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Abstract

Motivation: Structure-based Computational Protein design (CPD) plays a critical role in advancing the
field of protein engineering. Using an all-atom energy function, CPD tries to identify amino acid sequences
that fold into a target structure and ultimately perform a desired function. Energy functions remain however
imperfect and injecting relevant information from known structures in the design process should lead to
improved designs.
Results: We introduce Shades, a data-driven CPD method that exploits local structural environments in
known protein structures together with energy to guide sequence design, while sampling side-chain and
backbone conformations to accommodate mutations. Shades (Structural Homology Algorithm for protein
DESign), is based on customized libraries of non-contiguous in-contact amino acid residue motifs. We
have tested Shades on a public benchmark of 40 proteins selected from different protein families. When
excluding homologous proteins, Shades achieved a protein sequence recovery of 30% and a protein
sequence similarity of 46% on average, compared to the PFAM protein family of the target protein. When
homologous structures were added, the wild-type sequence recovery rate achieved 93%.
Availability: Shades source code is available at https://bitbucket.org/satsumaimo/shades as
a patch for Rosetta 3.8 with a curated protein structure database and ITEM library creation software.
Contact: Sophie.Barbe@insa-toulouse.fr
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
The development of Computational Protein Design (CPD) methods is
motivated by the ever-increasing practical needs for improving, modifying,
and /or expanding the function of natural proteins. CPD seeks to identify
amino acid sequences that will fold into a given target structure with
sufficient stability and, ultimately perform a desired function. It enables
the in silico evaluation of amino acid sequences on a scale which
is out of reach of experimental methods. The application of CPD is
broad, ranging from medicine, biotechnology, and synthetic biology to
nanotechnologies (Khoury et al., 2014).

In the last two decades, CPD has proven to be a valuable tool for
protein engineering: it has been successfully applied to optimize protein
properties (stability, binding affinity…) (Sammond et al., 2011; Whitehead
et al., 2012), introduce new binding specificity toward several types of
(macro)molecules (Potapov et al., 2008; Ollikainen et al., 2015; Verges
et al., 2015), create new protein folds (Kuhlman et al., 2003; Koga et al.,
2012), self-assembling proteins (Stranges et al., 2011; King et al., 2012;
Voet et al., 2014; Noguchi et al., 2019) and de novo proteins with new
functions (Rothlisberger et al., 2008; Jiang et al., 2008; Eiben et al., 2012).
Despite these impressive results, a successful design is never guaranteed
and several limitations still need to be addressed (Setiawan et al., 2018). A
clear challenge for CPD methods is the shear size of the combined protein
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sequence and conformation space that seems essentially out of reach
of existing computational methods. For this reason, several simplifying
assumptions are usually made. Beyond the limitation of the sequence space
to amino acid regions of the target protein, the conformational space is
usually restricted by assuming that the protein backbone is a rigid body
and that the amino acid side-chain adopt conformations extracted from a
finite set of statistically preferred conformations (Dunbrack and Cohen,
1997). In this still daunting space, the stability of the protein needs to be
efficiently computed. It is usual to rely on a simplified and approximate
pairwise decomposable energy function. In this setting, and despite the
problem NP-hardness, exact methods with proven optimality have been
used to fully redesign proteins of length up to 100 residues (Traoré et al.,
2013; Simoncini et al., 2015; Traoré et al., 2016) and to approximate
partition functions for protein-protein binding affinity predictions (Viricel
et al., 2016, 2018).

However, the fixed backbone approximation ignores the natural
flexibility of proteins. This is considered as one of the major causes of
design failures. Experiments have demonstrated that protein backbones
adjust to sequence mutations, and researchers have been trying to take
this into account since the late 90’s (Su and Mayo, 1997; Harbury et al.,
1998; Desjarlais and Handel, 1999). In practice, the lack of backbone
flexibility may lead to the filtering of a significant fraction of the sequence
space which is otherwise accessible to properly folded and functional
proteins (Humphris and Kortemme, 2008; Murphy et al., 2012; Jackson
et al., 2013). This introduces undesirable biases in sequence selection.
The introduction of the backrub motion, inspired by conformational
changes observed in high-resolution crystal structures contributed to better
simulation of protein conformational plasticity and concerted optimization
of side-chains orientations and backbone movements (Davis et al., 2006;
Smith and Kortemme, 2008; Ollikainen et al., 2015).

