase their utility by changing
their own action if they have an opportunity to do so. A (pure) Nash equilibrium
(PNE) [53,29] is a situation where all players cannot improve their own utility by
changing their own action. A game may or may not have an equilibrium, and the
existence of an equilibrium is an NP-complete problem [17].

Constraint Games for SDN 23

In many cases, the efficiency of a solution can be evaluated by an external measure
called social welfare function which should be maximized. This global function al-
lows to compute the best centralized solution (by discarding the players objectives).
Then it is possible to quantify the loss of efficiency induced by the selfish behavior
of the players by considering the ratio ”best centralized solution / best equilibrium”
called Price of Stability (PoS) and ”best centralized solution / worst equilibrium”
called Price of Anarchy (PoA).
Constraint Games allow to represent in a compact and natural way games with multi-
ple players and also give a powerful solving method by lifting consistency techniques
to the equilibrium property [35]. In Constraint games, actions are represented by the
possible assignments of controlled variables. Utility is represented with constraint
optimization, and the rich language of most constraint solvers is available to express
a large spectrum of problems in a concise and meaningful way.
A Constraint Satisfaction Game (or CSG) is a 4-tuple (P, V,D,G) where P is a fi-
nite set of players, V is a finite set of variables composed of a family of disjoint sets
(Vi)i∈P for each player and a set VE of existential variables disjoint of all the players
variables, D is defined as for CSP, and G = (Gi)i∈P is a family of CSP on V rep-
resenting the goal of each player. In a CSG, all players seek for satisfaction of their
goal. However, it may happen that a player is not satisfied in an equilibrium if none
of his/her move allows for satisfaction. Determining whether a game has a PNE in a
Constraint Satisfaction Game isΣP

2 -complete. Note that [30] has introduced satisfac-
tion and optimization variants of Constraint Games. A Constraint Optimization Game
(COG) is a variant (P, V,D,G, opt) where opt = (opti)i∈P and ∀i ∈ P, opti ∈ V
is the variable whose value defines the utility function ui of Player i. All players want
to maximize their utility.
In addition, Constraint Games are able to represent easily hard constraints that define
situations which are globally possible or forbidden [44] by adding a global CSP C to
the problem. Nash equilibria can only be sought in the satisfiable part of the hard con-
straints. A global optimization condition on a variable w allows to model the social
welfare function. Without further information, we call Constraint Game a COG with
constraints and social welfare and we refer to it by CG = (P, V,D,G, opt, C,w).
The solving technique introduced in [30] and further developed in [35] is based on
tree search. Players’ preferences are represented by Nash constraints and their fil-
tering is based on the detection of never best responses, which are values that never
lead to an improvement. The strong filtering of [35] works only for Constraint Games
without hard constraints (or if the hard constraints are functional), otherwise we can
fall back to the weaker form of [30], which is the case in this problem because of the
capacity constraints on the links.
Incomplete algorithms can also be used to find quickly a first Nash equilibrium. Iter-
ated Best Response (or IBR) [48] is the simplest local search algorithm to find a PNE
in any game representation. This iterative process starts from any strategy profile. At
each step, if there exists a player for whom the current strategy profile is not a best
response, then this player deviates to his best response which will be considered as
the candidate in the next step. The process stops when all players are no longer able
to change their strategy or if the algorithm fails to find an equilibrium in a given time

24 Anthony Palmieri1,2 et al.

credit Max Step. In the first case, the last profile is a Nash equilibrium. In this paper,
we have used IBR as a heuristic to go from the first solution to the first equilibrium.

6.2 Constraint games for SDN

The MCPRP defined in section 2 can be simply extended to a game by considering
each demand as a player who wants to find the best route from source to destination.
Then each player wants to minimize her/his own cost as defined in equation 3.
If we denote by S = DV the total search space and by N the set of Nash equilibria,
we can define formally the welfare of the best centralized solution adapted to our cost
minimization problem by W ∗ = min{w(s) | s ∈ S}. The welfare of the best Nash
equilibrium is defined in a similar way by N∗ = min{w(s) | s ∈ N} and the one
of the worst one by n∗ = max{w(s) | s ∈ N}. Thus the Price of Stability is simply
PoS = W ∗/N∗ and the Price of Arnarchy PoA = W ∗/n∗. Note that usually the
classical definitions of PoS and PoA yield a result greater than 1, this is not the case
here because we have a minimization problem.
In our problem, the social welfare function is simply the global cost to be minimized
as defined in equation 4. We proceed in two steps. First the best centralized solution
is computed as a Constraint Optimization Problem, then the Nash equilibria using our
Constraint Games solver. We can immediately see that PoS and PoA are asymetric
in term of the relaxation technique we can implement. For PoS, the problem is still
a minimization. Thus we can use the same relaxation technique as the one we use in
the centralized version (equation 7).
For the PoA, we have a maximization problem. But each player still wants to min-
imize her/his cost. The situation is then to find a set of shortest paths of maximal
global cost. The standard relaxation technique provided by the CP solver provides a
loose upper bound for this problem by summing up all upper bounds of the costs of
the edges. But we know that the upper bound is at most the cost of the longest path
in the residual network. Unfortunately, computing the longest path is NP-complete
in the general case, since it corresponds to determine if it exists an Hamiltonian cy-
cle, which is NP-complete [16]. This problem has been already addressed in CP [38]
where the authors propose a model and a local search algorithm to solve this prob-
lem. In our case, we are interested in a polynomial sound algorithm. This is why we
propose to approximate the longest path by a Maximum Spanning Tree (MST) in the
residual graph. The MST is computed by considering the upper bound value of the
cost of the edges. The algorithm is like Prim’s algorithm, we add to all remaining
edges the cost of the demand to compute congestion, then we start by taking the most
costly edge and add edges linking a new node in descending order of cost. It is clear
that the cost of the MST is always greater than the cost of the longest path.

