Article Dans Une Revue Annales de la Faculté des Sciences de Toulouse. Mathématiques. Année : 2021

The semiclassical limit of Liouville conformal field theory

Résumé

A rigorous probabilistic construction of Liouville conformal field theory (LCFT) on the Rie-mann sphere was recently given by David-Kupiainen and the last two authors. In this paper, we focus on the connection between LCFT and the classical Liouville field theory via the semiclas-sical approach. LCFT depends on a parameter γ ∈ (0, 2) and the limit γ → 0 corresponds to the semiclassical limit of the theory. Within this asymptotic and under a negative curvature condition (on the limiting metric of the theory), we determine the limit of the correlation functions and of the associated Liouville field. We also establish a large deviation result for the Liouville field: as expected, the large deviation functional is the classical Liouville action. As a corollary, we give a new (probabilistic) proof of the Takhtajan-Zograf theorem which relates the classical Liouville action (taken at its minimum) to Poincaré's accessory parameters. Finally, we gather conjectures in the positive curvature case (including the study of the so-called quantum spheres introduced by Duplantier-Miller-Sheffield).

Fichier principal
Vignette du fichier
LD_last.pdf (476.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Loading...

Dates et versions

hal-02114667 , version 1 (29-04-2019)

Licence

Identifiants

Citer

Hubert Lacoin, Rémi Rhodes, Vincent Vargas. The semiclassical limit of Liouville conformal field theory. Annales de la Faculté des Sciences de Toulouse. Mathématiques., In press, ⟨10.5802/afst.1713⟩. ⟨hal-02114667⟩
127 Consultations
181 Téléchargements

Altmetric

Partager

  • More