
HAL Id: hal-02114296
https://hal.science/hal-02114296v1

Submitted on 29 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Comparison Matrices of Semantic RESTful APIs
Technologies

Antoine Cheron, Johann Bourcier, Olivier Barais, Antoine Michel

To cite this version:
Antoine Cheron, Johann Bourcier, Olivier Barais, Antoine Michel. Comparison Matrices of Semantic
RESTful APIs Technologies. ICWE 2019 - 19th International Conference On Web Engineering, Jun
2019, Daejeon, South Korea. pp.425-440, �10.1007/978-3-030-19274-7_30�. �hal-02114296�

https://hal.science/hal-02114296v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Comparison Matrices of Semantic RESTful APIs
Technologies

Antoine Cheron1[0000−0003−1857−6799], Johann Bourcier2[0000−0003−2947−9150],
Olivier Barais2[0000−0002−4551−8562], and Antoine Michel1

1 Fabernovel, 44-48 rue Saint-Lazare F-75009 Paris
2 Univ Rennes, Inria, CNRS, IRISA 263 Avenue General Leclerc, F-35000 Rennes

Abstract. Semantic RESTful APIs combine the power of the REST
architectural style, the Semantic Web and Linked Data. They picture a
world in which Web APIs are easier to browse and more meaningful for
humans while also being machine-interpretable, turning them into plat-
forms that developers and companies can build on. We counted 36 tech-
nologies that target building such APIs. As there is no one-size-fits-all
technology, they have to be combined. This makes selecting the appropri-
ate set of technologies to a specific context a difficult task for architects
and developers. So, how the selection of such a set of technologies can be
eased? In this paper we propose three comparison matrices of Semantic
RESTful APIs enabling technologies. It is based on the analysis of the
differences and commonalities between existing technologies. It intends
to help developers and architects in making an informed decision on the
technologies to use. It also highlights the limitations of state-of-the-art
technologies from which open challenges are derived.

Keywords: Hateoas· Semantic REST· Comparison· Linked Data· Web

1 Introduction

Today, RESTful APIs [19] have become the de-facto standard for building web
applications. The main reason behind this popularity lies in the appropriate
trade-off between the facility to build such applications and the benefits provided
by this approach in such an opened large-scale distributed system: evolutivity,
scalability and loose-coupling. However, 95% of APIs are not RESTful [13] as
they claim.

Until today, no single standard has emerged to design truly RESTful APIs.
Consequently, software architects are facing the challenge of selecting the right
technologies for the design and implementation of these systems. Typically, a
software architect has to select the right interface description language (IDL),
interchange format and framework to ease the development of such APIs.

In addition, a new trend has recently emerged to create RESTful APIs that
carry their own semantics, they are called Semantic RESTful APIs [15]. It is a
vision that proposes to make fully REST-compliant APIs compatible with the
Semantic Web [3] and Linked Data [4]. From our experience at FABERNOVEL,
we found that building such APIs does not require much more effort than truly
RESTful systems, whereas it offers great benefits, such as loose-coupling, auto-
mated API mash-ups [2], machine-interpretability and very powerful querying.

2 A. Cheron et al.

However, the design of semantic RESTful APIs considerably increases the
complexity for the architect to choose the appropriate technology. Indeed, the
specific criteria and properties to be taken into account are not explicit when
choosing an IDL, an interchange format and a framework. The industrial needs
are growing for proper tools to support trade-off decisions of the architect; a tool
that would help him/her to understand the consequences of a design decision,
i.e. the characteristics and limitations of each approach.

In this paper, we propose to fill this gap by providing three decision matrices
that help architects to choose the technologies that will best fit their needs. The
main contributions of this paper are:

– three comparison matrices of interchange formats, interface description lan-
guages and frameworks that help choosing the appropriate set of technologies
to build Semantic RESTful APIs;

– key features that are missing from state-of-the-art technologies to assist and
make the creation of Semantic RESTful APIs more beneficial.

Using these comparison matrices, we illustrate their usage on an industrial
case and draw the outline of a research road-map to ease the adoption of Se-
mantic RESTful APIs in the industry.

The remainder of this paper is organized as follows. Section 2 provides the
required background on Semantic REST APIs and the reference maturity model
to choose the functionality level of an API along, with its limitation. The two
following sections describe our comparison matrices and an illustration that high-
lights the benefits of our proposition. Finally, section 5 discusses the role of the
existing frameworks to build Semantic REST APIs.

2 Background

This section describes the main concepts related to the design and implementa-
tion of Semantic RESTful APIs and the process of selecting an API functionality.

