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cUniversité de Poitiers, CNRS, ISAE-ENSMA, Institut PPrime UPR 3346, 86962,
Poitiers, France
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Abstract

This study assesses the ability of a sensitivity-based, span-wise homogeneous

control velocity distributed at the surface of a circular cylinder to cut down the

cost of reducing drag by more classical techniques, e.g., base bleed and lateral

suction. At Reynolds number Re = 100, achieving the linear optimal reduction

requires a time-dependent control velocity, set at each time instant against the

sensitivity of the instantaneous drag. This approach however fails against even

small control amplitudes because the system does not have time to adjust to

the rapid change in the value of the wall velocity, and drag essentially increases.

An efficient (albeit linearly suboptimal) reduction is however achieved using a

steady control velocity set against the time averaged sensitivity. By doing so,

drag decreases monotonically with the control momentum coefficient, and the

sensitivity-based design exhibits a significant advantage over base bleed and

lateral suction, that both reduce drag to a far lesser extent. Similar results

are reported using various levels of modeling to compute approximations to

the exact, time averaged sensitivity. The mean flow approach, that requires

knowledge of the sole time averaged cylinder flow, yields especially promising

results given the marginal computational effort. This approach is thus extended

to the turbulent case at Re = 3900, where it achieves similar efficiency in

the frame of both 2-D and 3-D RANS modeling. The study concludes with

a discussion about the feasibility to extend the scope to span-wise periodic
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forcing velocities, following the line of thought of Kim & Choi [Phys. Fluids 17,

033103 (2005)].

Keywords: Flow control; drag reduction; numerical gradients; adjoint method;

base bleed; lateral suction.

1. Introduction

Flow control, defined as the ability to modify flows to achieve a desired

effect, is a field of considerable importance, that has been blooming in the last

decades. In applications such as ocean shipping or airline traffic, reducing the

overall drag by just a few percent while maintaining buoyancy or lift could help5

reducing fossil fuel consumption and CO2 emission. A considerable amount of

research has thus been devoted to control the flow over bluff bodies, well-known

to exhibit unsteady vortex shedding and to produce a significant magnitude of

drag.

Flow control for drag minimization has often been benchmarked in bluff body10

wakes, like the canonical circular and square cylinder flows. A wide variety of

flow control strategies have been developed over the years : in addition to open-

loop methods featuring either passive appendices (e.g., end plate, splitter plate,

small secondary cylinder, or flexible tail) or actuating devices (e.g., plasma ac-

tuation, steady or unsteady base bleeding, rotation), closed-loop strategies have15

also been implemented (e.g. via transverse motion, blowing/suction, rotation,

all relying on an appropriate sensing of flow variables). An overview of the

recent achievements and perspectives can be found in several comprehensive

surveys; see, e.g., Refs. [1–9], and the references therein. Nonetheless, many

of the proposed control strategies are based on a trial and error approach, and20

therefore require extensive and costly experimental or numerical campaigns. In

parallel, optimal control strategies, relying on a rigorous optimization mathe-

matical formalism, have also been developed to achieve an optimal design with

minimal effort. These methods proceed from so-called sensitivity techniques,

and feature the efficient computation of the objective gradient with respect to25

the control variable through an adjoint formulation [10–16].

While optimal control methods apply easily to steady flows, they are in-

creasingly difficult to apply rigorously as the Reynolds numbers increase and
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unsteadiness and turbulence set in. In this paper, we thus consider various

approximations of optimal control design strategies relying on a span-wise ho-30

mogeneous control velocity distributed at the surface of a circular cylinder to ef-

ficiently reduce drag. In Secs. 3 and 4, we consider a Reynolds number Re = 100

for which the flow is 2-D and time periodic. We proceed to show that the steady

control velocity obtained from the optimal analysis of the time-averaged, mean

flow performs more robustly than the time-dependent control velocity obtained35

from the optimal analysis of the instantaneous flow. We also show that drag is

efficiently reduced using approximations of the steady control velocity, obtained

either from a self-consistent analysis, whose optimal encompasses the effect of

the control on both the mean and the fluctuating components of the cylinder

flow [17], or from a mean flow approach, whose solution takes into account the40

sole effect on the mean cylinder flow [16, 18]. Finally, we show that the opti-

mal control approach allows cutting down the cost of reducing drag by classical

blowing and suction techniques. In Sec. 5, we consider a turbulent case at the

Reynolds number Re = 3900 and show that the mean flow approach (the only

one that carries over for now without tremendous numerical and theoretical de-45

velopments) achieves similar efficiency in the frame of both 2-D and 3-D RANS

modeling. Preliminary results obtained by LES are also provided to assess the

influence of the turbulence model. In Sec. 6, we finally discuss the present span-

wise homogeneous control in the light of another approach used in the literature

to control vortex shedding by span-wise periodic disturbances (the helical strake50

is a typical example [19], which reduces the force fluctuations but increases the

mean drag). We compare especially our results to those of Kim and Choi [20],

who report a successful mitigation of drag using span-wise periodic blowing and

suction from slots located at upper and lower surfaces of the cylinder.

2. Problem formulation55

We investigate the two-dimensional (2-D), incompressible flow past a span-

wise infinite circular cylinder, forced open-loop by a 2-D, wall-normal velocity

u∗w distributed over the cylinder surface. We denote respectively by x and y the

stream-wise and cross-wise directions of the Cartesian coordinate system, whose

origin is at the cylinder center, and by i and j the related unit vectors. The
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Reynolds number is Re = u∗∞d
∗/ν∗, with d∗ the diameter of the cylinder, u∗∞

the free-stream velocity and ν∗ the constant kinematic viscosity. The cylinder

flow is denoted by (u, p), where u is the velocity vector and p is the pressure.

The flow motion in space domain Ω is governed by the Navier–Stokes equations

(NSE)

∂tu + u · ∇u−∇ · σ(p,u) = 0 , u|Γ = uwn = uw , (1)

where the cylinder surface Γ has unit outward normal n,

σ(p,u) = −pI +Re−1(∇u +∇uT ) , (2)

is the linear stress tensor, and T is the transpose. We omit the continuity

equation∇·u = 0 to ease the reading, as it is understood that all velocity fields

considered in the following are divergence free because of incompressibility.