7 Related work

Constraint Games for SDN 25

Combinatorial methods. SDN allows fast and remote network reconfiguration and
thus is a nice source for many optimization problems [25] including online ones.
Due to this dynamic aspect and the increasing size of the controlled networks, it
is very likely that decentralized algorithms will be mandatory to provide both the
expected quality of service and short time response. A survey of most techniques
can be found in [26]. Since then, many extensions have been considered like the
very important case of demands coming online [18,37], service provisioning [21],
energy-aware routing [22], controller placement [41,46], fault prevention [51,6] or
even congestion-aware algorithm [49].
Concerning the specific CP framework and to our best of our knowledge, only a few
works have been considered: a problem of Service Function Chaining deployment
[27] and a general framework providing through CP a high-level programming lan-
guage to model SDN problems [24].
Our article differs from these methods because first, we propose a CP model taking
into account non-linear congestion. Then, we optimize our model by proposing a
relaxation technique based on Dijkstra algorithm as well as fast heuristics to solve
the problem to optimality.

Quality of service and Game theory Quality of service (or QoS) is an important prob-
lem in SDN and has been addressed in multiples ways. From combinatorial methods
with for example with genetic algorithms [42], or even multiples linear programs
[50] optimizing multiples criteria such as bandwidth or energy consumption. These
criteria concern the whole network which is different from game theory wherein each
flow is considered as a criterion. A mechanism design method for multicommodity
flow games has been proposed [12] . Nonetheless, Game theory studies have been
mainly concentrated with routing games [45] to model uncapacited networks in order
to determine how selfish behaviors impact solutions and to quantify it by the price
of anarchy[12]. Other mathematical studies on more general networks and solution’s
degeneration have been done such as on on capacited network [11], unsplittable flow
[1]. And even on different model based on distributed games [23,19].
Our approach is different since we propose a model to compute the PNEs and POA.
The two Relaxations are given to fast the exact computation of the PNEs and POA
giving a more pratical way to this kind of problems.

8 Instances and experimental results

We have tested our framework on a library of instances called SNDlib [33] and a
personal problem generator that is able to generate instances close to real ones. This
problem and other variants such as robust SDN networks have been studied for a long
time [14,7] with some computational approaches including linear programming [2].
A survey can be found in [28]. Interesting theoretical results have been found, like the
one which states that when the problem has a sufficient size and capacity, all flows
are actually routed along single-paths [40].

26 Anthony Palmieri1,2 et al.

8.1 Generator

We have designed a generator to create synthetic problems that allow to test the al-
gorithms against the different hypothesis. Several parameters allow obtaining a great
variety of graphs. The generation process is mainly constituted of two phases:

– Generation of the topology, that is nodes as well as arcs and their respective costs;
– Generation of demands, along with their bandwidth requests, which also deter-

mines the capacities of the arcs.

During the generation of the topology,Nnodes nodes are created. Each of these nodes
ni with i ∈ [1, Nnodes] is assigned to random coordinates in a fixed size space
of topologyDimension dimensions. In case the boolean topologicalCost is set to
true, the cost of an arc is given by the distance between the source and destination
node. Note that for dimension 2, this is not sufficient to ensure that the resulting graph
is planar. The size of the space in one given dimension is irrelevant, as we refer to it
only with percentage. Each node is also assigned to a degree, randomly chosen in an
interval [degmin, degmax]. To obtain graphs similar to actual networks, we introduce
hubs which are nodes of higher degree than regular nodes. Each node has a probabil-
ity Phub of being a hub. If a node is a hub, then its degree is randomly chosen in a
different interval [deghmin, deghmax].

We first build a spanning tree over all nodes to ensure that the graph is fully con-
nected, then we create the remaining links in the graph. For each node, we look
for candidates, so the desired degree is reached. For a link to be created, we ensure
that a) the other node is not already connected with this edge and b) its distance in
the space is not greater than maxDistance, expressed as a percentage of the space
size (

√
topologyDimension is the maximum). Using this process, it is possible that

certain nodes do not reach the desired degree, but as the network grow larger, this
situation becomes less and less likely to happen.