Furthermore, and even when stability is the only design target, existing
fast empirical energy functions remain approximate. Protein structure
prediction (PSP) has been facing the same complex space, defined by the
many continuous degrees of freedom of protein backbones. One of most
successful approach in this area consists in extracting knowledge from
known 3D protein structures by converting local sequence fragments into
libraries of structural fragments that can then be suitably assembled into a
global structure (Bowie and Eisenberg, 1994; Mackenzie and Grigoryan,
2017). The successes of these approaches in the Critical Assessment of
Structure Prediction experiments (Vincent et al., 2005) support the idea that
short local structural fragments may encode sufficient physical properties
to describe the native 3D structure.

In this paper, following the idea that CPD is the inverse of protein
structure prediction, we thread local sequence motifs extracted from a
library of structural fragments built from the target structure and selected
through their ability to improve the energy of the resulting all-atom
structure. Ultimately, our goal is to use structurally relevant information
on the sequence space, extracted from the large amount of existing protein
structures, to constrain the search for low-energy designs to regions that
match the sequence-structure relationship observed in natural proteins.
The idea of using fragments (Potapov et al., 2008; Jacobs et al., 2016) or
gathering information from known protein structures (Mitra et al., 2013)
for the design of proteins or protein-protein interfaces is not new, and in-
depth analyses of the feasibility of fragment-based approaches for CPD
exist (Verschueren et al., 2011; Mackenzie and Grigoryan, 2017).

In CPD, fragments can exploit the target structure to sample the
sequence space. This represents a promising strategy for CPD, since
sequences extracted from fragments can report key determinants of the
target structure. Most existing approaches however, consider structural
fragments defined by contiguous residues (such as what were gathered
in the BriX database (Vanhee et al., 2011)) and thus essentially ignore
contacts between residues which may be close in the 3D protein structure

but not in the primary sequence. Here, we consider possibly non-
contiguous sets of amino acid residues that are in direct contact in the
3D protein structure. We call these sets “In-contact residue TErtiary
Motifs” or ITEMs. We hypothesize that these ITEMs should better encode
physical features of local 3D structural environments than just contiguous
amino acid residue fragments. Similarly to what has been done in Protein
Structure Prediction, we match the in-contact residue tertiary motif that
appears at each position of the target backbone (or target ITEM) with
similar structural motifs found in protein structures available in the Protein
Data Bank (PDB) (Berman et al., 2000). The set of all matches defines
a position specific library of non-contiguous sequence fragments. These
libraries of candidate ITEMs are then used to guide the CPD sampling
process by only exploring naturally-occurring residue 3D neighborhoods:
instead of introducing single mutations, we substitute all the amino acid
residues of the target ITEM by the amino acids of a chosen candidate ITEM
extracted from the library, thus preserving contacts inside the target ITEM.
Recently, Kuhlman and co-workers also proposed a method using non-
contiguous fragments from existing proteins but with the aim of generating
designable structure templates (Jacobs et al., 2016) rather than directly
generating sequences, as in this paper.

In our approach, the design of a full sequence for a given protein
scaffold relies on iterative cycles involving substitutions of amino acid
residues of a target ITEM in the target protein structure by those of a
candidate ITEM followed by backbone motions, amino acid side-chain
repacking and energy-based evaluation. The search for a low-energy
fully-designed protein model is based on an Estimation of Distribution
Algorithm (Mühlenbein and Paaß, 1996), a stochastic population based
optimization technique that continuously estimates the propensity of each
candidate sequence motif in low-energy models during optimization. Our
method, Shades (for Structural Homology Algorithm for protein DESign),
is fully automatized, from the preparation of a curated protein structure
database, the generation of target ITEMs and associated candidate ITEMs
libraries, to the design of a novel sequence for an entire protein.