In the following analysis, we use the L2 space inner product for continuous

real-valued functions on Γ defined by

(v |w)Γ = 1
2

∫ 2π

0
vTw dθ , (3)

where θ is the azimuthal position at the cylinder surface (measured from the

rear stagnation point) and the associated space-time inner product defined by

((v |w))Γ = (v |w)Γ, where the overline indicates an average over time. The

cylinder mean drag coefficient per unit length, simply termed mean drag (or

even drag) to ease the reading, is thus

D = 2((σ(p,u) · n | i))Γ , (4)

and we distinguish for clarity between the drag D0 of the uncontrolled cylinder

flow, and that Dw of the controlled cylinder flow. The cost of the control is

measured by the momentum coefficient

cµ = 2((uw |uw))Γ , (5)

physically representing the ratio (also per unit length) of the induced mean flux

of momentum to a reference momentum built from the free stream dynamic

pressure and the cylinder diameter [21]. The premise of this study is that the

cost of reducing drag by classical blowing and suction techniques can be cut
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down from knowledge of the drag sensitivity ζ(t, θ), by definition such that

δDw,lin = ((ζ |uw))Γ , (6)

where δDw,lin is the linear estimate of the control-induced drag variation Dw−
D0. Note that the sensitivity itself needs to be computed only once at the60

cylinder wall since we force open loop.

We insist that the focus of the paper is not on how to derive the sensitivity

by the adjoint method, which is a topic thoroughly covered in a series of recent

papers [16–18] to which the interested reader is referred for further deepening.

The line of thought is conversely to take the output sensitivity as a given, to

set

uw(t, θ) = −αζ(t, θ) , (7)

where α is a constant coefficient used to adjust the cost of the control (α >

0 to move against the gradient), and to assess efficiency by direct numerical

simulation (DNS). We mention all the same that the drag sensitivity is expressed

after Refs. [16, 18] as

ζ = [σ(−p†,u†) · n] · n , (8)

where (u†, p†) is the time-dependent, adjoint cylinder flow, solution to

−∂tu† + u† · ∇uT − u · ∇u† −∇ · σ(−p†,u†) = 0 . u†|Γ = 2i , (9)

We shall not go into the technicalities of it (all details are available in Appendix

C of Ref. [16] and Section 2 of Ref. [18]; see also the Appendix in Ref. [22]),

but Eq. (8) proceeds from a variational technique based on the computation

of Lagrange multipliers. Starting from the uncontrolled cylinder flow, i.e., the

solution to Eq. (1) with u|Γ = 0, one considers the linear perturbation (δu, δp)

induced by a small control velocity δuw, as governed by the linearized Navier–

Stokes equation with boundary condition δu|Γ = δuwn = δuw. Multiplying u†

and p† onto the linear momentum and continuity equations, using the divergence

theorem to integrate by parts over Ω, and finally integrating in time over the

span of the simulation1, gives

((u† |σ(δp, δu) · n))Γ − ((σ(−p†,u†) · n | δu))Γ = 0 , (10)

1We use classical conditions δu(0) = u†(T ) = 0 corresponding to a fixed initial cylinder

flow and a zero initial adjoint cylinder flow.
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Table 1: Details of the computational mesh used in the analysis at Re = 100. Lx and Ly are

the dimensions of the domain in the stream-wise and cross-wise directions, respectively. nθ is

the number of grid points at the cylinder surface, n is the total number of grid points, and

DoF is the number of degrees of freedom.

Lx Ly nθ n DoF

[-30, 60] [-25, 25] 320 5.4× 104 3.8× 105

Table 2: Mean drag coefficient (D0), r.m.s. lift coefficient (L′0), and Strouhal number (St) of

the uncontrolled cylinder flow at Re = 100, together with numerical data from the literature.

Contribution D0 L′0 St

Present 1.336 0.229 0.166

Referencea 1.322− 1.336 0.226− 0.234 0.164

a: data compiled from Refs. [20, 23, 24].

which is recast into

2((i |σ(δp, δu) · n))Γ − (([σ(−p†,u†) · n] · n | δuw))Γ = 0 , (11)

using the boundary conditions at the cylinder surface. Equation (8) then de-

duces straightforwardly from Eq. (6), as the left-hand side in Eq. (11) happens

to be exactly the linear control-induced drag variation δDw,lin.

3. Time-dependent actuation at Re = 10065

In the remainder of this section, the Reynolds number is set to Re = 100,

for which both the cylinder flow and adjoint cylinder flow are time periodic [25].

All calculations are performed with the finite element solver presented and vali-

dated in Refs. [16, 26], that uses Mini elements (i.e., continuous piecewise affine

functions) for space discretization and a second-order Crank–Nicholson scheme70

for time discretization. The set-up is identical to that in Ref. [17], for which

a summary of the mesh information is given in Table 1. Numerical accuracy

has been assessed by validating typical uncontrolled flow quantities (e.g., mean

value of drag, root mean square value of lift, Strouhal number) against several

reference studies, which yields the high level of compliance provided in Table 2.75
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It is a well known feature that time-dependent adjoint solutions must be

computed by marching the governing equations backwards in time, which re-

quires here knowledge of the entire history of the uncontrolled cylinder flow

solution. All results presented in the following are obtained using the exact

same approach as in Ref. [16], i.e., solving first Eq. (1), writing all time steps to80

disk, then solving Eq. (9) over the same time span and with the same time step

∆t = 0.05. We consider only starting the control from a fully developed shed-

ding to discard the late time steps of the adjoint simulation, where the early

transient of the uncontrolled cylinder flow produces large, unphysical control

velocities (actually, we discard also the early time steps corresponding to the85

transient of the adjoint solution to compute meaningful time averages of the sen-

sitivity integrands). The so-obtained time periodic control velocity is illustrated

in Fig. 1 at four time instants sampled over a vortex-shedding period. The first

snapshot in Fig. 1(a) corresponds to a substantial suction distributed over the

upper half of the cylinder surface, together with a blowing of lesser magnitude90

over the lower half. The third snapshot unveils the same pattern of substantial

suction and lesser blowing, only both halves of the cylinder surface exchange

roles because the phase is shifted by half a shedding period. The transition from

one pattern to the other is accompanied by a distortion of the blowing velocity

at the rear surface, found to be stronger on the half of the cylinder at which95

suction is applied, and by an almost constant blowing on the front surface.

Despite the effort gone into designing the control velocity from accurate

sensitivity calculations, we show in Fig. 2(a) that the nonlinear value of Dw

increases with cµ. This is especially unexpected given that the linear, optimal

value computed as

Dw,lin = D0 + ((ζ |uw))Γ , (12)

decreases rapidly, as the results reported as the fine solid line suggest that an

amplitude as low as cµ = 2 × 10−4 should suffice to reduce drag by 5%. A

closer look at the smallest values of cµ in Fig. 2(b) unveils that the control does

actually reduce drag while following the linear predictions, only the range of

efficiency is extremely narrow since drag increases back past cµ ∼ 5 × 10−6,

at which point it has been reduced by a marginal 0.3%. Figure 2(c) further

analyzes this singular behavior through the time evolution of the instantaneous

7



(a) (b)

(c) (d)

Figure 1: Time-dependent actuation: distribution of the wall velocity over a shedding period.

