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ABSTRACT
Concepts are often described in terms of positive integer-valued
attributes that are organized in a hierarchy. For example, cities can
be described in terms of how many places there are of various types
(e.g. nightlife spots, residences, food venues), and these places are
organized in a hierarchy (e.g. a Portuguese restaurant is a type of
food venue). This hierarchy imposes particular constraints on the
values of related attributes—e.g. there cannot be more Portuguese
restaurants than food venues. Moreover, knowing that a city has
many food venues makes it less surprising that it also has many
Portuguese restaurants, and vice versa.

In the present paper, we attempt to characterize such concepts in
terms of so-called contrastive antichains: particular kinds of subsets
of their attributes and their values. We address the question of when
a contrastive antichain is interesting, in the sense that it concisely
describes the unique aspects of the concept, and this while duly
taking into account the known attribute dependencies implied by
the hierarchy. Our approach is capable of accounting for previously
identified contrastive antichains, making iterative mining possible.
Besides the interestingness measure, we also present an algorithm
that scales well in practice, and demonstrate the usefulness of the
method in an extensive empirical results section.
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•Mathematics of computing→ Information theory; Probabilis-
tic representations; • Computing methodologies → Knowledge
representation and reasoning; Learning in probabilistic graphical
models; Unsupervised learning.
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1 INTRODUCTION AND MOTIVATION
Humans typically understand concepts in terms of how they differ
from the norm. For example, one might characterize the city of
Amsterdam as a city of trams, snack places, and marihuana dispen-
saries. These are uniquely defining features of Amsterdam, even
though it has lots of other features that are far more common (e.g.
food venues) but less specific to the city. Another example would be
to contrast the American with the French food culture. One might
then find that popcorn and Aloe-vera-drinks are highly specific for
the American food culture, with fresh foods, pies, and tabbouleh
more defining for the French food culture.

In these examples, the concepts of interest (cities, food cultures)
are described by values of particular positive integer-valued at-
tributes, to which we will refer as counters. The number of facilities
of various types a city has (e.g. number of bars, nightlife spots
more generally, bus stops, etc.) is documented e.g. by FourSquare.
The extent to which a national food culture relies on various food
categories (e.g. beverages, alcoholic beverages more specifically,
sugary snacks, etc.) can be found in the OpenFoodFact database.

Such data offers interesting opportunities to uniquely and ob-
jectively characterize concepts in terms of such counters. Most
immediately, one could use the aggregate of these counters over
all concepts, and contrast the counter of a particular concept with
that average. The stronger it differs (positively or negatively), the
stronger it should characterize that counter. In this way, one could
obtain a set of unique aspects of each concept.

A challenge with this approach, however, is that counters are
often organized in a hierarchy—a toy example is shown in Fig. 1
for illustration. Indeed, bars are examples of nightlife spots in the
FourSquare taxonomy, and alcoholic beverages are particular kinds
of beverages in the OpenFoodFact dataset. This means that the char-
acterization can be highly redundant. Moreover, information about
one counter can affect one’s expectation about another (e.g. the fact
that there are lots of bars can be explained by a high number of
nightlife spots more generally), which may influence one’s expec-
tation about other counters (e.g. this may inflate one’s expectation
about night clubs).

Hierarchies have been extensively investigated in the literature
for decades [1, 9, 16, 18]. Most studies have only considered hierar-
chies to restrain the pattern syntax (i.e., to avoid redundancy) or to
take advantage of their subsumption power [1]. Surprisingly, there
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Figure 1: Example of hierarchy with counts (counts of
venues in a city).

has been little discussion about the use of the hierarchical relation-
ships for reasoning in the knowledge discovery task, especially to
estimate some counters on some levels of the hierarchy knowing
the values of some ancestors.

In this paper, we introduce the problem of characterizing a con-
cept that is described in terms of a set of hierarchically-organized
counters, by means of a subset of these counters with distinctive
values. Hereby, distinctiveness is assessed with respect to some
reference, e.g. the sum total of all concepts, or one concept in partic-
ular. To account for the dependencies between the various counters
implied by the hierarchy, we propose to focus on subsets that are
antichains (sets of incomparable elements) of the hierarchy, called
contrastive antichains in this paper. These contrastive antichains
pinpoint non-redundant concepts of the hierarchy that are at the
same time compact and unexpected. In Figure 1, the set {Food, Bar}
is an antichain, because none of these two items is a predecessor
of the other one (they are not comparable). This antichain informs
the user about the number of Food and Bar venues in the studied
dataset. This antichain is informative if the number of Food and
Bar venues are different from the expected values by the user.

The main contributions are as follows:
• Section 2 introduces and formalizes the problem of min-
ing contrastive antichains in hierarchically organized sets of
counters.
• Section 3 formalizes the interestingness of a contrastive an-
tichain with respect to prior beliefs about the values of these
counters. These prior beliefs can be derived from a concept
with which the concept under investigation needs to be
contrasted, or from an aggregate count over all concepts.
Section 3.3 in particular shows how the measure of interest-
ingness can take into account the knowledge of previously
found contrastive antichains, such that iteratively mined con-
trastive antichains can be made non-redundant.
• Section 4 presents an algorithm to efficiently mine the most
contrastive antichains.
• Section 5 discusses the most important related work.
• Section 6 empirically evaluates the potential usefulness of
contrastive antichains as a tool to gain insight into such
data, and evaluate the effectiveness and scalability of the
algorithm for mining them.

2 CONTRASTIVE ANTICHAINS
Here we define the problem setting, along the way introducing
the necessary concepts and notation. First we define the kind of

data considered, and then the kinds of pattern we are interested in
finding in such data.

2.1 The data: concepts described as sets of
hierarchically related counters

As discussed in the introduction, we consider the relatively common
situation where concepts of interest are defined in terms of a set
of positive integer-valued attributes, whereby these attributes are
organized in a hierarchy. We refer to such attributes as counters.
Indeed, often they represent a count of something in relation to
that concept, e.g. the number of food venues (the attribute), in a
particular city (the concept of interest).