We have tested Shades on a public benchmark of 40 proteins selected
from different protein families. Our results show that protein sequences
can be effectively reconstructed by assembling non-contiguous residue
sequences coming from similar in-contact residue tertiary motifs in
unrelated proteins. Shades is able to recover a 30% sequence identity and
46% sequence similarity compared to the PFAM family of a benchmark
of 40 proteins of various structural classes. We show that target protein
sequences can be nearly completely reconstructed when the known protein
structure database contains homologous structures. Finally, a comparison
with a flexible backbone design protocol from the Rosetta modeling
software shows that Shades achieves higher sequence recovery rates even
in the absence of structural homologs in the database, and runs faster by
one order of magnitude.

2 Materials and Methods

2.1 General framework

Shades is a new flexible backbone Computational Protein Design method
that guides sequence space sampling by the corresponding sequence motifs
retrieved from known 3D protein structures based on the three dimensional
organization of in-contact amino acid residues. This full protein design
method involves four steps (see Figure 1):

1. Preparation of a curated database of known protein structures
(extracted from the Protein Data Bank) and associated ITEMs
resulting from the analysis of the neighborhood of every amino acid
residue of every protein in the database.
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Fig. 1. An overview of Shades: a curated fraction of the PDB is used to prepare a database
of ITEMs (In-contact residue TErtiary Motifs), the same process is applied to the target
structure to compute target ITEMs. For each target ITEM, a customized candidate ITEMs
library is computed. An Estimation of Distribution Algorithm (EDA) algorithm is then used
to design sequences and periodically update the candidate ITEMs distributionsPr for every
residue r.

2. Analysis of the target 3D protein structure to build the in-contact
amino acid residue tertiary motifs (target ITEMs) appearing at each
position of the target structure.

3. Extraction of position-specific candidate ITEMs libraries from the
curated ITEM database: for a given target ITEM, all candidate ITEMs
with a matching 3D topology are extracted.

4. Full sequence assembly by iteratively substituting all the amino acid
residues of a target ITEM by the amino acid types of a candidate
ITEM, adapting the backbone and repacking all side chains. These
cycles are encapsulated in an estimation of distribution algorithm for
energy optimization. This protein design method is implemented as a
Rosetta protocol and is available as a patch for the release 3.8 of the
Rosetta modeling suite.

We now describe this more precisely.

2.2 Residue-residue contacts

Contacts between protein main-chain atoms are defined using Voronoi
diagrams, as in CAD-score (Olechnovič et al., 2013). Each atom of the
protein backbone is represented as a sphere with its van der Waals radius. In
a Voronoi diagram, the Voronoi cell of a sphere contains all the points that
are closer to this sphere than to any other sphere. Two spheres are neighbors
if their cells share an edge in the Voronoi diagram. In order to restrict
ourselves to inter-residue contacts, we ignore contacts between atoms of

the same residue. This notion of neighborhood is not sufficient to decide
whether two atoms are in-contact or not: two atoms may be neighbors in
the Voronoi diagram but distant in Euclidean space. We therefore consider
that two neighbor residues in the Voronoi diagram to be “in-contact” only
if a water molecule of radius 1.4 Å cannot fit between them. The volume
of the overlap between the water molecule and the two residues is used
to discriminate contacts and is referred to in the following as the water
overlap volume. The Voronoi diagram of the protein main-chain atoms
and the water overlap volumes between two main-chain positions were
computed using the Voroprot software (Olechnovič et al., 2010).

2.3 Definition of ITEMs

For a given residue r appearing in a given protein structure, we define its
associated “In-contact residue TErtiary Motif” as the combination of four
pieces of information:

1. the protein structure identifier (usually a PDB ID)
2. the type and position of the amino acid residue r in the sequence of

the protein.
3. for each residue r′ in contact with r, in their order of appearance in

the protein sequence, the amino acid type and position of r′ in the
primary structure and the water overlap volume between r′ and r.

