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Spatial distribution of mechanical forces and ionic flux
in electro-kinetic instability near a permselective membrane

Pierre Magnicoa)

I. INTRODUCTION

Ionic transport in the presence of a charged wall is
used in numerous applications such as electro-dialysis, fuel
cells, micro-mixers, biochemical analysis, etc.1–4 In micro-
and nano-technologies, electro-kinetic mechanisms, such as
electro-osmosis and electro-convective instability, play a role
all the more important that the specific surface is important
and the Debye length to the characteristic length ratio is not
so small, i.e., the volume where the electro-neutrality is not
fulfilled cannot be neglected.

In membrane systems, ionic separation is characterized
by three electro-kinetic regimes depending on the magnitude
of the electric potential drop applied to the system. The trans-
port properties such as the ionic conductivity are related to
the profile of the non-equilibrium electric double layer (EDL)
against the membrane surface. At small potential drop, the
electric conductivity is constant (Ohmic regime). As the poten-
tial drop increases, the conductivity decreases to a very small
value (limiting regime), i.e., the current density reaches an
asymptotic value called limiting current. These two regimes
have been intensively studied by means of the Nernst-Planck
equation coupled to the Poisson equation.5,6 It is observed in
particular that in the limiting regime, the EDL splits into two
parts: a quasi-equilibrium EDL against the membrane surface
and an extended space charge (ESC) layer at the outer edge of
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the quasi-equilibrium EDL. If the solvent leakage is to be taken
into account, the transport of solvent is modeled by means of
a linear relation between the solvent velocity and the current
density. So the solvent motion as the ion transport is described
by a 1D approach.7

If the potential drop is high enough, experimental inves-
tigations show that the electric conductivity and the current
density increase with the potential. This third regime, named
over-limiting regime, received several explanations such as
water dissociation in the depleted diffuse layer, protonation
and deprotonation of the ion-exchange groups at the interface,
gravitational effect induced by the ionic concentration gradient
or by the joule effect, heterogeneity of the membrane sur-
face (conductivity and rugosity), and electro-kinetic instability
along homogeneous membrane.8–15 However, several experi-
mental visualizations have shown that the electro-kinetic insta-
bility is the main mechanism at the origin of the over-limiting
regime.16–20

Electro-convective instability was first explained by the
presence of the ESC region and a heterogeneous electric
field (spherical ion-exchange resin and heterogeneous ion-
exchange membrane).21–23 However, in the case of homo-
geneous membrane, two theoretical approaches carried out
by Rubinstein and Zaltzman24–27 have proved the existence
of the electro-kinetic instability. An asymptotic analysis for
small Debye lengths leads to the determination of the expres-
sion of the velocity slip at the outer edge of the ESC region.
A linear instability analysis was also developed to esti-
mate the potential drop threshold and the vortex size. Suh28
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performed a thorough instability analysis over a wide range
of several parameters from the monotonic to the oscillatory
mode.

Even if these theoretical studies shed a new light on
electro-convective instability in membrane systems, it is nec-
essary to solve the fluid and ionic transport equations in order
to reach all the details of the electro-convective instability
and to expand the domain of validity of the investigation. In
this aim, Demekhin research group29–33 studied the tempo-
ral evolution of the instability expansion (self-similarity and
ESC layer deformation), the instability mode interaction in the
presence of rugosity, the instability regimes (from the bifurca-
tion analysis for steady instability to the chaotic motion), the
3D electro-convective pattern in the function of the potential
drop. In the same spirit, Pham et al.34,35 analyzed the cur-
rent hysteresis at the transition limiting/over-limiting regime
and helical hydrodynamic motion. Druzgalski et al.36,37 stud-
ied the chaotic mixing. The authors used ensemble averaged
equations to analyze the spatial distribution of the energy dissi-
pation, the energy spectrum, and the fluctuating forces. Direct
numerical simulations are also used in the chemical engineer-
ing context. Kwak et al.2,17 and Urtenov et al.38 studied the
electro-convective instability in the case of a pressure driven
shear flow between two ion-exchange membranes. A scaling
of the vortex size and of the vortex advection speed was found,
and several modes of instability have been investigated by
chrono-potentiometry from the Dukhin-Mishchuk mode to the
unsteady Rubinstein-Zaltzman one.

So, after a long period of time spent on the linear sta-
bility analysis, direct numerical simulations have given an
insight on the hydrodynamic structure and on the ionic flux
contributions. However, these results describe the instability
evolution in the transient and chaotic mode and also under
pressure driven flow. To my knowledge, results dealing with
marginal instability computed by direct numerical simulations
are published by Pham et al.34 and Demekhin et al.31,33 only.
So, the goal of the present work is to describe, in more detail
and in the simplest bi-dimensional situation, the contribution
of each term of the transport of momentum and ionic species at
steady-state.

After a validation step, the electro-convective instability
is studied at the global level. The coherence between the no-
flux of co-ions and the counter-ion imposed concentration at
the membrane surface is addressed first. The sensitivity of
the current density and of the potential threshold toward the
counter-ion imposed concentration is shown and a correla-
tion is proposed. The simulations also show that the range
of stable roll size depends on the potential drop value. In a
second step, a detailed analysis of the contribution of each

term of the transport equations is performed. The spatial dis-
tribution of the electric and of the pressure force is compared
first to the spatial distribution of the electric charge and of the
kinetic energy. We show how they act on the fluid motion and at
which location they are dominant. Then the spatial analysis of
each contribution of the ionic flux (diffusion, convection, and
electro-migration) is carried out to explain the motion of each
ionic species. The results show in particular the presence of
counter-rotating vortices of species flux even for the counter-
ion despite the high electric force directed to the membrane
surface. Finally, the longitudinal disequilibrium of pressure
and potential, leading to the electro-kinetic instability, is stud-
ied at the roll level. We show at the same time the agreement
between the macroscopic analysis and the microscopic one
developed previously.

II. THEORY
A. Model and governing equations

In this work, we use the two-dimensional model sys-
tem described in the studies of Druzgalski et al.36 and Pham
et al.34 (Fig. 1). An electrolytic solution lies between a cation-
exchange membrane and a bulk space at rest. In the bulk,
located at Lx from the membrane, the ionic concentration co

is homogeneous. The longitudinal length of the domain is Lz.
At the interface, the cationic concentration is constant and
equal to c+

interf and a no-flux of anion is imposed. A poten-
tial drop ∆Φ is applied through the domain in the transversal
direction x. Periodic condition is imposed in the longitudinal
direction z.

The incompressible fluid motion is described by the
Stokes equation [Eq. (1)] coupled with the continuity equation
[Eq. (2)]. The ionic transport is governed by the Nernst-Planck
equation [Eq. (3)] and the electric potential is related to the
local ionic concentration by the Poisson equation [Eq. (4)],

0 = −~∇P + µ∆~U − ρf
(
z+c+ + z−c−

) ~∇Φ, (1)

~∇ · ~U = 0, (2)

d
dt

c± =
∂

∂t
c± + ~U · ~∇c± = −D±~∇

(
~∇c± +

z±c±

kBT
~∇Φ

)
, (3)

− εoεr∆Φ = Q = z+c+ + z−c−, (4)

where P is the pressure, µ is the dynamic viscosity, ~U is the
fluid velocity, ρf is the fluid density, z± is the charge of the
cation and of the anion, c± is the concentration of the cation
and of the anion, Φ is the electric potential, t is the time, D±

is the diffusion coefficient of the cation and of the anion, Q

FIG. 1. Schematic representation of the numer-
ical model. Domain dimension: Lx = 1 and
Lz = 6. The boundary conditions are indicated
in brackets. The color plot represents the elec-
tric charge density. The streamlines visualize the
instability. The red arrows indicate the direction
of the vortices rotation. ν = 10�3, ∆Φ = 20,
c+

interf = 2, co = 1.



is the electric charge density, εo and εr are the permittivity
of the vacuum and the relative permittivity of the solution,
respectively, and kB and T are the Boltzmann constant and the
temperature, respectively. In Eq. (3), the interaction between
the current density and the induced magnetic field is neglected.
The speed of light is far much higher than the diffusional veloc-
ity computed at the domain scale. Therefore, we assume that
the magnetic potential is constant in time.

These equations are scaled as in the work of Druzgalski
et al.36 The characteristic parameters are the transversal length
Lx, the diffusional time tdiff = L2

x
/
D, the diffusional veloc-

ity Udiff = D/Lx, the thermodynamic potential ΦT = kBT
/
e,

the “osmotic” pressure Po = µD
/
L2

x , and the bulk concen-
tration co. Here e is the elementary charge. In the following,
we assume that D+ = D� = D so that for a symmetric univa-
lent electrolyte, Eqs. (1)–(4) become in their dimensionless
form

0 = −~∇P + ∆~U −
Pe

2ν2

(
c+ − c−

) ~∇Φ, (5)

~∇ · ~U = 0, (6)

d
dt

c± =
∂

∂t
c± + ~U · ~∇c± = −D±~∇

(
~∇c± ±

c±

kBT
~∇Φ

)
, (7)

− 2ν2
∆Φ = Q = c+ − c−, (8)

where Pe and ν are the Peclet number and the dimensionless
Debye length, respectively,

Pe =
εoεr

µD

(
kBT

e

)2

, (9)

ν =
λd

Lx
with λd =

(
εoεrkBT

2e2co

)1/2

. (10)

For simple ions, the value of Pe and D is around 0.5 and
10�9 m2/s, respectively. In this work, besides these two param-
eter values, ν is imposed equal to 10�3. So, if Lx = 0.1 mm,
then λd = 100 nm, co = 10 �5 M (T = 300 K), and the diffu-
sional time is 10 s. From now, we will use the dimensionless
variables. Therefore, the value of dimensionless transversal
length Lx and of the dimensionless bulk concentration co is
equal to 1.

