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A B S T R A C T

Large-eddy simulations based on the Lattice-Boltzmann method of the flow in a realistic, full scale urban area are
performed to compare several wind comfort criteria. It is observed that popular criteria for pedestrian comfort
lead to very different conclusions, due to the access to high spatio-temporal resolution data. Different mixed
strategies based on the combination of several criteria are proposed and compared to enhance pedestrian wind
comfort assessment in practical cases.

1. Introduction

Pedestrian comfort is a global field of urban physics dealing with
wind comfort, pollutant dispersion and thermal comfort close to the
ground of cities. It can be addressed using either wind tunnel or in situ
measurements that provide data at specific locations or using
Computational Fluid Dynamics (CFD) which gives access to data over
wide areas with very high spatial resolution. All these approaches are
complementary considering that in situ and wind tunnel measurements
permit to generate complete database that will be used to validate
numerical model and to define guidelines for CFD studies which permit
to obtain plenty of data on full scale geometries to assess pedestrian
comfort.

Pedestrian wind comfort is sensitive to several kind of parameters
such as the local wind (mean velocity, turbulent intensity), the location
of the city (atmospheric conditions, building density) or the peoples
(age, weight) so it is necessary to find or define universal rules to study
it. In the literature those studies are mainly based on a mixing of me-
teorological data, aerodynamic data and comfort criterion to address
local wind comfort in cities. Different criteria have been proposed in the
literature, which are observed to a significant dispersion of results in
some cases. Ratcliff and Peterka [1], Ohba et al. [2], Bottema [3] and
Koss [4] listed and compared several wind comfort criteria such as
those discussed in Davenport [5], Gandemer [6,7], Isyumov and Da-
venport [8,9], Lawson and Penwarden [10], Melbourne [11] and Hunt
et al. [12]. This variability of pedestrian comfort criteria is significantly
impacted by the nature of their input data: time-averaged velocity,
turbulent intensity and averaging period length, from a few seconds to a
few hours. In order to reduce the uncertainty induced by this high

sensitivity of wind comfort criteria, comparing them on the same case
can be a good way to evaluate pedestrian comfort quality but many
kind of aerodynamic data can be necessary to this end. CFD is then an
interesting tool since it permits to assess different data at many loca-
tions with a moderate effort.

The use of CFD for urban flow simulation is more and more wide-
spread. Many studies are available in the literature and best practice
guidelines [13–15] on the use of CFD for that kind of application have
been proposed. Most of existing CFD simulations have been performed
using the Reynolds Average Navier Stokes (RANS) approach, which
resolves only the mean, time-averaged flow while the turbulent motion
is modelled, on simplified [16–19] or realistic [18,20–29] geometries.
However time-resolved approaches such as Detached Eddy Simulation
(DES, see Ref. [30]) have been used recently on both simplified isolated
buildings geometries [31,32] and complex urban area like Shinjuku AIJ
test case [32]. Steady RANS simulations are widely used because of
their low computational cost, but they do not permit to assess unsteady
data, and therefore do not allow to consider all existing wind comfort
criteria. Another commonly reported weakness is that they over-predict
the turbulent energy dissipation, leading to a bad prediction of re-
circulation bubbles observed at the top or in the wake of buildings. To
cure that problem Large Eddy Simulation (LES, see Refs. [33,34]) which
allows for the direct resolution of a wide range of turbulent frequencies,
can be used. However, the computational cost increase associated to
LES due to its high spatio-temporal resolution can become a problem
when simulations of flow over complex realistic geometries is targeted.
These methods were first applied to simplified geometries or reduced
area of cities, e.g. Refs. [35–39], but also for simulations of pollutant
dispersion over complex urban areas [40], wind loads on buildings [41]
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and pedestrian wind comfort assessment [42,43]. A review of urban
CFD simulations at pedestrian level is given in Table 1. In order to re-
duce computational cost of LES simulation it is possible to switch from
the classical CFD approach base on the Navier-Stokes equations to
Lattice Boltzmann method (LBM) solvers which are very efficient for
parallel computations of separated low Mach number flows. This is il-
lustrated in Ahmad et al. [44], who performed simulations to assess
pedestrian level gust index in a × ×km km km19.2 4.8 1.0 area of Tokyo
with a m2 finest grid resolution taking advantage of high efficiency of
lattice Boltzmann method for parallel simulation. The LBM method is
very interesting for CFD because it is fully local which avoid the use of