4. a triplet giving the number of contacts r′ of r which respectively (i)
precede r by less than 5 positions (preceding short range), (ii) follow
r by less than 5 positions (following short range) or (iii) are more than
5 positions away (long range) in the primary sequence.

The residue r is called the Central Contact Residue (CCR) of the ITEM and
the number of contacts of the CCR in each category of relative positions
(as defined in 4) is called the contact signature of the ITEM.

2.4 Protein structure and ITEM database preparation

The database was built by selecting known protein structures from the
Protein Data Bank (PDB) (Berman et al., 2000). Several filters were
applied (see Table S1), and all structures with missing intra-chain amino
acid residues were then removed, yielding a database with 8, 965 protein
structures. For each structure of the curated database, Voronoi diagrams
and residue-residue contact information were computed. Each amino acid
residue of each structure was used as a reference in order to extract the set of
all the residues making a contact with it and thus computed the associated
ITEM (one ITEM per residue and protein structure in the database).

2.5 Target ITEMs and candidate ITEM library generation

For each amino acid residue of the protein structure to be designed, Voronoi
diagrams, residue-residue contact information and associated ITEM were
computed, defining a list of target ITEMs. For each target ITEM, the
protein structure and ITEM database was then scanned to find candidate
ITEMs having similar topology to the target ITEM. The contact signatures
of the target ITEM are used as a seed to query the protein structure database
in order to build candidate ITEM libraries. A maximum of 1, 000 ITEMs
with the same signature and closest water volumes overlaps with the target
ITEM was then selected.

Since the contact signatures of the selected ITEMs and the query target
ITEM are identical, all the CCRs share the same number of preceding short
range, following short range and distant contacts. The selected ITEMs are
then superimposed with the query target ITEM and a Root Mean Square
Deviation (RMSD) of all main chain atoms is computed using the Ranker
tool from the protein clustering software Durandal (Berenger et al., 2012)
(see Figure 2). Selected ITEMs are ranked according to their RMSD with
the query target ITEM and the top 25 are stored in the candidate ITEM
library. Each entry in the candidate ITEM library contains the necessary
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Fig. 2. A target ITEM superimposed with a candidate ITEM. Only Cα atoms are
represented as spheres. Blue spheres are contacts in the target ITEM while red spheres
are contacts in the candidate ITEM. The numbers are residue positions in the primary
sequence of the target protein. In this example, only two in-contact amino acid residues (at
positions 66 and 67) are not perfectly aligned. The Cα RMSD is 0.64 Å. The bottom line
shows the corresponding entry in the candidate ITEM library. The central contact residue
(50) has 11 contacts: G49, L51, ..., R190.

information for Shades to run: the sequence position and amino acid type
of its CCR and all of its contacts.

2.6 Computational protein design method

Our CPD method is implemented as a Rosetta protocol and is available
as a patch for the release 3.8 of the Rosetta modeling suite (Leaver-Fay
et al., 2011). It relies on an iterative population-based method based on
the Estimation of Distribution Algorithm (EDA (Mühlenbein and Paaß,
1996)). EDA algorithms simultaneously optimize a population of solutions
and estimate the probability Pr that each candidate ITEM appears at
residue r in a good solution. In our context, these distributions are used
to stochastically select ITEMs. Initially, these distributions are uniform.
EDA algorithms have already been successfully used in the field of protein
structure prediction (Simoncini et al., 2012; Simoncini and Zhang, 2013;
Simoncini et al., 2017).

Our CPD design method is described in Algorithm 1. At each iteration
(line 2), a protein model is randomly initialized (line 3) by substituting
each target ITEM of the target protein scaffold by a randomly selected
candidate ITEM using Pr , in random order.

An ITEM substitution consists in mutating all amino acid residues of
the target ITEM (i.e., the CCR and its contact residues) in the protein model
by the amino acid types in the candidate ITEM. Such a substitution defines
a basic move in Shades algorithm. There is no independent single residue
mutation: when a residue is mutated, it is through the joint adoption of a
compatible ITEM identified in another protein. Some amino acid residues
positions may appear in several ITEMs, which creates overlaps: part of a
previously ITEM substitution can be erased by a new one.