A particular concern in this paper is the fact that these counters
are often related in a hierarchy, defined as follows.

Definition 1 (Hierarchy). A hierarchy (or a tree)H is defined
as a tupleH = (E, ≤, e1) where:

• E = {e1, ..., en } is a set of items,
• ≤ is a partial order relation defined over this set,
• ∀e ∈ E : e1 ≤ e (the item e1 is called the root ofH ), and
• there is only one path from e1 to any other item:

∀ei , ej , ek ∈ E : ei ≤ ek ∧ ej ≤ ek =⇒ ei ≤ ej ∨ ej ≤ ei .

In Figure 1, the following relations hold: e1 ≤ e2, e1 ≤ e3, and
e2 ≤ e3. If ei ≤ ej , then ei is a predecessor of ej , but ei is not
necessarily the direct parent of ei . Note that a hierarchy is a special
case of a partially ordered set. We assume such a hierarchy, where
the items are counters, imposes certain constraints on the values
these counters may have. Specifically, we assume that the value of
a counter is never strictly larger than the value of a hierarchically
smaller counter in the partial order.

For convenience, we introduce the following operations over a
hierarchy.

Definition 2 (Basic operations). Given S ⊆ E:

• Precedessors operator ⇑, and successors operator ⇓ as:

⇑ S = {e ∈ E | ∃e ′ ∈ S : e ≤ e ′},

⇓ S = {e ∈ E | ∃e ′ ∈ S : e ′ ≤ e},

• Strict predecessor relation: ei < ej ⇔ ei ≤ ej ∧ ei , ej ,
• The direct successor relation ≺ as: ei ≺ ej ⇐⇒⇓ ei∩ ⇑ ej =
{ei , ej }. Also, if ei ≺ ej , we use the notation πi = j to refer to
the index of the direct parent of ei (ej = eπi ),
• Direct predecessor operator ↑, and direct successors operator ↓
as:

↑ S = {e ∈ E | ∃e ′ ∈ S : e ≺ e ′},

↓ S = {e ∈ E | ∃e ′ ∈ S : e ′ ≺ e},

• the leaves L(H) = {e ∈ E | ∄e ′ : e ≺ e ′},
• The mimimum of S : min(S) = {e ∈ S | ∄e ′ ∈ S : (e ′ < e)}.

The value of each counter ei ∈ E is denoted using the variable xi ,
and when a particular empirical value is meant it will be denoted
as x̂i . Note that this means that ∀i ∈ J2,nK : xi ≤ xπi as well as
x̂i ≤ x̂πi .



2.2 Contrastive antichains as patterns
We aim to inform the analyst about the values of a subset of the
counters of a concept. As formalized in Section 3, it is our goal
to ensure that the patterns of this type are as informative to the
data analyst as possible, taking into account the fact that the data
analyst has certain prior beliefs about these counters, e.g. based
on one or a set of other well-understood concepts with the same
sets of counters. As information on a counter directly affects one’s
expectations about comparable (i.e. hierarchically related) counters
(see Section 3 where we make this rigorous), we made the choice of
including into the same pattern only non-comparable counters—i.e.
no counter is a predecessor or successor of another, and the set
of counters forms an antichain of the hierarchy. This ensures in a
constructive manner that the information provided by the different
counters in the pattern is not too redundant, and ensures that the
patterns provide information about a larger part of the hierarchy.

For each counter ei ∈ P , a contrastive antichain pattern informs
the data analyst about the value x̂i . The question arises whether
it is of interest to inform the analyst about its precise value. We
argue that in many practical cases the precise value gives no more
insight than an order of magnitude indication (although probably
more detailed than orders of 10). Thus, instead of informing the
analyst about the precise value, in this paper we consider the case
where the pattern describes just the scale of the count: ⌊log(x̂i )⌋.

A contrastive antichain pattern can thus be formally defined as:

Definition 3 (Contrastive antichains). Given a concept and
the value x̂i for each of a set of counters ei ∈ E which are organized
in a hierarchy H = (E, ≤, e1). A contrastive antichain pattern P is
specified by a subset of the counters (P ⊆ E) which forms an antichain
w.r.t. ≤, i.e., ∀ei , ej ∈ P : ei ≤ ej =⇒ ei = ej , along with the integers
⌊log(x̂i )⌋ describing the scale of the values of these counters.

3 THE INTERESTINGNESS OF A
CONTRASTIVE ANTICHAIN

For a hierarchyH = (E, ≤, e1), we aim to represent the prior beliefs
of the user about the counters ei ∈ E. This will be represented by a
probability distribution Pr for the set of random variables Xi . We
call this distribution the background distribution. In practice, the
prior beliefs are derived from one or a number of example concepts
and the values of their counters, as explained next.

3.1 The background distribution
In this study, we consider that the analyst has some reference that
will determine her prior expectations about the counters for the
concept under investigation. For instance, if we consider cities as
concepts, a Londoner who would like to gain an understanding of
the city of Amsterdam in terms of its counters, will typically have
prior beliefs determined by the values of those counters in London.
More specifically, we assume that the analyst has an expectation of
the value xi of each counter ei ∈ E that is equal to x̄i , determined
by the values of the respective counter in the reference concept.
In addition, we assume that the analyst has specific expectations
about the value of each counter (except for e1) relative to its parent
counter’s value. This can be formalized using the following two
types of constraints:

• Expectations: the expectation of each random variable Xi
is x̄i :

∀i ∈ J1,nK :
∑
xi

Pr(xi ) · xi = x̄i , (1)

• Conditional expectations: The expectation of the ratio of
a counter’s value over the parent’s counter’s value, condi-
tional on that parent counter’s value, is equal to the observed
ratio of these values:

∀i ∈ J2,nK :
∑
xi

Pr(xi |xπi ) ·
xi
xπi
=

x̄i
x̄πi
. (2)

For i > 1, the second type of constraint is arguably a more accurate
encoding of the analyst’s prior expectations, as it explicitly encodes
dependencies of counters conditioned on parent counters. For in-
stance, for cities as concepts and the venues hierarchy, the analyst
may expect that 75% of nightlife spots are bars, and knowing the
number of nightlife spots will arguably affect the expectation of the
number of bars. Moreover, the following property shows that the
second constraint essentially subsumes the former, i.e. it is strictly
stronger than the former.