The boundary conditions used at the fluid/membrane
interface are the no-slip condition, an imposed value of the
cationic concentration c+

interf , a no-flux for the anion, and a
null electric potential. At the bulk boundary, no-slip condition
is imposed and the potential value ∆Φ is applied. In the longi-
tudinal direction, the periodic condition is used. In this study,
c+

interf , Lz, and ∆Φ vary from 1 to 32, from 6/7 to 6, and from
0 to 50 (0–1.3 V), respectively. In the following, the ionic flux
and the current density are defined in their dimensionless form,

~J± = c±~U −
(
~∇c± ± c±~∇Φ

)
and

I =
〈(
~I
)

x

〉
Ω
=

1
A

∫
Ω

((
~J+

)
x
−

(
~J−

)
x

)
dA, (11)

where A is the area of the computational domain Ω. The
expression of I is the definition used in the work of Druzgalski
et al.36

B. Numerical method

As in the work of Pham et al.,34 the collocation finite
volume is used. The Stokes and the continuity equations are
solved by means of Darwish’s method.39 This method consists
in the use of the Rhie-Chow interpolation in the continuity
equation. This allows us to solve the Stokes and the continu-
ity equations at the collocation points. Darwish’s method also
increases the robustness of the resolution because contrary to
other algorithms like SIMPLE, the velocity at the surface of the
control volume is computed implicitly in the divergence free
equation without estimating a pressure correction. At the mem-
brane surface and at the bulk boundary, the pressure is linearly
extrapolated. The Poisson-Nernst-Planck (PNP) equation set
is solved by means of the Newton-Raphson method in fully
implicit form. The two equation sets are solved alternatively.
The second order space discretization is used. In the Nernst-
Planck equation, the convective term is computed with the
Quick scheme. As regards the time discretization, the back-
ward second order scheme is used. However, unlike Pham
et al.34 a structured grid is employed instead of a triangular
mesh.

Owing to the high gradient near the interface, the mesh
must be refined in the x direction. In this aim, a geomet-
ric series is used. This refinement induces an increase of
the aspect ratio (longitudinal stretching) of the control vol-
ume as we move closer to the membrane surface. In order
to avoid this problem and to use cells with an aspect ratio
value between 0.75 and 2, the control volumes are divided up
into two equal parts in the direction z when the aspect ratio
is greater than a desired threshold value (Fig. 2). The number
of longitudinal refinement levels varies from 4 to 6 according
to the value of ν and to the needed accuracy. At the boundary
between two refinement levels, a second order interpolation is
used.

In the case of simulations carried out with c+
interf ≤ 4,

ν = 10�3, and Lz = 6, 180 and 384 nodes are used in the transver-
sal and longitudinal directions, respectively. In the transversal
direction, the common ratio of the geometric series is 0.0234.
In the longitudinal direction, the refinement threshold is 2.

FIG. 2. Sketch of the numerical mesh. Refinement level from N to N + 2.



In the case of simulations carried out with 8 ≤ c+
interf ≤ 32,

ν = 10�3, and Lz = 6, 250 and 485 nodes are used in the transver-
sal and longitudinal directions, respectively. The common ratio
of the geometric series is 0.02. In the longitudinal direction,
the refinement threshold also is 2. For these two series of sim-
ulation, Eqs. (5)–(8) are integrated in time with a time step
of 10�4.

The mesh independency has been verified for ∆Φ ≤ 40
as concerns the current density. The number of nodes in the
x-direction and the value of the geometric series are chosen in
order to have at least 10 nodes in the quasi-equilibrium EDL
with a small variation rate of the cell size. In the z-direction,
the node number is chosen in order to have a cell aspect ratio
equal to 0.75 at the bulk boundary. Numerical simulations with
a refinement threshold of 2 and 2.5 give the same results. As
regards the time step, the value is not small enough for accu-
rate simulations. In this work, the transient phenomena are
not important. In the unsteady instability region, the simula-
tions are performed in order to have mean values. As concerns
the self-similarity validation, the time step values of 10�5 and
10�4 give the same results. However, in order to verify the
hysteretic behavior with c+

interf = 1, the common ratio of the
geometric series and the time step are decreased to 0.005 and
10�5, respectively.

C. General remarks about the electro-membrane
system conductivity vs ∆Φ

Before discussing the numerical results, the main trans-
port properties of membrane systems must be recalled first.
Figure 1 displays the charge density and the streamlines
induced by a steady-state electro-kinetic instability when ∆Φ
= 20 (c+

interf = 2, ν = 10�3, and Lz = 6). The electric charge den-
sity is positive in the whole domain but for the sake of clarity,
the color map lies between �10�3 and 3 × 10�3. Two regions
characterize the spatial distribution of the ionic species: the dif-
fusion layer, where the electro-neutrality is fulfilled (x ∈ [0.15,
1]), and the non-equilibrium electric double layer (EDL) of
width 0.15 against the fluid/membrane interface. This region
of high electric charge density has a much larger width than the
Debye length, i.e., the width of the EDL at a charged interface
in equilibrium with an ionic solution. The non-equilibrium
EDL is usually divided into 2 sub-layers: the extended space
charge (ESC) layer against the diffusion layer and the quasi-
equilibrium EDL between the ESC layer and the membrane
surface. The form of the polarization layer, i.e., the presence
and the width of the non-equilibrium EDL, and the conduc-
tivity properties also depend on the potential drop value (see
Fig. 2 in Ref. 24, for example).

In the Ohmic regime (region I in Fig. 3), the ESC region
does not exist and the diffusion layer, where the concentra-
tion gradient is constant, takes place in most of the polar-
ization layers. The concentration gradient increases with ∆Φ
and the electric conductivity (dI/d (∆Φ)), depending on the
ionic concentration, decreases with ∆Φ. At the same time, the
quasi-equilibrium EDL width increases. When ∆Φ reaches a
first threshold value, the ionic concentration vanishes at the
fluid/membrane interface and the limiting regime is reached
(region II in Fig. 3). Assuming a null value of c+ and a no-flux

FIG. 3. Current density versus electric potential drop. Comparison between
numerical results obtained in this work and those published by Druzgalski
et al.36 and Pham et al.34 Black curve: computations carried out in the case
of a quiescent solution. Four regimes of electric conductivity: (I) Ohmic
regime, (II) limiting current regime, (III) steady-state over-limiting regime,
(IV) unsteady over-limiting regime.

of anions at the membrane interface, and also assuming the
electro-neutrality, we obtain from Eq. (11) a simple expression
of the limiting current density,

Ilim = 2D+ co

Lx
. (12)

The dimensionless expression of I lim has a value of 2 as shown
in Fig. 3.

As ∆Φ increases, the concentration gradient in the dif-
fusion layer continues to increase. The point, where the
ionic concentration vanishes, moves away from the mem-
brane surface. Between this point and the outer edge of the
quasi-equilibrium EDL takes place the ESC layer. This layer
comes from a part of the quasi-equilibrium EDL whose width
decreases. The presence of a maximum of electric charge
density and of a minimum located at the outer edge of the
quasi-equilibrium EDL characterizes the ESC layer. As long
as ∆Φ is smaller than a second threshold value, the width
of the non-equilibrium EDL increases and the ionic solu-
tion remains at rest. This means that the ionic transport can
be described by unidimensional considerations. As we go
through this second threshold (∆Φ∗), the apparent conductivity
increases suddenly with ∆Φ (region III in Fig. 3). Beyond this
threshold, the electro-convective instability is induced by the
presence of longitudinal heterogeneity in the non-equilibrium
EDL region. The ionic and the fluid transport become multi-
dimensional but steady. By increasing ∆Φ, a third threshold is
reached and the ion transfer becomes unsteady (region IV in
Fig. 3).

We must notice that close to the thermodynamic equilib-
rium (∆Φ = 0), I is negative because the Donnan potential
is not taken into account. This approximation is discussed in
Sec. III B.

III. RESULTS
A. Validation

In order to validate the numerical method, results are com-
pared to those published by Druzgalski et al.,36 Pham et al.,34



and Demekhin et al.29 In Refs. 34 and 36, the two-dimensional
membrane system is identical to the system described here with
the same boundary condition. However, in the work of Pham
et al.,34 a small rugosity takes place at the fluid/membrane
interface. The published numerical results are obtained with
c+

interf = 2, ν = 10�3, and Pe = 0.5. In the work of Demekhin

et al.,29 the polarization layer is located between two cation-
exchange membranes with c+

interf = 5, ν = 5 × 10−4/
√

2, and
Pe = 0.25. Figure 3 shows the agreement between the published
data34,36 and those computed in this work. In this figure, the
black solid curve in the Ohmic regime and the limiting one is
computed with a 1D simulation.

