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The semiclassical limit of Liouville conformal field theory

Hubert Lacoin ¥ Rémi Rhodes T, Vincent Vargas ¥
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Abstract

A rigorous probabilistic construction of Liouville conformal field theory (LCFT) on the Rie-
mann sphere was recently given by David-Kupiainen and the last two authors. In this paper, we
focus on the connection between LCFT and the classical Liouville field theory via the semiclas-
sical approach. LCFT depends on a parameter v € (0,2) and the limit v — 0 corresponds to the
semiclassical limit of the theory. Within this asymptotic and under a negative curvature condi-
tion (on the limiting metric of the theory), we determine the limit of the correlation functions
and of the associated Liouville field. We also establish a large deviation result for the Liouville
field: as expected, the large deviation functional is the classical Liouville action. As a corollary,
we give a new (probabilistic) proof of the Takhtajan-Zograf theorem which relates the classical
Liouville action (taken at its minimum) to Poincaré’s accessory parameters. Finally, we gather
conjectures in the positive curvature case (including the study of the so-called quantum spheres
introduced by Duplantier-Miller-Sheffield).

Key words or phrases: Liouville Quantum Theory, Gaussian multiplicative chaos, Polyakov formula, uniformiza-
tion, accessory parameters, semiclassical analysis.
MSC 2000 subject classifications: 81T40, 81T20, 60D05.
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1 Introduction

The purpose of this paper is to relate classical Liouville theory to Liouville conformal field theory
(also called quantum Liouville theory) through a semiclassical analysis. Before exposing the frame-
work and the results of the paper, we provide a short historical introduction to classical Liouville
theory.

We start by recalling a classical result of uniformization by Picard about the existence of
hyperbolic metrics on the Riemann sphere, seen as the extended complex plane C=cu {0},
with prescribed conical singularities. In this context, given n > 3 we let z1,...,2, € C distinct
and x1,...,Xn € R denote respectively the prescribed locations and orders of our singularities. We
assume that our coefficients satisfy the two following conditions:

n
Vk, xr <2 and ZXk > 4. (1.1)

k=1
Let A, denote the standard Laplacian on C, V, the standard gradient and for z = = + iy we
adopt the complex notation 9, = %(Gx — i0y). We use the notation diz for the complex derivative

of a holomorphic function. The classical result of Picard [17, 18] (see also [31]) asserts that for any
A > 0 the Liouville equation
A.p = 2nAe? (1.2)



possesses a unique smooth solution ¢ on C\ {z1,...,2,} with the following asymptotics near the
singular points and at infinity

{qﬁ(z) = xxIn m +0(1) as  z— 2,

#(2) = —4In|z| + O(1) a5 2 > oo (1.3)

We denote this solution by ¢,. The first condition in (1.1) simply ensures that e®* is integrable in
a neighborhood of each z;, so that e?<(?)|dz|? defines indeed a compact metric on C. The second
condition

> xe>4 (1.4)
k=1

is a negative curvature type condition. In the language of Riemannian geometry, the metric
e?(?)|dz|? has constant negative Ricci scalar curvature (as this is the only notion of curvature
used in this paper, we simply refer to to it as curvature in the remainder of the text) equal to
—27A on C\ {z1,...,2,} (recall that the curvature of the metric at z is given by e=%*(9) A ¢, (2))
and a conical singularity of order i at z; for each &k = 1,...,n. Using standard integration by
parts (on the Riemann sphere equipped with the round metric), it is possible to show that the
solution ¢, to the system (1.2)-(1.3) must satisfy
n

> xe—4=A (/C ed’*(z)dzz) : (1.5)

k=1

where d?z denotes the standard Lebesgue measure. Therefore > p—1 Xk —4 and A have same sign
hence justifying the terminology negative curvature type condition for the condition (1.4). In a
celebrated work [19], Poincaré showed how to relate this metric to the problem of the uniformization
of C \{z1,--- , 2z, }'. More specifically, he introduced the (2,0)-component of the “classical” stress-
energy tensor

Ty.(2) = 82.04(2) — 5(0:04(2))%. (1.6)
Direct computations show that (1.2) implies that T}, is a meromorphic function on C and then
(1.3) implies that it displays second order poles at z1, ..., z,. More precisely we must have
n 2
Xk/ 2-— Xk/ 8 Ck
Ty (2) = ( ) 1.7
0= (e (1.7

with the asymptotics Ty, (2) = O(z™1) as z — 0o where the real numbers ¢, are the so-called acces-
sory parameters. Then, considering the second order Fuchsian equation for holomorphic functions
on the universal cover (here the unit disk)

d>u 1

o+ 5To(2u(z) =0, (18)
Poincaré showed ? that the ratio f = wu; Jug of two independent solutions wuj,us solves the uni-

formization problem in the sense that the metric e‘z’*(z)|dz|2 is the pull-back of the hyperbolic
metric on the unit disk by f, i.e. the following holds

() 4l f'(2)?
A - (P (1.9)

n fact, Poincaré considered the case x = 2 for all k.
2Recall that in fact Poincaré considered the case xx = 2 for all k.




In particular, if one normalizes u1, ug to have Wronskian w = wjus—uqu), equal to 1 then e ¢(2)/2 =
VA/8(Jua|* — [u?]). The factor e=?+(*)/2 thus solves the following PDE version of the Fuchsian
equation®

P2 4 Ty (2)e 2 =0, (1.10)

Therefore, equations (1.8) and (1.9) provide a link between constant curvature metrics and the
uniformization problem of Riemann surfaces. Finally, let us mention that Poincaré left open the
problem of characterizing the complex numbers ¢ in (1.7) in terms of ¢,.

More than eighty years later, Polyakov and Zamolodchikov suggested® the following identity for
the parameters cy,

1 5
~ 50250020 (94), (1.11)

where the function ¢ € Oy, .,) = S(y,,z) (¢) is a functional, called the (classical) Liouville action
(with conical singularities), defined on some functional space ©(,, .,) (a space of functions with
logarithmic singularities of the form (1.3)) and that must be formally understood as

St (@) = 1= (V002 + drac?)a Z—waﬁ 2. (112)

Let us mention here that relation (1.11) has already been proved in a rather simple way by
Takhtajan-Zograf [30] based on geometrical considerations. Yet, expression (1.12) is ill-defined
since the functions in Oy, .,) have logarithmic singularities at 23 (just like the function ¢,). In
order to give the precise definitions of O, ., and S, .,), we introduce the round metric g(z) |dz|?
on the Riemann sphere where g(z) is given by

()=

Z2) = ——

g (1 +z2)?

with associated Green kernel G with vanishing mean on the sphere, i.e. f(c z,)g(z)d?z = 0

(where d%z denotes the standard Lebesgue measure). If we consider the standard Sobolev space
HYC) = {h : /Hvzh(z)\2 + |h(2))?g(2)]d%z < oo} ,
C

where the norm is defined by |h|H1((C (Jo(IV:h(2)]* + |h(2)|%g(z))d?z) 1/2, then O, .,) is given
by

Oz = {0 =h+Ing+> xxG(z,.);h € H'(C)}. (1.13)
k=1

We endow O, .,y with the metric space structure induced by the H Lnorm

de (91, ¢2) = (|91 — ¢2llm(c)-

3 The fact that e~?*(*)/2 solves the PDE version of the Fuchsian equation can also be seen by definition of Ty, .

4See Takhtajan’s lecture notes [28].

®Let us stress here that the function ¢. also depends on the (X, zx) though for notational simplicity we keep this
dependence implicit.




Now, for ¢ € Oy, ), the action S, .,)(¢) is defined by a limiting procedure where one applies
a regularization procedure around the points z; with logarithmic singularity and add diverging
counter terms. More precisely, S(y, -, )(#) := limc0 Sc(¢) where

1

Se(9) = - [ /C (IV.6(2)|* + 4mAe?))d%z + R(e, qs)} (1.14)

and

€ k=1

Rie.d) = —%ZXIC]'{ ¢(z)_dz_ +8z'jq|{| ¢(z)d—_z+2772><iln%+327rln%, (1.15)
k=1 2=

z—z|=€ 2= 2k 1 z

where the integration domain in the first integral is defined by C, := C\ Up_; B(2,€) U {|2| > 1}
and the contour integrals § are oriented counterclockwise.

The purpose of this paper is to relate via a semiclassical analysis the classical Liouville ac-
tion S(y, .,) to the recent rigorous probabilistic construction of Liouville Conformal Field Theory
(LCFT hereafter) given by David-Kupianen and the last two authors in [2]. Recall that the con-
struction of [2] is based on the Gaussian Free Field (GFF). Moreover, the local conformal structure
of LCFT was studied in [9] (Ward and BPZ identities), paving the way to a proof of the DOZZ
formula for the three point correlation function [10]. A byproduct of the semiclassical analysis is
a new proof of relation (1.11) in the spirit of the way Polyakov and Zamolodchikov discovered it
via non rigorous asymptotic expansions on path integrals. We believe that the connection between
LCFT (in a probabilistic setting) and the classical Liouville action (1.14) is interesting per se as
it is not straightforward (see Takhtajan’s lecture notes and discussion [28, 29]).

The construction of LCFT is based on the quantum Liouville action, the quantum analog of
(1.12) (recall that (1.12) is a formal definition and the exact definition requires a regularization
procedure). In order to introduce the quantum Liouville action, let us set the change of variable
¢ = ¢ +Ing in the formal definition of the classical action (1.12); we get up to a global constant
that

St (9) = Spm (@ +1ng)
1 n
=i /(’VZCP(Z) + V. Ing(2)? + 4rAe?®) g(2))d%z — Z xie(o(z) +1Ing(z))
k=1

L [ (190(2) + 2Ry (2)0(2)g(2) + dmAe?@) g(2)) a2 — 3 wulo(zx) + Ing(21))

" ar
C k=1

where in the last line we disregard a global constant (independent of the xx, zx) and we introduced

the Ricci curvature of the round metric Ry(z) := —ﬁAZ In g(z) (which in the particular case of

the Riemann sphere is constant and equal to 2). Let us perform for v > 0 the change of variables
— Xk

e % and work with ~y¢ instead of ¢ in which case we get

1
SEXk,Zk),’Y((p) = ?Sthzk)(’y(p) (1.16)

= % /(C (|Vz90(z)|2 + %Rg(z)go(z)g(z) + 47T,ue'780(2)g(z))d2z — ; a(p(zr) + %ln 9(zk))



The construction of LCFT is based on the “quantization” of the above action. Following gen-

eral principles in quantum field theory, the theory should correspond to constructing the mea-

sure e ~Sgzin )Dgo where D¢ is the ill-defined “Lebesgue measure” on the space of functions®.