Property 1. If the two following sets of conditions hold:
(1) Expectations for only the root:

∑
x1 Pr(x1) · x1 = x̄1,

(2) Conditional expectations for other nodes: ∀i ∈ J2,nK :∑
xi Pr(xi |xπi ) ·

xi
xπi
=

x̄i
x̄πi
,

Then it follows that ∀i > 1,
∑
xi Pr(xi ) · xi = x̄i .

This property can be recursively proven, by starting from the
first level (nodes ei for which eπi = e1), and using the fact that∑
xπi

Pr(xπi ) · xπi = x̄πi . The detailed proof is given in Appendix
A.1 (Supplementary Materials). This means that it suffices to con-
sider the expectation constraint for only the root, in addition to
conditional expectation constraints for the other nodes.

Thus we assume that the joint distribution can be written as:

Pr(x1, x2, . . . , xn ) = Pr(x1)
∏

i ∈J2,nK

Pr(xi , xπi ). (3)

The constraints on the probability for x1 and the conditional prob-
abilities of xi conditioned on xπi do not uniquely define the joint
probability distribution of all counter values. As proposed in [7],
we use distributions that maximize the entropy, as any other dis-
tribution effectively makes additional assumptions that reduce the
entropy. This means that these marginal distributions are found as
the solutions of the following optimization problem:
• For i = 1 (xi is the root):

max
Pr(xi )

−
∑
xi

Pr(xi ) log Pr(xi ),

s.t.
∑
xi

Pr(xi )xi = x̄i ,∑
xi

Pr(xi ) = 1.

• For i > 1, the distribution Pr(xi |xπi ) needs to maximize
the entropy conditional on xπi . Here, we must however rec-
ognize that the value xi is derived from its parent counter
xπi by determining which of the elements counted as part
of xπi also contribute to xi . I.e., the prior expectation is



about the tendency of any element contributing to xπi to
also contribute to xi . In terms of such decisions for individ-
ual elements, there are many ways to arrive at the same
count, namely Q(xi , xπi ) =

(xπi
xi

)
ways. Thus, we should

use Q(xi , xπi ), the number of ways to realize this counter
value, as a base measure, or equivalently, maximize the
Kullback-Leibler divergence between the conditional proba-
bility Pr(xi |xπi ) and Q(xi , xπi ):

max
Pr(xi |xπi )

−
∑
xi

Pr(xi |xπi ) log
Pr(xi |xπi )
Q(xi , xπi )

,

s.t.
∑
xi

Pr(xi |xπi )xi =
x̄i
x̄πi
· xπi ,∑

xi

Pr(xi |xπi ) = 1.

The solution to the first problem is a geometric distribution [7]
having an expectation equal to x̄1:

Pr(x1) =

(
1 −

1
1 + x̄1

)x1

·
1

1 + x̄1
= (1 − p1)

x1 · p1,

with p1 =
1

1+x̄1
.

The solution to the second problem for the other random vari-
ables xi (i > 1), is a binomial distribution with an average x̄i

x̄πi
· xπi

[12]:

Pr(xi |xπi ) =
(
xπi
xi

)
·

(
x̄i
x̄πi

)xi
·

(
1 −

x̄i
x̄πi

)xπi −xi
=

(
xπi
xi

)
·bxii ·(1−bi )

xπi −xi ,

where bi = x̄i
x̄πi

is the binomial parameter.

Property 2. The marginal distribution for each random variable
xi is geometric, and it is:

Pr(xi ) =
(
1 −

1
1 + x̄i

)xi
·

1
1 + x̄i

.

We give the proof of Property 2 in Appendix A.1 (Supplementary
Materials).

3.2 The interestingness of an antichain
We use the framework of subjective interestingness SI proposed in
[7], that defines SI (P) as the ratio between the informativeness of
a pattern and its description length (cost of communication to the
user):

SI (P) =
IC(P)

DL(P)
.

Information content IC: The information carried by a pattern is
quantified by the information content [7], a quantity also known as
the self-information or surprisal [5]. In particular, it is equal to the
reduction of uncertainty about the data caused by the knowledge
of the pattern, and is defined as follows:

IC(P) = − log(Pr(P)).

As previously discussed, the information content of a pattern
is shared with the user by transmitting the scales of the counts
appearing in the pattern, instead of the exact values, which can be
overwhelming and difficult to remember. Let us define the random
variable Yi = ⌊log(Xi )⌋, whose true value is ŷi = ⌊log(x̂i )⌋. The
probability associated to a pattern P is thus:

Figure 2: Example of an antichain pattern P = {e4, e5, e6}

Pr(P) =
∏
ei ∈P

Pr(ŷi ) =
∏
ei ∈P

Pr(2ŷi ≤ xi < 2ŷi+1),

=
∏
ei ∈P

(
(1 − pi )2

ŷi
− (1 − pi )2

ŷi +1 )
.