(a) corresponds to maximum sucked velocity on the upper half of the cylinder surface, while

(c)-(d) are successively shifted by a quarter of the shedding period. The yellow circles mark

the position of the mean separation points - Re = 100.

drag. Since there is no loss of generality in doing so, we conveniently set the

control to start at t = 0, using a value cµ = 10−4 of the momentum coefficient

that yields an overall increase of drag. We notice that drag decreases instantly,

then starts to increase after 27 time units (approximately 4 shedding periods).

This does not proceed from detrimental transient effects, as we obtain similar

results by increasing linearly the aerodynamic coefficient from zero up to the

desired value within a user-controlled time span τ , as achieved substituting

uw(t, θ) = −α
(

1 + t

τ

)
ζ(t, θ) , (13)

for the control velocity in the range from t = −τ to 0, in a way such that the

same value of cµ (encompassing the extra cost of forcing at times t < 0) is

achieved at t = 0. Beyond the expected difference in the initial reduction rate

(the larger τ , the smaller the reduction rate), the effect is essentially on the time

τi at which drag starts to increase, measured in Fig. 2(d) from t = 0 and found

to decrease with τ . A negative value is reported for the largest value τ = 50,

meaning that drag even starts to increase before the aerodynamic coefficient has
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reached its maximum value. Similar results have been obtained setting

uw(t, θ) = −αζ(t− τd, θ) , (14)

and varying the delay τd between the time instant at which the sensitivity is

computed and the one at which the ensuing control velocity is applied at the

cylinder surface (not shown here for conciseness). Note, this is not the clas-

sical shortcoming encountered applying linear optimal control distributions to100

fully nonlinear systems, i.e., the fact that the linear efficiency of the control is

progressively, nonlinearly cushioned until it is no longer effective. It is rather

an example of how a time-dependent, sensitivity-based control design can fail

against even small actuation amplitudes because its tremendous linear efficiency

ultimately generates a large nonlinearity. This may seem counter-intuitive at105

first, but despite the small values of cµ at stake, the control-induced flow mod-

ification departs from its linear estimate because achieving the expected drag

reduction imposes to substantially reorganize the near-wall pressure and velocity

distributions at each time instant. The errors add up because the system does

not have time to adjust to the rapid change in the value of the wall velocity, up110

to the point where the linear theory breaks down. Such results cannot be gen-

eralized, but instead must be assessed on a case-by-case basis. Still, they serve

as a reminder that there are many pitfalls when seeking systematical quick-hit

payoffs from the knowledge of numerical gradients, as we shall see in the follow-

ing that restricting to steady, suboptimal, control velocities yields much more115

convincing results.

4. Steady actuation at Re = 100

In this section, the Reynolds number remains set to Re = 100, but we restrict

from now on to time-independent, steady velocity distributions uw = uw(θ).

Pulling the control velocity out of the time integral in Eq. (6) yields simply

δDw,lin = (ζ |uw)Γ , (15)

where ζ(θ) is now a steady sensitivity distribution expressed from the mean

adjoint cylinder flow (u†, p†) as

ζ = [σ(−p†,u†) · n] · n , (16)
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(a) (b)

(c) (d)

Figure 2: (a) Mean drag of the cylinder flow forced by a control velocity set against the

time-dependent sensitivity, i.e., uw(t, θ) = �αζ(t, θ). The solid and dashed lines correspond

respectively to the nonlinear value drag computed by DNS, and to the open-loop, linear

optimal value computed from Eq. (17) - Re = 100. (b) Close-up at small control amplitudes.

(c) Time evolution of drag for a time-dependent control velocity set against the instantaneous

sensitivity. The black line is obtained setting the aerodynamic momentum coefficient to

cµ = 10−4 at t = 0, as marked by the leftmost vertical dots. The grey line is obtained

increasing linearly the coefficient from zero up to 10−4 within a time span τ = 25, as defined

by Eq. (13). The fine line denotes the drag of the uncontrolled cylinder flow - Re = 100. (d)

Time τi after which drag starts to increase against time span τ used to increase linearly the

momentum coefficient from zero.

since the stress tensor is linear in the flow variables. In the frame of the above

time-stepping analysis, it is straightforward to compute the exact sensitivity by

averaging over time the adjoint solution to Eq. (9), as in Refs. [16, 18]. This120

yields the control velocity shown in Fig. 3(a), that consists of a strong suction

distributed over the lateral sides of the cylinder, together with a lower amplitude

blowing at the front and rear surfaces.
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(a) (b) (c)

Figure 3: (a) Steady actuation: distribution of the wall velocity built from the exact, time

averaged sensitivity function - Re = 100. (b,c) Same as (a) for (b) base bleed and (c) lateral

suction. The size of the arrows has been adjusted for all distributions to give the same value

of cµ.

4.1. Exact sensitivity versus base bleed and lateral suction

We show in Fig. 4(a) that the sensitivity-based control velocity reduces

monotonically Dw even for large values of the momentum coefficient cµ. We

also report typical time evolutions in Figs. 4(c) and 4(d) to unveil how quickly

drag settles on its controlled value, as this takes ten or so shedding periods

regardless of the control distribution (these results, as well as those reported in

the following, are for a control starting from the fully developed shedding, but it

has been checked that identical results are obtained if the control is conversely

started from rest). Even better, the linear, optimal value computed as

Dw,lin = D0 + (ζ |uw)Γ , (17)

and shown as the fine black line provides a fair prediction of the achieved non-125

linear variation throughout the whole range of cµ. This highlights the improved

efficiency of steady, adjoint-based actuation over its time-dependent counterpart

considered in Sec. 3, and proves feasible to design a reliable control at a reduced

cost. Note that the intended reduction of the mean drag has been checked to

be systematically accompanied by a mitigation of the drag and lift fluctuations,130

which is not obvious a priori because the sensitive regions (as well as the effect

of a given forcing in these regions) are peculiar to each individual quantity2.