Following a standard procedure in constructive field theory (see Barry Simon’s book [27]), the
probabilistic construction of LCFT is based on interpreting the measure e~ e ‘Vz‘p(z)‘deZDgp as
the Gaussian Free Field (GFF)” measure and then expressing the other terms of the action as

functionals of the GFF along the following factorization:

e—S{Xk,ka(so)D(p _ <€Zk ak (p(zk)+5 Ing(2k)) ,— 77 fc(%Rg(2)50(2)9(2)+47wew“)9(2))d22> e~ 1= Je \Vae(2)Pd% p

However, the GFF is not a function but rather a Schwartz distribution hence the exponential term
f(c €792 g(2)d?% is ill-defined. In order to make sense of the this term, a renormalization procedure
is required and, in order to preserve the conformal invariance properties at the quantum level,

one must modify the above action by replacing the classical value % in front of Ry(2)¢(2)g(2) by

the quantum value @ := % + 7 (see [2]). Of course, the extra correction term 3 vanishes when

one considers the semiclassical regime v — 0. This leads to the following formal definition of the
quantum Liouville action (where one removes the logarithmic singularities)

S(p,9) == — /C (IV20(2)]* + QRy(2)p(2)g(2) + dmpe?¥*) g(2))d?=. (1.17)

4

where v is a positive parameter belonging to (0,2), @ = 3 + % and p > 0 is a positive parameter
called the cosmological constant. As we will see shortly, the quantum Liouville measure e=5(#:9) Dy
is in fact defined on the dual space H~1(C) of H'(C), which is defined as the completion of the
set of smooth functions on C with respect to the following norm for f smooth

|f|H—1(@) = sup ) d?z|.

heHY(C), [kl gy <

The quantum Liouville theory is then defined by its functional expectation (called path integal in
the physics literature)

(F) :/Hl(((j) F(¢)e™ 59 Dy (1.18)

for every continuous function F on H~(C) and where ¢ = ¢ + %ln g is the Liouville field. The
main observables in LCFT are the correlations of the fields V,(z) = €*?(*) under the measure
(1.18). For ay, -+ ,a, and F any bounded measurable functional, we set

n

0) [ I Vor(zt))rn = /H o F($) [] Vaw (z1)e~5@9 Do,
k=1

We will recall the rigorous probabilistic definition in the next subsection; the case F' = 1 corre-
sponds to the correlations. Let us just mention that inserting quantities like V,, (2x) correspond

5Tt is a well known fact that the Lebesgue measure does not exist on infinite dimensional spaces.

"There is an important subtelty here in the interpretation of this quadratic term; indeed, one must not forget to
incorporate the spatial average | ©(2)g(2)d*z of the field  (with respect to g) in the definition of the GFF measure.
The correct measure on this average is the standard Lebesgue measure on R: in physics, this average is called the
zero mode.



at the quantum level to adding a logarithmic singularity to ¢ at the point z; and with weight aj
(this a consequence of the classical Girsanov theorem of probability theory); this property is of
course to be expected from the previous discussion at the classical level.

Now, gathering the above considerations, the semiclassical regime is the limit of LCFT when
~ goes to 0 with oy = X" and p = 2 for fixed A and xg; it is natural to expect that the following

semi-classical limit holds when F' is a continuous function on H _1(C)

S(xpzp) (27)

H o (22)) Ce ~ 7 F(¢y) (1.19)

—>0

where ¢, solves the Liouville Equation (1.2) with logarithmic singularities (1.3) and C' > 0 is
some constant. One of the main results of this paper is to show that this is indeed the case (see
Proposition 2.3 below). Once statement (1.19) has been established rigorously, following the idea
of Polyakov and Zamolodchikov, it is natural to exploit the above semiclassical limit to recover
the accessory parameters by using the BPZ equations®. The BPZ differential equations are the
quantum analogues of (1.10); it was shown in [9] that the following BPZ differential equation
holds for the field V_» (2)

n A n
2oy () [ Ve (20))
1(Z_Zk 2

1(2) H Vo (20)), +
=1 =1

k=

3

1
Z— Zk

_l’_

=

8zk <V_%(Z) Val(zl)>%u =0, (1.20)

k=1

o~

1

where A, = §(Q — §) is called the conformal weight of V,(z) (while A is also used for the
Laplacians, our use of this notation should not yield any ambiguity). Since the BPZ differential
equations are the quantum analogues of the classical equation (1.10), one should recover (1.10) by
taking the semiclassical limit v — 0 (recall that oy = ﬁ and p = ,Y% for fixed A and yy). Indeed,

exploiting (1.19) and the convergence ’yzAak v:)O Xk — Xk 2 /4 one gets asymptotically for small

0= 82 HVal Zl 4 Z Z — Zk %(Z) HVal(Zl)%{,,u
=1

=1
2 N n
Y 1
+ X z — Zk HVOCl Zl
k=1 1—1
S( ,Z )(‘f’*) n 2 S( VZ)((p*)
o2, (e o M—u—z—
el CRa))
2 & S (6+)
1 ey — ez
+ % z— zkazk (e 2 (e ”? ) +0(1)
k=1
~Foazpter . " xk/4—x2/16 s 1N 0., 8 O e
—e T (et 0 ey, WA e Me—%w L oD).
B G A= 2z

8The argument of Polyakov and Zamolodchikov was in fact based on the stress-energy tensor of LCFT but this
is a minor point.



This leads to the desired relation (1.11): this heuristic derivation can be made rigorous and is
the content of Corollary 2.6. The main reason why the above derivation is not an immediate
consequence of (1.19) is for regularity reasons; more specifically, one must justify that one can
differentiate equivalence (1.19).

Now, we proceed with the statement of the main results of this paper as well as related open
problems. In order to do so, we first recall the probabilistic definition of LCFT.

2 Main results

2.1 Background and notations

In this section, we recall the precise definition of the Liouville action and LCFT as given in [2].

Convention and notations.

In what follows, in addition to the complex variable z, we will also consider variables x,y in C and
for integer n > 3 variables z1,- - - , 2, which also belong to C.

The variables x,y (and sometimes z) will typically be variables of integration: we will denote
by d?z and d?y (and d2z) the corresponding Lebesgue measure on C (seen as R?). We will also
denote | - | the norm in C of the standard Euclidean (flat) metric and for all » > 0 we will denote
by B(z,r) the Euclidean ball of center x and radius r.

LCFT on C

To define the measure (1.18) it is natural to start with the quadratic part of the action functional
(1.17) which naturally gives rise to a Gaussian measure, the Gaussian Free Field (GFF) (we refer
to [5, Section 4] or [26] for an introduction to the topic). As is well known the GFF on the plane is
defined modulo a constant but in LCFT this constant has to be included as an integration variable
in the measure (1.18). The way to proceed is to replace ¢ in (1.17) by ¢ + X where ¢ € R is
integrated w.r.t to Lebesgue measure and X is the Gaussian Free Field on C centered with respect
to the round metric, i.e. which satisfies [ X (z)g(z)d’z = 0 for g(z) = W. The covariance of

X? is given explicitly for =,y € C by
1
n
|z =yl

E[X()X(y)] = Gla,y) =1 ~ (I g(x) +ng(y)) + (21)

where K :=1n2 — %

Gaussian multiplicative chaos

The field X is distribution valued and to define its exponential a renormalization procedure is

needed. We will work with a mollified regularization of the GFF, namely X. = p. * X with
2

pe(x) = ép(%) where p is C™° non-negative with compact support in [0,00[ and such that

7 [° p(t)dt = 1. The variance of X.(z) satisfies

lim (E[X,(z)?] + In(ae)) = —% Ing(z) (2.2)

e—0

9The field X was denoted X, in the article [2] or the lecture notes [23].



uniformly on C where the constant a depends on the regularization function p. Define the measure

72

M, (d%z) = e : %@ . g(2)d%. (2.3)

. . . . _1p[g2?
where we have used the Wick notautlon2 for a centered Gaussian random variable : eZ := ¢Z3ElZ7]

(see Section 3.1). While the factor e’z plays no role, this normalization of M, .(d*z) has been
chosen to match the standards of the physics literature. For v € [0,2), this sequence of measures
converges in probability in the sense of weak convergence of measures

M, = lim M, . (2.4)

2
This limiting measure is non trivial and is (up to the multiplicative constant e%“) Gaussian
multiplicative chaos (GMC) of the field X with respect to the measure g(z)d%z (see Berestycki’s
paper [1] for an elementary approach and references).

Liouville measure

The Liouville measure e~%(#9) D¢ with S given by (1.17) is now defined as follows. Since R, = 2
and [ X (z)g(z)d*z = 0 the linear term becomes [.(c + X (z))g(z)d*z = 4me. This leads to the
definition (recall that x> 0 is a fixed parameter)

v(dX,dc) = e 2@ 1 My (Op(dX) de. (2.5)

Here P(dX) denotes the Gaussian Free Field probability measure on H~* (@) Note that the random
2

variable M, (C) is almost surely finite and that E[M, (C)] = ezh Jo9(z)d*x < oo. This implies
that the total mass of the measure v is infinite since for M, (C) < oo the c-integral diverges at

—o0. While we have formally defined v as a measure on H~!(C) x R, we are solely interested in
the behavior of the Liouville field, defined by

QS::X—I—%lng—I—c. (2.6)
Note that by (2.2), the term appearing in the exponential in (2.5) can be expressed as
2
eI M, (d*z) = ling)(Ae)VTewf(m)dzx (2.7)
e—

for A = ae® and ¢, := pe * ¢ being the smoothened version of ¢. We denote averages with respect
Liouville correlation functions.

The vertex operators V,(z) = e*?(*) need to be regularized as well. Equation (2.3) and (2.7)
provide several ways of regularizing which end up to be equivalent when considering limits. For
vertex operators, we introduce for « € R and z € C

a2li
Viael(z) = €22 : e2XeZ) . g(z)Re, (2.8)



where recall that A, = §(Q — §). Let us fix 21,...,2,, n distincts points in C and associated
weights a1,...,a, in R. Here and below we use the notation (-), .. for the regularized Liouville
measure where in (2.5) we replace M, (d*z) by M, .(d*z). Now, it was shown in [2] that the limit

n

n
_ —2kQ? 10
H ar (2))y = 9 11_13% Vo (28)) e (2.9)

exists and is finite if and only if > _; a > 2Q. Moreover, under this condition, the limit is non
zero if and only if aj < @ for all k. The conditions

dar>2Q, Yk ap<Q (2.10)

are the Seiberg bounds originally introduced in [25]. These two conditions are the quantum equiv-
alent of those presented in (1.1). This is really transparent in the semiclassical regime where we
fix ap = X—V’“ for fixed xx’s and « goes to 0; in the limit, one gets xx < 2 and Y ,_; xx = 4. With
the exception of Section 2.3 on open problems, we assume throughout this paper that the Seiberg
bounds (2.10) are satisfied and (without entailing any restriction since Vj(z) = 1) that ay # 0 for
all k. Note that this also implies that n > 3.

Reduction to Multiplicative Chaos.