Once the topology is generated,Ndemands are generated. For each of these, a starting
node is randomly selected, as well as a bandwidth in a [bwmin, bwmax] interval. We
then generate what we refer to as an ”initial path”. For that purpose, different strate-
gies are available. The first strategy, called random generation, consists in selecting a
random number of hop h in the [hopmin, hopmax] interval, and randomly navigating
in the graph for h hops, starting from the initial node. The last node is then considered
to be the destination node of the request. During the navigation, we only make sure to
never reach a node that is already in the initial path. The second strategy consists in
randomly selecting a destination node, and applying a shortest path algorithm to find
the path from the source node to the destination node with the least number of hops.
The path yielded by the algorithm is considered to be the initial path. Regardless of
how the initial path is constructed, for each of its arc, there is a probability Pbw that
we increase its capacity of the amount of bandwidth of the request. The list of all
generation parameters, as well as short description can be found in Table 1.

Constraint Games for SDN 27

Parameter Type Range used in the benchmarks
Nnodes integer 50, 75, 100, 120, 140, 160, 180, 200, 500
topologyDimension integer 2
topologicalCost boolean true, false
degmin, degmax integer [1, 2, 4, 8], [2, 5, 7, 10]
Phub integer 0, 1, 5, 10, 20
deghmin, deghmax integer [25, 50, 75, 100], [25, 50, 75, 100]
initbwmin, initbwmax integer [50, 100, 200], [50, 100, 200]
initcostmin, initcostmax integer [100, 200], [200, 500]
maxDistance integer 25, 50, 100
Ndemands integer 30, 50, 100, 120, 130, 150, 200
bwmin, bwmax integer [50, 100, 200], [50, 100, 200]
hopmin, hopmax integer [0], [10]
Pbw integer [10, 30, 50, 70, 90, 100]

Table 1 Parameters of the generator

8.2 Settings and implementation issues

8.2.1 Experimentation settings

Due to the large number of parameters of the generator, we have applied a bench-
mark method called combinatorial testing [31,20] using the ACTS software [54].
This technique allows for p parameters and a size c to generate a set of instances
where all possibilities of combinations of parameters of cardinality c are inside the
set. For example, if we have 3 Boolean parameters a, b and c, a complete test of all
possibilities would require 23 = 8 tests. But if we decide to test only all combina-
tions of pairs, we can achieve this with only 4 instances (see Figure 12). With our

Fig. 12 All pairs of parameters are covered by 4 tests

generator, by choosing an appropriate sampling of the intervals described in 1, we
get roughly 500 instances to get a covering of all 3-sets of parameters. From these
500 instances, we have discarded those whose resolution lead to a timeout for all
techniques. This gives a total of 123 instances which give a meaningful picture of the
range of problems that can be solved.
The tests have been performed on a cluster of Intel Xeon E5-2690, each having 10
cores sequenced at 3GHz and 256 GB of RAM. We have computed experimental

28 Anthony Palmieri1,2 et al.

results for the CP approach described in Section 3 and the Constraint Game model of
Section 6 with a timeout fixed at 1 hour.

8.2.2 A note on implementations

The CP model has been implemented using the Choco solver [39], including the
Constraint Game through our Choco extension called Conga [35]. Besides the search
techniques and different heuristics and relaxation techniques described in Section 4,
our first implementation was using the Ibex solver [8,9] in association with Choco.
Real variables linked to Ibex were used to model the computation of the load, con-
gestion and costs while discrete decision variables remained in Choco. However, this
was not efficient because the two solvers need to communicate through Java Native
Interface. In addition, many auxiliary real variables and constraints(e.g. constraint for
the congestion cost and auxiliary variable for the sum) were used to compute interme-
diate values through constraint propagation despite this part is purely functional. In
addition, the cost is also obtained as a by-product of the shortest path algorithm since
at the end of the search tree the sum over the demands costs computed by the Dijkstra
algorithm is the real cost. Therefore, we have replaced all the auxiliary variables and
constraints computing the objective value by a single global constraint which also
encapsulates the Dijkstra algorithm. At the end, the model only contains path and
capacity constraints and the global constraint computing the objective.
The Column Generation model (called CG hereafter) has been implemented using
CPLEX [13] version 12 with its Python interface. At first we tried to post all con-
straints at the problem initialization for all possible paths. However, it was not effi-
cient since it takes a lot of time to initialize. Since most of the constraints (i.e. consider
all the edges in the graph) are useless to solve the problem, we instead choose to post
the constraints on the fly along each path when it was required after having generated
the columns.
Once again, in the following, when we are saying that an instance is solved it has
different meaning when we are talking about CP or CG. For CP, an instance is solved
when the optimal solution has been found and proved. For CG, the instance is consid-
ered as solved when the generation procedure is finished and the ILP problem solved
within the generated columns. Because of that, Column Generation does not prove
optimality. Because of the linearization, the objective values are most of the time
different between the two techniques.