complex and time consuming numerical methods and the complete
algorithm needs only to access the data of the first order neighbors
which increase the performance for parallel simulations. Furthermore
the computational grid is based on a hierarchy of embedded uniform
meshes with a ratio of 2 for the grid step between two successive re-
finement levels. The use of immersed boundary conditions allows to
handle complex geometries such as city in a very easy and automatic
way. This is also interesting considering that the ratio dx dt/ is kept
identical at all grid refinement levels, which means that only the nodes
at the finest refinement level are computed every time step reducing the
number of floating point operations during the simulation.

The present study deals with the application of an LES-LBM solver to
wind comfort assessment at pedestrian level in full scale urban geo-
metry using different wind comfort criteria. The aim is to compare
different existing criteria thanks to the high space-time resolution data
provided by LES in a realistic configuration, and to check their coher-
ency and robustness with respect to the accuracy of input data. In
Section 2 key features of the Lattice Boltzmann method used in this
paper are presented. Section 3 presents the validation of the present
method on a realistic urban configuration, namely the case F of the
Architectural Institute of Japan open database [14,27]. Section 4 is
devoted to the results obtained dealing with pedestrian wind comfort
assessment at a height of 2m from the ground. Conclusions are given in
Section 5.

2. Numerical method

All the CFD simulations presented here have been carried out using
a research version of ProLB [49] that use the Lattice Boltzmann Method
[50–54] to solve fluid dynamics equations. It is based on the resolution
of Boltzmann equation (Eq. (1)) that describes the evolution of a par-
ticle distribution function = → →f f x c t( , , ) which is related to the prob-
ability density of particles with velocity→c at time t and position→x . This
equation is solved on a DdQq (d dimensions, q discrete velocities) lat-
tice.

Table 1
Example of existing CFD simulations at pedestrian level.

Turbulence model Computational domain Area of interest Pedestrian level Wind comfort criteria Grid points

He [35] LES × m700 700 2 m1.7
Blocken [20] RANS × m900 700 2 m1.75 Bottema [3] ×2.9 106

Blocken [21] RANS × m3000 3000 2 Amsterdam Arena m2 NEN8100 [45] ×2.8 106

Letzel [42] LES km1.6 2 ≃ km1 2 m2.5 ×7.2 108 & ×1.6 109

Jansen [23] RANS × m2077 1838 2 × m1918 1430 2 m1.75 NEN8100 [45], ×7.5 106

Isyumov [8],
Melbourne [11],
Lawson [46]

Montazeri [26] RANS × m2076 1963 2 Antwerp tower m1.7 NEN8100 [45] ≃ ×16 106

balconies
Blocken [22] RANS ≃ × m2700 2300 2 × m1600 1100 2 m1.75 NEN8100 [45] ×7.5 106

Shi [47] RANS × m3000 3000 2 m1.5 ×1.14 106

Zheng [29] RANS × m7950 7650 2 Outdoor platforms of m2 NEN8100 [45], ×7.18 106

megatall building Lawson [46]
Kang [24] RANS × m1000 1000 2 m1.75 Isyumov [8] ≃ ×14.2 106

Adamek [43] LES × m4270 2440 2 ≃ × m600 600 2 m1.5 Soligo [48] ×1.1 106

Present study LES × m4600 5000 2 Shinjuku area m2 × − ×22 10 136 106 6

Fig. 1. Positions of measurements points.

Table 2
Grid parameters and computational time for the Shinjuku area test case.

Grid xΔ min (m) tΔ min (s) Grid refinement level Grid points (106) Number of processors Computational time for 1 h

Coarse 2 0.03 5 22 120 9h
Basic 1 0.015 6 54 240 20h
Fine 0.5 0.0075 7 136 504 50h
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Fig. 2. Grid visualization for the coarse case.

Fig. 3. Comparisons of the present simulations with measurement results: Field measurements * with standard deviation, wind tunnel measurements , coarse grid ,
basic grid and fine grid .