In order to keep this work as self contained as possible, we remind the basics of the construction
of the Liouville correlations. The main idea is that one can express these correlations as functions
of GMC measures with log singularities. As a first step using the explicit expression (2.8), and the
change of variable a = yc+log M, .(C) we can factorize the respective role of X and the constant.
Setting

g = M (2.11)

this yields (see [2] for more details):

n

(T Ve (o)) = 4729 tim [ 720

e—0

n

_ c
6 |1 owctone ™ Mw] e

=4 egzzzlai_%Qz’fl (/ e_“eaeasda> hm
R

H eakXe 2k) . (Zk)Aak (Mﬁy’e((c))—s (2'12)

Since (2.10) ensures that s > 0, making a change of Variables A = pe® in the integral f e He" e dq

turns it into u~*I'(s) where I' is Euler’s I" function: I'(s) = [ A5™! e~ 4dA. Now using Girsanov’s

apXe(z)

theorem (see [2]) we may trade : e :in the expectatlon for a shift of X. Then setting

n 2K n
Zo = /(ce-yzk_1 akG(zk’x)_wTMﬁ/(d%j) _ 1% (ce’yzkzl apG(z,m) . Y Xe(2) 39(:17)(1233, (2.13)

10The global constant 4e=2r?* which depends on v plays no role but it is included to match with the standard
physics literature which is based on the celebrated DOZZ formula. This constant was not included in the definitions
in [2] or [23].

10



we end up with the expression

(IT Ver (20)) 7 = K (2)u™"T(s)E [Z;°] (2.14)
k=1
where for z = (21,...,2y)
K(z) =4y e = <H g(zk)Aak> €2 Lt k05G22 5 Liim 0f ~26Q7 (2.15)
k=1

Thus, the Liouville correlations can be expressed in terms of the negative moments of the random
variable Zj. In particular, the Seiberg bounds oy < @ for all k are the condition of integrability
of 7 2k=12kG(2:7) against the chaos measure M., (dz) (see [2]). We recall the following result on
the BPZ equations proved in [9]:

Theorem 2.1 (Theorem 2.2 in [9]). Suppose —3 +>")'_; ap > 2Q. Then the BPZ equation (1.20)
holds in C\ {z1, -+ ,2zn}.

Similarly to the correlation ([];_; Vi, (2k)),u, We can also define a limit for the sequence of prob-
ability measures induced by the multiplication by vertex operators. Setting

1 n
P, o 20)e i= == e (zi) v(d X, de). (2.16)
plokz), (ITk=1 Vak,a(zk»%m H "

we have (in the topology of weak convergence of measures on H~!(C) x R)

lim P

e—0 Ky (Oék727k),6

=P (2.17)

/”/7(ak7'zk).

Under the probability measure P, 4, ) (with expectation denoted by E,, (ag,z1))> the distribution
of the Liouville field (2.6) is given by (for any continuous bounded function F : H=(C) — R)

Ey,(ak,zk)[F((ﬁ)]
/ E |:F <X + ZZ:l OékG(Zk, ) + %lng + uﬁ?z{) — %) ZO_S:| Msease—,ue“
R

da. (2.18
E[Z; 7] I'(s) (2.18)
where recall that in this expression s = M This formula is obtained using the same

change of variables performed in (2.12).

Remark 2.2. Note that we have formally defined P, (o, .,) as a probability on H71(C) xR and
we have

By (ap o) [F(X, 0)] = ’YK( ) /]R E de (2.19)

(ITh=1 Vay (2)) 7.

n s
F <X + ZakG(zk,.),c> ehe 2 Zo

k=1

but this expression is of lesser interest to us compared to (2.18) since only ¢ has a physical inter-
pretation.
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2.2 The semiclassical limit: statement of the main results

In this section, we state the main results of the paper which are derived in the semiclassical regime.
In this regime we fix the values of (xj)j_, satisfying (1.1) (recall that this implies n > 3) and
A > 0 and set

A
uw= 2 and Vk, o= Ak (2.20)

~
and we let v tend to 0.

The semiclassical limit of the correlation functions

We introduce the following constant (depending on the xy)

C((Xk))—2ln4+2ZXk ln2—|—/{ ——/{ZXk—i—— Zxk/ 2)Ing(z)d®z.  (2.21)

k=1

Our first achievement is to obtain sharp asymptotics for the correlation function (we direct
the reader to Section 3.1 for details about the the Wick notation : X2 :). Recalling that ¢, is the
solution of (1.2)-(1.3) we set

k 1 Xk — 4

Notice that p* is a probability measure on C thanks to (1.5).
Proposition 2.3. In the regime (2.20), we have

n K n 2 _ S (¢*)
A T =1 Xp 8Ok ((Xg)) P (xgr2g)
H . (z)) 4«/ — 572 e ~2 e )
i (Ekzl Xk —4)
n —
GM [(Je X @) (@%2))* = forX ()7 (%) |

e 5(Ci ) <e2<ln2—1> / emm—ﬁm(m)d%) o
C

Convergence of the Liouville field

Recall the distribution P, (4, .,) of the Liouville field defined in Equation (2.18).
We have the following result:

Theorem 2.4. We have the following semi-classical approximation in the regime (2.20)

(i) The field v¢ converges in probability as v goes to 0 towards ¢.
(i) The field ¢ — %qb* converges in distribution towards the field Y + X where Y is a standard

. . 1
centered GG’LLSSZCLTL oJ variance ssn————
f 22:1 Xk—4

erage zero in the background metric e?+(*)|dz|?. More specifically X=X, —Je Xm p*(d%z)
where the distribution of X,, is absolutely continuous with respect to that of the orzgmal GFF
X with density given by

and X is an independent massive Free Field with av-

() X(x)u*(d%))z—f@:X(xP:w(d%‘)]

E 622212”74 [(ch(x)M*(d2 ) —Jo: X (2)2:p* (% )]
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Large deviations of the Liouville field
Now, we can state the following large deviation principal for the field ~y¢:

Proposition 2.5. In the regime given by (2.20), the field v¢ satisfies a large deviation principle
on O(y, z,) with rate v~2 and good rate function S(x,z) given by the limiting procedure (1.14),
namely for every open subset of O C ©(x, zk) and closed subset K C ©(xy, z), we have

.. —9 .
liminf 7 2108 Py (o, 11 € O] = (min Sy, 2)(8) — Siygoan)(64)).

Y

(2.23)

. _92 .
hfryl_S}})lpv 10g P4, (0,270 € K] < —<;g11§ Sz (@) — S(Xk,zk)(qb*))-

A probabilistic proof of the Takhtajan-Zograf theorem on the accessory parameters

As a corollary of our techniques, we obtain a new (probabilistic) proof of relation (1.11) (previously
proved in [30]):

Corollary 2.6. The relation (1.11) holds.

2.3 Open problems
The semiclassical limit in the nonnegative curvature case

The negative curvature condition ) ,_; xx > 4 is necessary to properly define our Liouville mea-
sure. As can be seen in Equation (2.18) the integral in a diverges if the quantum analogue of this
condition (namely s = M > 0) is not satisfied. However, we can bypass this obstruction
by considering the measure conditioned on a fixed value of a (without loss of generality we can
consider a = 0)

InZy K., _, s
=0 -z | [EZ) e29)

E‘gf)(ath)[F((b)] =E|F(X+ % 2}; arG(zk,.) +Q/2Ing —
Considering this expression is motivated by considering the law of the random measure on C
defined by €7?(*)d%z under the probability law (2.18). It is then easy to check that the total mass
of this random measure has law T'(s, 1) (i.e. with density proportional to u~*A*~'e™#4) and that
the law of the Liouville field, conditionally on the total mass of ¢??®*)d?x being 1, is described
by (2.24). In order to state a conjecture in the unit volume setting, we need to find a natural
variational problem associated to it. In this section, we assume the following conditions which
were introduced by Troyanov [31] hold

n n
k 2 4 — 4 Amin(4 — 2 . 2.2
VE, xr <2, ;Xk < %121111( Xk) (2.25)

It is rather easy to check that condition (2.25) implies n > 3. The reason for the above condition
will become clear shortly; let us just notice that condition (2.25) extends condition (1.1). Consider
¢ € O(y,,z,) and its canonical decomposition

¢=h+Ing+> xkGlz,.)
k

13



where h € H 1(@) Normalizing e® to have unit volume amounts to replacing ¢ by
¢ — ln/ e?#d%z =h+Ing + ZXkG(zk, ) —1In </ eh(szz—lXkG(zk’Z)g(z)dQ,z) . (2.26)
C =1 C

The h satisfying such a relation is unique if we require h to be of vanishing mean [ h(x) g(x)d%z =
0. Let us register this relation by defining the injective map T on HY(C) := {h € H'(C)
o h@)g(x) P = 0)

T(h)=h+1Ing+ Z xkG(2r,.) — In </ M) XkG(zk’Z)g(z)d22> . (2.27)
k=1 c

It is known since the work of Troyanov [31] that under condition (2.25) there exists a solution
to (1.2)4(1.3) provided that Y ;_, xx — 4 and A have same sign (where in the degenerate case
> 1 Xk —4 = 0 this amounts to A = 0). Under Troyanov’s condition (2.25) and using integration

by parts, any solution ¢ satisfies
Zxk —4=A (/ e¢(z)d2z>
k=1 C

and hence ¢ = h+1ng+ > ;_; xxG(2k,.) where h satisfies the following equation

A h 9 n 4 eh""zz:l XkG(Zk7~) 1 (2 28)
=2 - = ——. .

9 l;::l Xk f(C eh(z)+zk:1 XkG(Zkyz)g(z)d2Z 4

where Ajh(x) = ﬁAIh(az) is the Laplacian in the round metric g. Now, considering the de-

composition (2.26) of the shifted version of ¢ corresponding_to unit volume, we obtain that
¢ —In( e e?(?)d2%) = T'(h) where h is the solution to (2.28) in HY(C).

Note that such solutions to (2.28) in H'(C) can be obtained as critical points of the following
action

1 n
J(h) = —/ IV h(2)|? d%z + (Z Xt —4) ln/ AL G ) g (2)d2 2, (2.29)
4 C el C

Therefore, on the quantum level, it is natural to consider the image under transformation 7' (2.27)
of the measure formally defined on H'(C) by

e~ "M Dh.
This is precisely what is achieved by conditioning the Liouville field defined by (2.18) to have
volume 1 and which leads to formula (2.24). For (2.24) to be well defined we only need to re-
_Zk o —2Q

quire IE[ZO K ] < oo and this is equivalent to the following bounds which are the quantum
analogues of Troyanov’s condition (2.25)

Yk, ap < Q, 20 — ]; oy < 5 A 1;1:11112(62 —ag). (2.30)
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In conclusion, when our parameters y; satisfy

n
ZXk <4
k=1

and provided that (2.25) is satisfied, the unit volume framework enables to investigate the semi-
classical asymptotic with aj = % with yx fixed and v going to 0. Unfortunately, there are some
technical obstructions for our proof to cover also the positive curvature case Y ;_; xx < 4. Indeed
we would need to extend Lemma 4.2 below with @ < 0 and this is currently out of reach with
our method. Moreover, it could be the case that (2.29) admits several critical points in H!(C)
and therefore equation (2.28) has several solutions; nonetheless, the work of Liu-Tian [12] ensures
unicity in the case where y; > 0 for all £ (notice that this condition is automatically satisfied
for n = 3) and therefore (2.29) admits a unique minimum in that case. It seems reasonable to
conjecture that the unit volume Liouville field will converge to the unique minimum of (2.29)
when it exists'! and that a large deviation principle will hold with the (non convex) functional
(2.29). Finally let us mention the works of Eremenko [7] and Mondello-Panov [14, 15] where the
authors construct solutions to (2.28) when condition (2.25) is not necessarily satisfied. However,
there exists presently no quantum analogue of these constructions.