After initialization, we successively mutate a random position r with
a randomly selected candidate ITEM using distribution Pr (line 6-7),
perform 10 small backrub-based backbone perturbations (line 8) and
repack the side-chains (line 9). If the combination of these three operations
leads to an energy improvement, the ITEM substitution is accepted
(line 11). It is otherwise rejected (line 12). For backbone perturbations,
we used the Backrub move method implemented in Rosetta (Smith and
Kortemme, 2008), with default parameters (all residues can be used as
pivot points, Cα atoms are used as pivot points, the minimum backrub
segment size is set at 3 amino acid residues and the maximum at 34

residues (see Rosetta documentation for details). The SideChainPacking
module implemented in Rosetta is used for the repacking of amino acid
residue side chains (Leaver-Fay et al., 2011). Once the substitution of
a target ITEM by a candidate ITEM has been tried as many times as
there are residues in the target (line 5), a relaxation of the redesigned
protein model is performed with either the FastRelax protocol (Nivon et al.,
2013) (with or without backbone restraints) or the energy minimization
protocol implemented in Rosetta (line 13) and the model is added to the
set of redesigned protein models (line 14). Periodically, the distribution
over candidate ITEMs at each position is re-estimated (line 16). This
changes the probabilities of selecting each candidate ITEM in the following
iterations, taking into account their frequency in previously produced low-
energy models. The probability distributions Pr over candidate ITEM are
updated by Pr ← (1 − α) · Pr + α · Dr where Pr is the probability
over candidate ITEMs for residue r, Dr is the empirical distribution of
candidates ITEM in the set of the 10% lowest energy models produced
since last estimation and α ∈ [0, 1] is a forgetting rate (α = 0.2 in our
experiments).

Algorithm 1: Shades: Computational Protein Design algorithm.
input : L {candidate ITEM library}
input : B {Target protein backbone}
input : nbiterations {Number of iterations}
in/out : P {candidate ITEM sampling distributions}
input : period {Reestimation period}
output : D {set of designed protein models}

1 D ← ∅;
2 for t in [1..nbiterations] do
3 d← randomized_init(B ,P);
4 dm ← d; (d,dm: protein models)
5 for i in [1..nbresidues] do
6 r ← RandomResidue(B);
7 MutateWithSampledITEM (dm, r, Pr);
8 BackRub(dm, 10);
9 SideChainPacking(dm);

10 if score(dm) < score(d) then
11 d← dm (Accept)

else
12 dm ← d (Reject)

13 Relaxation(dm); (improve structure)
14 D ← D ∪ dm;
15 if ((t mod period) = 0) then
16 ReEstimateDistributions(D,P );

17 return D;

2.7 Benchmark and set up

We use a published dataset initially proposed for amino acid covariation
analysis and subsequently made available to the community for
benchmarking new CPD methods (O Conchuir et al., 2015). This dataset
contains 40 proteins of various sizes (between 50 and 150 residues) and
distinct folds from 40 different protein PFAM families (O Conchuir et al.,
2015) (see Table S2). For each protein in the dataset, candidate ITEM
libraries were built from our structure database. Structures from the same
PFAM protein family and blast hits with an e-value lower than 10 were
excluded from the database in order to build homolog-free candidate ITEM
libraries. This stringent filter ensures that no candidate ITEM comes from
structurally similar PDB scaffold. With this setup, 50, 000 models were
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produced for each protein (updating all distributions Pr every 2, 000

produced models). For the comparison with Rosetta Design, a subset
of 5 proteins from different PFAM families of the benchmark dataset,
was selected (see Table 1). For this comparison, Shades was also run
with homologs (i.e. ITEMs libraries were built from the entire database,
including proteins from the same PFAM family). Using Shades with
homologs, 25, 000 models were produced for each of the 5 proteins. It is
sufficient because the EDA converges faster since Shades easily identifies
ITEMs from homologous structures.