Note also that if cµ is so large as to make the flow stable and stationary (i.e.,

2The sensitivity analysis can be tailored to specifically reduce the r.m.s. values of drag

and lift [16], but this lies out of the scope of the present study.
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(a) (b)

(c) (d)

Figure 4: (a) Mean drag of the cylinder flow forced by a steady control velocity set against

the time averaged sensitivity, computed from Eq. (16) by a time-stepping approach. The

thick (resp. thin) black line is the nonlinear value of drag (resp. the linear optimal computed

from Eq. (12)), and the solid (resp. dashed) pattern indicates time periodic (resp. steady)

values. The thin dashed line (resp. dash-dotted line) is the linear value computed from the

sensitivity of the steady, uncontrolled drag (resp. the steady value of the uncontrolled drag

at cµ = 0.0432, as marked by the vertical dots). The results obtained using base bleed (resp.

lateral suction) are reported in blue (resp. in red) - Re = 100. (b) Relative drag variation

against cµ. (c,d) Time evolution of drag for (c) cµ = 0.005, and (d) cµ = 0.05. The fine line

is the drag of the uncontrolled cylinder flow.

it quenches completely the instability, which occurs here for cµ = 0.0432, as

obtained by global, linear stability analysis of the controlled flow and evidenced135

in Fig. 4 by the dashed lines), it is the sensitivity of the steady drag, not that

of the mean drag, that provides accurate predictions.

We also report the results obtained using two classical techniques :

• base bleed, i.e., blowing fluid into the wake through a small section of the

rear cylinder surface; see, e.g. [27–29]. The present results (in blue in all140

related figures) pertain to a blowing parallel to the free stream, applied
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through a rear slot covering the angular range |θ| ≤ 15 (in degrees).

• lateral suction, i.e., sucking fluid through sections located on either side

of the cylinder surface, close to the mean separation points [20]. The

present results (in red in all related figures) pertain to a sucking normal145

to the cylinder surface applied through slots covering the angular ranges

|θ ± 90| ≤ 5, i.e., just upstream of the mean separation points.

From a physical standpoint, the related distributions shown in Figs. 3(b) and 3

(c) are consistent with the main features of the sensitivity based-distribution,

since fluid is either blown through the rear surface or sucked through the lateral150

surfaces. Base bleed and lateral suction however use only a small portion of

the control surface and therefore require larger control velocities to achieve

the same value of cµ, as evidenced by the size of the corresponding arrows in

Fig. 3. As shown in Fig. 4, this yields important differences in terms of control

efficiency: while all three distributions end up reducing drag, the reduction155

achieved by sensitivity-based control is systematically and substantially larger.

This is emphasized in Fig. 4(b) recasting the obtained results in terms of relative

drag variations. Using base bleed or lateral suction, a momentum coefficient

cµ ' 0.020 is needed to reduce drag by 10%, but a value as little as cµ ' 0.004

suffices with the sensitivity-based optimal control, hence a tremendous cut by160

approximately 80%. Note that linear sensitivity (dashed lines) predicts that

lateral suction performs slightly less well than base bleed, but nonlinear results

(solid lines) show that it performs better when the control amplitude is increased

above cµ ' 0.010, which highlights the importance of nonlinear validation.

4.2. Application to pressure and viscous drag165

The drag variations obtained with nonlinear simulations decompose into

pressure and viscous contributions, that are of interest to analyze in more details

the effect of the control, and also to compare with experimental measurements,

where it is common that only one of the two contributions is available. It is thus

proposed here to compute the sensitivities of each component as an attempt to

optimize their individual reductions. This can be done with minor modifications

to the adjoint-based framework, namely, the pressure drag sensitivity proceeds

from the exact same adjoint equations, only the adjoint velocity at the cylinder
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(a) (b)

Figure 5: (a) Distribution of the wall velocity built from the pressure drag sensitivity (upper

half, black arrows) and the total drag sensitivity (lower half, grey arrows). The arcs of a

circle enhance the sections of the cylinder surface where the sensitivity is positive (black arc

for the pressure, whose ends are reported in the lower half by the dash-dotted lines, and grey

for the total drag, respectively). (b) Same as Fig. 4 for the mean pressure drag. The thick

(resp. thin) grey line is the nonlinear (resp. linear) value obtained setting the control velocity

against the sensitivity of the total drag.

surface is now given by

u†|Γ = 2(n · i)n . (18)

This is because the viscous wall stresses are purely tangential in the incompress-

ible regime [30, 31], which yields

[σ(p,u) · n]n = −p , (19)

and allows writing the mean pressure drag as

Dp = ((σ(p,u) · n | 2(n · i)n))Γ . (20)

The steady control velocity set against the time averaged pressure drag sensitiv-

ity is unveiled in the upper half in Fig. 5(a). Similar to the total drag sensitivity

reproduced in the lower half, it features a suction distributed over the lateral

sides and a blowing at the front and rear surfaces (again, the size of the arrows

has been adjusted for both distributions to give the same value of cµ). There170

are subtle differences in the sensitive regions, though, namely the pressure drag

sensitivity is lower at the front and rear surfaces, but almost identical on the

lateral sides, therefore its suction area is larger. This is evidenced by the arcs

of a circle in Fig. 5(a), that mark the sections of the cylinder surface where
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(a) (b)

Figure 6: Same as Fig. 5 for the viscous drag.

the sensitivity is positive (black and grey arcs for the pressure and total drag,175

respectively). Nonetheless, the pressure and total drag are sensitive in the same

regions and can thus be reduced using the same control distributions; see Fig. 5

(b) comparing the effect of a control velocity built from either the pressure drag

sensitivity (in black) or the total drag sensitivity (in grey). The latter approach

substantially reduces Dp although it is not specifically designed for it. The for-180

mer approach however remains more effective linearly (which could have been

expected since it is the linear optimal for the intended target) and nonlinearly,

because it makes use of the aforementioned extended suction area. Anyhow,

both distributions exhibit a significant advantage over base bleed and lateral

suction, that both reduce the pressure drag to a far lesser extent.185

By linearity, the sensitivity of the viscous drag Dν = D − Dp is obtained

by solving the exact same adjoint equations, together with the adjoint forcing

velocity

u†|Γ = 2i− 2(n · i)n . (21)

The steady control velocity set against the time averaged viscous drag sensitiv-

ity is shown in the upper half in Fig. 6(a). It corresponds to a wall blowing,

distributed upstream of the separation point and extending up to the front stag-

nation point, together with a weak blowing at the rear surface, and does allow

reducing Dν linearly and nonlinearly; see the black lines in Fig. 6(b). In con-190

trast, using the total drag sensitivity (in grey) does just the opposite, i.e., it

increases Dν , which is because the control velocity upstream of the separation
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points is a suction, not a blowing (so it is of the same sign as the viscous drag

sensitivity, albeit of the opposite sign as the total drag sensitivity). For the same

reason, lateral suction also increases Dν , while base bleed reduces it in a limited195

way. This stresses the need for a sensitivity tailored to the quantity of interest,

otherwise the approach is not necessarily an improvement over trial and error

design. Comparing Figs. 5(a) and 6(a), we note that the only region along the

cylinder surface where pressure and viscous drag have substantial sensitivities of

the same sign is at the rear surface, meaning that base bleed-like distributions200

are the only ones capable of reducing both Dp and Dν . All other distributions

reduce one component at the expense of the other, consistently with the results

in Figs. 5(b) and 6(b).