The semiclassical limit with two conical singularities

Another case where classical and quantum Liouville theory can be constructed without the negative
curvature assumption is the case of metrics with two conical singularities of same weight. Indeed,
one can also construct metrics with positive curvature and two conical singularities at 0 and oo
with weight x € [0,2). If the metric has unit volume than all the solutions are given by

2—X,2  |AfX
2 T (14 |2z27X)

5|dz[? (2.31)

where A > 0. In a recent paper, Duplantier-Miller-Sheffield [6] introduced the quantum analogue of
these measures (more specifically, they introduced the quantum analogue of the round metric which
corresponds to x = 0 and to a = v in the following discussion). More precisely, they introduced
an equivalence classe of random measures (defined up to dilations and rotations) with two marked
points 0 and co. The random measures are defined on the cylinder R x [0, 27| and we will identify
the cylinder with the Riemann sphere via the conformal mapping z — e=%. If a € (3, Q) then we
introduce

BS =

s

B, ifs<0
By ifs>0
where B, BY are two independent Brownian motions with negative drift a — Q and conditioned

to stay negative. Let Y be a log-correlated Gaussian field with covariance

e SVet
le—5eil — e—tel? |

E[Y(s,0)Y(t,0")] = 1In

and associated measure ,
N, (dsdf) := Y ()=5 BV (07 q5q9

To the best of our knowledge, this point is not known and could be false in full generality assuming only (2.25).
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The (unit area or volume) a-quantum sphere is the unit volume random measure p(dsdf)
defined on the cylinder R x [0, 27| by

B[P (S () 30

s _ pla)
E[F (u(dsd6))] ]

where o
pla) = [ N (ds x 0,2r)

and R(«) is the Liouville reflection coefficient defined by
R(a) = Elp(a)> @,

For a = % with y € (0,2) fixed, we conjecture that the a-quantum sphere (mapped back to the
Riemann sphere) converges (as v — 0) to the positive curvature metric given by (2.31) for some

A > 0.

2.4 Organization of the paper

The rest of the paper is organized as follows. In the next section, we introduce general tools and
notations on Gaussian variables; we will also give an alternative formula for the Liouville action
S(x,z) Which is more adapted to our framework. In section 4, we will state and prove Proposition
4.1 which is the key result of the paper; from Proposition 4.1 ; we will deduce in the remainder
of section 4 all the main results of the paper (which were stated in Section 2.2). In Section 5, we
prove technical results which are used in the proof of Proposition 4.1. Finally, in the Appendix,
we gather convexity considerations and general large deviation type results.

3 Technical preliminaries

Let us introduce in this section a few technical tools which we we use to prove our main results.
This includes some basic notions concerning the Wick notation which we have used in a couple of
equations in the previous Section, as well some classical results concerning Gaussian processes.

3.1 Wick Notation

If Z is a Gaussian variable with mean zero and variance o2, its Wick n-th power (n € N) is defined
by
[n/2]

A Z (_1)mn! O_2mZn—2m —o"H (0'_12) (3 1)
U m!(n — 2m)12m N " '

where H,, is the n-th Hermite Polynomial. This definition is designed to makes the Wick monomials
orthogonal to one another. More precisely if (Z,Y) is a Gaussian vector we have

E[l:Z":Y™:] =nll,,E[ZY]". (3.2)

The Wick exponential is defined formally as the result of the following expansion in Wick powers
X n n 2.2
N7 ez 0y

eV = 7;) S <’yZ 5 |- (3.3)
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In the present paper, we mostly use the notation [ : Y (x)? : p(d%z) and Jo: Y @) . y(d%z) for
Gaussian fields defined on C and p(d?z) = p(x)g(x)d%z where p satisfies for some 7 > 0,

/Cp(x)(1+’7)g(m)d2x < 0. (3.4)

While these integrals makes sense when (Y (z))zec is a field with uniformly bounded covariance,
some additional care is needed when we use the notation for distributional fields such as the GFF.

Wick Notation for Gaussian Fields

Let us consider Y a Gaussian field on C (or a subset) whose covariance satisfies

1
E[Y (2)Y (y)] := log I +log(1 + |=|) + log(1 + |y|) + O(1) (3.5)
Consider a sequence (Y,),>1 of Gaussian fields defined on the same space as Y and such that the
full process [(Yy,),Y] is Gaussian. Assume this sequence has bounded covariance and converges to
Y in the following sense

Vn > 1,Vo,y € C, |E[Y,(2)Yn(y)]] < C+E[Y(2)Y (y)],

3.6
Vu € C¥(C)  lim | (Yo(z) — Y(2z))u(z)d®z = 0, (3.6)

n—o0 C

where the first inequality has to be satisfied for an arbitrary constant C' > 0 that does not depend

on n, and the convergence in the second line is in probability. An example of sequence satisfying

these conditions is a convolution sequence as the one described in Section 2.1. It can be checked

via elementary computations that for any fixed k£ the sequence

/ (YR () p(dPe), (3.7)
C

is Cauchy in Ly. We can thus define [ : Y*(2) : p(d%z) as the limiting random variable which
does not depend on the sequence (Y,),>1.

The distribution : €Y : can be defined using the procedure described in Equations (2.2)-(2.4)
(and detailed e.g. in [1]) as soon as v < 2). Let us however provide a concise and self-contained
argument which asserts the existence of [ : Y (@) : y(d®z), as soon as ¥2(1 +7~1) < 2. It can be
checked that if Y;, satisfies (3.6) the sequence [ : e?Yn(@) + 1 (d%z), is Cauchy in Lo provided that

L+ DA+ 1D\ a2y
/<c2 ( z — g ) p(dz)u(d7y) < oo

Hélder’s inequality and (3.4) guarantees that the above holds as soon as v?(1 +n~1) < 2.

3.2 Gaussian space tools
Girsanov/Cameron Martin Formula
The formula states how the distribution of elements of a Gaussian Hilbert space are modified by

an exponential tilt of a random variable. In our context it says that if Y is a centered Gaussian
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field with covariance funtion K (-,-) with displays a logarithmic divergence (similar to (3.5)) then
we have for any bounded continuous fonction on H~'(C) and any signed measure p such that

Joo K (2, y)p(dz) p(d?y) < oo
E[F(Y)efc Y (z)u(d?z)— % [e2 K(m,y)u(d%)u(d%)] =E[F(Y + / K(-,y)u(d%y)]. (3.8)
C

The formula is easily checked for finite dimensional marginals and then extended by continuity.
We are going to apply this formula also to : €Y : which is not a continuous fonction of Y. However
: €7 1 is, and using the limiting procedure (2.7) we can deduce from the above that

E[F(Y,/ V@) Ly (d2a))ele Y (x)u(d?e)—3 feo K(:vvy)u(dzx)u(dzy)]

C

=B+ [ KCputaty), [ R0 )yt (3.9)
C C

for every F' continuous on H~!(C) x R, v < 2 and v with density w.r.t Lebesgue and finite total
mass.

Positive association for positively correlated fields

A classical result of Gaussian analysis [20] states that if (X;);cr (I finite) is a Gaussian vector such
that E[X;X;] > 0 for all 4,j > 1 then for any pair of square integrable functions f,g : R - R
which are non-decreasing in all |I| variables we have

E[f(Xi)ie)g((Xi)ier)] = E[f (Xi)ieD)IE[g((Xi)ier)]- (3.10)

In order to apply this inequality to our field which are indexed by C and defined in a space of
distribution we simply apply a limiting procedure.

3.3 White Noise Decomposition

While it is a priori possible to write a proof of our results by working directly on the Riemann
Sphere C, it turns out to be more convenient for notation to work with a field defined in the
ball B(0,1) := {z : [z| < 1}. Instead of working directly with the restriction of X on B(0,1)
we are going to look at a randomly shifted version of it which we denote by X that possesses
the convenient feature of having an explicit white noise decomposition for which correlations are
positive on all scales, which is helpful in view of using positive association.

As an intermediate step we introduce X the GFF on the plane with average zero on the circle
of radius 1. It can be obtained by considering the limit X — lim_,q(27)~! 027T X(0)df where X,
is the mollified version of X considered in Section 2.1. As [ X(x) g(x)d?z = 0 we also have

X=X- % /(CX(x)g(x)d2a;. (3.11)

The covariance of X in the ball B(0,1) is given by E[X (z)X (y)] = ln‘yflx‘ as can be checked

by a simple computation of covariances. Now to obtain a positively correlated field, we set X =
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X+v In2Y where Y is an independent standard Gaussian variable. Equation (3.11) is also satisfied
with X replaced by X and the covariance of this last field satisfies [24, Example 2.3]

SO V2
EX @)XW == =2 [ = Ve =yl + VAV V=

n
ly — z|

Instead of using a convolution to approximate X by a smoothened field, we construct it as a limit
of functional fields. We let (X¢(x))zep(0,1),4>0 be a bivariate field of covariance

tAs

E[)?s(x))?t(y)] = 2@0(5177:'4) + 0 Qu(x7y)v (3'12)

where
Qu(z,y) == (1= +/e'lz —y[/2)+. (3.13)

Note that Q. (,y) is a positive definite function [16]. We have in particular that, letting Ky(z,y) :=
fo Qu(x,y) + 2Qo(x,y) denote the covariance function of the field X, there exists a constant C
such that for all x,y € B(0,1), t > 0 we have

Vr,y € B(0,1), |Ki(z,y) — max(log |z —y|,t)| < C.