2.8 Comparison to Rosetta Flexible Design method

We compared the performance of Shades with Rosetta FastRelax running
in “redesign” mode. In this setting, FastRelax is allowed to mutate the
sequence of a protein while relaxing its structure. We compared the
performance of both methods on a subset of 5 protein targets of various
sizes and folds taken from our benchmark. We measured the CPU time
needed for Shades to generate 50, 000 models and allowed the same CPU
time for FastRelax to make as many predictions as possible.

FastRelax, being a local search method which explores the mutation
space following trajectories, needs a random starting point. Therefore, we
generated 100 random starting points by mutating the wild type sequences
to random sequences and performing an initial relaxation, for each of the
5 protein targets. Predictions were made using these batches of random
starting points.

3 Results and Discussion

3.1 Performance of Shades

Besides using backrub, backbone flexibility can be handled in three
different ways in Shades: by unrestrained Rosetta FastRelax protocol,
by Rosetta FastRelax protocol with harmonic restraints on the backbone,
and by Rosetta minimization method. Figure 3 shows the impact of the
flexibility mode on the average Cα RMSD on the whole benchmark
between each of the 100 lowest energy designs and the corresponding
native structure. Unrestrained FastRelax gives a bit more deviation then
minimization. The density curve is also flatter, which means that variance
is higher: there is less control on the deviation between the native structure
and the designed protein models. The density curve of the FastRelax mode
with restraints is centered on 0.2 Å and shows little variance: using this
mode, the output models will typically deviate around 0.2 Å from the
native structure with good confidence.

Sequence recovery between designed proteins and natural sequences
remains the best in silico means to evaluate the accuracy of CPD methods
(Kuhlman and Baker, 2000; Dai et al., 2010; Gainza et al., 2012), given
that two natural proteins generally share the same fold when they have
over 30% sequence identity (Rost, 1999). Therefore, for each protein, we
measured the sequence recovery between the best solution and the PFAM
family of the target protein (see Figure 4). The best solution is defined
as the sequence-conformation model with the lowest energy. The values
reported in Figure 4 are the native sequence identity and positive values
between the best solution and the closest member in the corresponding
target PFAM family in unrestrained FastRelax mode. The identity value is
the usual sequence recovery measure: the percentage of identical residues
when aligning two sequences. The positive value measures similarity and
is defined as the percentage of residues that get a positive score from
the Blosum62 similarity matrix in their alignment. The average sequence
recovery is 30% and the average sequence similarity is 46%. The sequence
recovery (resp. similarity) values range from 19% (resp. 32%) to 39%
(resp. 62%). Note that Shades achieves these sequence recovery and
sequence similarity rates with ITEMs libraries excluding protein structures

Fig. 3. Density of the CαRMSD to native structure averaged over the top 100 models of all
targets for all flexibility modes. The average RMSD is 1.4Å using unrestrained FastRelax,
1.2Å using minimization and 0.2Å using FastRelax with restraints.

Fig. 4. Sequence identity and similarity values between the best model and the target
PFAM family sequences. The sequence identity and similarity toward the closest member
of the target PFAM family is reported. The similarity values are computed according to the
BLOSUM62 matrix: two amino acid types are considered similar if their score is greater
than zero.

similar to the targets: the sequences were designed by assembling ITEMs
taken from protein structures completely unrelated to the targets.

Surprisingly, the flexibility mode does not really impact the
performance in terms of sequence recovery: the average sequence identity
and positive value are comparable for the three different modes. However,
the distribution of sequence identity varies depending on the flexibility
mode (Figure 5). Using FastRelax with restraints mode, the distribution is
unimodal and narrow which means that the probability to obtain a sequence
recovery around 30% is higher than for the two other modes. At the other
extreme, the distribution of sequence recovery in unrestrained FastRelax
mode is bimodal and flatter. Using this mode, it is possible to achieve better
sequence recovery rates, but the risk of achieving a poor performance is
also higher. In between, using the minimization mode, the distribution is
unimodal and slightly flatter than for the restrained FastRelax mode. Using
this mode, it is possible to get models with a RMSD deviation to the native
structure over 1 Å with reliable performance relatively to the unrestrained
FastRelax mode.