Let us consider the results of Druzgalski et al.36 The
domain length value used by the authors is 6. Here, the current-
potential curve is computed first at∆Φ = 20. When the station-
ary solution is reached, i.e.,

〈(
~J−

)
x

〉
Ω
∼ 0, the potential drop

is increased to a higher value until ∆Φ = 42.5. The value of
Lz is 6. For ∆Φ = 20, a first 1D solution is computed with
the Stokes-PNP equation set and then reported over all the
computational domains. So at the first time step, all the vari-
ables are independent of z. In order to accelerate the instability
development, a small amplitude white noise is superimposed
on the concentration and the electric potential over the compu-
tational domain (c± (z, x) = c± (x) × (1 + a × Rand) and Φ(z,
x) = Φ(x) × (1 + a × Rand), where Rand is a random number
whose value lies between 0 and 1 and a is the perturbation
amplitude). As in Ref. 36, we obtain a vortex pair size of 6/5.
In the steady instability regime, the roll size does not change
with ∆Φ. If ∆Φ > 42.5, the vortices are no more stable and the
mean transversal current density displays a non-periodic tem-
poral variation. So, in this unsteady regime, the current density
is averaged over the time and the computational domain. The
vertical bars represent the root mean square of the signal. A
second set of computation is carried out from ∆Φ = 25 in the
decreasing direction with Lz = 1.2 = 6/5 in order to find the
potential threshold of marginal instability corresponding to the
vortex pair size.

A 2nd test consists in the comparison with the results of
Pham et al.34 The authors use a domain length value of 1.
In the present work, the profiles obtained with Lz = 1.2 are
used as the initial condition. A homothetic transformation
is applied in the z direction in order to obtain Lz = 1 with
the same number of computation nodes. The authors34 find
a hysteresis of current density at the transition to the over-
limiting regime. In the increasing potential drop direction, the
threshold value lies between 20 and 21 and the threshold one
of 19.1 is found in the decreasing direction. In the present
work, a subcritical bifurcation is also observed but the hys-
teresis amplitude is much smaller. The profiles computed at
∆Φ = 19 are used as the initial condition. Switching ∆Φ to

a value of 19.25,
〈(
~U
)2

z

〉
Ω

converges to the value of 10�13

after an iteration number (N iter) of 4 × 105. Using this new

solution for ∆Φ = 19.35,
〈(
~U
)2

z

〉
Ω

increases exponentially

with time if the iteration number is greater than 3.5 × 105.

At N iter = 9 × 105,
〈(
~U
)2

z

〉
Ω

reaches the value of 10�7. So,

the potential drop threshold in the increasing direction lies
between 19.25 and 19.35. This small difference in potential

drop threshold of 0.2 is in accordance with the value found by
Demekhin et al.31

A third test deals with the self-similar behavior of the
current-voltage curve. The test is carried out with c+

interf = 1,

ν = 10�3, and ∆Φ = 20, 30, 40, 50, i.e., from the marginal
instability threshold to the unsteady instability one. Demekhin
et al.29 show that at intermediate time before the instability
development, the diffusion layer and the current density follow
a self-similar evolution. The authors rescale the variables with
the diffusional length

√
4Dt. The new dimensionless Debye

length ν′, current density I ′, and electric potential drop ∆Φ′

are defined as

ν′ = ν/2
√

t, I ′ (t) = 2I (t)
√

t, ∆Φ
′ (t) = ∆Φ − I (t)/2.

(13)

To verify the self-similar evolution through the current-
voltage curve I ′ (t) vs ν′∆Φ′, the procedure described in
Ref. 29 is not followed exactly. In this article,29 the initial
condition consists in 1D profiles computed at ∆Φ = 0 to which
is superimposed a white-noise perturbation in concentration.
Then the electric potential drop is switched to a prescribed
value lying between 50 and 200. In the present work, the
boundary condition c+

interf = 1 is used because the condition
∆Φ = 0 is not consistent with the thermodynamic equilibrium
between the membrane and the electrolytic solution (i.e., no
ionic flux) if c+

interf , 1. With c+
interf = 1, the initial condition

is a flat profile of concentration and potential, i.e., the equilib-
rium EDL is not present against the membrane (see comments
in Sec. III B).

Figure 4 shows the variation of I ′ (t) vs ν′I (t)/2 instead
of I ′ (t) vs ν′∆Φ′.29 The circles stand for the universal
current-voltage characteristics and the solid lines represent the
numerical results for the four values of the potential drop. The
characteristics have the following expression:

I ′ (t) = 2.16 + 3.14
√
ν′I (t)/2, (14)

where the value 2.16 is close to I lim as noticed in Ref. 29.
Four regimes can be observed for the four values of ∆Φ.
For example, when ∆Φ = 30, during the first step (t ∈
[0, 0.01] or ν′I (t)/2 ∈ [5, 0.4]), the quasi-equilibrium EDL

FIG. 4. Temporal variation of the current density for several values of ∆Φ
(solid lines). Symbol: self-similar curve. Four regimes are displayed for ∆Φ
= 30. ν = 10�3, c+

interf = 2.



develops (region I). At the same time, the concentration gradi-
ent at the outer edge of the quasi-equilibrium EDL appears. In
a second step (t ∈ [0.01, 0.04] or ν′I (t)/2 ∈ [0.4, 0.063]),
the ESC region appears and the diffusion layer spreads to
the bulk boundary (region II). During the third one (t ∈
[0.04, 0.2] or ν′I (t)/2 ∈ [0.063, 0.016]), the ESC region
remains unchanged, the diffusion layer continues to spread,

and
〈(
~U
)2

z

〉
Ω

increases exponentially (region III). Finally, the

fourth one (t > 0.2 or ν′I (t)/2 < 0.016), the mean kinetic
energy value is is greater than 1, and the ionic transport is no
more one-dimensional (region IV).

B. Electro-convective instability property effect
of c+

interf and ∆Φ

In this section, two aspects are discussed: the dependence
of the instability threshold on the cation concentration at the
membrane surface and the dependence of the roll size on the
imposed potential drop.

As regards the first point, until now the value of c+
interf

was 1 or 2. However, the selectivity of a membrane system
is ideal if the membrane charge, i.e., c+

interf , is much greater
than the ion concentration in the bulk (co). In the literature,
the imposed value of c+

interf is equal to 1 or 2 in Refs. 34–38,
and the value is equal to 4 or 5 in Refs. 29–33. Rubinstein
research group found, by means of an asymptotic expansion,
that the electro-kinetic of the second kind does not depend on
this parameter. But Fig. 5 shows that the potential threshold
(∆Φ∗) and the current density are dependent on c+

interf .
The present investigation is carried out with c+

interf = 1, 2,
4, 8, 16, 32 for two domain lengths Lz = 6

/
5 and Lz = 6/7.

The length is chosen to impose the vortex pair size. In the
Ohmic and the limiting regime, the curves are computed
with c+

interf = 1, 2, 8. In the Ohmic regime, the figure dis-
plays a negative value of the current density at ∆Φ = 0.
This comes from the inconsistency between the condition
∆Φ = 0 and the null current density due to the Donnan poten-
tial induced by the presence of the fixed charge density inside
the membrane. This potential is computed by assuming (1)
the thermodynamic equilibrium between the membrane and

FIG. 5. Current density versus electric potential drop for two values of domain
length Lz and several values of c+

interf . Solid lines: computations carried out
in the case of a quiescent solution.

the ionic fluid and (2) the electroneutrality inside the charged
membrane. The thermodynamic equilibrium is defined by the
equality of the chemical potential over the domain µ±(x = 0) =
µ±(x) = Ln(c±) + z±Φ. From these assumptions and definition,
the Donnan potential has the following expression:

Φd = Ln *
,

−Y +
√

Y2 + 4
2

+
-

, (15)

where Y is the dimensionless concentration of fixed charge in
the membrane.Φd is negative in the case of a cation-exchange
membrane. Its magnitude increases with the fixed charge den-
sity. Assuming that c+

interf ∼ Y /2, as usually observed at equi-
librium, Φd reaches a value of �2.77 and �4.16 if c+

interf = 8
and 32, respectively, and the interfacial potential has the value
of �2.08 and �3.47 (Φinterf = −Ln

(
c+

interf

)
).

Assuming that the anionic flux J� is null, the current
density is equal to the cationic flux. J� = 0 means that the
anions are in thermodynamic equilibrium. Using the equal-
ity of the anionic chemical potential at the interface (x = 1)
and at the reservoir edge (x = 0) and using the boundary con-
dition on the potential, one obtains c−interf = co = 1. Let us
consider the cations. The current density is defined by means
of the chemical potential gradient I = J+ = −c+∂/∂x

(
µ+) .