3.4 The centered Liouville action Sy, .,)
In what follows, it will be convenient to introduce the notation
w(z) = e2ok=1 XkG(21,2) (3.14)

Note that in our setup, the field v¢ displays logarithmic singularities at (z), cf. (2.18), and
these singularities persists in the semiclassical limit. As it is easier to work with a field with no
such singularities, we replace ¢ by a more regular function h as done in Section 2.3 above. We
introduce thus the centered Liouville action St (y, -,y on H L(C) which roughly corresponds to
rewriting S, .,)(¢) as a function of h = ¢ — In(gw). It admits the following expression

1

SL,(Xlwzk)(h) ar

/(|v B2 + 4mAe@u(2)g )d2z+— ZXk / o(2)d2.  (3.15)

One can extend Sp (y, .,) to H‘l(@) by setting it to be equal to infinity outside Hl(@): the
extension is convex and a good rate function in the terminology of large deviation theory. The
following claim (proved in Appendix A.1) motivates our definition:

Lemma 3.1. Given h € Hl(@) and setting
6 = h+In(gu),
the following identity holds

Sixwrzn) (@) = SL(xnzn) (M) + Uk 28)) + Cu((Xk)) (3.16)
where Cy((xk)) is defined by (2.21), and

U((Xks 2k)) ZXk 1119(% __ZXkX] (25, k) (3.17)
k#j
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4 Reducing the problem to partition function asymptotics

4.1 Introducing the statement

The goal of this Section is to reduce the proof of our three main results Proposition 2.3, Theorem 2.4

and Proposition 2.5 to a general statement. Let us recall that we always assume that oy, = xpy ™!,

p=Ay"?
A statement concerning large deviations can be obtained by studying the asymptotic behavior
of the Laplace transform of the field which is given by

im 1o (7 ev@e@e@) e TIn (),
1 log <Hk:1 Vo (26)) 7.1

v—0 ,-Y2
for appropriate 1. On the other hand, to obtain results concerning the limiting law of ¢ — v~ ¢,
we need to compute the following limit for all bounded continuous function on H~*(C)

. (F(¢ —77"0x) [Thet Var (21)) 7
’ly—>0 (szl Vo (zk)>%ﬂ . 42

Hence we can prove both statements if we obtain sharp asymptotics for

(4.1)

(@ Jev@s@e@apg ymlg, ) H ok (28)) g0

where ¢, 4 is a function to be determined but which coincides with ¢, when ¢ = 0. Using our
factorisation of the measure into X and a given by (2.18) we can in fact compute a separate
asymptotic for ¢ and X.

Before discussing things in more details let us introduce further notations used in this section.
Considering ¢ a smooth function on C, we set

cyp = /(cw(w)g(w)dzx + Z Xk — 4. (4.3)
k=1
We also introduce hy, € HY(C) := {h € H'(C C e M 2¢ = 0} the unique solution to the
Liouville equation (see appendix A.2)
— weh 1
Agh = =2 (4 = 3z Je vle)g(e)d%e) + 2mey (f W@t @@z H) T (4.4)
Joh(x)g(z)d*z = 0.
and set (@) )
P (T d —
pp(dP) = w(z)g() = ehvd?y, (4.5)

Je e Wu(y)g(y)d?
Note that j,,(d*z) has volume 1.

The asymptotic for the integral in a is a standard computation. Using the following variant of
Stirling’s formula

T(z—1) =Tz + 1)/(x(z — 1)) ~ V2rz3? (f)
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we have

Je ¥(@)g(z)a?a " 1) _Aa
[ e B gy [ o)
R R

Copy

2\ 21 2T L lin(en JA)—

_ (%) v (C_Ig _ 1> =, [T o)) (46)
Y Cy

Moreover (and this is only of interest when ¢ = 0), we have for any bounded continuous function
FonR

Jov(@)g(@)d®a Y
/F(v‘la—7‘110g(cw//\))ea(s”+ 7 et da
R

/2 o nle _ c z2
P R

1

showing that after recentering the variable v~"a converges to a Gaussian of variance Cp

The part concerning X is the main probabilistic estimate of the paper. Given F' a continuous
bounded function in H~!(C) we want to determine the precise asymptotic of the following Laplace
functional

L7(¢, F) — F(X _ ’7_1[10g ZO + Bw])e% f(c w(x)(X(x)—v’l 1nZ0)g(x)d2:L‘Z0_S

7 _%
=B [F(X — v log Zo + hy))e e ¥@X @@z 741 72} '
Proposition 4.1. If v is such that cy, > 0, then we have in the small vy asymptotics

L, F) "2 O [ M Ouia)g(a)ata)
C

X (]E[F(X _/X(g;)uw(d%))e?((fcX(x)uw(d2x>)2—f@:X2(x):uw(dzx))] +O(1)>
C
with
H®) := —%/{clvxhw(a:)sza:—cd, ln/(cw(x)ehw(x)g(x)d%—i—/(Chw(a:)w(a:)g(a:)d%:.

Now we can combine Proposition 4.1 with Equation (4.7) to prove our main results.

4.2 Proof of Proposition 2.3 and Theorem 2.4

In what follows and in order to have more concise formulae, we will sometimes write dg
in place of g(z)d*z or du* in place of u*(d?z), etc... Also we will simply write [ without
indicating the set on which we integrate: this should be clear from the context.

To obtain the limit of correlations, we use Proposition 4.1 and Equation (4.7) for ¢» = 0 and
F = 1. Notice that uy := py—o defined by (4.5) coincides with p* defined by (2.22) since by
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definition hg + logwg is the solution of (1.2)4(1.3) up to constant, and ¢y := Y ,_; xx — 4. We
obtain, recalling (2.14) and (3.17)

K(z) 70 sy Le —%(22:1%—4)6717(% Sho1 X8k —U((x-2k)))
—pet 3 120 AyV2m *Co (In(co/A)—1]
/]R et 4q 3/2 , (4.8)

E(Z;"] '~ (fehowdg)e‘%z(ﬁf [V =hol e ln(f et0wdg)) ([ Xdu*)*=[:x2dpt)

with hg given by (4.4) with ¢» = 0. Altogether we obtain

|n| (zk)) ’y_>0 4Av2 760 [n{co/A)=1] ,—2k—5 370 1Xke%( Sho 1 XE 8= ((xno2r)))
V, 3/2
k=1

% (f ehowdg)e_v%(ﬁ J IV 2hol?d%z4co In(f ehowdg))E[e%o((f Xd,u*)z—f:XZ:d,u*)]‘ (49)
In the appendix A.2, we prove that the quantity (see (A.4))
Jo(ho) : /|V hol?d%z + ¢o In(f e™wdg)

can be related to the quantity miny, S L,(xk,Zk)(h) by the relation
min Sy, ) (h) = —colln(co/A) — 1] + Jo(ho)-
This is the content of Proposition A.4. Consequently Lemma (3.1) allows us express Jy(hg) as

Jo(ho) = min Sy, ) (@) = U0k, 1)) = Cx((xk)) + collnfeo/A) —1].

Furthermore, integrating (2.26) on the sphere and using

1
/logwdgzO and 4—/loggdg:2(ln2—1),
T

/ehowdg: /e¢*—417r¢*d22 2(n2-1).

By plugging these relations into (4.9), we get the statement of Proposition 2.3.

we get that

For Theorem 2.4, we can perfom the same computation including a function. Recalling (2.18) we
obtain from Proposition 4.1 that under P, (4, -,) In the semi-classical limit vX — log Zy converges
to hg, and from (4.7) that a converges to log(co/A). Hence

1
¢ =X —log Zo + a + log(wg) + 7 < Oi;g + g)

converges to hg +log(co/A) +log(wg). Note that up to a constant shift, the above function is equal
to ¢«. To check that the involved constant is 0, it is sufficient to observe that

/ oho+Hlog(co/A)Hlog(wg) g, _ CXO _ / Srds (4.10)

Concerning the convergence of ¢ —y~1¢,, the corresponding limit corresponds to the independent
sum of v 1(a — log(co/A)) + (X — v~ !(log Zy + hg)). Equation (4.7) imples that the first term
converges to a Gaussian of variance ¢ ! while Proposition (4.1) guarantees the convergence of the
second term to the prescribed field.
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4.3 Proof of Proposition 2.5
According to relation (3.16), the claim is equivalent to proving that the field vX = v¢—> ", x1G (2, -)—

Ing—In 24 X" 1 satisfies a large deviation principle on H~ ((C) with good rate function the centered
Liouville actlon (shifted by its minimum) Sy, (y, -,)(-) = SL (x,2) (fx). Here we adopt the notations
of section A.3 in the appendix. With these notations, Proposition 4.1 implies straightforwardly for
all ¢ that
lnIE A [efc DX@9(d%2) _y p(y) — p(0).
fy N %k v—0

In the language of large deviation theory, F(¢)) — F(0) is the limit of the logarithmic moment
generating function of vX (under P A (% Zk)). In Proposition 4.2, we prove that the distribution

of vX is exponentially tight under IP A (% - The Legendre transform of F(i)) — F(0) satisfies

~

(F = F(0))*(h) = SL,(xp,20) (M) — SL (Xk 2)(hs). Thanks to Lemma A.5 on the exposed points of
S1,(xx,z) (-), we can conclude by using Baldi’s theorem in [3]: see theorem 4.5.20 page 157.

4.4 Proof of relation (1.11)

Here we prove relation (1.11) by using the BPZ differential equations established in [9]. We have
the following BPZ differential equation

—82 HVal (22))., 2 +Z Z_Zk 7 (V3 (@) [T Ve (20, 4
1 v

ok

V—%(Z)Hval(zl»»y A =0,

1y 2
Y
1

where V,(z) = X+ F Ing(z)+e) g4 Ay = 5(Q — 5). We write oy, = X—f and set 7 > 0 small.
We consider smooth functions u with compact support in B(zg,n) and u a smooth function with
compact support in C \ UB(zx,n). Using (2.14) and (2.18), we have for any smooth function f
with compact support in C \ UB(z,7n) and z;, € B(z,7n) the following identity (the definition of
K is given by (2.15))

<< /C f(z)V_g(z)d2z> IUVM(ZI,»%”%
Sy ap— Sk o —2Q
_ K(Z) / yw—l—Ee 2ydyE |:</ f -|-Qlng(z)—l—X:kosz(zk7 )d2 >2220 %}
0

where e~ 2X() denotes the limit of e s e~ 2%<(*) as € goes to 0. By using Proposition 4.1 (in fact

a slight extension of the proposition with F' given by an appropriate integral of the exponential
function), we get the following equivalent (up to a constant)

2k oRp—2Q
[(/ f +Q1ng( )+ZkakG(z;€,z)d2Z> Zo——k ’I; :|

/)(¢*)

S
(X2
L (2) _Oakoz) 7T
~ </ f(z)e_¢2 d2z>e v (4.11)
7—+0 C
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Applying (4.11) with f(z) = 92,u(z) and using the fact that (4.11) is uniform for 2} € B(zx,7)
(and f has compact support in C\ UB(z,n)), we get by integration by parts

JARED Y LT | RCURRER)
k=1 I

2 - RPECCCIE (sz (@) , )

250 /(CHJr1 8zzu(z)lguk(zk)e e T 2 d ZHd

We also get for all j that (up to the same constant as in the former equivalents)

n 1 n
/ , Va d2 d2/
/(cwlu(z)guk(zwz_z V-0 T Vi, = [T %

mu

n—1 () S(x Z/)(dw
u Z; ¢*(Z) k>

~ = / ’LL(Z) H uk(sz)azf ]( j?e_ 2 e .y2 d2Z H d2 /
¥—0 Cnt1 oy gz — Zj

-1 / 7y (#x)

1 1 INCIE)) Cpem) ) ) 2
v—0 ? /(cn+1 U(Z) ]};I uk(zk)qaﬁ S(kaz;ﬂ)(gb*)e 2 e 72 d“z H d®z
J

One can then conclude by taking the equivalent v — 0 of the BPZ equation integrated with
respect to u(z) [T, uk(2;)d?2 [[f—, d*2, and then taking the limit 7 to 0.