Description lengthDL: The description length measures the com-
plexity of communicating a pattern P to the user. In general, the
closer an item e ∈ E is to the root, the more likely the user is to
know it. For example in Foursquare hierarchy, it is simpler to com-
municate the node "Asian Restaurant" (2nd level) than "Acehnese
Restaurant" (4th level) which is a successor of "Indonesian Restau-
rant". The idea behind the formulation of DL(P) is to measure the
length of the encodings of paths from the root to items e ∈ P such
that (1) these paths cover as few as possible items that are not in
P , and (2) the paths are as short as possible. To construct the set of
paths, we start from the root node e1 and recursively move to the
node children until reaching each item of P . Let S be the set of nodes
of the paths. The cost associated to an item ei ∈ S is computed as
follows:

(1) If ei is an internal node of the hierarchy and the end-point of
a path, its encoding cost is log(α1), with α1 is the probability
that the path "stops" on that node. We encode with the value
log(1 − α1) the fact that ei is an internal node of a path.

(2) Let α2 be the probability that ei ∈ P and 1−α2 the probability
that ei is not in P . In the case where ei ∈ P we must also
encode the value ŷi . This requires log(A) bits, where A ≥ ŷ1
is an upper bound on values ŷi .

By multiplying these quantities with the respective cardinalities
(| ⇑ P \ P | for the number of internal nodes of paths and | ↓ (↑ P)|
for the end-points of the paths), the total encoding cost of P is:

DL(P) = − | ⇑ P \ P | · log(1 − α1) − | ↓ (↑ P) \ L(H)| · log(α1)

− | ↓ (↑ P) \ P | · log(1 − α2) − |P | · (log(α2) + log(A)) .

α1 and α2 are user specified parameters. If the user prefers to have
patterns P with deeper nodes from the hierarchy (nodes which are
closer to the leaves), she can decrease the value of α1. On the other
hand, if she likes to have patterns P with larger number of items,
she can increase α2.

In what follows, we detail, as an example, the computation of
DL({e4, e5, e6}) given in Figure 2:
• Starting from the root e1, we explore its children {e2, e6, e9}.
Then, we consider the node e2 and explore its children. This
requires a cost of −2× log(1−α1) since there are two internal
nodes on these paths.



• At that time, the description covers the items {e3, e4, e5, e6, e9}
and thus contains P . Since e6 and e9 are not leaves, we need to
specify that we stop on them. This takes a cost of−2×log(α1).
• We also specify that e3, e9 do not belong to P (with a cost of
−2 × log(1 − α2)) and that e4, e5, e6 belong to P (with a cost
of −3× log(α2)). Finally, we add the cost to communicate the
ŷi values for each item of P (with a cost of 3 × log(A)).

The overal description length of P is then: DL(P) = −2 × log(1 −
α1) − 2 × log(α1) − 2 × log(1 − α2) − 3 × (log(α2) + log(A)).

3.3 Updating the background knowledge
When a rational user observes some patterns, her background
knowledge may change to take into account these new pieces of
information. It results that the observed patterns become expected
by her and the background knowledge has to be updated as well. Let
us denote by O ⊆ E the set of already observed nodes. The quality
of a pattern P can thus be assessed using SI (P |O), the subjective
interestingness of P conditioned to the already observed values
from O:

SI (P |O) =
IC(P |O)

DL(P)
=
− log(Pr(P |O))

DL(P)
.

Pr(P |O) is the probability that P is present in the data given that
the scales of items ei ∈ O are equal to their observed values ŷi :

Pr(P |O) =
∏
ei ∈P

Pr(ŷi |
∧
ej ∈O

ŷj ).

The conditional probabilities Pr(ŷi |
∧
ej ∈O ŷj ) can be computed

using the conditional constraints between each xi and its direct
ancestor xπi , as expressed by Equation 2. These dependencies be-
tween variables Yi constitute a Bayesian tree (i.e., a graphical model
representation [4]) which states that the joint probability between
two values of the tree is independent conditionally to the value of
their direct ancestor. The probability of a given state (y1, ...,yn ) is
thus:

Pr(y1, ...,yn ) =
∏

i ∈J1,nK

Pr(yi |yπi ).

The sum-product inference algorithm [4] can be used to update
the background model. In order to use this algorithm, we first need
to derive the corresponding factor graph. This can be constructed by
making a factor function f1 defined onY1, and a factor function fi ,πi
for each pair (yi ,yπi ). The values of these functions are: f1(y1) =
Pr(y1), and fi ,πi (yi ,yπi ) = Pr(yi |yπi ) for each (yi ,yπi ). Then, the
probability of a given state (y1, ...,yn ) of this graph is:

Pr(y1, ...,yn ) = f1(y1) ·
∏

i ∈J2,nK

fi ,πi (yi ,yπi ).

Figure 3 displays the factor graph of the hierarchy from Figure 1.
The sum-product algorithm works only when the random vari-

ables have a finite number of states, while in our case yi take their
values in N. To make the use of sum-product possible, we can
limit the values of xi to an upper bound A > max(x̂1, x̄1). If we
set A = 220, xi can variate from 0 to 220, and yi from 0 to 20. For
example, if values of x̄i and x̂i are all lower than 215, it can be
sufficient to set A = 220, since Pr (yi > 20) will be extremely small
and negligible. Before running sum-product, we prepare the values

Figure 3: Factor graph of the tree in Figure 1.

of f1 for each y1 ∈ J0, log(A)K, and the value of each fi ,πi for each
(yi ,yπi ) ∈ J0, log(A)K2:
• For the factor f1, the computation can be done in constant
time using the CDF of the geometric distribution:

f1(y1) = Pr(2y1 ≤ x1 < 2y1+1) = (1 − p1)
2y1
− (1 − p1)

2y1+1.

• For the other factor functions, we have:

fi ,πi (yi ,yπi ) =Pr(yi |yπi ) =
Pr(yi ∧ yπi )
Pr(yπi )

,

=

∑2yπi +1
−1

xπi =2yπi Pr(xπi ) · Pr(2
yi ≤ xi < 2yi+1 |xπi )

Pr(2yπi ≤ xπi < 2yπi +1)
.