Integrating the current over the polarization layer, we find

I ×
1

∫
0

1/c+ (x)dx = −µ+ (x = 1) = −Ln
(
c+

interf

)
. Therefore,

the current density is negative if c+
interf > 1 and vanishes if

c+
interf = 1. To conclude, the thermodynamic equilibrium is

fulfilled (J± = 0) if the potentials at infinity on both sides
of the membrane are equal.5 Or we must use the boundary
condition c+

interf = 1 if one reservoir is considered. However
this problem has no influence if the imposed potential drop is
higher than �Φd , i.e., the operating point is in the limiting and
over-limiting current regime as shown when ∆Φ > 10.

Figure 5 shows that the potential threshold ∆Φ∗ is an
increasing function of c+

interf and a decreasing function of
Lz, i.e., the vortex pair size so that at a fixed value of ∆Φ,
the current density is a decreasing function of c+

interf and an
increasing function of Lz. We can also observe that as ∆Φ
increases, the current density is less sensitive to c+

interf so that
close to the unsteady instability threshold, I is independent
of c+

interf . Figure 6(a) shows that an empirical relation in the

form ∆Φ∗ = a + b × Ln
(
c+

interf

)
agrees the numerical results.

Figure 6(b) shows that at a fixed value of ∆Φ, the current den-
sity follows the same logarithmic variation with c+

interf . The
values of a and b are gathered in Table I. From Fig. 5, we
can make another remark: the width of the potential window,
where the steady-state instability is a solution of the problem,
decreases with the roll size and the marginal instability does
not exist when ∆Φ > 35 if the vortex pair size is 6/7.

The logarithmic behavior of the potential threshold can be
compared to its dependence on the length ratio ν.31 In Fig. 5,
the authors31 show by means of a linear stability analysis that
in the range of ν lying between 10�4 and 10�3, the potential
threshold decreases logarithmically from 22 to 19, confirm-
ing the analysis of Rubinstein and Zaltzman.27 The range of
variation of ∆Φ∗ is exactly the same as the range shown in



FIG. 6. Effect of c+
interf on: (a) the electric potential threshold ∆Φ∗, (b): the

current density. Two values of domain length Lz: 6/5 and 6/7. ν = 10�3.
Symbols: numerical results. Solid lines: analytical expression.

the present work. So even if c+
interf varies over a range smaller

than two orders of magnitude, the dependence of∆Φ∗ on c+
interf

must be taken into account.
In the following, the influence of ∆Φ on steady peri-

odic solutions is addressed. A thorough study of stability was
performed by Demekhin’s research group31 in the case of a
polarization layer between two cationic exchange membranes.
In particular, the authors performed a stability analysis
of steady space periodic solutions by means of a small
amplitude white-noise perturbation in order to investigate the
transition from the steady solution to the time periodic one
and the chaotic mixing as a function of ∆Φ in the case of
supercriticality (Pe = 0.1).

TABLE I. Parameter values of the equation F = a + b × Ln
(
c+

interf

)
.

Electric potential threshold (F = ∆Φ∗) for two domain lengths Lz .

Lz a b

6/5 18.55 0.736
6/7 18.98 0.757

Current density (F = I) for two electric potential drops and two domain
lengths. ν = 10�3.

Lz a (∆Φ = 22.5) b (∆Φ = 22.5) a (∆Φ = 25) b (∆Φ = 25)

6/5 3.34 �0.159 3.71 �0.111
6/7 2.8 �0.115 3.03 �0.072

In the present work, the influence of ∆Φ on steady peri-
odic solutions is investigated in the case of the subcritical
bifurcation (Pe = 0.5). Unlike the work of Demekhin et al.,31

unsteady solutions are not considered. In fact, if ∆Φ = 20 with
c+

interf = 2, ν = 10�3, and Lz = 6, the vortex pair size of the
steady-state solution is Lz/5, while the size is Lz/6 if ∆Φ = 30
with c+

interf = 8, ν = 10�3, and Lz = 6. So it seems that the
steady roll size and the size range are increasing functions of
∆Φ. In order to verify these observations, an investigation is
carried out close to ∆Φ∗ (∆Φ = 20) and far from ∆Φ∗ (∆Φ
= 30) with c+

interf = 2, ν = 10�3, and Lz = 6.
Figure 7 displays the temporal variation of the amplitude

A(λ) of six wavelengths (λ = Lz/3, Lz
/
5, Lz/6, Lz/7, Lz/8)

during the development of the instability when ∆Φ = 20
and 30. The main wavelengths are chosen in order to sim-
plify the investigation of the transitory process in the linear
domain. These curves are obtained from the FFT analysis
of

(
~U
)

z
. Initially a signal composed of these six sinusoidal

waves in the z direction is added to the 1D solution at ∆Φ
= 20 and 30. The amplitude of the signal is 0.1%. The
perturbation concerns c± and Φ. The simulations are car-
ried out in the linear domain, i.e., during the exponential

increase of
〈(
~U
)2

z

〉
Ω

. If ∆Φ = 20, the figure shows clearly

that near the threshold, the two wavelengths Lz/5, Lz/6 are the
most stable vortex pair size as found in the case of a white-
noise perturbation. If ∆Φ = 30, the growth rate increases as the

FIG. 7. Variation of the amplitude of several wavelengths vs time. ν = 10�3,
c+

interf = 2, and Lz = 6. (a): ∆Φ = 20, (b): ∆Φ = 30.



TABLE II. Dependency of the final vortex pair size (λfinal) as a function of
the wavelength perturbation (λ′o). λo: Initial vortex size. ∆Φ = 20, ν = 10�3,
c+

interf = 2, Lz = 6.

λo Lz/4 Lz/5 Lz/5 Lz/6

λ′o Lz/5 Lz/4 Lz/6 Lz/5
λfinal Lz/4 Lz/5 Lz/5 Lz/5

wave length decreases. So the wavelengths, the amplitude of
which increase the most rapidly, decrease as ∆Φ increases.

In order to investigate deeper the stability of the vortex
pair as a function of its size, numerical experiments are carried
out in two steps with the same parameter and ∆Φ values. This
time, the stability is studied in the non-linear domain by means
of a high amplitude of perturbation in the 2nd step. The 1st
step consists in computing the numerical solution with a 1D
initial solution at ∆Φ = 20 and 30 to which is added a small
amplitude monochromatic sinusoidal signal in the z direction
(λo = Lz/No = Lz/4, Lz

/
5, Lz/6, Lz/7). This allows us to obtain

a vortex pair size of λo. In the 2nd step, a high amplitude
monochromatic sinusoidal signal is added to the vortex array.
The wavelength (noted as λ ′o = Lz/N ′o) is different from λo

and the amplitude is this time 20%. The computation is stopped
when the anionic flux converges to zero. The vortex pair size
reaches the final value λfinal. The time evolution of the roll
structure is not taken into account.

At ∆Φ = 20 the 1st step, the steady instability is reached
with a vortex pair size equal to the signal wavelength λo but
the length ratio No = Lz/λo = 7. With this initial value, the
stabilized vortex pair size is Lz/4. For the 2nd step, the results
in Table II show that the vortex pair sizes Lz

/
5 and Lz/4 are

the most stable. It must be added if λo = Lz/6 and λ ′o = Lz/5,
the final vortex pair size reaches the value of Lz/5 after the
intermediate value of Lz/4.

At ∆Φ = 30 the 1st step, the vortex pair size is differ-
ent from λo when λo = Lz

/
4 only. In this case, the vortex

pair size is Lz/6. For the 2nd step with λo = Lz/5, Lz
/
6,

Lz/7, if the perturbation has a wavelength smaller than the

initial vortex pair size (λo = Lz/No, λ ′o = Lz/(No + 1)), the
final size moves to λ ′o except λo = Lz/7. On contrary, if the
perturbation wavelength is greater than the initial vortex pair
size (λo = Lz/No, λ ′o = Lz/(No − 1)), the vortex pair size
remains unchanged except λo = Lz/8. This confirms that the
stability of a vortex pair decreases with its size.

C. Detailed description of the hydrodynamic

The spatial distribution of the mechanical forces and of
the local coupling between the forces and the velocity field
has not been described partially in the past.27,34 In Ref. 27, the
authors used an asymptotic expansion to explain the insta-
bility mechanism. In the discussion, the transversal profile
of the longitudinal component of the two forces shows that
the pressure is the main contribution of the instability, far
ahead the electric force. On contrary, in Ref. 34, the two
forces act on the instability mechanism. In the discussion, a
1D approach is also used as regards the longitudinal compo-
nent. In the following, we use the results computed with the
parameter values ∆Φ = 25, c+

interf = 1, Lz = 6/5, and ν = 10�3.
Computations carried out with other values show similar prop-
erties. Half of the domain (z ≤ 0.6) is taken into account in
order to simplify the comments owing to the symmetry of the
problem.