8.3 Experimental results

8.3.1 Constraint programming model

For the synthetic benchmarks, we have displayed the results in Figure 13. As a pre-
liminary test, we have tried the pure CP heuristic based on impact [43] to measure the
gap with the SP value heuristics. A problem which should be easy (13 nodes and 9

Constraint Games for SDN 29

demands) is solved in less than 1 second by using the shortest path strategy, whereas
the impact strategy took 878.969 seconds. Due to this, we have not displayed this
CP/CP/CP heuristics in the figure and we only present results for the SP strategy.

instance #Demands #Nodes #Edges MB/SP/CP MB/SP/SP
SAT

dfn-bwin 90 10 45 TO 0.670
dfn-gwin 110 11 47 TO 0.746

di-yuan 22 11 42 TO 0.472
giul39 1471 39 172 TO 26.554

india35 595 35 80 TO 8.739
newyork 240 16 49 TO 3.486
nobel-eu 378 28 41 TO 4.919

norway 702 27 51 TO 7.962
pdh 24 11 34 TO 0.553

UNSAT
geant 462 22 36 2.729 2.550

germany 662 50 88 6.489 6.241
janos-us 650 26 84 3.508 3.605

janos-us-ca 1482 39 122 25.926 25.926
UNKNOWN

france 300 25 15 TO TO
pioro40 780 40 89 TO TO

polska 66 12 18 TO TO

Table 2 Results of the Constraint Programming model on real-world instances from SNDlib

For each instance, we have run the combinations MB/SP/CP and MB/SP/SP, and
the two conflict variants CO/SP/SP and CO1/SP/SP. The plot in Figure 13 shows
how many instances are solved in a specific delay. Clearly, the MB/SP/SP heuristics
outperform the other ones. This is not surprising compared with the CP-style B&B,

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500

N
u
m

b
er

 o
f

In
st

an
ce

s
S
ol

ve
d

Time (s)

MB / SP / SP
CO / SP / SP

CO1 / SP / SP
MB / SP / CP

Fig. 13 Comparison of different CP heuristics on synthetic benchmarks

30 Anthony Palmieri1,2 et al.

but it shows that a more dynamic heuristic based on conflicts is not effective on this
type of problems. We also compared the performances of the different strategies on
the unsolved instances. Since, the solver did not finish either because it did not prove
the solution’s optimality, or because it did not find any solution, the only valuable
comparison is the current solution and the time to find a first solution.

0

50

100

150

200

250

300

350

1

2
2

4
3

6
4

8
5

1
0
6

1
2
7

1
4
8

1
6
9

1
9
0

2
1
1

2
3
2

2
5
3

2
7
4

2
9
5

3
1
6

3
3
7

3
5
8

3
7
9

4
0
0

4
2
1

4
4
2

Ti
m

e
 f

ir
st

 s
o

lu
ti

o
n

#Solved instances

CO1/SP/SP

MB/SP/SP

CO/SP/SP

Fig. 14 Comparison of the strategies for finding the first solution

The performances for finding a first solution of the different strategies are shown
in Figure 14. This figure presents the time required to find a first solution for all
instances and given the three CP strategies. The instances are sorted by increasing
time. As we can see, the strategies are very good at finding a first solution and on
most of the instances. The strategies provide comparable performances when the goal
is to find a first solution. Another interesting comparison is about the performances of
the strategies on unsolved instances for getting the best solution. The table 3 presents
how many times a strategy has found the best current solution while it timeout. MB is
the strategy finding most of the time the best solution after a timeout.

MB/SP/SP CO/SP/SP CO1/SP/SP
best sol 340 321 303

Table 3 Comparison of solutions on the unsolved instances

It appears that these instances are hard for multiples reasons. First it not a simple
parameter which makes those harder. An instance can be hard even with 30 nodes and
30 demands. A problem become hard when the back-propagation of the relaxation is
not enough and requires a lot of search. This effect is visible in the Figure 13, while
comparing the instance which benefit from the SP relaxation against the one using

Constraint Games for SDN 31

0 500 1000 1500 2000 2500 3000 3500
time

0

10

20

30

40

#i
ns

ta
nc

es
 so

lv
ed

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Fig. 15 Comparison of different initialization of the Column Generation model

the CP one. Most of the time the strategies take time to prove the optimality of a
solution.
In the following, we only compare with the MB/SP/SP heuristic. The time in sec-
onds for real instances from the SNDlib are shown in Table 2 only for two heuristic
combinations. The improved relaxation technique allows to solve many instances to
optimality. Each instance is described by its name (which corresponds usually to a
network in a particular country), then the number of demands, nodes and links of
the network. The SAT and UNSAT instances are the one for which we can find the
optimal solution or prove unsatisfiability. For some instances depicted as UNKOWN,
our method was unable to find the optimal routing. But still the best solution can be
reported.

8.3.2 ILP model with Column Generation

We have run the ILP model on the same synthetic instances as the CP model. In our
model, the number of initial columns can be parametrized. We show in Figure 15 a
cumulative plot comparing the number of instances solved with different initializa-
tions. Each method starts with a different number of path from 1 to 15. It appears that
starting with an unique path gives better performances. A reason which can explain
this behavior it that if too many path are generated at start, many constraints have to
be added and it slows down the initial simplex iterations and the next ones for each
demands.
The real instances from SNDlib are shown in Table 4 along with the ratio of objective
value between CG and CP. Due to many timeouts, there is no meaningful conclusion
to be analyzed.