And:

Pr(2yπi ≤ xπi < 2yπi +1) = (1 − pi )2
yi
− (1 − pi )2

yi +1,

Pr(2yi ≤ xi < 2yi+1 |xπi ) = I1−bi (xπi − 2yi+1 − 1, 2yi+1)

− I1−bi (xπi − 2yi − 1, 2yi ),

with Iα (m −k,k + 1) is the regularized incomplete beta func-
tion which can be efficiently approximated [17].

The complexity for computing all the factor function values is in
O(|E | ·A·log(A)), and thememory complexity isO(|E | ·log(A)2). The
computation of factor functions can be done once for the studied
hierarchy, in order to be used repeatedly by sum-product each
time we need to update the model. Sum-product can be applied as
explained in [4]. The time complexity of this algorithm is O(|E | ·
log(A)2), we recall that |E | is the number of random variables Yi ,
and log(A)2 is the number of possible values of each pair (yi ,yπi ).

4 FINDING THE MOST INTERESTING
CONTRASTIVE ANTICHAINS

Finding contrastive antichains is computationally hard: the number
of antichains in a rooted tree of order n is at most 2n−1+1, as shown
by Klazar in [13]. Also, the interestingness of a contrastive antichain
is a ratio of two measures, IC and DL, that vary unpredictably from
one pattern to another and for which it is not straightforward to
derive non-trivial bounds on their values to prune some uninter-
esting antichains. Nonetheless, we derive MICA-Miner, a heuristic
algorithm based on a greedy strategy, which has a polynomial worst
case complexity (i.e., O

(
|E |2 ·max(loд(A)2, |L(H)|)

)
, see Appendix

A.2) and whose effectiveness is demonstrated experimentally. Be-
fore running this algorithm, we consider that the factor functions



Algorithm 1:MICA-Miner
Input:H : the hierarchical dataset, pre-computed values of

factor functions f1 and fi ,πi for each i ∈ J2,nK.
Output: R: the antichains sorted based on iteratively

updated SI .
1 R ← ⟨⟩
2 O ← ∅

3 repeat
4 // Update the model with the sum-product algorithm
5 // and derive the probabilities Pr(ŷi |O) for each yi :
6 Sum-product(H, O)
7 // Compute an antichain with a greedy strategy:
8 P ← GreedySearch(H)
9 if P , ∅ then
10 R .append (P )
11 O ← O ∪ P

12 until P = ∅;

f1 and fi ,πi (for each i ∈ J2,nK) are already computed based on the
approach explained in Section 3.3.

MICA-Miner is an iterative algorithm that, at each iteration, up-
dates themodel using the sum-product algorithm for integrating the
previously observed nodes O. It then produces an antichain P based
on GreedySearch. MICA-Miner continues until GreedySearch re-
turns an empty pattern, which means that IC(e) = 0 ∀e ∈ E.

In order to greedily build an antichain, GreedySearch starts from
an empty pattern P = ∅ and a set of candidatesC = E. It also uses a
set Q that contains the current paths endpoints, i.e., Q contains the
already known part of ↓ (↑ P), and Q will be equal to ↓ (↑ P) at the
end of GreedySearch. In each step, GreedySearch chooses an item
that will be added to Q and possibly to P , and removed from C (as
well as its predecessors and successors). In order to decide which
item to pick in each step, GreedySearch uses a heuristic IC

DL
where

DL is defined for an antichain P and a setQ s.t. P ⊆ Q ⊆↓ (↑ P). DL
is similar to DL, the difference is that DL does not account for the
cost of all the paths endpoints ↓ (↑ P), but only for Q , the already
known part of the final ↓ (↑ P):

DL(P,Q) = − | ⇑ P \ P | · log(1 − α1) − |Q \ L(H)| · log(α1)

− |Q \ P | · log(1 − α2) − |P | · (log(α2) + log(A)) .

At each iteration, GreedySearch selects two items: e⋆ ∈ C and
f ⋆ ∈ min(C) such that regarding to IC

DL
: (1) e⋆ is the best item

to add to P , (2) f ⋆ is the best item to add to Q \ P (i.e., f ⋆ is
the best candidate to remove from C without add it to P ). From
e⋆ and f ⋆ , GreedySearch chooses the one that has the highest
IC
DL

. If e⋆ is chosen, P is extended by this item. Otherwise, f ⋆ and
all its successors are removed from the set of candidates. When C
becomes empty, the antichain P is returned.

5 RELATEDWORK
The use of hierarchies (ontologies, taxonomies, etc.) in KDD tasks
has been extensively studied. In [1], the authors explained the high
and promissing utility of ontologies in different steps of the KDD
process, and proposed an association mining tool that benefits from

Algorithm 2: GreedySearch
Input:H : the hierarchical dataset, values of conditional

probabilities Pr(ŷi |O) for each yi
Output: P : A greedily constructed antichain

1 P ← ∅, C ← E , Q ← ∅
2 while C , ∅ do
3 e⋆ ← argmaxe∈C

IC (P∪{e }|O)
DL(P∪{e },Q∪{e })

4 f ⋆ ← argmaxe∈min(C )
IC (P |O)

DL(P ,Q∪{e })

5 if IC (P∪{e⋆}|O)
DL(P∪{e⋆},Q∪{e⋆})

≥
IC (P |O)