Fig. 4. Grid sensitivity analysis, • represent values on previous measurement points and * represent values on other points in the domain.
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The lattice Boltzmann equation (Eq. (2)) with time step tΔ and space
step

⎯ →⎯⎯
= ⎯→⎯x c tΔ Δα is given by Ref. [55].
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with fα the distribution function following the α direction and Ωα the
collision operator. In this work the lattice use is the D3Q19 lattice given
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The solution of Eq. (2) is usually computed in two steps using a
Strang-type splitting. First the collision step
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coll . The macroscopic quan-
tities (density ρ, momentum ρui and momentum flux tensor Πij) are then
reconstructed computing the moments of the distribution functions, i.e.
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The collision operator, which is interpreted as a relaxation towards
an equilibrium state, may involve either a single relaxation time (BGK
collision) [54] or several ones, leading to a multiple relaxation time
(MRT) method [56]. MRT models are expected to be numerically more
stable than BGK models, because they allow for a finer tuning of the
effective viscosity. Nevertheless, different methods such as collision
kernel regularization [57] allow to increase the BGK model stability
with a very small extra computational cost. Such a regularized collision
operator with a single relaxation time expressed in Eq. (5) is used in the
present work,

= − − = −
τ

f f
τ

fΩ 1 ( ) 1
α α α

eq
α
neq

(5)

where = +τ ν0.5 3 is the dimensionless relaxation time, ν is the kine-
matic viscosity, fα

neq is the non equilibrium distribution function and fα
eq

is the local equilibrium distribution function given by

Fig. 5. Shinjuku area with new buildings (blue) and the area of interest (red),
the arrow indicates the inflow direction. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this
article.)

Table 3
Different criteria for wind effect on human activities.

Hunt [12] = +U U σ3e U
<U m s6 /e Comfort situation for all activities
<U m s9 /e Most performance unaffected
<U m s15 /e Good control of walking
<U m s20 /e Good safety of walking

Murakami [60] =U Ue s3
<U m s5 /e No effect on people

< <m s U m s5 / 10 /e Some effects on people
< <m s U m s10 / 15 /e Serious effects on people

>U m s15 /e Very serious effects on people

Table 4
Different wind comfort criteria.

Class Criteria Ue UTHR Pmax

A (Sitting) NEN 8100 [45] U H1 m s5 / 2.5%
Lawson [46] U H1 m s3.35 / 2%

U s3 m s5.7 / 2%
Melbourne [11] +U σ3.5H U1 m s10 / 0.022%
Isyumov [8] U H1 m s5.45 / 1.5%
Soligo [48] U H1 m s2.5 / 20%

B (Standing) NEN 8100 [45] U H1 m s5 / 5%
Lawson [46] U H1 m s5.45 / 2%

U s3 m s9.3 / 2%
Melbourne [11] +U σ3.5H U1 m s13 / 0.022%
Isyumov [8] U H1 m s7.95 / 1.5%
Soligo [48] U H1 m s3.9 / 20%

C (Walking) NEN 8100 [45] U H1 m s5 / 10%
Lawson [46] U H1 m s7.95 / 2%

U s3 m s13.6 / 2%
Melbourne [11] +U σ3.5H U1 m s16 / 0.022%
Isyumov [8] U H1 m s10.75 / 1.5%
Soligo [48] U H1 m s5 / 20%

Fig. 6. Localization of the East and West points.
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with cs the speed of sound, ωα the weighting coefficients of the lattice
and = −Q c c c δαij αi αj s ij

2 . Following the Chapman-Enskog expansion the
non equilibrium function can be approximated by Refs. [57,58].
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It is seen from Eq. (7) that the non equilibrium function can be
computed using either the macroscopic quantities and their space de-
rivatives or the local distribution functions. In the following, it is chosen
to denote fα

neq FD, the non equilibrium function computed using finite
differences and fα

neq LBM, the non-equilibrium function computed from
the local distribution functions, respectively. Using only fα

neq LBM, can
lead to numerical instability whereas considering only fα

neq FD, can lead

to strong numerical dissipation. To avoid these problems a mixed re-
construction is defined as
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The regularized collision operator used in this paper is obtained
combining Eq. (5) and Eq. (8), yielding

= − + −
τ

σf σ fΩ 1 [ (1 ) ]α α
neq LBM

α
neq FD, ,

(10)

Fig. 7. Visualization of the velocity fluctuations on the West point in the case =U m s1.69 /ref .