We checked if our method was able to identify the best candidate
ITEMs and efficiently select them to construct a full sequence. For this
purpose, we built a candidate ITEM library from a protein structure
database including ITEMs taken from the target protein. We selected
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Fig. 5. Distribution of sequence recovery depending on the flexibility mode used.

the protein target with the pdb ID 1jl3 for this test because it was one
of the most difficult and longest targets in our benchmark. Our ITEM
extraction procedure ranked ITEMs from 1jl3 first for each residue
position, proving that these tertiary motifs were correctly identified as the
most compatible with the target. Then, we ran Shades for 25 iterations and
produced 50, 000 models. The model of lowest energy was produced at
iteration 21 and reached a wild-type sequence recovery of 93%. This result
shows that after correctly identifying the in-contact residue tertiary motifs,
our algorithm has been able to select them to almost entirely reconstruct
the native sequence.

3.2 Comparison with Rosetta Flexible Design

We compared the performance of Shades with Rosetta FastRelax running
in "redesign" mode, which we refer to in the following as "Rosetta flexible
design". When using Shades for real-life protein design applications, there
is no reason to exclude structural homologs from the database. Actually,
Shades was specifically designed to identify similar structural patterns in
known structures and extract ITEMs to inform the search. Furthermore,
Shades’ search space becomes more constrained when all structural
homologs are removed from the database. In contrast, FastRelax has
access to the whole sequence space and is only limited by computational
efficiency. In this context, it is expected that the method with the larger
sequence space achieves lower energy levels, and thus energies are not
comparable between Rosetta flexible design and Shades. For this reason,
we opted for sequence recovery comparisons. Energy values are given for
reference in SI, along with RMSD values of the protein models and the
number of models generated by Rosetta flexible design. We compare the
CPD results of FastRelax and Shades with and without homologs.

Shades with homologs is the most accurate in terms of sequence
recovery out of the 3 tested methods (see Table 1). Shades without
homologs is able to slightly better recapitulate the sequences of the target
PFAM on average compared to Rosetta flexible design . We measured
the average sequence recovery between the model of lowest energy and
the whole PFAM members of the target proteins. Shades with homologs
achieves a sequence recovery rate (sequence identity) of 0.71 on average.
Shades without homologs achieves 0.28 and Rosetta flexible design 0.25.
The same trend exists for similarity recovery.

Rosetta flexible design is 25 times slower than Shades: it was able
to generate on average about 25 times less models than Shades using the
same amount of CPU time (see SI, Table S3). Rosetta flexible design is
able to reach much lower energy levels, without being able to get closer
to the sequences found in the PFAM of the protein targets. These lower
energy levels can be explained by the finer granularity of the basic moves
of the sampling method, which are single residue mutations attempts,

and by the bigger size of the sequence space which contains the whole
amino acid alphabet. On the other side, for Shades, the sequence space
is restrained by the amino acid types represented in the ITEMs libraries.
Furthermore, the basic moves of the sampling method, which are ITEM
insertion attempts, have a coarser granularity. While Shades with homologs
achieves the worse energy levels out of the 3 methods, it is able to generate
sequences which could be classified in the same PFAM family as the
protein targets according to the high sequence recovery rates. The average
RMSD between the initial target backbone and the model of lowest energy
backbone is also lower on average for Shades with homologs.