32 Anthony Palmieri1,2 et al.

Instance #Demands #Nodes #Edges CG MB/SP/SP Obj CP
CG

SAT
dfn-bwin 90 10 45 456.742 0.670 1,000067618
dfn-gwin 110 11 47 TO 0.746 N/A

di-yuan 22 11 42 TO 0.472 N/A
giul39 1471 39 172 TO 26.554 N/A

india35 595 35 80 TO 8.739 N/A
newyork 240 16 49 TO 3.486 N/A
nobel-eu 378 28 41 TO 4.919 N/A

norway 702 27 51 TO 7.962 N/A
pdh 24 11 34 108.3804 0.553 1

UNSAT
geant 462 22 36 TO 2.550 N/A

germany 662 50 88 TO 6.241 N/A
janos-us 650 26 84 TO 3.605 N/A

janos-us-ca 1482 39 122 TO 25.926 N/A

Table 4 Column Generation results on real-world instances from SNDlib

8.3.3 Constraint programming against Column Generation

To get a very synthetic insight of the respective strengths of the two approaches, we
have depicted a set of comparisons in Table 5. It simply shows how many times each
method has found a better solution or finished the resolution before the other. From
this table, we can see that in general the CP model performs better, but not all the
time.

#better run-time #better solution #better run-time and solution
Column generation 11 17 0

Constraint Programming 124 382 11

Table 5 Comparison between Column Generation and CP

#Node #demands time CP time CG solution CP solution CG
120 80 TO 1906.63 707329 704229
180 90 TO 2245.03 956690 897772
180 50 TO 2095.51 708083 683188
100 30 2.29 TO 4564010 TO
500 10 3.812 547.638 131182 133039
40 20 1.87 208.979 84291.7 86397.5
75 200 TO 182.183 914526 TO
200 40 TO 1651.83 707515 713809

Table 6 Comparison between Column Generation and CP

Constraint Games for SDN 33

Furthermore, we extracted some meaningful synthetic instances presented in Table
6. These instances present different kinds of behavior. In a few instances, the CG
approach is able to find a better solution in shorter time. Sometimes the CG generation
procedure times out and we are not able to find an integer solution in the given time.
But interestingly, even if the CG has finished his generation procedure and the CP
model times out and fails to prove optimality, it happens that the integer solution
found by CG is still worse than the one returned at the end by CP.
We can see that very often CP performs better. One possible explanation about the bad
result of Column Generation is how the RMP is linearized. When a new variable is
entering the problem, the objective constraint is not modified. And thus the computed
reduced cost are less efficient to improve the linear solution. This in turn slows down
the global resolution by forcing the generation procedure while it is not required. In
addition, the generation of one column needs to solve a NP-complete problem and
it has to be embedded in ILP since no shortest path algorithm is applicable due to
the negative cycles (see section 5.4). In contrast, the CP model benefits from a good
heuristic which guides well the search space exploration, and moreover it has a good
relaxation to bound the objective value when the search tree is explored in order to
close the nodes.

8.3.4 Constraint games

For the Constraint Game model, we have only used the combination MB/SP/SP,
with and without improvement of the first solution by IBR. Results show that IBR
improves the relaxation technique by giving quickly a good first solution which is
also an equilibrium.

instance #Demands #Nodes #Edges MB/SP/SP [NASH] MB/SP/SP
SAT
dfn-bwin 90 10 45 0.670 3.871
dfn-gwin 110 11 47 0.746 5.681
di-yuan 22 11 42 0.472 2.012
giul39 1471 39 172 26.554 1571.197
india35 595 35 80 8.739 215.716
newyork 240 16 49 3.486 18.173
nobel-eu 378 28 41 4.919 41.861
norway 702 27 51 7.962 154.520

pdh 24 11 34 0.553 2.016
UNSAT

geant 462 22 36 2.550 2.92
germany 662 50 88 6.241 6.783
janos-us 650 26 84 3.605 5.174

janos-us-ca 1482 39 122 25.926 50.486

Table 7 Constraint Games results on real-world instances from SNDlib

We present in Table 7 the run-time in second of the different strategies on the SNDlib
instances. It is interesting to see that games of unprecedented size (up to 1482 players

34 Anthony Palmieri1,2 et al.

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500

N
u

m
b

e
r

o
f

In
st

a
n

ce
s

S
o

lv
e

d

Time (s)

MB / SP / SP
CO / SP / SP

CO1 / SP / SP
[NASH] MB+IBR / SP / SP
[NASH] MB / SP / SP

MB / SP / CP

Fig. 16 Comparison Nash and and the different heuristics on synthetic benchmarks

in the janos-us-ca instance) can be solved to optimality by Conga [35]. Interestingly
and in contrast with the synthetic instances, we have observed that IBR slightly de-
grades the computation time, this is why we did not include the column in the table.
We believe that in these problems, most first solutions computed by the MB heuristics
were already at equilibrium, and thus adding IBR only adds another check.