Fig. 8. Visualization of the velocity fluctuations on the East point in the case =U m s1.69 /ref .

Fig. 9. Velocity histograms (in black) and associate Gaussian distributions (in red) at a) West point and b) East point in the case =U m s1.69 /ref . (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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with =σ 0.97, which is observed to be well suited for Implicit Large-
Eddy Simulation. Therefore, no explicit subgrid model is added for the
simulations presented hereafter.

3. Validation of the method

3.1. Description of the test case

The present lattice Boltzmann model is first validated with simu-
lations of the Shinjuku area in Tokyo corresponding to the case F of the
AIJ open source database [14,27] for the north wind condition. This
area is a km1 2 part of Tokyo with both tall (up to 225m height) and
small buildings. Velocity measurements (Fig. 1) are available for that
case at several locations, including both field measurements carried out
from December 1975 to November 1983 at the beginning of the de-
velopment of that area and wind tunnel measurements carried out
based on the 1977 field measurements conditions. These data are
available online (https://www.aij.or.jp/jpn/publish/cfdguide/index_e.
htm) or can be found in Refs. [18,27].

It must be noticed here that no CAD data of the 1977 Shinjuku area
were available so it was made thanks to photographs and old drawings
as mentioned by Yoshie et al. [18] and Tominaga et al. [27]. Therefore
differences can exist between the real urban area at the field mea-
surement time and the geometry used for the CFD computations.

3.2. Computational settings

As the Shinjuku area is about ×km km1 1 with a height of =H 225
meters for the highest building (Shinjuku Mitsui Building, point D in
Fig. 1) a computational domain of × ×m m m4600 5000 1500 was de-
signed. This domain ensures an upstream length of H4.5 , a downstream
length of H13 and a height of H6.5 with lateral boundaries placed H8
from the Shinjuku area in agreement with Franke et al. [13] and To-
minaga et al. [14] best practice guidelines. As explained in Section 1 the
computational grid is composed of several embedded volumes with
uniform mesh. The computations were performed considering 3 dif-
ferent finest grid resolutions summarized in Table 2. A view of the
coarsest mesh is shown in Fig. 2. The coarse grid is composed of several
layers of refinement levels close to the ground, =x mΔ 2 up to 70m
high (35 grid points) then xΔ is increased (by a ratio of 2) by layers of
12 points up to the maximal value =x mΔ 32 . The areas around the tall
buildings were refined ( =x mΔ 2 close to buildings) using individual
refinement volumes to ensure that the different wakes will be correctly
captured. Additional refinement levels were added around tall build-
ings, one volume ( =x mΔ 4 ) including the different individual areas and
another one ( =x mΔ 8 ) surrounding the previously defined volume. The
basic grid is based on the coarse one with an additional layer up to 40m
from the ground with =x mΔ 1 and the same procedure was applied
from basic to fine grid with a layer of 20m ( =x mΔ 0.5 ) from the
ground. For all the 3 tested grids the measurements points of Fig. 1 are
located in the finest resolution level.

At the inflow, the mean velocity profile is reconstructed from the
values given in the AIJ data base, leading to =U z z( ) 0.895 0.276. The
lateral and top boundary conditions were defined as frictionless walls
following the best practice guidelines [13,14] and a constant static
pressure condition was prescribed at the outlet. Standard wall law [59]
was used for the floor and the different buildings walls.

3.3. Comparison with literature results

For all of the 3 designed grid 1 h of physical time was simulated to

Fig. 10. Visualization of a) 1 h averaged velocity, b) 3 s averaged velocity and
c) 1 h standard deviation of the velocity computed with =U m s1.69 /ref . The
black points indicate the position of previous east and west points.
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Fig. 11. Visualization of the maximum 3 s average velocity (m/s) for =U m s5.07 /ref (left) and =U m s10.14 /ref (right).

Fig. 12. Visualization of the different quality class assessed with Dutch standard criteria using different reference values of the inflow velocity.