DL(P ,Q∪{f ⋆})
then

6 P ← P ∪ {e⋆ }
7 Q ← Q ∪ {e⋆ }
8 C ← {e ∈ C | e ⪯̸ e⋆ ∧ e⋆ ⪯̸ e }

9 else
10 Q ← Q ∪ {f ⋆ }
11 C ← {e ∈ C | f ⋆ ⪯̸ e }

12 return P

ontologies in different stages of the mining process (data under-
standing, task design, etc.). The generic problem of Semantic Data
Mining has been defined in [16, 18]: given a set of objects annotated
with ontology terms, the goal is to find hypothesis, expressed by
domain ontology terms, explaining the given empirical data. Specif-
ically in [15, 18, 19], the Semantic Subgroup Discovery problem
is studied: given a dataset where each object is annotated with
ontology terms and belongs to a specific class, the goal is to find a
conjunction of ontology terms (a conjunctive rule) that corresponds
to a set of object discriminating a specific class. To evaluate the
discriminativity of a conjunctive rule, these approaches mainly use
thewWRAcc heuristic based on theWRAcc1 measure. This heuris-
tic has been initially proposed for the generic task of Subgroup
Discovery [14]. A similar method has been proposed in [1] to take
benefit from ontology structures in order to optimize and reduce
the redundancy in the search of conjunctive rules that satisfy some
user specified constraints. In [2], this problem of rule learning is
tackled based on ILP (Inductive Logic Programming), and ontology
structures are integrated by providing additional clauses to the ILP
solver. Enumerating hierarchical attributes has been also integrated
in the Exceptional Model Mining problem [3]. The common point
between these works is the use of ontologies in the rule discovery
to provide conjunctive clauses which cover a part of data that sat-
isfy some constraints. In our work, the goal is to characterize the
dataset based on an antichain that does not necessarily cover the
same part of the data, but provides a good characterization of the
overal dataset. Another specificity of our work is the explicit use of
hierarchies to represent user background knowledge and integrate
it in the interestingness measure.

Several works have also used hierarchies to improve the predic-
tion task. In [11], the authors propose an algorithms that, given a
training set of objects described with ontology concepts, allows to
select an antichain whose nodes will be used as features to learn a
predictive model. Other works proposed different ontology-aware
classification approaches [8, 20, 21] based on well known models

1WRAcc : Weighted Relative Accuracy measure



(decision trees, bayesian networks). While these works uses ontol-
ogy structures to provide better prediction models, our approach
aims to provide knowledge about a dataset to a specific user. Ontol-
ogy structure has been used in other KDD tasks (ontology-based
clustering, information extraction, recommender systems, etc.). In
the survey [9] a large spectrum of these works is reviewed.

In this paper, we use an interestingness measure inspired by
the FORSIED framework [6, 7], which defines the SI of a pattern
as the ratio between the IC and the DL. The IC is the amount of
information contained in the pattern. The quantification is based on
the gain from a Maximum Entropy background model that depicts
the current knowledge of a user, hence it is subjective, i.e., particular
to the modeled belief state. Regarding the previous studies based on
FORSIED framework, the novelty of ourwork is the incorporation of
dependencies between user expectations about different attributes,
using available hierarchy structures of the data.

6 EMPIRICAL RESULTS
In this section, we report our experimental results. These experi-
ments aim to evaluate the performance and the quality of results
provided by MICA-Miner in real world datasets. The method was
implemented in Java and the experiments were performed on a ma-
chine equipped with Intel(R) Xeon(R) CPU @ 4.00GHz, and 128GB
main memory, running Debian GNU/Linux 9.6. The code and the
data are available2.
Datasets and aims.We conduct experiments in three real world
datasets whose main characteristics are given in Table 1:
- FV: Foursquare venues [10], the nodes ei in this hierarchical
dataset are categories of venues3 (food, restaurant, event, etc.).
We aim to study the distribution of venue categories in Amsterdam
and London, and discover which kind of categories are surprisingly
frequent/rare in each of these cities. We then consider two case
studies: (1) FV-Ams for Amsterdam: the observed values x̂i are the
counters of categories in Amsterdam, (2) FV-Lon for London: the
observed values x̂i are the counters of categories in London. For
both cases, the priors x̄i are the aggregation of categories counters
throughout 20 well known cities from Europe and USA (London,
Barcelona, New York, etc.).
-OFF: Open Food Facts4 is a free food product database that gathers
information and data on food products around the world. Each
product is described by its food category (Plant-based food, ...) and
its country. The categories represent the nodes ei of the hierarchy.
We want to compare the distribution of food categories between
France and USA, the two countries with the most contributions.
Then, the values x̂i (resp. x̄i ) are the number of products for each
category in France (resp. USA).
- EP_Abst: European Parliament5 is a dataset that depicts ballots
of the European Parliament between 2014 and 2019. Each ballot is
described by the corresponding topics and the votes (for, against,
abstain) of each deputy, whose political groups are given. Topics
are organized following a hierarchy (e.g., the topic "5.10 Economic
Union" is the strict predecessor of "5.10.02 Price policy, price stabil-
isation"). We build a hierarchical dataset for each political group
2https://tinyurl.com/y2jkmduv
3https://developer.foursquare.com/docs/resources/categories
4https://world.openfoodfacts.org/
5http://parltrack.euwiki.org/

Table 1: Description of the real-world datasets.

Datasets |E | |x̂1 | # levels branching factor
FV-Ams 846 9030 5 13
FV-Lon 846 25220 5 13
OFF 2000 147,411 10 3.6

EP_Abs 358 [7470; 30, 673] 5 5.17

Figure 4: Time (line) andmemory consumption (bars) of the
factor functions computation (columns 1), andMICA-Miner
(columns 2) in the studied datasets w.r.t. |E |.

where the values x̂i correspond to the number of abstentions: the
number of times a deputy from this group abstains in the topic ei .
The priors x̄i are constructed from the total number of ballots by
topic.

In this experimental study, we aim to answer the following ques-
tions: How much time and memory does MICA-Miner consume in
practice? How does the size of the hierarchy |E | impact the per-
formance of MICA-Miner? What is the impact of model updating
on the found antichains? Are the antichains found by MICA-Miner
relevant and informative?
Quantitative evaluation. We study the runtime and memory
consumption for (1) the computation of factor functions (see Sec-
tion 3.3), and (2) MICA-Miner. We vary the number of items in the
real world datasets as follows: in order to decrease the number of
items, we iteratively remove leaves that are the furthest from the
root, and in order to increase the number of items, we duplicate
the tree as many times as we need and then we add a new root that
links all the duplications. Results are given in Figure 5, column 1 for
the factor functions, and column 2 for MICA-Miner. As it was the-
oretically expected, the computation of factors requires a time and
memory that linearly increase with the number of items. Moreover,
the time increases for MICA-Miner in a quadratic manner (a fitted
model a · |E |2 + b approximates the time with an average square
error below 7(s2)), its memory consumption also follows the same
quadratic trend.

https://tinyurl.com/y2jkmduv
https://developer.foursquare.com/docs/resources/categories
https://world.openfoodfacts.org/
http://parltrack.euwiki.org/


Figure 5: Top 1 pattern based onWRAcc measure FV-Ams.