0,8

0,85

0,9

0,95

1

POA POS

Fig. 17 Price of Anarchy and Price of Stability for small synthetic instances

We report the results for the computation of PoA and PoS for small synthetic in-
stances in Figure 17. In most instances, we observe that the PoA and PoS are very
close, and also very close to the centralized optimum. It means that on these prob-
lems, a decentralized algorithm would be very interesting to implement if we assume
it scales up to larger problems. We have used much smaller instances because the PoA
is very difficult to reach. The upper bound computed for the Maximal Spanning Tree
overestimates the longest path which also overestimates the longest shortest path. We

Constraint Games for SDN 35

pay these two approximations by a limited pruning of the search tree which has a
major impact on the computation time.

9 Conclusion

This paper includes two practical contributions. First we have modeled and solved
efficiently the unsplittable multicommodity flow routing problem with congestion in
Constraint Programming and in ILP with Column Generation. We have provided an
accurate relaxation technique that allows to solve real-world size instances up to op-
timality. Our third contribution is a Constraint Game model that allows to evaluate
the potential of decentralized routing in this context. We have found all Nash equi-
libria for problems with thousands of player thanks to the Constraint Game solver
Conga. This is the first time that such large instances are solved to optimality by a
general-purpose Game Theory solver.

Acknowledgements We thanks Nicolas Huin for our long discussions about column generation and how
to build an efficient model.

References

1. Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. SIAM J. Comput. 42(1),
160–177 (2013), https://doi.org/10.1137/070702370

2. Azzouni, A., Boutaba, R., Pujolle, G.: Neuroute: Predictive dynamic routing for software-defined
networks. In: 13th International Conference on Network and Service Management, CNSM 2017,
Tokyo, Japan, November 26-30, 2017. pp. 1–6. IEEE Computer Society (2017), https://doi.
org/10.23919/CNSM.2017.8256059

3. Barnhart, C., Hane, C.A., Vance, P.H.: Using branch-and-price-and-cut to solve origin-destination
integer multicommodity flow problems. Operations Research 48(2), 318–326 (2000), https://
doi.org/10.1287/opre.48.2.318.12378

4. Bisschop, J.: AIMMS optimization modeling. Lulu. com (2006)
5. Braess, D., Nagurney, A., Wakolbinger, T.: On a paradox of traffic planning. Transportation Science

39(4), 446–450 (2005), https://doi.org/10.1287/trsc.1050.0127
6. Capone, A., Cascone, C., Nguyen, A.Q.T., Sansò, B.: Detour planning for fast and reliable failure

recovery in SDN with openstate. In: 11th International Conference on the Design of Reliable Com-
munication Networks, DRCN 2015, Kansas City, MO, USA, March 24-27, 2015. pp. 25–32. IEEE
(2015), https://doi.org/10.1109/DRCN.2015.7148981

7. Capone, A., Cascone, C., Nguyen, A.Q., Sanso, B.: Detour planning for fast and reliable failure re-
covery in sdn with openstate. In: 2015 11th International Conference on the Design of Reliable Com-
munication Networks (DRCN). pp. 25–32. IEEE (2015)

8. Chabert, G., al: Ibex An iInterval based EXplorer (2009), http://www.ibex-lib.org
9. Chabert, G., Jaulin, L.: Contractor programming. Artificial Intelligence 173(11), 1079–1100 (2009)

10. Chabrier, A., Danna, E., Pape, C.L., Perron, L.: Solving a network design problem. Annals OR 130(1-
4), 217–239 (2004), https://doi.org/10.1023/B:ANOR.0000032577.81139.84

11. Correa, J.R., Schulz, A.S., Moses, N.E.S.: Selfish routing in capacitated networks. Math. Oper. Res.
29(4), 961–976 (2004), https://doi.org/10.1287/moor.1040.0098

12. Correa, J.R., Schulz, A.S., Moses, N.E.S.: Fast, fair, and efficient flows in networks. Operations Re-
search 55(2), 215–225 (2007), https://doi.org/10.1287/opre.1070.0383

13. CPLEX, I.I.: 12.6. CPLEX Users Manual (2014)
14. Even, S., Itai, A., Shamir, A.: On the complexity of time table and multi-commodity flow problems.

In: Proceedings of the 16th Annual Symposium on Foundations of Computer Science. pp. 184–193.
SFCS ’75, IEEE Computer Society, Washington, DC, USA (1975), http://dx.doi.org/10.
1109/SFCS.1975.21

36 Anthony Palmieri1,2 et al.

15. Fudenberg, D., Tirole, J.: Game Theory. The MIT Press (1991)
16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman (1979)
17. Gottlob, G., Greco, G., Scarcello, F.: Pure Nash Equilibria: Hard and Easy Games. J. Artif. Intell. Res.