7



install the flow then another one hour time was used to collect samples
and compute the flow statistics. The velocity at the different measure-
ments points was normalized by the value of the velocity at the top of
the Shinjuku Mitsui building (point D in Fig. 1). We notice that the grid
size near the top of that building was the same as the grid size on the
floor for all cases to ensure the same level of accuracy for all the
measurements points.

We observe from Fig. 3 that the coarse grid do not allow a good
recovery of experimental results close to the floor for a majority of
measurement points. Grid refinement lead to a clear improvement of
the prediction of normalized velocity and the normalized velocities
computed from fine grid are in good agreement with both the field and
wind tunnel measurements. Grid sensitivity analysis was carried out on
the previous measurement points and on other points in Shinjuku area
between the coarse and basic grid and between the basic and fine grid.
Good agreement between basic and fine grid (Fig. 4) is observed mainly
for normalized velocity higher than 0.35 and basic grid could be a good
tradeoff between accuracy and computational cost. However in the next
part of this work we will address pedestrian wind comfort at a height of
2m from the ground and the fine grid seems to be a better choice for
that kind of study to ensure accuracy of the results close to the floor.

4. Application to pedestrian wind comfort

4.1. Computational settings

The domain of study (Fig. 5) for wind comfort assessment is based

on the Shinjuku area previously described. An area of interest of
×m m400 400 ( ∈ −x [ 70,330] and ∈ −y [ 130,270]) was defined and a

building of × ×m m m60 60 200 ( ∈x [100,160] and ∈y [40,100]) was
added in that area. Since 1977 lot of new buildings were built in the
Shinjuku area and our added building is quite similar to the the Shin-
juku Center Building built in 1979. We notice that another building was
added in the geometry ( × ×m m m50 50 150 ) for another study coupled
with this one to reduced the computational cost. The area of interest is a
uniform grid with =x mΔ 0.5 containing 466,375 points 2m far from
the floor. The boundary conditions are the same as previously and 3
inflow velocity profiles were used, the velocity profile used in Sec. 3, 3
times and 6 times this profile corresponding to =U m s1.69 /ref

m10 ,
=U m s5.07 /ref

m10 and =U m s10.14 /ref
m10 . The use of the finest grid is in

agreement with Tominaga et al. [14] best practices guidelines as we
study pedestrian wind comfort on an area higher than the third grid
point from the floor.

4.2. Wind comfort criteria

Different kind of criteria can be found in the literature, some of
them are based on the direct effect of wind on people activities [12,60]
and are related to threshold values for the local effective velocity Ue

from which the realization of these activities become more difficult as
summarized in Table 3.

Others criteria are based on two different parameters, namely the
definition of the local effective velocity Ue as previously, along with the

Fig. 13. Visualization of the class A (in blue) with a) NEN8100, b) Melbourne, c) Lawson with 1 h average velocity and d) Lawson with 3 s average velocity criteria.
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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estimation of the probability P that this local effective velocity exceed a
threshold value UTHR. This probability function is given by Eq. (11)
[20,61].

⎜ ⎟> = ⋅ ⎡

⎣
⎢−⎛

⎝
⎞
⎠

⎤

⎦
⎥P U x U A θ U

G c θ
( ( ) ) 100 ( )exp

( )θ THR
THR

θ
x

k θ( )

(11)

where A θ( ), c θ( ) and k θ( ) are the Weibull parameters of the direction
θ. Sanz-Andres and Cuerva [61] define the amplification factor Gθ

x at
the point x influenced by a building by the ratio between the velocity
U x( ) at the point x and the velocity at the reference height of the
meteorological station Uref .

=G U x
U

( )
θ
x

ref (12)

The definition of the effective velocity depends on the authors. The
relation = +U U ασe U is often used with different values of the para-
meter α: Melbourne [11] used a value =α 3.5, He and Song [35] used

=α 3 and averages are computed over 10min whereas Murakami and
Deguchi [60] use =α 0 with average values computed on 3 s.