Figure 8 shows the spatial distribution of the charge den-
sity (Q) and of the kinetic energy (Ec) on which the streamlines
are superimposed. The vortex centers are located at (x = 0.2,
z = 0.35 and 0.85). The structure of the ESC layer does not
change in the region z ∈ [0, 0.3]. This layer has a mean width of
0.06 and the maximum of the electric charge density is located
at x ∼ 0.0375. But in the region z ∈ [0.4, 0.6], the width and
the position of the maximum of charge density increases to
a value of 0.25 and of 0.125, respectively, when z = 0.6. At
the same time, the quasi-equilibrium EDL width and its mean
electric charge increase. The region of intense kinetic energy
is located in the ESC layer (z ∈ [0.35, 0.5]) and in the upward
velocity field one (z ∈ [0.55, 0.65]). In the ESC layer, the spot
is located at x = 0.037, i.e., between the maximum of electric
charge and the outer edge of the quasi-equilibrium EDL. Ec

FIG. 8. Color plot of the electric charge density Q = c+
� c� (a) and of the kinetic energy (b) in the polarization layer. The counter-rotating vortices are visualized

by the streamlines. ∆Φ = 25, ν = 10�3, c+
interf = 1, Lz = 6/5. The red arrows indicate the direction of the vortices rotation.



increases quickly in the region z < 0.3 and reaches a maximum
at z = 0.45. As the ESC layer expands, its mean charge and Ec

decrease. So the region of high fluid acceleration is correlated
to the presence of a maximum charge in the ESC layer. The
presence of a secondary maximum of Ec is explained by the
flow convergence to the symmetry axis when x < 0.11. As soon
as the streamlines diverge, i.e., when x > 0.11,

(
~U
)

x
decreases

as x increases. For the same reason, we should see a spot of
kinetic energy in the region around z = 0. However, the dis-
tance between two neighboring vortices in this region is higher
than around z = 0.6. So the convergence of the streamlines has
less effect.

Figure 9 displays the difference in magnitude between
the electric force and the pressure force in the longitudinal

direction (
����
(
~FE

)
z

����−
����
(
~FPr

)
z

���� =
����−

(
c+ − c−

) (
~∇Φ

)
z

����−
����−

(
~∇P

)
z

����)
and in the transversal one. The Stokes equation describes the
equilibrium between the viscous, the electric, and the pressure
force. So, the figure shows where one of the two forces is
dominant and is in equilibrium with the viscous force. The
figure shows two layers along the fluid/membrane interface
and two minima on both sides of the symmetry axis.

The first layer with a positive value (preponderance of
the longitudinal electric force) is at the same transversal posi-
tion than the high kinetic energy layer. Along the membrane
from z = 0.1 to z = 0.5, this layer follows the displacement of
the maximum of charge density Q in the ESC region, i.e., the
distance from the membrane surface increases with z.

(
~FE

)
z

is positive of course. The pressure increases with z, reaches
a maximum value at z = 0.5, and then decreases around the
symmetry axis.

(
~FPr

)
z

is therefore negative and its magni-

tude increases with z until z = 0.5:
(
~FPr

)
z

acts against the

fluid motion. In the second layer,
(
~FPr

)
z

is dominant and(
~FPr

)
z
> 0. However

(
~FE

)
z

is also positive all along the

membrane (z < 0.6). Its magnitude is smaller than
����
(
~FPr

)
z

����
owing to the boundary condition imposed on Φ at the

membrane surface.
(
~FPr

)
z

and
(
~FE

)
z

increase with z, reach a
maximum at z ∼ 0.45, and decrease to 0 at z ∼ 0.6. Along the
membrane, the width of the 2nd layer increases with the non-
equilibrium one and in particular with the transversal position
of the minimum of Q.

At a distance greater than 0.075 from the interface, Q is
very small and

(
~FE

)
z

is no more dominant. So the fluid motion,
induced by the electric force at the bottom of the vortices and
by the friction in the transversal direction, produces a negative
longitudinal pressure force. At x = 0.1, as long as the ampli-
tude of

(
~FPr

)
z

remains small (z < 0.35),
(
~U
)

z
increases. Then(

~FPr

)
z

decreases quickly inducing a high decrease of
(
~U
)

z
as

z increases.
(
~FPr

)
z

reaches a minimum in the region z ∼ 0.5
owing to the symmetry condition at z = 0.6. Around the sym-
metry axis, the pressure reaches a maximum value if x > 0.05
and the extremum forms a plateau, i.e., it does not depend on
z, if x ∈ [0.2, 0.45]. The width of the plateau increases with x
from 0.05 to 0.1. At the same time,

(
~U
)

x
follows a quadratic

function of z over a longitudinal range larger than the plateau
width.

Now let us consider the transversal contribution of the two
forces. In the whole domain,

(
~FE

)
x

is negative which is not

the case for
(
~FPr

)
x
. Here also, if x < 0.15, we can observe

three distinct layers parallel to the fluid/membrane interface:
a first layer against the membrane surface where the electric
force is dominant, a second one (x < 0.035) where the pressure
force is dominant, and a third one (x < 0.15) where the electric
force is dominant again. The first layer corresponds to the
quasi-equilibrium EDL, the second one is located in the region
around the minimum charge density in the ESC layer, and the
last one lies in the remaining ESC region. The two outer edges
of the 2nd and the 3rd layers, i.e., x = 0.035 and x = 0.15, also
correspond to the width of the layers where

(
~FPr

)
z
> 0 and(

~FE

)
z
> 0, respectively. In the non-equilibrium EDL, the two

transversal components have opposite sign, i.e.,
(
~FPr

)
x
> 0

FIG. 9. Color plot of the difference in magnitude between the electric force and the pressure force. (a): Longitudinal component. (b): Transversal component.
The counter-rotating vortices are visualized by the streamlines. ∆Φ = 25, ν = 10�3, c+

interf = 1, Lz = 6/5. The red arrows indicate the direction of the vortices
rotation.



and
(
~FE

)
x
< 0. The difference ���

(
~FE

)
x

��� −
���
(
~FPr

)
x

��� seems to be
large but it is small compared to each force magnitude which
is equal to 106 in the ESC layer and increases to 108 in the
quasi-equilibrium EDL owing to the high increase of Q. So
we may assume the equilibrium between the two forces in the
non-equilibrium EDL, i.e., where

(
~U
)

x
is close to zero (see

the brief discussion in Sec. III E).
At the domain center z ∼ 0.6, we observe that the width

of the 1st layer increases and the 2nd layer is moved away
from the membrane surface and its width also increases. But
the 3rd one disappears. The expansion of the first two layers
comes from the enlargement of the quasi-equilibrium EDL
and the width of the 2nd layer is also increased by the stream-
lines convergence. The decrease of Q in the ESC region
induces a decrease of

(
~FE

)
x

and explains the absence of the 3rd
layer.

D. Comparison with asymptotic result

In Sec. III B, the numerical results show that the potential
threshold and the current density depend on c+

interf . However,

the asymptotic expansion26,27 performed in the over-limiting
regime leads to a description of the non-equilibrium EDL
independent of c+

interf over all the current regimes but in
the over-limiting one. So, in order to identify the disagree-
ment, the asymptotic results are compared to the numerical
ones.

In the case of standard ion concentration and transver-
sal length, the non-equilibrium EDL width is very small (ν
= 10�5 if co = 10�1 M and Lx = 0.1 mm, for example). In
order to simplify the problem of ion transport and to avoid
taking into account the non-equilibrium EDL, Rubinstein and
Zaltzman26,27 consider the transport of a quasi-electroneutral
solution in the diffusion layer with a slip boundary condition at
the membrane surface. By matching the asymptotic expansion
in the diffusion layer (named “outer” electroneutral layer) and
in the non-equilibrium EDL (named “inner” layer), the authors
find an expression of the position of the limit between the two
layers (xo) and of the slip velocity (Us). Therefore, in the sim-
plified model, the fluid/membrane interface is displaced to the
outer edge of the ESC layer.

At this step, we must notice that in the Rubinstein notation,
the Debye length λ ′d and the characteristic velocity U ′o have
not the same expression as in the present work,

ν′ =

√
kbTεoεr

e2co
=
√

2ν

and

U ′o =
εoεr

µD

(
kbT

e

)2

Udiff = 0.464Udiff . (16)

The expressions of xo and of Us are determined by means of
the Stokes equation and the asymptotic development of the
electric field,

xo = ν
′2/3

[(
∆Φ +

2
3

Ln
(
ν′

)) 3

2
√

2I

]2/3

, (17)

Us |x=xo
= −

1

9ν′2
dI
dz

x3
o , (18)

TABLE III. For three longitudinal positions z are gathered the positions of
the minimum of the electric charge density estimated from Eq. (19) (x′o) and
of the minimum computed in the present work (x

(
c+

min

)
), the position of the

outer edge of the ESC layer estimated from Eq. (17) (xo), and the ratio of the
numerical velocity to the slip velocity estimated from Eq. (18) (Uz(xo)/Us(xo))
at xo.

z x′o x
(
c+

min

)
xo Uz(xo)/Us(xo)

0.3 0.9 0.90 0.07 0.053
0.4 0.979 0.98 0.08 0.024
0.5 0.97 0.97 0.14 �0.001 51

where I = I(z) is the local current density. In order to test the
agreement between these two analytical expressions and the
numerical results, the value of xo is determined by computing
I = I(x, z) with the numerical data and by matching the value
of x with the expression of xo and then the theoretical slip
velocity can be compared to the numerical one.