4.5 Proof of Proposition 4.1

For simplicity we write the proof in the case F' = 1. We explain how to adapt the proof for general
F in the end.
Note that using our notation we have

Zy = / s s wdg = (f ehwwdg> (/ s e_h¢du¢> (4.12)
and hence we can rewrite the quantity we wish to estimate in the following manner

C,
1 -
E ey /¥Xdag 2

= (f ehwwdg> ¥ E |:Z()€ s <lnf e X e wduw_'YfXduw)e%(wadg_waXde)

(4.13)
The first part of our proof consists in checking that the exponential tilt produced by the second
exponential factor exactly cancels the e " present in the first exponent.

Then we need to check that after taking into account this exponential tilt, the integral con-
verges. This can be achieved by showing convergence in probability of the integrand and uniform
integrability. This is the content of the following Proposition, whose proof is detailed in the next
section.
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Proposition 4.2. Assuming that p is a probability on C satisfying (3.4) and infc p > 0, we have

sup [ [¢ 5z dnr ] Xd@} ~F [e—a[finidu—(fXdu)z}] (4.14)
7€(0,1]

Furthermore we have the following almost sure convergence

lin%’y_2(ln/ s dp — [ Xdp) = [ X% o dp— (f Xdp)? (4.15)
Y—

Remark 4.3. The upperlimit v < 1 is arbitrary and is set for commodity, the important part
of the result being about the behavior near v near 0. The uniform positivity assumption for p is
present only to simplify the proof of Lemma 5.2. We do not believe it to be necessary for the result
to hold. With some straightforward scaling argument, it could be replaced by infrcy p(x) > 0, for
some open subset V' C C.

Let Yy, denote the Gaussian variable present in the second exponential in (4.13)

Yy = / <¢ — cwemw) Xdg.

We have
Var(Vy) i= [ (460) = e Puie) (9(0) - oD () Glaplg(a)aln)dady, .
B, X (@) i= [ (50) - o Ouly)) Glo gy, |
Using the integral version of (4.4) we have
hy(z) = / (¢(y) - Cweﬁw(y)w(y)) G(z,y)g(y)d%y.
Hence we have E[Y,, X (z)] = hy(z), and using integration by part and [ hydg = 0
Var(Vy) = 5 [ o [Agm) + o=/ g - 1)} do= 5 [WehuPz (@a7)

We can thus rewrite (4.13) in the following form

C,
1 -2
E |en/vXdog 2

_ T HE)E [Zoe_ié (in J:e7X ™ dy —y f (X~ )y ) e,lyyw—?iQVar(Yd,):|

=V HWE [(f s X ehiﬁwdg)e_ig(lnfiewxidﬂw—“ffXdﬂw)]
(4.18)

where in the last line we used Cameron Martin formula (3.9) and E[Y, X (x)] = hy ().

By Proposition 4.2, the quantity in the integral is bounded in L? (as the product of two
quantities which are bounded in L*) and moreover it converges in probability when ~ tends to zero

to
(/ ehwwdg)e—cd,(lnf:XQ:d,uw—(fXduw)2).

This is enough to conclude our proof. O
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5 Uniform integrability

In this section we always consider p to be probability measure on C and denote by p its density
with respect to our reference measure g(z)d*z. We assume that (3.4) holds for for some 7 > 0.

5.1 Proof of Proposition 4.2

The proof of Proposition 4.2 requires a few technical estimates which we present now and prove at
the end of the section. The first one allows us to assert that the second term in our chaos expansion
is uniformly integrable.

Lemma 5.1. Assuming that the probability measure p is supported on B(0,1) :== {x : |z| < 1}
satisfies (3.4) then for any o > 0 we have

t>0

Lemma 5.2. Assuming that the probability measure p is supported on B(0,1) :={z : |z| <1},
and satisfies infg 1y p > 0, then we have for some constant C' (which may depend on p), for every
y<1landp>1,

As a consequence we have,

5 _my|?
]P’[/:e“’ :dugfy]ge 402 (5.2)

Proof of Proposition /.2. The almost sure convergence follows from the expansion of the Wick
exponential which is valid for « sufficiently small (it is valid for X, and both sides converge when
¢ tends to 0),

© k
f:e“/X:duzzl—i—Z%]:Xk:d,u. (5.3)
k=1 "

For practical reason, in the proof of (4.14) we wish to reduce our domain of integration to
B(0,1). This can be achieved by splitting the sphere in two and considering each half separately.
Set q := f|m|<1 p(x)g(x)d%z and let

,ul(dza:) = q_lu(dx)]l{‘x‘gl} and ,U,Q(d2$) =(1- q)_lu(d2x)]l{‘x‘21}.

1 1
By using the concavity of In and ab < ga? + (1 — ¢)bT=7 we obtain

E [e—%(lnf:e’YX:du—’nydu)] < qE[e—%(lnf:e’YX:d/ﬂ—'yfXdp,l)] + (1 . q)E[e—%(lnf;e'YX:dug—'nyduz)].

(5.4)
Now observe that the distribution X is invariant by the transformation z — (1/z), so the second
term remains unchanged if we replace ps by us, the image measure of s by the transformation
x +— (1/z). We have
d2

pg(d%a) = (1 — q>—1p<1/a:>ﬁﬂ{xg}.
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We can observe that the function (1 — q)_lp(l/m)g(l/x)d—zx satisfies (3.4), and hence both terms

|[*
in the r.h.s. of (5.4) can be treated in the same manner. Also note that as X = X + Z (see the
construction of Section 3.3) where Z is a Gaussian random variable (which is not independent of
X), replacing X by X does alter the value of the function inside the expectation by a lot. More
precisely noticing that

< 1 1 [ :
cX =7 X L with v(z):=-In2—- — G(z,e?)do
2 2w 0

where the term v(z) accounts for the covariance between X and Z and an extra variance term, we
obtain that

ln/ s X d —’y/Xdul :ln/ X dpq —fy/)?d,ul—i-’yz Ig%éll)v(a:). (5.5)
BAS s

Hence to prove (4.14) it is sufficient to prove

—a(In [ X, — X
Sl(lopl]E [e Fz (o J:eidyn ’YfXdul)] < o0. (5.6)
v€(0,

For the rest of the proof we set t = ¢, := 7~ 1/8. We are first going to show that (5.6) holds with
X replaced by )NQW.

First, recalling the definition of Wick exponential (3.3) using that E[X2(z)] = ¢ + 2, we have
by Jensen inequality

- _ 2
ln/ s X du —’y/Xtdul > — %(t—i— 2). (5.7)
We introduce the event

A= {/ Ko (@) P15, )z i1 = G_t}-

Our idea is that on A we can use Taylor expansion to get rid of : exp : and In while the complement
has such a small probability that a rough estimate will be sufficient. A simple application of Markov
inequality implies (recall that Var(X;) =t + 2) that

PLAT < B | [ 1)1 5,y < 5.9

We are going to prove that if « is sufficiently small on the event A, we have

. N 2 - - 2
ln/:e“/Xt;dlul—y/Xtd,ulz% [/:Xf:d,ul—</Xtd,u1> —1]. (5.9)

Using the formula e > 1+ u + “72 + %3 for u = 7)2} — 772(15 + 2), we obtain that for some constant
C >0, for all y <1 and t > 1, we have as soon as |X;(z)| < t2,

~ —~ 2 ~
. e«/Xt(x) > 1 +7Xt($) + /77 3Xt($)2 . —C"ygtﬁ. (510)
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Hence integrating we obtain

- 2
X > S
[ idmz (e 1B@I< D+ 6%+ T R g e - O (5.10)
Note that with our choice of ¢ the last term is smaller than +2/8 for small values of 7. Now, on
the event A, using that : X? :> —(¢ + 2) almost surely, as a consequence of the event’s definition,
the missing parts in the integral are negligible and we have thus for « sufficiently small

- ~ 2 ~
/:eVXt sdpg > 1—|—7/Xtd,u1—|—%/:Xf:d,ul—72/4. (5.12)

Now the event A guarantees that the integral terms on the right hand side are at most of res2pective
order t*y and t*y2. Using this information together with the inequality In(1 + u) > u — % — |uf®
which is valid when |u| is sufficiently small, we obtain (5.9).

Now combining (5.7) and (5.9) we obtain that

P e T B e R V| B CRED
The first term can be controlled using (5.8) and the second using Lemma 5.1. We conclude that
o ,e’Y}?t . _ v
sup E [e_?(lnf' Tidi ’Yth”dul)] < 0. (5.14)
~v€(0,1]

Now to prove (5.6) with X we set
c e d
gl nidm oy
[erX s du

and bound separately the contribution of B and its complement. Using the decomposition

1n/:e“’55:d,u1—7/)zd,u1

3 ~ ~ o~ c e Xe :d
= <ln/ s Xy —v/thd,m) — 7/(X — X )dpy — log <w> (5.15)

IE X du

and observing that the last term is smaller than v2 on B we have (in the second line we just use
ab < a?/2 +b?/2)

]E |:€_'Y%(ln f:e’Y}?:dul—'nydul)ﬂB] < ea]E [6_%(ln f;eWXt’Y;dul—'yf)Zt,ydul)—‘r% f()z—)zt,y)d/i1:|

< % <E |:e—’2y‘§(lnf:e”Xﬂ:dul—’yf)?twdul)] +E [627& f(X—Xpﬂd;ﬂ}) . (516)
The first term is bounded uniformly in v > 0, cf. (5.14), while for the second one, it is sufficient

to observe that U, = i ()Z' — )Z'ty)d,ul is a Gaussian whose variance is small, the following being
valid for some ¢ > 0, as a consequence of (3.4) and Holder inequality

E[U] = /:O (/ Qu(w,y)ul(d2$)u1(d2y)> du < e
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For the other part we have using Holder’s inequality

—3a71/3
— 2 (In (X dpg — X X 2 3a [y 1/3
(5.17)
Lemma 5.2 (applied to u) implies that the first term in the r.h.s. is smaller than ec(1+a2)772, while

_lny]

. To conclude it is sufficient to show that P(B%) < e &2 .

. %Var(f Xdp)
the second one is equal to e2v

Let us notice that
]P(BC) <P [/ X dpy < 7} +P [/( Xy . X Ndpr >3 . (5.18)

The first term can be controlled by Lemma 5.2. As for the second one, its smallness is a consequence
of the following result proved in [11] under slightly different assumptions for u. The proof adapts
however to this context, we replicate it in below for the sake of completeness

Lemma 5.3. Given p satisfying (3.4) there exists a constant ¢ > 0 such that for all v sufficiently
small, we have for t, =: 18,

P [/ (: Xy e*y)? :> du > e_tw/ﬂ < o VE

Of course, as e *1/4 < ~3, this completes the proof. O

5.2 Proof of auxiliary Lemmas

Proof of Lemma 5.1. Setting Ny := || )Z'tdu we have

lz] <1

E [e—a[f:)?f:du—]\/?]} _— [e—a[fi()?t(m)—Nt)Q:dy,}] ea]E[NtQ}‘ (519)

As E[N?] is uniformly bounded in ¢ it is sufficient to control the first term in the r.h.s. . Let us set
Y, = )Zt(x) — N; and f/ﬁl,tz] = }7152 — fftl.