Lawson [46] and Isyumov and Davenport [8] define the effective
velocity following the Beaufort scale which permit to adapt the method
to the average period of the velocity. In the next part of this paper we
will consider three different wind comfort criteria, Lawson [46] criteria
using velocity average over 3 s and 1 h, Melbourne [11] using the
average velocity and the standard deviation of the velocity and the
Dutch standard [45] criteria using the mean velocity. The different

pedestrian comfort criteria are summarized in Table 4 and classified
following the Dutch standard [45] quality class. Class A means that
pedestrian comfort is good for long sitting, class B means that the
comfort is good for short exposure and class C means that the pedes-
trian comfort is good enough for walking. It is worth noting here that
Melbourne [11], Isyumov and Davenport [8] and Lawson [46] defined
quality classes with different comments and sometimes other kind of
activities than the Dutch standard [45] used here but the main ideas
they use to create their classification are the same. In the author opi-
nion all the different criteria presented in Table 3 and Table 4 are
complementary, considering that the effect of wind is different fol-
lowing peoples. Children, adults or elderly peoples do not have the
same definition of wind comfort so it seems important to use different
criteria to assess pedestrian wind comfort in urban areas.

4.3. Wind comfort assessment

The computations were performed during 1 h of physical time to get
a physically established unsteady turbulent flow and an additional 1 h
of physical time is computed to collect samples needed to evaluate the
various statistical quantities required for that study. During that time
the hourly averaged velocity U , the standard deviation of the velocity
σU and the 1200 samples of 3 s averaged velocities were stored at every
grid point of the area, then the local maximum value of the 3 s average
velocity Umax

s3 was extracted at each point. Fig. 7 and 8 display the time
history of the velocity fluctuations for 1 h of physical time at two lo-
cations, one at the east side and one at the west side of the central

Fig. 14. Visualization of the class B (in green) with a) NEN8100, b) Melbourne, c) Lawson with 1 h average velocity and d) Lawson with 3 s average velocity criteria.
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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building (Fig. 6). These two locations were chosen because they are
located in areas with similar average velocity level ( =U m s2.65 / for
west point and =U m s2.54 / at east point) but with very different values
for maximal velocity and standard deviation of the velocity (Fig. 10).
This means that different physical behaviors are observed on these two
locations, mainly on the amplitudes of the velocity fluctuations which
are more important on the east point (Fig. 8) than on the west point
(Fig. 7).

It is also observed that the sampling time is long enough to get
statistically converged quantities, since it is much larger than the ob-
served energetic low frequencies. Fig. 9 shows the velocity histograms
for these two points by step of m s0.1 / and the associated Gaussian
distributions. In both cases, the main range is located around m s2.7 /
(between 2.7 and 2.8 for west point and between 2.6 and 2.7 for east
point) but the velocity distributions exhibit some significant differ-
ences, which indicate that the flow physics is not the same at the two
locations. At the east point, which is in the wake of a tall building, one
can observe that the histogram is flatter than at the west point, due to
the strong coherent vortical events advected in the wake of the up-
stream building. Therefore, the flatness of the velocity pdf (probability
density function) is not the same at the two test points, for the west
point the kurtosis excess ( = − −k U U σ( ) / 3U

4 4 ) is negative
( = −k 0.326) and positive for the east point ( =k 0.123). It is also ob-
served that the two histograms are not symmetric with respect to their
peak considering that the skewness ( = −s U U σ( ) / U

3 3 ) is negative at
these two locations ( = −s 0.179 for west point and = −s 0.125 for east

point). Another important observation is that the velocity pdf is not
Gaussian at the two locations since the skewness and kurtosis excess of
Gaussian pdf are equal to 0, showing that simplified wind models based
on a Gaussian velocity model may lead to unsatisfactory results.

Pedestrian wind comfort is linked to wind velocity magnitude but
also to spatial and temporal velocity fluctuations. Wind speed varia-
bility is illustrated in Fig. 10 which displays the 1-hour averaged ve-
locity field, an example of 3-seconds averaged velocity field and the 1-
hour standard deviation of velocity at 2m from the ground. A high
spatial variability is observed on the three maps, as expected in dense
urban areas in which many building wakes interact and/or impinge on
other buildings and that channeling phenomenon is involved between
close buildings. As expected, the 3-second averaging yields a less
smooth field than the 1-hour averaging, with much wider high-velocity
domains. The east test point is observed to be located in a high standard
deviation/variability region (as large as 30% of the mean velocity)
influenced by the wakes of three buildings and a strong channeling
mechanism. Such a region can therefore be considered as not comfor-
table for pedestrians due to high velocity fluctuations following Mur-
akami and Deguchi [60] or Hunt et al. [12].