Comparative evaluation. There is no approach in the literature
that supports the discovery of subjectively interesting antichains
in hierarchies. Nevertheless, we identify some baselines that we
consider in our study to highlight the characteristics of the pat-
terns found with MICA-Miner: (1) SI without update which returns
the best results according to the SI measure without updating the
background knowledge model; (2)WRAcc that uses theWRAcc mea-
sure [14]. This measure has been largely used in Subgroup Discov-
ery in order to evaluate the prevalence of a given class of objects in
a specific subset of data (a subgroup). We adapted it to our problem
in order to evaluate the prevalence/absence of nodes e ∈ P in the
studied dataset. We consider that a subgroup is defined with the
antichain P , the size of positive class is x̂i , and the size of negative
class is x̄i . We compare the following properties computed in the
top k patterns returned in each configuration:
- Average normalized values of counters: we show the average values
of x̂i

x̂1
corresponding to nodes in the top patterns.

- Average contrast: we want to evaluate how much the values of x̂i
are contrastive comparing with their corresponding x̄i . We propose
to use the following contrast measure defined for an antichain
P ⊆ E: contrast(P) =

∑
ei ∈P

max (x̂i ,x̄i )−min(x̂i ,x̄i )
max (x̂i ,x̄i )

.
- Redundancy: An important goal of the iterative updating of the
model is to avoid communicating to the user similar information
several times. For example, after informing the user that ei ="Res-
taurant" is prevalent, it is less informative to tell her that eπi ="Food"
is also prevalent. We aim to measure this kind of redundancy be-
tween patterns returned by each approach based on the following
measure defined for a set of patterns R:

redund(R) =

∑
P ,P ′∈R
P,P ′

| {ei ∈P |∃eπi ∈P
′: (x̂i−x̄i )·(x̂πi −x̄πi )≥0} |

|R |×
∑
P∈R |P |

.

Figure 6 reports the values of these properties in each of the
three configurations (1) SI (our approach), (2) WRAcc measure,
and (3) SI without update. These properties are computed based
on the top 5 patterns in FV-Ams and EP-Abst, and on top 20 in
OFF (since it is a much larger hierarchy). The average values of
counters inWRAcc results are significantly large, its top patterns
generally contains nodes with the highest counters in the dataset.
However, its average contrast is remarkably low. Figure 5 shows
the first pattern found byWRAcc in FV-Ams. Most of its nodes
are not significantly contrastive, i.e., there is not a high difference
between the observed value and the expected value. We can also
notice that the values of redund are the lowest for the results of
SI , and those of theWRAcc have the highest redund . The value
of redund for SI is clearly lower than its value for "SI without
update" in FV-Ams and EP-Abst. The difference is not remarkable
for the OFF dataset, indeed, since it is a larger dataset, there is less

chance to have redundancies in the results. To sum up, our method
allows to discover more contrastive antichains than methods that
do not take into account the prior beliefs. Furthermore, updating
the background knowledge at each iteration makes it possible to
provide less redundant results.
Illustrative results.We report in Figure 7 the top 3 contrastive an-
tichains discovered by MICA-Miner in FV-Ams, FV-Lon, andOFF
datasets. The blue color quantifies the expected value by the user
(based on her beliefs over 20 cities), and the red color is the observed
counter in Amsterdam (resp. London). The first antichain in Amster-
dam informs that American Restaurants, Residential Buildings, and
Airports are much less frequent than expected, while Marijuana
Dispensary and Tram Station are significantly over-expressed. This
last type of venue is indeed characteristic of Amsterdam, because
it is authorized in this city while it is generally illegal in other
cities. London is characterized with a high number of Fish & Chip
Shops, Portuguese Restaurants, and Pubs, and an under-expression
of Residences and Airports. We point out that Airport venues can
correspond to any place related to Airport (Airport Food Court,
Airport Gate, Airport Tram, etc.). After assimilating this first an-
tichain, the user will change her expectations about the rest of the
data. For example, she may assume that in general there is a high
presence of Food venues and Bars in London, which is also incor-
porated in our model using the conditional expectation. Due to this
hypothesis, the second antichain will notify the user that despite
of the high observed values in the first antichain, there is some
specific types of Food venues and Bars that are under expressed
(American Restaurant, Donut Shop, etc.). For OFF dataset, the Red
color quantifies the observed counts of products from France, and
blue color corresponds to the expected values derived from prod-
ucts distributions from USA. The first antichain can be interpreted
as: From an American point of view, the French food is characterized
with a high number of fresh meals, refrigerated meals, fresh foods,
and a low presence of groceries and popcorn products.

7 CONCLUSION
We have introduced the novel problem of mining contrastive an-
tichains in hierarchically organized sets of counters. Prior beliefs
are used to assess how contrastive an antichain is. Furthermore, the
hierarchical relations are fully exploited to both propagate the be-
liefs and to update the background knowledge . We have proposed
a greedy algorithm that efficiently and iteratively returns the most
contrastive antichains. Extensive empirical results on several real-
world datasets confirm that the contrastive antichains are intuitive
and they capture insights that cannot be done with other interest-
ingness measure or without updating the background knowledge.
This paper opens up several avenues for research such as the in-
tegration of this model into the subgroup discovery / exceptional
model mining framework.
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Figure 6: Comparison of (1) normalized supports, (2) contrast, (3) redundancy between the top antichains of the threemeasures:
SI ,WRAcc, and SI without model updating.