4.3. Exact sensitivity versus self-consistent and mean flow approaches

We now turn our attention to alternative methods recently introduced to205

compute approximations to the mean component of the adjoint cylinder flow

(which, we recall, determines the sensitivity distribution).

• a self-consistent analysis, whose solution (u†SC, p
†
SC) takes into account that

(i) the control velocity induces modifications to both the mean and the

fluctuating components of the cylinder flow, and (ii) the latter feeds back210

on the former via the formation of Reynolds stresses [17].

• a mean flow approach, whose solution (u†MF, p
†
MF) overlooks the modifica-

tion to the fluctuating cylinder flow (or equivalently its feed back effect

on the mean) [16, 18].

While we insist again that the focus of the paper is not specifically on how to215

derive the related adjoint equations, Appendix A sheds light on some of the

key assumptions, and guides the interested reader to the original literature con-

cerned with these topics, where in-depth technical and mathematical details

are available together with extensive discussions regarding the relevance of the

approximations. Suffice it to say here that both approaches strive to eliminate220

the need to compute and store entire time history of solutions by solving solely

time-independent adjoint equations. The appendix especially emphasizes that

the difference with respect to the exact sensitivity analysis is solely in the way
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the interaction between the mean and fluctuating components of control-induced

flow perturbation is encompassed, namely it is dismissed in the mean flow ap-225

proach, or modeled by a single harmonic approximation in the self-consistent

approach, hence significant differences in the computational effort. In prac-

tice, the self-consistent approach features two coupled adjoint equations, to be

solved iteratively by a combination of Newton and Arnoldi methods, which can

be computationally demanding albeit less demanding than going through the230

actual stages of the time-stepping approach. As for the mean flow approach,

it relies on the resolution of a single steady adjoint equation, with the only

requirement to be able to compute accurately the mean cylinder flow. The

control velocity built from the self-consistent drag sensitivity shown in Fig. 7

(a) is almost identical to that using the exact, time averaged drag sensitiv-235

ity, which is ascribed to the ability of the method to accurately recover the

structure of the sensitivity field [17]. It thus comes as no surprise that both

approaches yield the same drag reductions, both in terms of the nonlinear and

linear values and regardless of the control amplitude (actually it is virtually

impossible to differentiate in Fig. 7(b)). Meanwhile, the mean flow approach240

yields a control velocity resembling closely the exact one, especially close to the

mean separation points where the sensitivity is the largest; see Fig. 8(a). The

differences are in the overestimated (resp. underestimated) levels of sensitivity

at the front (rear) stagnation points, and explains the discrepancy between the

linear drag variations reported in Fig. 8(b). Somewhat counter-intuitively, the245

nonlinear variations are in closer agreement, at least up to cµ ∼ 0.043 where the

discrepancy is by less than 1%. Above this threshold value, the exact control

velocity makes the controlled flow stable and stationary, and it has been men-

tioned above that it is the sensitivity of the steady drag, not that of the mean

drag, that should be used for an effective control design. Owing to the subtle250

differences noticed in the control distributions, it however takes a larger value

cµ ∼ 0.082 for the approximated control to similarly quench the instability,

which explains the increasing discrepancy in between these two values.

We keep in mind that the extremely high level of agreement achieved for

the nonlinear variations of drag is somehow fortuitous, as it stems from the255

approximated velocity distribution triggering a lesser amount of nonlinearity,
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(a) (b)

Figure 7: (a) Distribution of the wall velocity built from the self-consistent sensitivity function

(upper half, black arrows) and the time averaged, exact sensitivity function (lower half, grey

arrows). (b) Mean drag of the cylinder flow forced by a steady control velocity set against

a model sensitivity computed by self-consistent sensitivity analysis. The thick (resp. thin)

black line is the nonlinear (resp. linear) value of drag, and the solid (resp. dashed) pattern

indicates time periodic (resp. steady) values. The results obtained using the time averaged,

exact sensitivity are reported from Fig. 4(a) as the grey lines - Re = 100.

(a) (b)

Figure 8: Same as Fig. 7 using a steady control velocity set against a model sensitivity

computed by the mean flow approach.

which in turn offsets the overestimated linear variation. For all that, given the

substantial differences in computational cost involved in obtaining the exact

and self-consistent sensitivities [17], the mean flow approach does appear as an

excellent trade-off to guide the design of near-optimal control at a reduced cost.260

This contrasts with the results documented in Ref. [16], where this mean flow

approach is shown to capture well the flow regions where drag is most sensitive to

bulk actuation, while missing substantially on secondary regions where the mean
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Table 3: Details of the finite volume (FV) and finite element (FE) meshes used in the 2-D

RANS analysis at Re = 3900.

Lx Ly nθ n DoF

FV [-5, 15] [-10, 10] 560 1.9× 105 7.6× 105

FE [-5, 15] [-10, 10] 1220 3.8× 105 3.8× 106

Table 4: Mean drag coefficient (D0), r.m.s. lift coefficient (L′0), and Strouhal number (St)

of the 2-D, uncontrolled cylinder flow at Re = 3900, together with numerical data from the

literature.

Contribution Model D0 L′0 St

Present 2-D RANS 1.671 1.208 0.235

Referencea 2-D RANS 1.642 1.184 0.243

Referenceb 2-D LES 1.625− 1.74 − 0.23

a: data compiled from Ref. [36].

b: data compiled from Refs. [37–39].

and fluctuating components of the solution strongly interact one with another

via the formation of Reynolds stresses. Here, only the effect of wall actuation is265

considered. It can be postulated that accurate estimations of the control effect

are obtained because the blowing velocity applied at the rear surface damps the

Reynolds stresses and shifts downstream their spatial structures (as has been

reported in several studies as a consequence of the increase of the formation

length, i.e., the size of the region bounded by the detached shears and the eddy270

roll-up [32–35]), so that the main drag reduction mechanism results from mean

flow modifications.