Murakami and Deguchi [60] have shown that 3-seconds averaged
velocity higher than m s10 / can lead to serious effects on pedestrians or
very serious effects when it exceeds m s15 / . From Fig. 10 we can see that
such velocity levels do not occur in the simulation with =U m s1.69 /ref

but Fig. 11 shows that increasing the inflow velocity can lead to exceed
these threshold velocities. From these results we can say that depending
on the inflow velocity it can be very difficult to walk on this area

Fig. 15. Visualization of the class C (in yellow) with a) NEN8100, b) Melbourne, c) Lawson with 1 h average velocity and d) Lawson with 3 s average velocity criteria.
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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( =U m s10.14 /ref ) or on the contrary very easy ( =U m s1.69 /ref ) that's
why it seems interesting to resort to criteria using meteorological data
and probability functions in order to be less sensitive to inflow condi-
tions.

Wind comfort assessment based on the Dutch standard [45] for the
North wind case was done using simulation data obtained with the 3
reference values for the inflow velocity ( =U m s1.69 /ref , m s5.07 / and

m s10.14 / ). The results are shown in Fig. 12. It is seen that increasing the
inflow velocity do not change significantly the wind comfort results in
that velocity range since class A, B and C locations are almost the same
and that >P U U( )THR never exceeds 10% for those 3 cases. It seems that
the different criteria as defined in Table 4 are more adapted to general
wind comfort assessment than the previous one. All the next applica-
tions were made with the velocity results obtained for =U m s1.69 /ref .

The Dutch standard criteria [45] differs from the others ones [11]

[46] since it is based on the probability of exceedance of the threshold
velocity of m s5 / whereas the others criteria define several velocities
with the same maximal probability exceedance to define different pe-
destrian wind comfort quality class. Some of the classes defined in
Table 4 are illustrated in Figs. 13–15 following the Dutch standard [45],
Melbourne [11] and Lawson [46] criteria. As expected Fig. 13 shows
that Lawson criterion computed with U H1 is more restrictive for long
sitting class than the Dutch standard since the threshold velocity and
the maximum probability of exceedance are lower.

This figure also shows that building wakes are mostly considered as
acceptable for long sitting exposure following the Dutch standard [45]
because of their low average velocity whereas they are not following
Melbourne criteria [11] because of the important unsteady effects. It
seems from Figs. 13–15 that lowering the averaging period on Lawson
criterion defined with the Beaufort scale makes it more restrictive: class
A area is reduced with computation from U s3 and class C area is in-
creased with U s3 -based criterion. This comes from the definition of the
effective velocity: using 1 h averaged velocity we account for steady
effects of the wind probably more important for long exposure whereas
using 3-seconds averaged velocity we take into account wind gust
which can affect walking peoples. Fig. 15d) should not be analyzed in
the same way since the main part of the study area is not suitable for
standing but it shows that wind gust can affect the main part of this area
and that pedestrian balance could be momentarily affected. From those
figures (13)–(15) Melbourne criteria taking account the local mean flow
and the local turbulent intensity seems more restrictive than the Dutch
standard, Ohba et al. [2] while comparing several criteria concluded his

Fig. 16. Visualization (in red) of the locations not belonging to class A, B or C with a) NEN8100, b) Melbourne, c) Lawson with 1 h average velocity and d) Lawson
with 3 s average velocity criteria. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 5
Fraction (in %) of points of the Shinjuku area belonging to the different quality
class according to several criteria and overlap between them.

Criteria Zone A Zone B Zone C Other zone

NEN8100 [45] 57.5% 29% 13.5% 0%
Melbourne [11] 41.5% 30.8% 20.8% 6.9%
Lawson [46] (U H1 ) 34% 24.6% 33.7% 7.7%

Lawson [46] (U s3 ) 13.8% 29.7% 51.1% 5.4%

According to all criteria 13.6% 0.14% 2.9% 0%
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assessment results in a severe evaluation of pedestrian comfort com-
pared to Murakami et al. [60] and Isyumov and Davenport [8] criteria.