Rank FV-Ams FV-London OFF
𝑥"# : observed values (in Amsterdam)
𝑥"$ : expected values (based on aggregations from 20 cities)

𝑥"# : observed values (in London)
𝑥"$ : expected values (based on aggregations from 20 cities)

𝑥"# : observed values (French foods)
𝑥"$ : expected values (based USA foods)

#1

#2

#3

Figure 7: Top 3 antichains in Amsterdam, London (based on the prior beliefs over 20 cities) and Open Food Fact dataset
(comparison of French products and USA products).
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A SUPPLEMENTARY MATERIALS
A.1 Proofs

Proof of Property 1. We consider that
∑
xπi

Pr(xπi ) · xπi =
x̄πi and we prove that

∑
xi Pr(xi ) · xi = x̄i . The complete proof can

be recursively established by starting from the root (xπi = x1) for
which we already know that

∑
x1 Pr(x1) · x1 = x̄1.∑

xi

Pr(xi ) · xi =
∑
xi

©«
∑
xπi

Pr(xπi ) · Pr(xi |xπi )
ª®¬ · xi ,

=
∑
xi

∑
xπi

(
Pr(xπi ) · Pr(xi |xπi ) · xi

)
,

=
∑
xπi

∑
xi

(
Pr(xπi ) · Pr(xi |xπi ) · xi

)
,

=
∑
xπi

Pr(xπi ) ·
∑
xi

(
Pr(xi |xπi ) · xi

)
,

=
∑
xπi

Pr(xπi ) ·
x̄i
x̄πi
· xπi ,

=
x̄i
x̄πi
·
∑
xπi

Pr(xπi ) · xπi ,

=
x̄i
x̄πi
· x̄πi ,

= x̄i .

□

Proof of Property 2. This property states that the marginal
distribution of each random variable xi is geometric and it is:

Pr(xi ) = (1 −
1

1 + x̄i
)xi ·

1
1 + x̄i

.

For the root x1, this is already the case. We then prove this
property by recursion, we consider that xπi follows a geometric
distribution with parameter pπi =

1
1+x̄πi

and we prove that xi also

follows a geometric distribution with a parameter pi = 1
1+x̄i :

Pr(xi ) =
+∞∑

xπi =xi

Pr(xπi ) · Pr(xi |xπi ), (4)

=

+∞∑
xπi =xi

(1 − pπi )
xπi · pπi ·

(
xπi
xi

)
· bxii · (1 − bi )

xπi −xi , (5)

=
pπi · b

xi
i

(1 − bi )xi
·

+∞∑
xπi =xi

(
xπi
xi

) (
(1 − pπi )(1 − bi )

)xπi , (6)

=
pπi · b

xi
i

(1 − bi )xi
·

+∞∑
k=0

(
k + xi
xi

) (
(1 − pπi )(1 − bi )

)k+xi , (7)

=
pπi · b

xi
i

(1 − bi )xi
·
(
(1 − pπi )(1 − bi )

)xi · +∞∑
k=0

(
k + xi
xi

) (
(1 − pπi )(1 − bi )

)k
,

(8)

= pπi · b
xi
i · (1 − pπi )

xi ·

+∞∑
k=0

(
k + xi
k

) (
(1 − pπi )(1 − bi )

)k
, (9)

The negative binomial infinite series can be simplified:

+∞∑
k=0

(
k + xi
k

) (
(1 − pπi )(1 − bi )

)k
=
(
1 − (1 − pπi )(1 − bi )

)−1−xi ,

= (bi + pπi − bi · pπi )
−1−xi ,

then:

Pr(xi ) = pπi · b
xi
i · (1 − pπi )

xi · (bi + pπi − bi · pπi )
−1−xi , (10)

=
pπi

bi + pπi − bi · pπi
· (1 −

pπi
bi + pπi − bi · pπi

)xi . (11)

After substitutingpπi =
1

1+x̄πi
andbi = x̄i

x̄πi
, we find that pπi

bi+pπi −bi ·pπi
=

1
1+x̄i . This means that:

Pr(xi ) = (1 −
1

1 + x̄i
)xi ·

1
1 + x̄i

.

This concludes the proof.
□

A.2 Theoretical complexity of MICA-Miner
We derive the worst case complexity of MICA-Miner, which de-
pends on the complexity of sum-product and GreedySearch. As
stated in Section 3.3, sum-product has a worst case complexity of
O(|E | ·loд(A)2)where |E | is the number of items, and the parameter
A > max(x̂1, x̄1) is the considered number of possible values of
xi . In GreedySearch, each iteration costs at most O(|E |), and the
maximum number of iterations is equal to |L(H)| which is the size
of the largest antichain. Thus, GreedySearch has a worst case com-
plexity of O(|E | · |L(H)|). Since the maximum number of iterations
in MICA-Miner is |E |, we conclude that its worst case complexity
is O

(
|E |2 ·max(loд(A)2, |L(H)|)

)
.

A.3 Supplementary experiments
Quantitative evaluation. We aim to study the influence of the
parameter A on the runtime and memory consumption. A is an
upper bound on the value of variables xi , it needs to cover the
used values x̄i and x̂i , this means that A ≥ max(x̂i , x̄i ). Figure 8
reports the results. The runtime grows linearly w.r.t A for the pre-
processing step while the increasing of A does not significantly
impact the runtime of MICA-Miner. The memory consumption
slightly increases in general w.r.t. A in both cases.

A.4 Code and data
All code and data are available at https://tinyurl.com/y2jkmduv.

https://tinyurl.com/y2jkmduv


Figure 8: Supplementary experiments. Time (line) and memory consumption (bars) of the factor functions computation (row
1), and MICA-Miner (row 2) in the studied datasets w.r.t. A.
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