Fixing to (its exact value which depends on a and p is to be chosen later), we assume that t > ty.
Using orthogonality of the increments and the identity abe < %(a?’ + b3 + ¢3) we have

B e o] < p[e el T2 ]

< % (E [6_3‘1f5?%:dﬂ] +E |:e_3af:)~/[§0,t]:d“:| o) [e_Gaff/tO{/[tOvt]d”}> . (520)

The first term is easily controlled since we have for some constant C(p) for every = € B(0, 1)

: Vi (@) 2> ~E[Y;y(2)2] > —(to + C(p))- (5.21)
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As for the two other terms, we rely on [8, Theorem 6.7] which states in particular that for some
universal constant cy any square integrable variable Z};; 1 which can be expressed as the La limit
of second degree polynomials in (X¢(z));>0zeB(0,1), We have

Vt > 2, P[Z>t]|Z]2] < e, (5.22)

with ||Z||2 = E[Z%]"/2. Applying this to Z; := fm <1’ [to 'E
can bound the second and third in the r.h.s. of (5.20) uniformly provided we can prove that for
every t > ty, we have

s dp and Zs —f‘ ‘<1Y20 [to,4) dpt, We

| Zill2 < c2/(12cx), for for i = 1,2.

Using the notation Covy (z,y) = E[Y (x)Y (y)] for the covariance functions we have

1ZiB=2 [ (Covy, (@) plalonlglalan)deds,
1205 = [ Covg, (e.)Covy, (@ p)p(@p(0)g()g()dad?y,
], ly| <1 0l 0

Tedious but standard calculation allows to show that for some positive constant C' (depending on
the function p)

|Covy, (z,y)| <logClz —yl,

oo o (5.24)
]Covf/[t ; (x,y)| < Qu(z,y)du + Ce/C.
0 to
These estimates are sufficient to show that ||Z1]|2 and ||Z2]|2 can be made arbitrarily large by
choosing t( large. O
o

Proof of Lemma 5.2. With our positive assumption for p, at the cost of a multiplicative factor e~
we can replace | : X dp by [ : X : d2z. Then we obtain the result by a simple comparison
with the 1d log correlated case on the circle (well defined for v < v/2) for which we have an explicit

expression.
Indeed, if X;(e) is the circular GFF with covariance E[X; (e?) X1 (e?)] = In 719,| then the

‘ 0
Fyodorov-Bouchaud formula (proved by Remy [21]) and the use of Stirling’s asymptotics for the
I-function yields (in our range of parameters)

B

B
27 . -z 2
E (/ L (@) d9> Tl=r (1 + g) r (1 - %) " (2m) T < C(Bl8A8T) (5,95
0

The following holds

Vo) > 5 0.0, BX(pe")X ()] < BIX1(¢9) X (7)) +In8

[\D

since 4|pe? — p'e?’| > |e — e?'|. Therefore, on the annulus A = {z; 1 < |z| < 1} one can apply
=z

_B8
Kahane’s inequality (see [22, Theorem 2.1]) to the convex function z — x . Letting Y be a
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centered Gaussian with variance In 8 independent of X; we obtain that

[ 1 2m ~
=E </ / L X (o) pdpd0>
2 Jo
2

B

(N

_ 67
12

E

[ 1 p2m » _767 _B
/ / X)L hdpdh E [( eV :) 75}
2 Jo
2

B
B2logs | Blog2 | B 27 0 %2
—e 22 T 42 T2 </ 1) 1 qp
0

<E

and combined with (5.25) gives us the desired estimate. The estimate (5.2) is obtained by a
standard application of Markov inequality for 8 = |log~y|?/(2C).

P [/ X L dp §7} < 7E [(/ X du>_%] . (5.26)

0

Proof of Lemma 5.3. We write E; for the conditional expectation E[- | F,] where (F)s>0 is the
natural filtration associated with X, and with some abuse of notation P(A) := E4[1 4]. In what
follows, we will write ¢ for .

R X,
For fixed s > 0, we set ¢(s) := E; [esf('eV o X')du] and we have

P, [/ Xt X dp > e_t/ﬂ < max (1, (b(s)e_seit/s) (5.27)

The random function ¢ is almost surely differentiable and if X; := X — X; and K;(x,y) :=
ftoo Qu(z,y)du we have

¢,(S) _ Et |:/ <: ery)zt S e—yX :> dﬂgsf(;e'ﬁ?t;—:e’w?;)du}
=E, [/ L Xe(@) (esm:eﬁt:_:eﬂ:)d”— LX) esf(ZEWXt:_:GWX:)dM> #(dzx)]

y X X X 2R €T,-): N.
_ / : eﬁ/Xt(m) . E, |:esf(:e'YXt:—:e’yX;)du . esf(:e’th:_e'Y Ki(z,) e’yX')du:| ,u(dzx) (5.28)

where in the last line we used Girsanov formula (3.9). Now rewriting the expectation in the
integrand of the r.h.s. we have

Et |:esf(:e’y}?t:—:e'y)?:)d,u <1 s f(eWQI_(t(I")_l);ew)?;dM)]

< sE; [68“:67&:_:6%:)@/(eVQRt(x") —1): X d,u} < s¢(s) /(e”QRt(x") — Ddp. (5.29)
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Where the last linw is obtained using the FKG inequality (3.10) for the field X; and the increasing

s Xt —er X, X
functions e / ( e )d“ and [(e” Ki@) —1) 1 X : dpu whose E; average are respectively ¢(s)
and f(eV2Kt(x7') — 1)dp.

Using our assumption (3.4), one can check that there exists a constant C such that for all v
sufficiently small all z and ¢ > 0,

/(M%(I’y) — Dp(dy) < Cy%e . (5.30)

This yields
¢ (s) < [C’y%_t/ Lkt du} sp(s). (5.31)

/22

Hence on the event A; := {f cerXe dp < Zet/2} , we have ¢(s) < eCr*e™"*s* Hence integrating

(5.27) for s = €3/ we obtain

P; [/ Xt X dp > e_t/ﬂ < ]P’[Atc] + exp(—et/*/2). (5.32)

Finally we have
. )Z't . t/2 . X .
/ ceT dp < el 4 / ceVAt ]l{)?t>t-y*1/2}du‘ (5.33)
~ =~ -2

Using the inequality (recall that VarX;(z) =t +2), E [: erXe . ]l{fft>tv*1/2}] < e_WT, and thus
=2

PAY] < e 2. O

A Appendix

A.1 Relation between the centered Liouville action Sy, .,) and the Liouville
action S

Recall that the centered Liouville action is defined on H 1(@) by the following expression:

1 4
St ez (B) = M/(\V h(z)[? + drAe"Dw(z)g(z ))d22+— ZM / g(z)d*z
where
U(xks 21)) ZXk ) Inglzi) — 5 ZXkX] (25, k)
k#]
Now, we prove Lemma 3.1 on the link between SL,(Xk,Zk) and S(kazk)'

Proof. Recall the integration by parts formula

/Dade?z = %]écF(z)& (A1)

where C' is the exterior contour of the domain D.
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Recall that 75(y, .,) is the limit of 7S, as € goes to 0 where
TSe(®)

Xk
= (10.6)> + 7Ae??))d%z — i j{
/C\Uk 1 Bk u{lz> ¢} Z

|z— zk\—e Z_Zk

2 7|{z| o)

0 9, 1 1
+§kz_lxklnz+87rlng

where here the contour integrals § are oriented counterclockwise.
We first consider the case ¢ = h + ¢ with h smooth and ¢ is the explicit function

p(2) = In(g(z)w(2))- (A.3)

We have using the integration by parts formula (A.1)

/ 10,02
C\U}_, B(zp,e)U{|2[>1}

__1'” 272:_23' NO-0(2)dz — 0. 0-0(2)d22
= 2274,2_;;“:6 $(2)0:0(2)dz + 27|§Z|:2¢( )0z6(2)d /(C 8(2)0,0:6(2)d

k=1 \Up_; B(zr,e)U{l21> £}

Now, since h is smooth we have the expansion 0z¢(z) = —XT =+ O(1) as z goes to zj and hence
— dz
[ O B2 ==+ ol1)
|z z0|=e 2 Jpmml=e T ET %

as € goes to 0. Also, we have the expansion 0;¢(z) = —% + o( |1|) as z goes to infinity hence

§oooeT =24 o) + o)
|21= z

: jol=2
€ €

Therefore we get up to o(1) terms that

dz
S, = — 0,0z¢( - = —
mie) == [ sy AN Zxk § e

|z—2k|=¢€ T %k
. dz
+1 1gb() E Xkln +87rln—
\Z\:;

z

Now, we analyze each term ﬁZ_Zk‘:E (b(z)z_zz_k

i dz
- sz ]%z—zkzs ¢(2)5 — 2k

2T n
= _% (h(z1, + €€) + In g(2;, + ee’) + Z x;G(z;, 21, + ee))do
0 ,
7j=1
T m m 1 =«
= Xz (h(ze) +Ing(zp) + > xiGlz, %)) + sz Ing(zx) — §xi In =~ EX%"@ +o(1)
J#k

Xk s 1 =
=Xk h (z1) — xko %X] (2, 2k) 2Xk(1 - 7)1119(2’1@) — EXi 111; — EXz/f + o(1).
j
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We also have as € goes to 0 that

e . . n .
if DT = [N T + 3G s

T k=1

= 2mh(o0) + 27 Ind + 8w lne + 27 Z XtG (2K, 00) + o(1)
k=1

n
1 1
= 2mh(o0) + 27 Ind + 8wlne + QFZXk(§ In2— 2 Ing(zx) + k) + o(1).
k=1
Hence, we get the following expansion
i T dz
2
- - - In - — +8rln—
1 ija{_ $(2 z_Zk+2Zxk n “7{,2:1‘1’( )<+ wne

n

= 2mh(co ——Zth (21 —szk 25 In g(2) __ZXkXJ (zj,2K) + C 4+ o(1)
k#j

where C =2rInd + 27> xk(3In2+ k) — ZK D14 X3
We now analyse the term

_ / 6(2)8,0:0()d%=
C\UP_ Bl U{l21> 1}

by identifying the contribution of h and ¢ separately in the sum ¢ = h + ¢ with (A.3). Using
AgG(+,z1) = —27(8,, — =) and Aglng = —2 we get

1o 1
Aggo(z):—2—|—§ZXk on C\UP_,B(zp,e)U{|z| > =}
k=1 €

We deduce that

- / 0(2)0.0:(2)d22
C\UP_, B(zp,e)U{|z|>1}

1 /(C

4 \up_, (zk,e)U{\z\>%}
1 /(c B

4 \Ur_y (zk,E)U{\Z\>%}

= (% - é ZXk)/ B(2)g(z)d?z

C\Up_, B(z,e)uflz|>¢}

= ___ZXk /<25 (2)d%z + o(1)

=———Z><k / A(=)o(d% + (3 — £ 3" ) /C In g(2)g(=)d%= + of1).