Fig. 16 shows locations that do not belong to classes A, B or C, i.e.
locations where pedestrian comfort is not acceptable for sitting or
normal walking according to the different criteria. It seems that such
locations are almost not present in the test domain according to Dutch
standard whereas few locations, mostly in the wake of the top right
building, are found following the other criteria. These locations are
subjected to more important unsteady effects (see Fig. 3) than the
others so it's not surprising to have few differences in the results of the
different criteria depending on the definition of their effective velocity
or the value of the maximum probability of the threshold velocity. From
these results it seems that the use of different criteria for wind comfort
assessment is interesting considering they are taking into account dif-
ferent parameter such as mean velocity, turbulent intensity or wind
gust. These parameters are important parameters to define pedestrian
wind comfort criteria.

The differences between the existing criteria is further emphasized
looking at Table 5, which displays the percentage =R N N100 /i (with Ni
the number of grid points in class i and N the total number of grid
points in the area) of the total test area for each class obtained with the
various criteria. The last line deals with the overlap of the point of the
same class obtained with the four criteria. A striking conclusion is that
the overlap is almost null, indicating that criteria are not equivalent at
all and that they lead to very different conclusions in practical cases
(see Fig. 17). The duration of the time-averaging period is also seen to
be of crucial importance when using Lawson's criterion. As a matter of

fact, a long averaging time results in a strong smoothing of the extrema
of the instantaneous signal, yielding the prediction of large areas in
zone A (about 1/3 of the total area in the present test case). On the
opposite, considering a short time averaging does not eliminate the
strong wind gusts, yielding a much more restricted comfort map.

4.4. Wind comfort criteria combinations

Since the different criteria proposed in the literature lead to dif-
ferent pedestrian comfort map as shown in Fig. 17, the use of a new
criterion combining the previously defined criteria is necessary. In this
study we proposed 4 new criteria:

• Criterion 1: for every grid point the less restrictive criterion assess is
kept,

• Criterion 2: for every grid point the most restrictive criterion assess
is kept,

• Criterion 3: for every grid point the most often predicted criterion is
used, in case of a tie between two criteria the less restrictive is kept,

• Criterion 4: for every grid point the most often predicted criterion is
used, in case of a tie between two criteria the more restrictive is
kept.

Fig. 18 shows the comfort maps obtained with these new criteria.
The criterion 1 using the less restrictive assessment lead to comfort map
quite similar to the one obtain with the Dutch standard criteria. The
criterion 2 gives results very close to Lawson criterion that was more

Fig. 17. Visualization of the locations belonging to a) Class A (blue), b) Class B (green), c) Class C (yellow) according to the four criteria and d) where the four criteria
do not agree (black). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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restrictive than the other ones. These two criteria are probably not the
most representative since they are based on the extreme values assessed
by the standard criteria. On the opposite the comfort map obtained
using the proposed criteria 3 and 4 based on the most predicted class for
each point seems to be a good compromise for wind comfort assess-
ment. The main differences between these both criteria appears be-
tween class B and C around the two north buildings but the global as-
pect of the comfort map is very similar for these two criteria. In authors
opinion, the use of CFD velocity fields combined with the proposed
criteria 3 or 4 estimated from many different commonly used criteria
seems an interesting way for wind comfort assessment since it will lead
to more representative comfort map by removing extreme values.

5. Conclusions

Several LBM-based LES of urban flow in a realistic full scale case
have been carried out, with application to wind comfort. A first ob-
servation is that LES provides a deep insight into flow physics and gives
access to a huge amount of physically relevant and accurate data that
can be used as input for wind comfort criteria. An observation is that
wind velocity fluctuations, which originate in the combination of many
physical phenomena (wakes, boundary layers, channeling …) are not
Gaussian fluctuations. Using LES unsteady data, it is observed that wind
comfort criteria that include wind unsteadiness as an input parameter
can lead to conclusions that are very different from those based on
mean flow velocity amplitude. This illustrates the fact that unsteady

CFD approaches such as LES or DES should be privileged for wind
comfort studies. Another observation is that the various existing criteria
lead to significantly different results on the same case which compli-
cates their practical use. In this study several methods have been pro-
posed to combine the different criteria available in the literature. In
order to get a robust conclusion in practical applications the use of a
large amount of these classical wind comfort criteria is recommended to
keep the more often predicted criteria.
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