Table III gathers the values of xo, the estimated position x′o
of the minimum of electric charge density at the edge between
the ESC region and the quasi-equilibrium EDL, and the ratio
of the numerical velocity to the theoretical slip velocity. These
values are computed for three longitudinal positions where Ec

reaches the highest value. The parameter values used in the
computation are ∆Φ = 25, c+

interf = 1, ν = 10�3, and Lz = 6/5.
The values of xo are in agreement with the assumption of outer
edge of the ESC layer. At these transversal positions, the value
of c+ is around 1/5 of the maximum value located between
0.04 and 0.066. The position of the minimum of concentration
x
(
c+

min

)
is exactly estimated by the analytical relation found

by Urtenov et al.,38

x′o = 2ν *.
,

√
1

c+
min

−

√
1

c+
interf

+/
-

, (19)

where c+
min is the minimum value of the cationic concen-

tration at the inner edge of the ESC layer. In most of the
non-equilibrium EDL all along the membrane, the numerical
results confirm Rubinstein’s hypothesis as regards the mechan-
ical equilibrium in the transversal direction. Neglecting the
viscous force in the Stokes equation and using the Poisson
equation in order to substitute Q with the Laplacian of the
potential, the integration of the Stokes equation leads to

P (x, z) =
Pe
2

(
∂Φ (x, z)
∂x

)2

+ b. (20)

This equality is fulfilled if x < x′ with x′ and b increasing
from 0.05 to 0.12 and from �1730 to �1140, respectively, as
z increases from 0 to 0.6. The thermodynamic equilibrium
hypothesis is approximately fulfilled in the quasi-equilibrium
EDL when c+(x) > 0.05.

Figure 10 displays the transversal profile of
(
~U
)

z
. The

maximum of velocity is located between 0.035 and 0.04, i.e.,
between the minimum and the maximum of electric charge
density in the ESC layer. So, this position corresponds to the
maximum of kinetic energy. The solid lines represent an ana-
lytic expression in the form Uz(x) = Ax(1 � Bx), with A ∈
[2800, 3550] and B ∈ [17, 19]. The agreement is fulfilled in



FIG. 10. Transversal profiles for three longitudinal positions. Open circle:
plot of the longitudinal velocity component. Solid lines: plot of the 2nd order
polynomial fit. ∆Φ = 25, ν = 10�3, c+

interf = 1, Lz = 6/5.

the region x < 0.023 which corresponds to the layer where
���
(
~FPr

) ���z >>
���
(
~FE

) ���z. It also corresponds to the region where
the vorticity magnitude is the highest. Assuming a Poiseuille
profile, 2A × B should be equal to the sum of the electric and
the pressure force. Over the three positions, the mean value of
2A × B is around 1.1 × 105, whereas the mean force is equal
to 8.5 × 104 and 1.1 × 105 at x = 0.02 and at the interface,
respectively.

The discrepancy lies in the too high value of the estimated
slip velocity compared to the numerical ones (see Table III last
column). At x = xo, the estimated slip velocity is equal to 586,
1100, and �650 as z increases from 0.3 to 0.5. So these values
are far much greater than the maximum value of the numerical
velocity and do not have the same sign at z = 0.5. Comparison
with smaller values of ν until 10�4, higher values of c+

interf until
4 and at ∆Φ = 20 also leads to the same disagreement.

The simplified transport equation of electroneutral species
is coupled with the two modified boundary conditions at the
membrane surface: the slip condition and the null concentra-
tion. Therefore the expression of Us must depend explicitly on
c+

interf . In the over-limiting regime, the authors27 simplified the

integral expression of Us by keeping the leading terms. The
c+

interf dependency may be achieved by a higher order develop-
ment. However, the dependence of Us on dI/dz does not seem
right enough.

E. Description of the cationic transport

The ionic flux depends on three contributions: the Fickian
diffusion ~J±Fi = −

~∇c±, the electro-migration ~J±Em = ∓c±~∇Φ,

and the convection ~J±Co = c±~U. The transversal cation flux
has been briefly discussed by Pham et al.34 The authors com-
pare three flux profiles along the longitudinal direction close
to the membrane surface (x = 0.02) in the presence and in
the absence of vortices. They show that the electro-migration
is dominant in the two cases. In the presence of vortices,
the transversal flux reaches a maximum in the downward
flow region and a minimum in the upward flow one. In the
work of Druzgalski et al.,36 the authors studied, in the chaotic
regime, the fluctuating transversal flux averaged in time and
in the z direction. Three regions are observed: in the mixing
layer, the convection and the electro-migration are dominant;
at the overlap of the mixing layer and ESC layer, the electro-
migration is important; in the quasi-equilibrium EDL and the
diffusion layer, the diffusion and the electro-migration are
dominant.

In this section and Sec. III F, we consider the two compo-
nents: their spatial distribution and the local motion of the ionic
species in the whole polarization layer. In order to describe
the local ionic transfer, the ionic streamlines are computed by
means of the ionic velocity defined as ~U± = ~J±/c± (Figs. 11
and 14). The spatial distribution of the two components of the
three relative contributions is displayed in Figs. 12, 13, 15,
and 16. The term relative means the ratio of the magnitude of
each contribution to the sum of the three ones for the two com-
ponents

(
Em±

)
x =

���
(
~J±Em

)
x

���
/ (���

(
~J±Fi

)
x

��� + ���
(
~J±Em

)
x

��� + ���
(
~J±Co

)
x

���
)
,

for example. In the following, the region 0 < z < 0.6 will be
used only in order to make the comments easier.

Figure 11 overlays the cationic streamlines with the color
plot of the cationic flux amplitude for the two components. The

FIG. 11. Color plot of the transversal component of the cationic flux (a) and of the longitudinal one (b). The streamlines display the cationic motion. ∆Φ = 25,
ν = 10�3, c+

interf = 1, Lz = 6/5. The blue arrows indicate the direction of the vortices rotation.



FIG. 12. Color plot of the relative amplitude of each cationic flux contribution. Transversal component. (a): Convective flux, (b): electro-migration flux, (c):
diffusion flux. The streamlines represent the fluid motion. ∆Φ = 25, ν = 10�3, c+

interf = 1, Lz = 6/5. The red arrows indicate the direction of the vortices rotation.

transport is mainly directed downward. However, the cationic
streamlines must bypass the counter-rotating vortices located
in the middle of the domain (x ∼ 0.25 and z ∼ 0.5) where the
two components of the flux are close to zero. The cationic flux
is mainly located in the outer boundary of the domain (z ∼ 0)
as shown in the work of Demekhin et al.33 so that at the mem-
brane surface half of the total cationic flux is located in the
region z < 0.2. The transversal component of the electro-
migration contribution

(
~J+

Em

)
x

is negative (in the downward
direction) in the whole computational domain and the longitu-
dinal component of the Fickian diffusion contribution

(
~J+

Fi

)
z

is
positive (in the inward direction) in the first half of the compu-
tational domain, i.e., z < 0.6.

(
~J+

Em

)
z

does not act on the cation

motion in most of the domain but in the region around the
axis of symmetry [Fig. 13(b)].

(
~J+

Co

)
z

is negative in the region

x > 0.15 and positive in the region x < 0.15.
In the region x > 0.6, the cationic rolls form a bar-

rier for the cationic transfer to the membrane so that the
flux is displaced to the outer boundary of the domain and
they push the transversal concentration gradient to the region
x > 0.3 [Fig. 12(c)]. This displacement induces an increase of
the gradient amplitude. Therefore, around the symmetry axis(
~J+

Fi

)
x

is dominant, whereas the region where
(
~J+

Em

)
x

controls
the cationic transport is moved to the outer boundary (z = 0
and z = 1.2) [Fig. 12(b)]. The upward displacement of the
concentration gradient means that the rolls separate the ESC

layer from the diffusion layer and control the maximum
expansion of the ESC layer.

In the region 0.3 < x < 0.6,
(
~J+

Em

)
x

and
(
~J+

Co

)
x

control the
transversal cationic motion, and the cations move to the outer
domain boundary by convection. Owing to the fluid vortices,
this region may be divided in three parts in the z direction
[Figs. 12(a) and 12(b)]. Close to the outer boundary (z < 0.2),
the cations move to the membrane by convection. Around a
curve joining the points where

(
~U
)

x
= 0 (0.2 < z < 0.4), the

transversal motion is controlled by the electric field. Around
the symmetry axis, the cationic convection is in the upward
direction (

(
~J+

Co

)
z
< 0) and is opposed to the diffusion (

(
~J+

Fi

)
x

> 0) and to the electro-migration (
(
~J+

Em

)
x
> 0). However, the

convection is not the dominant mechanism.
In the region 0.1 < x < 0.3 and outside the rolls,

(
~J+

Em

)
x

and
(
~J+

Co

)
x

control the cationic motion as in the aforemen-
tioned region, but the cations move in the longitudinal direction
by convection and diffusion [Figs. 13(a) and 13(c)].