5. Towards turbulent regime

5.1. 2-D RANS modeling

We now set the Reynolds number to Re = 3900 to assess the applicabil-275

ity of a sensitivity-based control in the turbulent regime. As a first step, we

perform the analysis in the frame of the 2-D Reynolds-averaged Navier–Stokes

(RANS) modelling with the Spalart-Allmaras model. This simple numerical
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framework can be expected to fall well short of accurately representating the

finest turbulent motion, still it has proven relevant to analyze the sensitivity of280

turbulent wakes in fair agreement with experimental results [40, 41] because (i)

the vortex-shedding period is considerably larger than the turbulent time scale

(scale separation), and (ii) the primary instability triggering the onset of vortex

shedding is 2-D.

The cylinder flow calculations are performed with the OpenFOAM tool-285

box [42], now extensively used for academic research [43–46] and industrial flow

analysis [47–49]. In this study, we draw on the transient solver PimpleFOAM

(which is a merging between the classical PISO and SIMPLE algorithms) and

on the native implementation of the Spalart–Allmaras model packaged in offi-

cial OpenFOAM releases. The governing equations are discretized by the finite290

volume method, with a bounded Gauss upwind scheme for the divergence terms

and a Gauss linear scheme for the Laplacian terms and the gradient term. The

set-up is similar to that used in Ref. [16] for the square geometry of the cylin-

der, for which a summary of the finite volume mesh information is provided

in Table 3. We use a second-order implicit backward time advancing scheme295

with an adaptive time step, which yields typical values of order ∆t ∼ 0.0015.

By doing so, we obtain an uncontrolled drag D = 1.671 in good agreement

with 2-D numerical data available from the literature, as shown in Table 4. We

then proceed to compute the adjoint cylinder flow with the finite element solver

presented in Refs. [16, 40], in which the turbulence model is implemented via300

user-defined closure functions. To this end, we use barycentric coordinates to

interpolate the mean cylinder flow on the finite element grid whose information

also is provided in Table 3. Note that the finite element grid features twice

as many degrees of freedom as the finite volume grid because the inability of

the finite element solver to handle element anisotropy imposes to increase the305

resolution at the cylinder surface to match the finite volume resolution across

the viscous sublayer.

We restrict here to the sole mean flow approach, because (i) self-consistent

modelling is for now restricted to laminar regimes (it remains an open issue

whether it can be generalized to turbulent flows exhibiting increasing contri-310

butions from the higher-order harmonics), and (ii) it remains an open ques-

20



(a) (b)

(c) (d)

Figure 9: (a) Distribution of the wall velocity built from a model sensitivity computed by

the mean flow approach in the frame of 2-D RANS modeling (i.e., both the cylinder flow and

the forcing velocity are 2-D) - Re = 3900. (b) Mean drag of the cylinder flow forced by a

steady control velocity set against a model sensitivity computed by the mean flow approach

in the frame of 2-D RANS modeling. The black line (resp grey line) corresponds to forced

simulations started from a developed shedding (resp. from rest), and the solid (resp. dashed)

pattern indicates time periodic (resp. steady) values. (c,d) Time evolution of drag for (c)

cµ = 0.005, and (d) cµ = 0.015. The fine line is the drag of the uncontrolled cylinder flow.

The results obtained using base bleed (resp. lateral suction) are reported in blue (resp. in

red).

tion whether a meaningful unsteady adjoint solution can be computed in high-

Reynolds-number flows exhibiting chaotic features such as sensitivity with re-

spect to initial conditions, as it is generally acknowledged that any method

relying on a linearization of the unsteady Navier–Stokes equations will yield315

exponentially diverging solutions if the length of the adjoint simulation exceeds

the predictability time scale [50, 51]. Providing an answer to this sensitive issue

lies out of the scope of the present study, but we did march backwards in time

the 2-D adjoint RANS equations of the drag problem and noticed such a blow
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up of the adjoint solution, together with astronomically large magnitudes of320

sensitivity. This is in line with results reported in the 3-D flow past a circular

cylinder at a Reynolds number as low as Re = 500 [22] and in 2-D turbulent

wakes at Reynolds numbers of order 104 [52, 53]. The control velocity stemming

from the mean flow approach, depicted in Fig. 9(a), is made up of a strong suc-

tion, distributed over the lateral sides of the cylinder with maximum upstream325

of the mean separation points, together with marginal blowing at the front and

rear surfaces. As reported in Fig. 9(b), the latter effectively reduces drag over

a large range of cµ, while keeping a substantial advantage over base bleed and

lateral suction (in this order). Note that the ability of base bleed to reduce drag

is not inconsistent with the smallness of the adjoint-based velocity at the rear330

surface, since we recall that the sensitivity computed by the mean flow approach

is only an approximation of the exact sensitivity. It however stresses the need

to improve the quality of the sensitivity predictions to further cut down the

cost of reducing drag. Anyhow, the present approximation achieves a minimum

Dw = 0.48 at cµ ∼ 0.025, which represents a decrease by 71% of the uncon-335

trolled value D0 = 1.67. This also is the critical value of cµ allowing to quench

the shedding instability, i.e., to make the flow stable and stationary. Afterwards,

drag exhibits a slight increase (by up to 15% at cµ = 0.1 with respect to the

minimum, still this is a decrease by 65% with respect to D0) because the high

input energy tends to accumulate in the near wake. This makes the flow at the340

rear of the body more curved, which strengthens the pressure gradient due to

the centrifugal forces and weakens the base pressure. Interestingly, the results

display an hysteretic behaviour in a range of cµ from 0.0075 to 0.0225 (those

are the numerically determined values least removed from the actual hysteresis

thresholds), where the efficiency is substantially better starting the control from345

rest (grey line) than from a developed shedding (in black). We have checked

the robustness of these results by modifying the discretization scheme used to

compute all cylinder flows. While this is a point for further investigation, as it

clearly assesses that the control efficiency closely depends on the forcing distri-

bution and the time instant at which it is applied, it is likely that the controlled350

steady flow undergoes a competition between several instability modes and that

the adjoint-based control induce flow modifications large enough to alter the
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nonlinear selection. This is supported by the fact that, when starting the con-

trol from rest, the instantaneous drags computed with cµ = 0.005 (outside the

hysteresis band, Fig. 9(c)) and cµ = 0.015 (inside the hysteresis band, Fig. 9(d))355

disclose identical time evolutions up to t = 60, but ultimately settle on distinct

limit cycles.

5.2. 3-D RANS modeling

The question now being asked is what steps can be taken to raise the capa-

bility to fully 3-D turbulent flows. As a first step, we report here preliminary360

results obtained by computing the uncontrolled cylinder flow in the frame of 3-D

RANS modeling, using periodic conditions at the span-wise, lateral boundaries.