(JAIR) 24, 357–406 (2005)
18. Harks, T., Heinz, S., Pfetsch, M.E.: Competitive online multicommodity routing. In: Erlebach, T.,

Kaklamanis, C. (eds.) Approximation and Online Algorithms, 4th International Workshop, WAOA
2006, Zurich, Switzerland, September 14-15, 2006, Revised Papers. Lecture Notes in Computer Sci-
ence, vol. 4368, pp. 240–252. Springer (2006), https://doi.org/10.1007/11970125_19

19. Hayrapetyan, A., Tardos, É., Wexler, T.: A network pricing game for selfish traffic. Distributed Com-
puting 19(4), 255–266 (2007), https://doi.org/10.1007/s00446-006-0020-y

20. Hnich, B., Prestwich, S.D., Selensky, E., Smith, B.M.: Constraint models for the cov-
ering test problem. Constraints 11(2-3), 199–219 (2006), https://doi.org/10.1007/
s10601-006-7094-9

21. Huin, N., Jaumard, B., Giroire, F.: Optimal network service chain provisioning. IEEE/ACM Trans.
Netw. 26(3), 1320–1333 (2018), http://doi.ieeecomputersociety.org/10.1109/
TNET.2018.2833815

22. Huin, N., Tomassilli, A., Giroire, F., Jaumard, B.: Energy-efficient service function chain provi-
sioning. Electronic Notes in Discrete Mathematics 64, 265–274 (2018), https://doi.org/10.
1016/j.endm.2018.02.001

23. Key, P.B., McAuley, D.: Differential qos and pricing in networks: Where flow control meets
game theory. IEE Proceedings - Software 146(1), 39–43 (1999), https://doi.org/10.1049/
ip-sen:19990154

24. Layeghy, S., Pakzad, F., Portmann, M.: SCOR: constraint programming-based northbound inter-
face for SDN. In: 26th International Telecommunication Networks and Applications Conference,
ITNAC 2016, Dunedin, New Zealand, December 7-9, 2016. pp. 83–88. IEEE (2016), http://doi.
ieeecomputersociety.org/10.1109/ATNAC.2016.7878788

25. Leguay, J., Draief, M., Chouvardas, S., Paris, S., Paschos, G.S., Maggi, L., Qi, M.: Online and global
network optimization: Towards the next-generation of routing platforms. CoRR abs/1602.01629
(2016), http://arxiv.org/abs/1602.01629

26. Lisser, A., Mahey, P.: Multicommodity flow problems and decomposition in telecommunications net-
works. In: Resende, M.G.C., Pardalos, P.M. (eds.) Handbook of Optimization in Telecommunications,
pp. 241–267. Springer (2006), https://doi.org/10.1007/978-0-387-30165-5_10

27. Liu, T., Callegati, F., Cerroni, W., Contoli, C., Gabbrielli, M., Giallorenzo, S.: Constraint pro-
gramming for flexible service function chaining deployment. CoRR abs/1812.05534 (2018), http:
//arxiv.org/abs/1812.05534

28. Mendiola, A., Astorga, J., Jacob, E., Higuero, M.: A survey on the contributions of software-defined
networking to traffic engineering. IEEE Communications Surveys and Tutorials 19(2), 918–953
(2017), https://doi.org/10.1109/COMST.2016.2633579

29. Nash, J.: Non-cooperative Games. Annals of Mathematics 54(2), 286–295 (1951)
30. Nguyen, T., Lallouet, A.: A Complete Solver for Constraint Games. In: O’Sullivan, B. (ed.) CP 2014,

Lyon, France, September 8-12, 2014. LNCS, vol. 8656, pp. 58–74. Springer (2014), http://dx.
doi.org/10.1007/978-3-319-10428-7_8

31. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2), 11:1–11:29 (Feb
2011), http://doi.acm.org/10.1145/1883612.1883618

32. Orda, A., Rom, R., Shimkin, N.: Competitive routing in multi-user communication networks. In:
Proceedings IEEE INFOCOM ’93, The Conference on Computer Communications, Twelfth Annual
Joint Conference of the IEEE Computer and Communications Societies, Networking: Foundation for
the Future, San Francisco, CA, USA, March 28 - April 1, 1993. pp. 964–971. IEEE (1993), https:
//doi.org/10.1109/INFCOM.1993.253270

33. Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0 – Survivable Network
Design Library. In: Proceedings of the 3rd International Network Optimization Confer-
ence (INOC 2007), Spa, Belgium (April 2007), http://www.zib.de/orlowski/
Paper/OrlowskiPioroTomaszewskiWessaely2007-SNDlib-INOC.pdf.gz,
http://sndlib.zib.de, extended version accepted in Networks, 2009.

34. Osseiran, A., Braun, V., Hidekazu, T., Marsch, P., Schotten, H., Tullberg, H., Uusitalo, M.A., Schell-
man, M.: The foundation of the mobile and wireless communications system for 2020 and beyond:
Challenges, enablers and technology solutions. In: Vehicular Technology Conference (VTC Spring),
2013 IEEE 77th. pp. 1–5. IEEE (2013)

Constraint Games for SDN 37

35. Palmieri, A., Lallouet, A.: Constraint games revisited. In: Sierra, C. (ed.) Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017. pp. 729–735. ijcai.org (2017), https://doi.org/10.24963/ijcai.
2017/101

36. Pape, C.L., Perron, L., Régin, J., Shaw, P.: Robust and parallel solving of a network design problem.
In: Hentenryck, P.V. (ed.) Principles and Practice of Constraint Programming - CP 2002, 8th Interna-
tional Conference, CP 2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings. LNCS, vol. 2470,
pp. 633–648. Springer (2002), https://doi.org/10.1007/3-540-46135-3_42