$(2)Azp(2)d%z

$(2)Agip(2)g(2)d*z
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We also have that

_ / 0(2)8,0:h(2)d2z
C\UP_, Bl {l2]>1}

_ ! / o(2) A, h(2)d?z
4 Jevup_, Bz, uilz> 1}
_ ! / (—4G(z,00) + 4(k — 1ln 2) + Zka(zk, 2))ALh(z)d?2
4 Jovup_, Blag.e)u{lz/>1} 2 prt
1 1 "
_ ! / (—4G(z,00) + 4(r — = 1n2) + 3 x4 G2k, 2))Agh(2)g(2)d>2
4 Jovup_, Bl uilz>1} 2 pet

1 1 -
- /C (~4G(z,00) +4(s — 5 n2) + ; kG (2, 2)) Agh(2)g(2)d%z + o(1)

k=1

sn(h(o0) = 1= [ M:)a2)%) — 2% Y alhia) - 1= [ h<z>g<z>d2z>>
k=1

— —9rh(co) + (% _ é 3 Xk)(/ h()g()%2) + 5 D7 xuh(ar).
= k=1

Therefore, gathering the two above expressions, we get

== [ AAG G 00) = 3102+ 3 xuGlen ()12 + o)

wS(p) = /(]Z?Zh(z)lz +WAeh(z)eZLlX’“G(zk’z)g(z))d2z
1
+ ( _Z /h 2)d?%2) —wth 1——)lng(zk ——ZXng (25, 2k) + Cu((Xk))
k=1 k#j

where C,((xx)) = 2rInd+2r >0 xp(3In2+k) = 2> i+ =230 xk) JoIn g(2)g(z)d?z.
Now, we treat the general case. We write ¢ = h + ¢ and ¢, = hy + ¢ (¢ is the solution of the
Liouville equation) where ¢ is defined by (A.3). Using ¢ = (¢ — ¢*) + ¢*, we have

TSe(¢) = (102(¢ — ¢)|? + A (e?®) — 2 ()))d%2 + 75 (py) + S

/(C\U}cl_lB(zk,e)U{|z|>%}

where S/ can be expressed as a sum
1 al !

Se — Ml + 52,5

with

S =2 / D.(¢p — ¢x)0.pd?2
C\uk | Bz, l2[>1}

—zz P A C R ORI

|z—z|=€
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and

She =2 / 0-(h = h)d:h.d?z.
C\UP_, B(zp,e)U{l21>1}

Now, we have the following convergence

Sh, —>2/ah hy)0sh,d2z

€

so we just have to deal with the 5176 term. By integration by parts we get (where o(1) is with
respect to € going to 0)

AF
Sio=2 | 8.(6— .) zsod%—zzx’“]é (6 - 6)(E)
C\Up_, B(zp,e)U{lz> £} |z—zp|=€ -

. dz
+2i 7{4_ (6() — 0u(:) Z

2k

1

€

= - 2/ az(qb - ¢*)826290d2z + 0(1)
C\UR_, B(zk,e)U{|z|> ¢}

(h — h)ALpd?z + o(1).

;)
2 Jovup_, Bar,euflzl> 1)

Since on C\ U}_, B(zg,€) U {|z| > 1}, we have

Avp=(-2+ % > xk)g(z)
k=1

this leads to

3

Sle e (1- ikﬂ Xk) /c(h — hy)g(z)d?z.

€—

Gathering the above considerations, we get

TSe(¢) = mS () + /(|az(h — B[P+ AP — e ()))d%2
€E— C

n

+2 /(C d.(h — hy)0.hed?z + (1 — i > xk) / (h — hy)g(2)d?z

k=1 C

which proves identity (3.16).

A.2 Existence of solutions to the Liouville equation

Here, we give a short proof of the existence and uniqueness to the equation (A.6).
Let v be some function defined on the Riemann sphere. We introduce the functional Jy on
functions h € H'(C) with vanishing mean on the sphere

-1 /C V()P g(=)d% - /C ($(2) = mg()h(=) 9(2)d% + ey In /C w<z>eh<z’9<2>?2z |
A4
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where we set

%:Awmmm%+§kw4

and
1

myl) = 3= [ vlae)d

Recall that we have the following Moser-Trudinger inequality for all functions h € H'(C) with
vanishing mean on the sphere (see [13] for example):
1

(1 Ainf;(1 = xk/2))

Therefore, the functional Jy, is bounded from below if and only if ¢, > —4(1 Ainf;(1 — x/2)). In
that case, the minimum solves the following equation:

ln/(cw(z)eh(z) g(2)d%z < T6m /(C\Vgh(z)Pg(z)sz. (A.5)

Proposition A.1. Assume ¢y, > —4(1 Ainf;(1 — x/2)). Then the equation

weh
Bgh = —2m( = my () + 2reu (o - ) (A.6)

admits a unique solution hy, with vanishing mean on the sphere.

A.3 Convexity considerations
General considerations

Recall that when F is a function taking values in | — 0o, 00| on some Banach space B then we can
define its lower semicontinuous enveloppe F5¢ by the following limit

sc T . /
P = (%1—% ,\'e%l(ii\,a) PX).

This lower semicontinuous enveloppe satisfies the following properties:
1. If F is convex then so is F5.

2. For all A there exists some sequence (Ay,)y, > 1 such that A, converges to A and F(\,,) converges
to F5¢(N).

Now, if F is a convex function taking values in | — 0o, 00| we introduce the Legendre transform
F* by the formula

F*(x) = /s\lelg(< A, x > —F(A)).

By item 2 above one can easily see that F* = (F*°)*. Finally we recall the Fenchel-Moreau theorem
sk sc

F =F

Hence we deduce the following lemma which we will need in the following:
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Lemma A.2. Let I be some convex and lower semi continuous function on B* and F some convex

function such that

F(\) = sup (< A,z > —I(z))
reB*

then we have the following identity: I = F*.

Proof. We have I'* = ¥ and therefore by the Moreau-Legendre theorem we get I = I'** = (F¢)* =
F*. O

The Legendre transform of the Liouville action

Recall that ¢y = [ 9( g(2)d%z + 37_, Xx — 4. Now, we consider the Laplace functional F(z)
defined for all vy € H 1((C) by the formula

P() = —lixp,zn) T Cpln 2 — ¢y — Jy(hy) where hy solves (A.6) if ¢, > 0
| oo, ife, <0
We have the following lemma:

Lemma A.3. The lower semicontinuous enveloppe of ¥ has the following expression:

FOC(4)) = —l(xpz) T Cp1n X — ¢y — Jy(hy) where hg solves (A.6) if ¢y, = 0
007 chd; < 0
Proof. In the proof, we denote by Y the function on the right-hand side of the lemma. We want

to show that Y = F*¢. It is clear that Y (¢) = F(¢) if ¢y # 0. We choose 1 such that c; = 0. Let
e > 0. We have

1 4
F(Yp+€) = —l(y, 2) + /whedg ~ / |Vh|?d?*z — €ln (/ wehedg> + 47meln % — 4me

where h. minimizes
Je(h) = / |Vh|? d?®z — 47T/ (v —mg(y))hdg + 4me ln/ we' dg
R2 R2 R2

among functions with vanishing mean h € H 1((@) Since J¢(he) is bounded independently from e
we deduce that (h). is sequentially (weakly) compact and also by Moser-Trudinger (A.5) that we”
stays bounded in L'. Therefore, we can go to the limit in (A.6) and deduce that any limit h of a
subsequence of (h.) satisfies
Agh = =27(¢p — mgy(v)).

Hence, we deduce convergence of (h¢) to h which solves the above equation. Now, we use the fact
that [ |Vh|?>d?*z = 27 [(¥ —my(1)))hdg to deduce that we have convergence in HY(C). Therefore
Y(¢) = 11_)11% F(1) + €). This shows the result. O

Now we show that ¥*¢ is the Legendre transform of the Liouville action

Proposition A.4. We have

F(¢) = sup </ Y(z - SL,(Xk7zk)(h)> - l(x;mz;c)

and therefore also St (y, -,y = (F*¢)" = F*
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Proof. The supremum of the above proposition is the same (up to the —lxew,2) term) as the
supremum of the following function T'(c, h) defined for ¢ € R and h € H'(C) by

T(c,h) = cypc+ /(Cw(z)h(z)g(z)d2z - %/{c]Vh(z)PdQZ —Aec/cw(z)eh(z)g(z)d2z.

If ¢, < 0, one can fix h and take the limit ¢ — —oo which shows that the supremum of
T(c,h) is infinity. Therefore, we suppose that ¢, > 0. For fixed h, ¢ — T'(c, h) is maximal for
Ae [w(z)e h2)g(2)d*z = cy. This yields

1
supT(c,h) = ¢y, ln——c¢+/ P(z z——/ IVh(2)[*d*2—cyIn /w(z)eh(z)g(z)d2z
ceR dm Jc C
Now, one can conclude by optimizing this expression on h. O

Now, we introduce the following set called exposed points in the language of large deviation
theory (see section 4.5.3 in [3]):

f:{heH—( ); I € HY(C), Vh’;«éh/ng Si( )>/wh’g—SL(h’)}-

In words, F is the set of h € H~1(C) with the property: there exists ¢ € H!(C) such that

ur—>/¢ d z— 57 (Xk’zk)(u)

admits a unique maximum at u = h. The corresponding ) is called an exposed hyperplane. The
following lemma shows that there are many exposed points:

Lemma A.5. All smooth h € H_l(C) are exposed points for Sp (y, =), i-€ if h is smooth then
there exists some 1 in HY(C) such that the function u — [¥(2)u(z)g(2)d?*z — S (xx,z) (W) admits
a unique supremum at u = h. The corresponding exposed hyperplane 1 satisfies the following
property: there exists some t > 1 such that ¥(ty)) < co. Moreover, one has for all open set G C
H~Y(C)
hdBf 5L 00z (B) = J0f St (2 (R)-

Proof. Fix some smooth h. We can write this element as hg + 8 where hy € H 1(@) has vanishing
mean on the sphere. We set

o+ Z Xk —4 = Aeﬁ/ w(z)e @ g(2)d%z
k

C

and then

weh 1

wehog — 4r

1
wz_%AghO"i'(ZXk_‘L“‘a
k

We set 1) = 1) + 1~ It is easy to to see that the function u f Yug — I(u) has a unique supremum
given by h. Moreover, one has ¢, = a + >, xx — 4 > 0 and therefore there exists ¢ > 1 such
that ¢y = ta + > xk —4 > 0 hence F(ty)) < oco. Finally, the equality infreanz Sy, 2) (P) =
infreq St (yp,2) (B) is standard. O
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