Semantic RESTful services Combining REST with Semantic Web and Linked
Data is a promising path since it enables the description of APIs that can change
without breaking client applications. These APIs advertise their available state
transitions, therefore enabling automatic composition to create high level ser-
vices [1]. Smart software agents can then automatically discover the suite of
operations to realize complex workflows and even make APIs compatible with
voice assistants. This is achieved by semantically enriching the data and opera-
tions of REST systems with Semantic Web ontology technologies and by linking
resources to other resources.

2.1 Selecting an API functionality level

Today, Web systems offer a wide range of functionalities. For example, they may
offer multiple media types or a single one, comply with the HTTP protocol or

Comparison Matrices of Semantic RESTful APIs Technologies 3

use it as a transfer protocol, or even semantically describe their resources. This
diversity can make the process of comparing and selecting the minimum set of
features to be implemented very time-consuming. Maturity models have been
proposed as a solution to this problem [11, 15].

In companies, architects use them to decide features which must be sup-
ported by their APIs. In general, a maturity model is a scale that represents
the compliance of a technology with a given architecture. To reach a level, a
technology must meet each constraint of the targeted level and the previous lev-
els. Currently, the de-facto standard in the industry is the Richardson Maturity
Model [6], which targets building REST APIs. However, we recommend using
the WS3 maturity model [15] as it combines the models proposed by Richardson,
and SoHA [18], and extends them with semantic and documentation constraints.

The WS3 maturity model In [15], authors describe the WS3 maturity model for
classifying Semantic REST Web APIs. It classifies APIs along three independent
dimensions: design, profile and semantic, as shown in Fig. 1.

Fig. 1. WS3 Maturity Model (from [15])
The design dimension repre-

sents the different modeling strate-
gies adopted for designing the tech-
nical access to a Web API through
four levels: (i) RPC, (ii) resources
have dedicated URI and the API
is stateless, (iii) operations on a re-
source are mapped to HTTP verbs
in compliance with the protocol and
(iv) the smallest data unit that can
be handled by operations is the re-
source.

The profile dimension reflects the quality of documentation that can be
interpreted by software agents through two levels. The first level: interaction
profile, requires the description of all available HTTP operations and how to
trigger them. The second level: the domain profile, requires the description of
domain specific details such as the order of operation execution, pre- and post-
conditions, business constraints, etc.

The semantic dimension represents the use of semantic technologies through
two levels. To reach the Semantic Description level, an API must semantically
describe properties and operations of resources. The next level: Linked Data, is
reached when the API semantically describes relationships between resources.

Usage In their paper [15], Salvadori et al. propose to rate systems along each
dimension independently, with a score going from 0 to the number of levels in the
dimension. For example, a non-documented API with no semantic support that
reaches level 3 of the Richardson Maturity Model will be rated D3-S0-P03. As
another example, a system that supports HATEOAS and provides a swagger-like
documentation along with the data is rated D3-S0-P24.

3 D3-S0-P0: Atomic Resources Design, no Semantic Description, no Profile description
4 D3-S0-P2: Atomic Resources Design, no Semantic Description, Domain Profile

4 A. Cheron et al.

2.2 Discussion on the WS3 maturity level

At FABERNOVEL, we experienced two limitations to the applicability of the
maturity model to a wider audience. These limitations are related to the Atomic
Resources level and the granularity of the WS3 levels.

According to WS3, the Atomic Resources constraint requires that the re-
source is the smallest data unit handled by operations. Respecting this constraint
may introduce negative properties in the API. Let us consider an API handling
insurance contracts which offers read and update operations on the postal ad-
dress, email address and insurance manager. Two solutions can be considered
to respect the Atomic Resources constraint. The first solution is to create one
resource, where every properties can be modified at once, which increases the
risk of concurrent modification. With this solution, the API would have two
operations. The second solution is to create one resource for each concept: con-
tract, email address, postal address and the manager. The API would have eight
operations. This solution increases dramatically the number of operations which
complexifies the documentation and maintainability. Another solution would be
to create one resource with four operations: (i) read, (ii) update email, (iii)
update postal address and (iv) update manager. This solution lowers the con-
currency risk while maintaining a reasonable complexity and offering meaningful
operation names. Unfortunately this solution breaks the Atomic Resources con-
straint. We therefore argue that respecting this last constraint may not always
lead to better API quality.