37. Paris, S., Destounis, A., Maggi, L., Paschos, G.S., Leguay, J.: Controlling flow reconfigurations in
SDN. In: 35th Annual IEEE International Conference on Computer Communications, INFOCOM
2016, San Francisco, CA, USA, April 10-14, 2016. pp. 1–9. IEEE (2016), https://doi.org/
10.1109/INFOCOM.2016.7524330

38. Pham, Q., Deville, Y.: Solving the longest simple path problem with constraint-based techniques. In:
Beldiceanu, N., Jussien, N., Pinson, E. (eds.) Integration of Constraint Programming, Artificial Intel-
ligence and Operations Research, CPAIOR 2012, Nantes, France, May 28 - June1, 2012. LNCS, vol.
7298, pp. 292–306. Springer (2012), https://doi.org/10.1007/978-3-642-29828-8_
19

39. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC, INRIA Rennes, LINA CNRS
UMR 6241, COSLING S.A.S. (2017), http://www.choco-solver.org

40. Puri, A., Tripakis, S.: Algorithms for the multi-constrained routing problem. In: Penttonen, M.,
Schmidt, E.M. (eds.) Algorithm Theory - SWAT 2002, 8th Scandinavian Workshop on Algorithm
Theory, Turku, Finland, July 3-5, 2002 Proceedings. Lecture Notes in Computer Science, vol. 2368,
pp. 338–347. Springer (2002), https://doi.org/10.1007/3-540-45471-3_35

41. Qin, Q., Poularakis, K., Iosifidis, G., Tassiulas, L.: SDN controller placement at the edge: Optimiz-
ing delay and overheads. In: 2018 IEEE Conference on Computer Communications, INFOCOM
2018, Honolulu, HI, USA, April 16-19, 2018. pp. 684–692. IEEE (2018), https://doi.org/
10.1109/INFOCOM.2018.8485963

42. Quang, P.T.A., Sanner, J.M., Morin, C., Hadjadj-Aoul, Y.: Multi-objective multi-constrained qos rout-
ing in large-scale networks: A genetic algorithm approach. In: 2018 International Conference on
Smart Communications in Network Technologies (SaCoNeT). pp. 55–60. IEEE (2018)

43. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace, M. (ed.) Principles
and Practice of Constraint Programming - CP 2004, 10th International Conference, CP 2004, Toronto,
Canada, September 27 - October 1, 2004, Proceedings. Lecture Notes in Computer Science, vol. 3258,
pp. 557–571. Springer (2004), https://doi.org/10.1007/978-3-540-30201-8_41

44. Rosen, J.B.: Existence and Uniqueness of Equilibrium Points for Concave n-Person Games. Econo-
metrica 33(3), 520–534 (July 1965)

45. Roughgarden, T.: Routing Games, chap. 18, pp. 461–486. Algorithmic game theory, Cambridge Uni-
versity Press (2007)

46. Sanner, J.M., Hadjadj-Aoul, Y., Ouzzif, M., Rubino, G.: An evolutionary controllers’ placement al-
gorithm for reliable sdn networks. In: 2017 13th International Conference on Network and Service
Management (CNSM). pp. 1–6. IEEE (2017)

47. Sellmann, M., Gellermann, T., Wright, R.: Cost-based filtering for shorter path constraints. Con-
straints 12(2), 207–238 (2007), https://doi.org/10.1007/s10601-006-9006-4

48. Shoham, Y., Leyton-Brown, K.: Multiagent Systems - Algorithmic, Game-Theoretic, and Logical
Foundations. Cambridge University Press (2009)

49. Song, S., Lee, J., Son, K., Jung, H., Lee, J.: A congestion avoidance algorithm in SDN environ-
ment. In: 2016 International Conference on Information Networking, ICOIN 2016, Kota Kinabalu,
Malaysia, January 13-15, 2016. pp. 420–423. IEEE Computer Society (2016), https://doi.
org/10.1109/ICOIN.2016.7427148

50. Szymanski, T.H.: Max-flow min-cost routing in a future-internet with improved qos guaran-
tees. IEEE Trans. Communications 61(4), 1485–1497 (2013), https://doi.org/10.1109/
TCOMM.2013.020713.110882

51. Tajiki, M., Akbari, B., Shojafar, M., Mokari, N.: Joint qos and congestion control based on traffic
prediction in sdn. Applied Sciences 7(12), 1265 (2017)

52. Vassilaras, S., Gkatzikis, L., Liakopoulos, N., Stiakogiannakis, I., Qi, M., Shi, L., Liu, L., Debbah,
M., Paschos, G.: The algorithmic aspects of network slicing. IEEE Communications Magazine (2017)

53. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University
Press (1944), http://jmvidal.cse.sc.edu/library/neumann44a.pdf

38 Anthony Palmieri1,2 et al.

54. Yu, L., Lei, Y., Kacker, R., Kuhn, D.R.: ACTS: A combinatorial test generation tool. In: Sixth IEEE
International Conference on Software Testing, Verification and Validation, ICST 2013, Luxembourg,
Luxembourg, March 18-22, 2013. pp. 370–375. IEEE Computer Society (2013), https://doi.
org/10.1109/ICST.2013.52