A summary of the mesh information is provided in Table 5, together with the

mean flow properties in Table 6. We keep forcing in 2-D, though, so it is handy

to redefine the overline as the double average over time and the span-wise di-365

rection, so that Eqs. (4) and (6) keep pertaining to the mean drag coefficient

per unit length.

The natural extension of the mean flow approach for the double average

consists in computing the sensitivity from the 2-D, time and span-wise averaged

cylinder flow, as is done in Ref. [54].3 We thus interpolate the 2-D mean flow370

over the same finite element grid as above, and proceed to compute the adjoint

cylinder flow using the same finite element solver. By doing so, we obtain the

control velocity depicted in Fig. 10(a), that closely ressembles that obtained

by 2-D RANS modeling (reproduced from Fig. 9(a) in the lower half plane),

except for the increased blowing velocities computed at the front surface and375

downstream the mean separation points. The latter is found to effectively reduce

drag (for the sole comparison point at cµ = 0.005, the improvement is by 70%

with respect to lateral suction, and almost twice as much, up to 135% with

respect to base bleed. For the same value of the momentum coefficient, we

have checked that the value Dw = 0.72 obtained from the span-wise averaged380

3It is also possible to compute a 3-D, steady sensitivity from the 3-D, time averaged cylinder

flow and to deduce the 2-D sensitivity by averaging over the sole span-wise direction. The

related solution comes also at a certain degree of approximation, since we recall that computing

the exact sensitivity would require computing a 3-D, time-dependent sensitivity from the 3-D,

time-dependent cylinder flow, and to double average over time and the span-wise direction.
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(a) (b)

(c) (d)

Figure 10: (a,b) Same as Fig. 9(a,b) for 2-D forcing velocities computed in the frame of 3-D

RANS modeling. (c) Time evolution of drag for cµ = 0.005. (d) Comparison between RANS

and LES modelling. The grey data in (b,d) denote alternative sensitivity results stemming

from a 3-D RANS simulation using the sensitivity-based profile computed in the frame of 2-D

RANS modeling. The results obtained using base bleed (resp. lateral suction) are reported

in blue (resp. in red).

adjoint velocity is below that Dw = 0.79 obtained from the purely 2-D solution

(grey circle in Fig. 10(b)), which stresses the need to somehow encompass the

three-dimensionality of the flow to further cut down the cost of reducing drag.

Other than that, the main difference with respect to the above 2-D results

lies in the inability of the control to make the flow stable and stationary, even385

for momentum coefficients as large as cµ = 0.1 (not shown here). Note that

the efficiency of the adjoint-based control is not conditioned upon the use of

RANS modeling, for instance, we have also assessed the control-induced drag

variations in the frame of LES. To do so, we settle for the native implementation

of the Smagorinsky subgrid scale model in OpenFOAM, corrected by a Van390

Driest function approaching the surface of the cylinder. We follow the guidelines
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Table 5: Details of the finite volume mesh used in the 3-D RANS analysis at Re = 3900. Lz
is the dimension of the domain in the span-wise direction.

Lx Ly Lz nθ n DoF

[-5, 15] [-10, 10] [0, 12] 240 7.4× 106 3.7× 107

Table 6: Mean drag coefficient (D0), r.m.s. lift coefficient (L′0), and Strouhal number (St)

of the 3-D, uncontrolled cylinder flow at Re = 3900, together with numerical data from the

literature.

Contribution Model D0 L′0 St

Present 3-D RANS 1.3 0.84 0.2

Referencea 3-D RANS 1.206− 1.373 0.304− 0.846 0.2− 0.215

Present 3-D LES 1.02 0.21 0.2

Referenceb 3-D LES 1.016− 1.156 0.25− 0.27 0.21

a: data compiled from Ref. [36].

b: data compiled from Refs. [20, 37, 38, 55, 56].

available in the open literature for this test case [37, 38], and use a classical

cylindrical mesh with second order centered schemes for space discretization,

and a second-order implicit backward time advancing scheme with a constant

time step ∆t ∼ 0.004. This yields an uncontrolled drag D = 1.02 fully consistent395

with the reference data available from the literature, as shown in Table 6. For a

momentum coefficient cµ = 0.005, a large reduction of drag by 48% is achieved

(D0 = 1.02 versus Dw = 0.53), which is slightly larger than the reduction by

44% obtained in the frame of 3-RANS modeling (D0 = 1.30 versus Dw = 0.72),

although both approaches yield rather similar results; see the relative variations400

reported in Fig. 10(d).

6. Discusion

The results presented hereinabove assess the relevance of using the output

of sensitivity analysis to efficiently reduce drag using 2-D control velocities dis-

tributed at the surface of a circular cylinder. They also prove feasible to design405

the optimal velocity at a marginal cost in the frame of the so-called mean flow
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approach, whose only requisite is the knowledge of a time- and space-accurate

mean flow. Promising results are especially reported in the turbulent regime,

using various levels of numerical modelling to describe the small-scale turbu-

lence.410

At this stage, there are several lines of research worth pursuing to keep rais-

ing the purpose of analysis. Among them is the generalization of the method to

steady, span-wise periodic actuation, which however adds a layer of complexity.

This is best seen going back to the uncontrolled flow at Re = 100, where the

leading-order variation proceeds from the second-order sensitivity, as the first-

order sensitivity ζ2D is 2-D and the inner product (ζ2D |uw)Γ is thus trivially

zero. While the first-order sensitivity is not necessarily zero in the most general

case, the fact remains that a second-order sensitivity is likely needed to accu-

rately predict the control-induced drag variations, and it cannot be computed

with state-of-the-art adjoint method (although technical solutions have been

proposed recently in the context of instability analyses [57–59]). In order to

provide an insight into the stakes of this discussion, we recall that a momentum

coefficient cµ = 0.0175 is needed to reduce drag by 20% at Re = 100 using the

exact 2-D sensitivity. For comparison purposes, Ref. [20] achieves the same drag

reduction using a momentum coefficient cµ = 0.00175 smaller by exactly one

order of magnitude, applying a steady wall-normal lateral blowing and suction

with wavelengths of order λ = 4− 5 (this is the span-wise periodic counterpart

of the empirical 2-D suction strategy considered in this study). We could not

even come close with a span-wise periodic velocity built from the 2-D sensitivity,

i.e., forcing with

uw(θ, z) = −αζ2D(θ) cos(2π
λ
z) , (22)

for instance, Fig. 11 displays results obtained for cµ = 0.00175 and a wavelength

λ = 4.5, using a doubled computational domain in the span-wise direction (Lz =

2λ) to include subharmonic perturbations. The drag reduction is by a mere

1.5%, which is comparable of the efficiency reported in Ref. [20] for wavelengths

of order λ ∼ 2. It remains difficult to draw a definitive conclusion, as the415

wavelength yielding the optimal drag reduction likely depends on the control

distribution. However, this is believed to stress the need for improved theoretical

frameworks to further cut down the cost of reducing drag without resorting to
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Figure 11: Time evolution of drag for a span-wise periodic, steady control velocity computed

from Eq. (22) with cµ = 0.00175 and λ = 4.5 - Re = 100. The thick (resp. fine) line is the

drag of the controlled, 3-D (uncontrolled, 2-D) cylinder flow - Re = 100.

exhaustive parametric studies, as there is tremendous control potential ahead.