The second limitation relates to the granularity of the maturity levels. Indeed,
each level implies more than one feature. This granularity allows for a coarse-
grained categorization of systems. However, to precisely differentiate systems
based on the features they implement, a deeper study is needed. Given two
systems that reach P1, which means they describe all available HTTP operations
and how to trigger them, one might also describe its authentication process and
errors while not the other one. And yet they reach the same maturity level. We
therefore argue for a finer grain categorization of APIs.

3 Comparison Matrices

We propose three detailed matrices which address the limits of WS3 identified in
the previous section. The proposed matrices enable the comparison of technolo-
gies along a set of precise criteria to highlight their differences. These matrices
extend the WS3 levels by adding new criteria which are used in practice (see
section 3.1) and not linked to any WS3 levels.

3.1 Insights from developers and architects

We interviewed 14 developers and architects from FABERNOVEL and clients on
their experience with Semantic REST technologies. Raw results and the analysis
are available online5. Our key findings are:

5 https://github.com/AntoineCheron/comparison-matrices-semantic-rest-api-techno

Comparison Matrices of Semantic RESTful APIs Technologies 5

– Selecting the technology: 10 respondents have already built Semantic REST
APIs: 30% spent more than two weeks selecting the technologies; 80% re-
ported that the most difficult task was to understand the feature provided
by each technology.

– Interchange Formats: 6 out of 7 did not find a technology providing all
required features (most often the missing features were the description of
HTTP operations with their data model (3/8) and the Linked Data (2/8)).

– Interface description languages: All respondents said that none of them pro-
vide all required features (60% said they lack the ability to describe links
to other resources and business constraints; and 20% of them would like to
model the resources as finite state machines (FSM)).

– Frameworks: 6 out of 7 reported that no framework offered the required
feature. The missing features are related to the auto-documentation of the
API, the automatic generation of link and a mechanism to model resources
as FSM.

– Technology score: The median value of the score is 2/5.

These results emphasize the difficulties in selecting technologies associated
to Semantic REST APIs. They also highlight that these technologies are not yet
mature and give a rough idea of the missing features.

3.2 Comparison Matrices Design Method

The design of our comparison matrices follows a 5-step sequential process: (i)
search for candidate technologies, (ii) select candidate technologies, (iii) read
carefully each candidate technology, (iv) elaborate fine grain criteria to char-
acterize and differentiate technologies, (v) verify that the elaborated criteria
highlighted the differences between technologies. We looped on step (iv) and (v)
to avoid duplicating criteria or hiding important details.

The research of candidate technologies (step i) was done by:

1. Searching Google and Google Scholar for Semantic REST Technologies us-
ing combinations of keywords from the set: [“web”, “semantic”, “restful”,
“rest”, “service”, “API”, “interface”, “description”, “documentation”, “lan-
guage”, “modeling”, “hypermedia”, “document”, “format”, “RDF”, “data-
interchange”, “linked data”, “hateoas”, “rest api”, “framework”];

2. Searching Google Scholar for tools automating tasks from services descrip-
tion, using keywords: “matchmakers”, “service composition”, “service dis-
covery”, “rest service analysis”, “automated mashups”, we then selected pa-
pers and technologies from their references and the papers that cite those
we selected;

3. Searching the proceedings of ICWE and WS-REST.

We selected 81 papers, standards, articles and web pages (step ii) based
on abstract or introduction. We selected documents that were specifications of
interface description languages or models, frameworks supporting HATEOAS

6 A. Cheron et al.

features, interchange formats that support RDF or HATEOAS features, com-
parisons between these technologies or tools leveraging them. We considered
frameworks available as programming libraries that helps implementing HTTP
APIs in any programming language. We opened our research to technologies
from the 1990s to today and retained those that are still available today.

Then, we read the specification of each chosen technology (step iii) and elabo-
rated classification criteria (step iv). We included those of the H Factor 6 which is
a measurement of the level of hypermedia support and sophistication of a media-
type. Others were carefully designed to highlight differences between technolo-
gies, based on the core design of the technologies, the features they provide and
the details of the WS3 maturity model. All the material is available online7.

As a final step (step v), we read the specifications again to verify results and
validate that the selected criteria highlighted differences and commonalities well.

Popularity criteria We defined a popularity criteria to provide a rough idea of
the community support and the likelihood of the technology to last in time.
It respects the following rules: 0 - Not enough to reach 1; 1 - More than 100
questions on Stack Overflow AND (2500+ NPM weekly downloads OR 100+
maven usages); 2 - More than 400 questions on Stack Overflow AND (500.000+
total downloads OR 15.000+ NPM weekly downloads OR 500+ maven usages).