(
~J+

Fi

)
z

is

dominant around the curve joining the points where
(
~U
)

z
= 0.

In the region x < 0.05,
(
~J+

Em

)
x

and
(
~J+

Co

)
z

are dominant but
the electro-migration controls the cationic transfer despite the
presence of the spot of kinetic energy at z ∼ 0.4. In this region,
the ionic concentration is small. This induces a high value
of the electric resistivity and of the transversal potential gra-
dient. Between the two last regions, we can observe a layer

FIG. 13. Color plot of the relative amplitude of each cationic flux contribution. Longitudinal component. (a): Convective flux, (b): electro-migration flux, (c):
diffusion flux. The streamlines represent the fluid motion. ∆Φ = 25, ν = 10�3, c+

interf = 1, Lz = 6/5. The red arrows indicate the direction of the vortices rotation.



FIG. 14. Color plot of the transversal component of the anionic flux (a) and of the longitudinal one (b). The streamlines represent the anionic motion. ∆Φ = 25,
ν = 10�3, c+

interf = 1, Lz = 6/5. The red arrows indicate the direction of the vortices rotation.

where
(
~J+

Fi

)
x

cannot be neglected. This layer is located at
the transition between the diffusion layer and the ESC one.
In these two layers, the concentration gradient is small but
between them a jump of concentration takes place over a small
distance.

In the vortex region, the negative contribution of
(
~J+

Em

)
z

is

no more negligible. Added to the
(
~J+

Co

)
z

one, their contribution

is close but greater in magnitude than the
(
~J+

Fi

)
z

one if x > 0.25,

i.e., in the upper part of the vortices, and push the cations
in the outward direction. If x < 0.25 (lower part of the vor-
tices),

(
~J+

Fi

)
z

is again dominant and the cationic streamlines are
convergent.

F. Description of the anionic transport

Figure 14 displays anionic vortices centered at (x = 0.3,
z = 0.2, and z = 1.). Figures 15 and 16 show that the spa-
tial distribution of the relative anionic flux contributions is
almost the same as the cationic one. This is surprising if we
consider the difference between the cationic and the anionic
streamlines. But this time, the mean flux is null over the com-
putational domain,

(
~J−Em

)
x

is positive owing to the change of

the ionic charge sign, and
(
~J−Em

)
x

and
(
~J−Fi

)
x

vanish as x tends

to 0 owing to the very small value of c� (10�15).
The co-existence of two regions separated at x = 0.8

is explained by the anionic no-flux and the imposed condi-
tion at the bulk boundary. The no-flux imposes a rotation
motion of the anions. At the bulk boundary, the velocity is
null, and the concentration and the potential are constant.
So the direction of the anion motion must be orthogonal to
the boundary. The anions must enter the domain by diffu-
sion and must leave the domain by electro-migration because(
~J−Fi

)
x
< 0 and

(
~J−Em

)
x
> 0 [Figs. 15(b) and 15(c)]. As we

go away from the bulk boundary, the magnitude of the longi-
tudinal velocity increases. Therefore, Figs. 15(b) and 16(a)
show that the limit x = 0.8 corresponds to position where(
~J−Co

)
x

+
(
~J−Fi

)
x

+
(
~J−Em

)
x
∼ 0 and where the anions move by

convection [
(
~J−Co

)
z
contribution].

In the region x < 0.8 and z < 0.2, the anions move down-
ward by convection against the electro-migration [Figs. 15(a)
and 15(b)]. The longitudinal anionic motion in the upper part of
the vortex comes from the convective contribution [Fig. 16(a)]
and in the downer part it is induced by the Fickian one (0.2
< x < 0.3) and by the convective one (x < 0.2) [Figs. 16(a)

FIG. 15. Color plot of the relative amplitude of each anionic flux contribution. Transversal component. (a): Convective flux, (b): electro-migration flux, (c):
diffusion flux. The streamlines represent the fluid motion. ∆Φ = 25, ν = 10�3, c+

interf = 1, Lz = 6/5. The red arrows indicate the direction of the vortices rotation.



FIG. 16. Color plot of the relative amplitude of each anionic flux contribution. Longitudinal component. (a): Convective flux, (b): electro-migration flux, (c):
diffusion flux. The streamlines represent the fluid motion. ∆Φ = 25, ν = 10�3, c+

interf = 1, Lz = 6/5. The red arrows indicate the direction of the vortices rotation.

and 16(c)]. The longitudinal Fickian diffusion plays an impor-
tant role because the center of the anionic vortex is at a higher
transversal position than the fluid vortex one.

In the region 0.3 < z < 0.4,
(
~J−Em

)
x

controls the upward
anion motion because the center of the anionic vortex is closer
to the outward boundary than the fluid vortex one. However,
if x > 0.6, the downward contribution of

(
~J−Fi

)
x

is opposed to

the upward one
(
~J−Em

)
x
. In the middle of the computational

domain (0.45 < z < 0.6), the upward convective contribu-
tion

(
~J−Co

)
x

is opposed to the downward Fickian one
(
~J−Fi

)
x
,

but the convective contribution is dominant when 0.1 < x
< 0.6. Figures 14, 16(a), and 16(c) show that the anions
move mainly by diffusion in the longitudinal direction when
0 < x < 0.25.

G. Potential and pressure disequilibrium
on both sides of a vortex

In Sec. III C, we have observed that the fluid motion is
induced by the electric and the pressure forces distributed on
several layers inside the non-equilibrium EDL and the diffu-
sion layer. We are now able to describe how the distribution
of the charge density induces a macroscopic drop of pressure
and of potential between z = z1 = 0 and z = z2 = 0.6. The idea
commented briefly in the work of Pham et al.34 is thereby used
in this section but developed in detail. Thus the longitudinal
disequilibrium of pressure and potential, leading to the electro-
kinetic instability, is analyzed quantitatively and compared
to the spatial distributions of

(
~FPr

)
z

and of
(
~FE

)
z
. We also

link the longitudinal pressure drop to the transversal potential
profiles.

Let us describe first the charge distribution in the non-
equilibrium EDL at z1 and z2. The non-equilibrium EDL has
a smaller width at z1 than at z2 and the charge density is much
higher at z1 than at z2 in the ESC layer. At z1, the charge density
profiles have a minimum value Qmin = 0.016 at xmin = 0.0136,
a maximum value Qmax = 0.0217 at xmax = 0.0342, and the
position where Q

/
Qmax = 1/5 is x′ = 0.06. At z2, Qmin = 0.0014

at xmin = 0.05, Qmax = 0.0015 at xmax = 0.12, and Q/Qmax = 1/5
at x′ = 0.26. The value of the total electric charge contained

over all the transversal direction (
1

∫
0

Q (x, z) dx) varies between

0.22 and 0.2 as z increases from z1 to z2. At z = z1, the total

electric charge in the ESC layer is half the electric charge
contained in the quasi-equilibrium EDL. At z2, the value of the
charge ratio falls to 0.07. Therefore, owing to the invariance
of the total charge, the width of the quasi-equilibrium EDL,
i.e., the charge density, at z2 must be greater than the quasi-
equilibrium EDL width at z1.

Let us consider now the potential drop between the two
axes z1 and z2. We have observed that ���

(
~∇Φ

) ���z <<
���
(
~∇Φ

) ���x in
the non-equilibrium EDL. So, the Poisson equation becomes
− ∂2

∂x2Φ ∼ Q. By integration, the equation has the following
form:(

~E
)

x
(z, x1) −

(
~E
)

x
(z, x0) ∼

x1∫
x0

Q (z, x)dx = Q(x0,x1) (z) , (21)

where ~E is the electric field. This means that the variation of
the potential gradient or in other word the slope variation of
the potential profile between two points is equal to the elec-
tric charge contained in this interval. Figure 17(a) displays the
potential profiles at z1 and z2. Three regions can be observed.
In the first one, located at 0 < x < 0.005, i.e., inside the
quasi-equilibrium EDL, the two profiles are very close because
Φ = 0 at the membrane surface and Q(0,0.005) is equal to 0.0012
and 0.0014 at z1 and z2, respectively. The two curves are almost
tangential at the membrane interface. As x increases from 0 to
0.005, the gradient decreases from 1100 to 500 and from 980
to 300 at z1 and z2, respectively. So the gradient difference
is slightly higher at z2 than at z1, but the ratio of the gradi-
ent at z1 to the gradient at z2 is greater at x = 0.005 than at
x = 0. However, over a small distance it has a small effect on
the potential profiles.

A 2nd region with a smaller slope is located between 0.005
and x′ with x′ = 0.04 and 0.125 at z1 and at z2, respectively.
These transversal positions x′ are slightly higher than the posi-
tion of Qmax. Q(0.005,0.04)(z1) = 7.1 × 10�4 > Q(0.005,0.125)(z2)
= 3.6×10�4 contrary to the 1st region. Therefore, as x increases
over the region II, the difference in gradient is greater at z1 than
at z2, i.e., it decreases from 500 to 150 and from 300 to 82,
respectively. But Q(0.005,0.04)(z1) is not high enough for the gra-
dient to decrease sufficiently and for the two curves to intersect.
Even more, along the 2nd region at z1, the potential difference
between the two longitudinal positions increases and becomes
noticeable.