3.3 Shades search dynamics

We examined the evolution of the energy of the best models following each
iteration. The average over the 40 targets of the energy of the best model
is shown on Figure 6. In unrestrained FastRelax mode, it improves from
−190 Rosetta Energy Units (REU) initially to−245 REU at iteration 18.
The energy dramatically improves from iterations 1 to 13, then stabilizes
for 5 iterations and starts to slowly increase from iteration 19. This behavior
may indicate that the algorithm converges on average in 20 iterations and
in that sense confirms that 25 iterations are sufficient. By convergence,
we mean that the search is focused on a particular region of the search
space with highly unlikely exploration of other regions. The convergence
is thus related to the performance: once the algorithm is focused on a
particular region, either this region is the global optimum attraction basin
and the performance is optimal or it is a local minimum attraction basin
and the performance is limited by the energy of that local minimum. With
restrained FastRelax and minimization modes, the energy quickly drops
and then achieves a plateau at around iteration 20. The levels of energy
vary a lot according to the flexibility mode used. Allowing more flexibility
gives access to lower energy levels.

Fig. 6. Energies in Rosetta energy units averaged by iterations over all targets for each
flexibility mode.

3.4 Analysis of candidate ITEM libraries

We compared the secondary structure type of each CCR (Central Contact
Residue) in the candidate ITEM libraries with the secondary structure
type of CCRs of the target protein structure using the Kabsch/Sander
notation from DSSP (Kabsch and Sander, 1983). Candidate ITEM library’s
secondary structure types are generally in agreement with target secondary
structure types. Figure 7 shows one typical example of this analysis. The
secondary structure type frequency of each CCR in the candidate ITEM
library is plotted per residue position as a WebLogo (Crooks et al., 2004).
Shades is thus able to capture the target’s secondary structures and to
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Table 1. Sequence recovery comparison between Shades and Rosetta flexible design.

Fig. 7. Secondary structure of library candidate ITEMs and target protein. The secondary structure type of each CCR of candidate ITEMs of a library was examined. The results are shown
in WebLogo representation for the 25 motifs per position in the library. The color code is green for helices, blue for beta sheets and black for coils. The letter code is taken from the
Kabsch/Sander nomenclature. The design target is PDB ID 1wvn from PFAM PF00013 (KH domain). The target secondary structure type is shown on the x-axis.

construct appropriate tertiary motif libraries by looking at local main-chain
residue contacts.

We computed the average RMSD between the ITEMs library and the
query ITEM for each residue for one protein target (Figure S1). The RMSD
values range from 0.11 to 4.6 Å. The regions with higher RMSD values
correspond to loops connecting secondary structure elements. The average
RMSD over all residues positions is 1.5 Å.

4 Conclusion
Flexible backbone CPD is a challenging problem, mainly because of
the high number of degrees of freedom of proteins and the associated
sampling issue. Bearing in mind the consistently increasing number of
protein structures available in the PDB, we proposed to exploit this mass
of data and extract information about the local environment of residues. We
thus developed a fully automated flexible backbone CPD method based on
tertiary motifs of in-contact amino acid residues. Non-contiguous residue
sequences defined by in-contact residue tertiary motifs are assembled
together in order to create chimera sequences compatible with the target
backbone.

Our results show that it is possible to achieve 30% sequence recovery
by assembling in-contact residue tertiary motifs coming from unrelated
protein structures while simultaneously allowing for backbone flexibility.
In the presence of homologous protein structures in the structure database,
our CPD method was able to reconstruct target sequences at 93% recovery
rate. These results support our initial hypothesis that tertiary motifs of in-
contact residues at least partially capture fundamental sequence-structure
relationships. We also showed that Shades outperforms a flexible backbone
design application, from the Rosetta modeling software, at rebuilding
target sequences.

Shades is built on top of Rosetta and is available as a patch for Rosetta
version 3.8. As a Rosetta protocol, Shades accepts all relevant options
from the Rosetta modeling suite. It is therefore possible to add coordinate
restraints during the relaxation phases and to control the number of backrub
steps. Moreover, it is possible to use customized databases as input for
specific applications. Whether it is for nanotechnology or biotechnology
applications, it is possible to build ad hoc databases and to define tailor-
made in-contact tertiary motif libraries. Our ITEM-based CPD approach
could be extended in future work to inform not only sequence sampling
but also protein backbone sampling.
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