This shows in Fig. 11 through the fact that such a small value of cµ = 0.00175420

suffices to produce a borderline steady controlled flow. The rms drag is about

1.26× 10−3, which we have checked is achieved with a purely 2-D control using

a value cµ ∼ 0.0055 thrice as large. This 2-D cost is obviously suboptimal

as it could be substantially reduced by setting the control velocity against the

sensitivity of the rms (not the mean) drag, but the same is true of the 3-D cost.425
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A. Time-stepping analysis vs. Mean flow approach vs. Self-consistent

analysis

This appendix reviews the various adjoint frameworks used in the course435

of this study. It is intended to shed light on some of the key assumptions,

and also to serve as a guide to recently published articles about the derivation

and resolution of the underlying equations. To fix a notation, we denote by an
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overline and a prime superscript the (time-averaged) mean and the zero-mean

fluctuation of a given quantity. Since the stress tensor is linear in the flow440

variables, the mean drag is entirely determined by the mean cylinder flow. The

effect of the control steady velocities considered herein is not quite so simple,

however, because the mean and the fluctuation are strongly coupled one to

another, as established by applying Reynolds decomposition to the uncontrolled

cylinder solution. In practice, there is a control-induced perturbation to the445

mean flow, that weighs on how the mean flow advects and produces fluctuations.

This generates in turn a perturbation to the fluctuation, whose Reynolds stresses

feed back on the mean to come full circle.

We now turn to the adjoint problem and restart from Eq. (9) governing the

exact, time-dependent adjoint cylinder flow, recast into

−∂tu† + φ†(u,u†)−∇ · σ(−p†,u†) = 0 , u†|Γ = 2i , (A.1)

with φ†(u,v) = −u · ∇v + v · ∇uT to ease the notation. The equations for

the mean and fluctuating components are obtained by applying the Reynolds

decomposition to Eq. (A.1), i.e., substituting (u†, p†) + (u†′, p†′) for (u†, p†),

averaging in time, then substracting from Eq. (A.1), to give

φ†(u,u†)−∇ · σ(−p†,u†) = −φ†(u′,u†′) , u†|Γ = 2i , (A.2)

−∂tu†′ + φ†(u,u†′)−∇ · σ(−p†′,u†′)

= −φ†(u′,u†)− φ†′(u′,u†′) , u†′|Γ = 0 . (A.3)

It is thoroughly explained in Appendix A of Ref. [16] that the various terms

coupling Eqs. (A.2) and (A.3) trace back directly from the Reynolds stress of450

the fluctuation and from the advection and production of fluctuations by the

mean, that couple both components of the cylinder flow.

The mean flow approach simply dismisses the mean flow/fluctuation inter-

action, and therefore amounts to overlook the fluctuating adjoint cylinder flow.

Equation (A.2) therefore reduces to

φ†(u,u†MF)−∇ · σ(−p†MF,u†MF) = 0 , u†MF|Γ = 2i , (A.4)

and all relevant mean drag variation are obtained solving a single steady adjoint

problem with the only requirement to be able to compute accurately the mean

cylinder flow.455

28



The self-consistent approach restores a model description of the interaction,

based on a single harmonic approximation of the fluctuation. This reads

(u, p) ≡ (uSC, pSC) + 2A<{(û1, p̂1)eiωt} , (A.5)

where ω is the fundamental oscillation frequency, (û1, p̂1) is the (complex) struc-

ture for the first harmonic of the fluctuation, parametrized by its (real) ampli-

tude A, and < denotes the real part of a complex quantity. The self-consistent

analysis couples a quasi-static approximation of the instantaneous mean flow to

its leading eigenmode (or instability mode), considered a relevant approximation

of the first harmonic. The eigenmode feeds back onto the mean via its Reynolds

stresses, which sets up a closed description of the mean flow/fluctuation inter-

action. For cylinder flows whose nonlinearity involves little production of higher

harmonics [60, 61], the self-consistent analysis aims at determining the ampli-

tude A yielding a neutrally stable mean flow, at which point the fundamental

frequency is given by the leading eigenfrequency. This is examined in greater

detail in Refs. [62, 63], together with numerical methods for computing the self-

consistent cylinder flow by a combination of Newton and Arnoldi methods. It is

especially made clear that the self-consistent mean flow (uSC, pSC) is not a given

but an output (hence the specific notation) because it must be balanced by the

Reynolds stresses of the leading eigenmode, while a DNS mean flow encompasses

the effect of all harmonics. The adjoint solution is similarly expanded as

(u†, p†) ≡ (u†SC, p
†
SC) + 2<{(û†1, p̂†1)eiωt} , (A.6)

and the various components come as the coupled solutions to system

φ†(uSC,u†SC)−∇ · σ(−p†SC,u†SC) = −2A<{φ†(û1, û
†∗
1 )} , u†SC|Γ = 2i , (A.7)

−iωû†1 + φ†(uSC, û
†
1)−∇ · σ(−p̂†1, û†1) = −Aφ†(û1,uSC) , û†1|Γ = 0 , (A.8)

(u†SC |φ(û1, û1
∗))Ω = 0 , (A.9)

α† + 2A(û†1 | û1)Ω = 0 , (A.10)

where α† is a specific adjoint variable meant to fulfill the neutral stability con-

dition, we note φ(u,v) = u ·∇v+v ·∇u, and the right-hand sides of Eqs. (A.7)

and (A.8) turn to be the single harmonic approximations of those in Eqs. (A.2)

and (A.3). The above equations are analytically derived in Appendix A of
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Ref. [17], and the resolution is performed in Appendix B using a low cost se-460

quential, iterative algorithm. This is because all equations are independent of

time, which eliminates the need to store entire time history of solutions, and

tremendously reduces the computational cost.
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