FIG. 17. Transversal profiles for two longitudinal positions. (a) Plot of the
electric potential∆Φ(x), (b): plot of the pressure.∆Φ= 25,ν = 10�3, c+

interf = 1,
Lz = 6/5.

A 3rd region is located between x′′ and 1 with x′′ = 0.08
and 0.2 at z1 and z2, respectively. It is characterized by a much
smaller slope than in the 2nd region. We must recall that the
term “much smaller” has to be understood in the relative man-
ner. The gradient at x′′ is equal to 26.4 and 18 at z1 and z2,
respectively. This 3rd region is located outside the ESC layer
within Rubinstein’s meaning, i.e., x′′ ≥ xo. In the transition
zone (2/3) located between xmax and the outer edge of the ESC
layer, Q(x′,x′′) (z1) = 2.3× 10−4 > Q(x′,x′′) (z2) = 1.3× 10−4. So
combining the fact that the charge Q(x′,x′′) (z1) is high enough
to decrease the potential gradient in a significant amount and
the fact that x′′ is much smaller at z1 than at z2, the two
curves intersect at x = 0.15. This position corresponds to the
mean position of the outer limit of the 3rd layer, mentioned in
Sec. III C about the transversal gradients, where also

(
~FPr

)
z

< 0 and
(
~FE

)
z
> 0. So, the region (x > 0.15) is characterized

by Φ(z2) > Φ(z1). This coincides to the presence of a negative
longitudinal electric force around the symmetry axis, induc-
ing with the pressure force the divergence of the fluid flow
[also see Figs. 13(b) and 16(b)]. The maximum of potential
difference is located at x = 0.04. This corresponds to the mean
position of the maximum of

(
~FE

)
z
.

Figure 17(b) displays the transversal pressure profiles at z1

and z2. The inset of Fig. 17(b) is a magnification of the profiles
in the non-equilibrium EDL. We have observed in Sec. III D
that the transversal mechanical equilibrium is fulfilled in this

layer. Therefore, from Eq. (20), P(x, z) ∼ Pe/2
(
~E
)2

x
. Contrary

to the potential, the pressure at the membrane surface is extrap-
olated. Its value is equal to 2.4 × 105 and 1.95 × 105 at z1 and
z2, respectively. P(z1) is greater than P(z2) but the relative dif-
ference is small because the transversal potential gradient is
slightly higher at z1 than at z2 at the surface membrane.

The 1st region (x < 0.005) is located in the quasi-
equilibrium EDL. It is characterized by a high decrease in the
pressure because in this region

(
~∇Φ

)
x
, i.e., the electric field

magnitude, decreases a lot as discussed above. For the same
reason about the difference in potential gradient between the
two longitudinal positions, we observe P(z1) > P(z2).

The 2nd region is characterized by a smaller pressure gra-
dient which is almost constant. This region lies between 0.01
and 0.035 and between 0.03 and 0.1 at z1 and z2, respectively. In
Fig. 17(a), this pressure region is located just before the slope
change at the transition region 2/3. In the ESC layer, it takes
place between xmin and xmax. So, considering the mechani-
cal equilibrium, the pressure gradient is constant because the
increase in charge density balances the decrease in potential
gradient. Figure 17(a) shows that in the transition between
regions 2 and 3 at z1, the potential gradient decreases notice-
ably and ���

(
~E
)

x

��� (z1) <
���
(
~E
)

x

��� (z2) if x > 0.04. This is why
the pressure curves intersect at x = 0.04. From the mechani-
cal equilibrium in the transversal direction, we can infer that
���
(
~∇P

)
x

(z1)��� >
���
(
~∇P

)
x

(z2)��� when x > 0.01 regardless of
(
~E
)

x
because the electric charge density is very small at z2 and is
the key parameter. This limit at x = 0.04 corresponds to the
mean position of the outer boundary of the 2nd layer, men-
tioned in Sec. III C about the transversal gradients, where also(
~FPr

)
z
> 0 and

(
~FE

)
z
> 0. Figure 17(b) shows a maximum of

the pressure difference at x = 0.06. As x increases from 0.035
to 0.06, the maximum of the longitudinal pressure profile dis-
places from z = 0.3 (and z = 0.9) to z = 0.5 (and z = 0.7). In
the region 0.06 < x < 0.2, the maximum of the longitudinal
profile is located at z = 0.6. The pressure plateau, mentioned
in Sec. III C, appears when x > 0.2.

The 3rd region, characterized by a small pressure
decrease, is located beyond the outer edge of the ESC layer:
x > 0.08 at z1 and x > 0.3 at z2. The pressure at z2 remains
greater than the pressure at z1. From Fig. 17(a), we can deduce
that this is the result of the compression of the ESC layer at z1

and the result of a smaller potential gradient at z1 than at z2 in
the transition region 2/3.

IV. CONCLUSIONS

In this work, ion transfer and hydrodynamics are stud-
ied in the presence of a steady-state electro-kinetic instability
at the surface of a cation-exchange membrane. In this aim,
the Poisson-Nernst-Planck equations coupled with the Stokes
equations are solved in the polarization layer until the Debye
scale. After a validation of the numerical method, the results
are presented in three parts.

In the first part, marginal instability properties are stud-
ied by varying the cation concentration at the fluid/membrane
interface c+

interf and by investigating the stability of the vortex
pair size as a function of the imposed potential drop ∆Φ. The



numerical results show that the marginal instability thresh-
old ∆Φ∗ increases with c+

interf and the current density I is a
decreasing function of c+

interf . ∆Φ∗ and I are logarithmic func-
tions of c+

interf . This is in opposition with the theoretical results
published by Rubinstein and Zaltzman.26,27 The asymptotic
development leads to an expression of the slip velocity inde-
pendent on c+

interf . So, the simplified model describing the
electro-kinetic instability in the diffusion layer cannot pre-
dict the dependency of the instability on c+

interf . A higher
order development may be necessary to confirm the numer-
ical results. However, the high difference in velocity value
between the analytical expression and the numerical compu-
tation remains unexplained. As regards the vortex pair size, the
numerical results carried out with Lz = 6 and c+

interf = 2 show
that close to the instability threshold the pair size value of Lz/5
is the most stable in agreement with the published results.31,36

However, the size Lz/4 is also stable. As ∆Φ increases, the
range of stable vortex pair size increases so that at ∆Φ = 30,
Lz/6 and Lz/7 seem to be the most stable sizes.

The second part deals with the spatial distribution of the
hydrodynamic and of the ion transfer. As concerns the hydro-
dynamic, the fluid motion along the membrane is mainly
induced by the electric force located around the maximum
value of the electric charge density in the ESC region all
along the membrane. But inside the quasi-equilibrium EDL
and around the inner edge of the ESC layer, the fluid motion is
also induced by the pressure gradient so that the fluid velocity
increases as the fluid approaches the symmetry axis show-
ing a kinetic energy spot in the region where the ESC layer
width increases. Owing to the incompressibility, the upward
flow displays a spot of kinetic energy in the region between
the counter-rotating vortices where the streamlines are no more
convergent. In this region, the pressure force, directed upward,
is far greater than the electric one. The pressure does not
depend on z contrary to

(
~U
)

x
which is a quadratic function

of z. The divergence of the velocity field is mainly induced
by the longitudinal pressure and electric forces directed to the
outward direction.

In the analysis of ion transfer, three contributions to the
ionic velocity (ratio of the ionic flux to the ionic concentration)
are compared: the Fickian diffusion, the electro-migration, and
the convection. As concerns the cations, the transfer is mainly
directed to the membrane surface due to the electric force and
the convection successively as we move away from the bound-
ary z = 0. However, a stagnation zone takes place between the
counter-rotating hydrodynamic vortices, i.e., where the flow is
upward. The small ionic velocity is the result of the transversal
balance between the convective flux and the electro-migration
one. In the two counter-rotating cationic vortices, the longitu-
dinal motion is induced by the Fickian diffusion at the bottom
of the vortices and by the electro-migration at the top. As
concerns the anions, the numerical results show two regions
between which there is no anionic flux. The first one is located
against the stationary reservoir. The anions enter the polariza-
tion layer between the hydrodynamic vortices by diffusion and
are pushed out of the layer in the outer boundary region by the
electric force. In the second region, lying between the mem-
brane and the first zone, the anionic motion is characterized
by two counter-rotating vortices. The longitudinal transfer is

induced by convection and Fickian diffusion. In the transversal
direction, the electro-migration and the convection induce the
downward motion one and the electro-migration controls the
upward one.

Finally, using the knowledge achieved from the spatial
analysis of the fluid motion and of the ionic fluxes, we describe,
in another way, how the spatial charge distribution, in the quasi-
equilibrium EDL and in the ESC layer, and also the size of these
two layers influence the longitudinal potential and pressure dif-
ference. In particular, we are able to explain at the macroscopic
scale the presence of two layers along the membrane surface
where the pressure force and the electric force induce the fluid
motion underlying the electro-kinetic instability.
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