3.3 Interface Description Languages

Interface Description Languages (IDLs) provide a vocabulary to document do-
main, functional and non-functional aspects of an API. We identified 16 candi-
dates that are classified according to 31 criteria in Fig 2. Among them, 4 are
meta-models from conference papers [7, 8, 16, 22]. The 11 others are open-source
projects or W3C recommendations.

In [8] authors present a tool to sketch CRUD or Hypermedia APIs. On the
latter mode, users sketch the application using state-machines and then obtain
a description in the HAL or Collection+JSON format. [16] models each resource
type as a finite-state-machine with deterministic transitions and conditions to
inform about the availability of transitions. However, they are not modeled in
more details, which make them not machine-interpretable. In [22], authors pro-
pose to model systems as non-deterministic state machines. This method thus
makes software agents unable to discover the set of messages to exchange in
order to make an operation available. Haupt et al. [7] propose a multi-layered
model that separates the domain model from the URI model. However, resources
have a fixed model, which prevent them from having one data model per state.

It is important to note than when IDLs and interchange formats are both
compatible with RDF, they can be combined to form a file format usable as
data-interchange format and IDL. This has great benefits to lower the overall
complexity and increase the evolvability of the system.

6 http://amundsen.com/hypermedia/hfactor/
7 https://github.com/AntoineCheron/comparison-matrices-semantic-rest-api-techno

Comparison Matrices of Semantic RESTful APIs Technologies 7

Fig. 2. Interface Description Languages Comparison Matrix

Synthesis First, the matrix highlights the fact that most technologies help with
building mature systems on the design dimension and interaction profile level of
the profile dimension, D3-P1 following the WS3 categories. On the other hand
on the semantic dimension, we notice that 5/16 technologies support the use of
RDF vocabulary, which allows to build Linked Data APIs. As a reminder, this is
required to reach full Semantic REST compliance. Moreover, by supporting the
use of RDF vocabulary, IDLs can be enriched to reach a higher level of maturity.

Among the technologies, four can be distinguished by the number of criteria
they meet: Hydra (18), RADL (18), OpenAPI (17) and RESTdesc (17). Ope-

8 A. Cheron et al.

nAPI is the only one that has no support for RDF. Thus, it helps in building
systems up to D3-P2-S0 on the WS3 scale. On the other hand, Hydra, RADL and
RESTdesc support the use of RDF vocabulary, which makes these technologies
better suited to build systems that are mature on the semantic dimension.

Towards HATEOAS APIs From the matrix, we notice that most technologies
target the documentation of the API in a single, non-splittable file. Hence, they
are not suited to provide hypermedia controls at runtime.

On the other hand, only one approach, [16], supports the description of the
conditions that determine the availability of a link, and none makes this meta-
data machine-interpretable. This makes software agents unable to find a way to
make an operation available when it is not.

Towards better-documented APIs Only four technologies support the descrip-
tion of business constraints which lowers coupling and improves user experience,
e.g., with the automatic generation of forms with client-side validation.

Finally, we note that most scientific publications recommend the modeling
of RESTful systems with state-machines whereas open-sourced or W3C IDL
authors don’t consider this design method. And yet, the use of deterministic
state-machines eases the determination of the available operations of a resource.

3.4 Data-interchange formats

These formats provide a data-structure, a vocabulary and a layout to represent
a resource and its meta-data at runtime. When the API does not need to send
meta-data, JSON and XML are the two widely used formats in the industry.

On the other side, when the system to be built have to support a hypermedia
interchange format, none is considered as a standard today. We selected 11 can-
didate technologies, which are classified in Fig. 3 according to 24 criteria. JSON
is included for comparison purposes.

Synthesis First, from this matrix, we notice that formats can be differentiated
based on their compatibility with RDF. Indeed, RDF formats (Turtle, RDF XML
and JSON-LD) propose very few features by default because they can be enriched
with RDF vocabularies. To depict what is achievable by combining vocabularies
with a RDF format, we selected two vocabularies: Hydra and SHACL, a RDF
schema validation vocabulary, that we combined with JSON-LD and evaluated
them. As a result, they match 12 more criteria than JSON-LD alone. From this,
we infer that combining RDF formats with vocabularies allow building mature
Semantic REST systems. However, this requires additional effort to find relevant
vocabularies. On the other hand, non-RDF formats help building systems that
can be mature on the profile dimension but not on the semantic dimension.

Furthermore, the matrix shows that no format supports the description of
constraints despite the fact that it can be leveraged to reduce coupling and
improve the user-experience.

Finally, it highlights that no format advertise the state of the resource even
though most scientific approaches we found describe REST APIs as state-machines.

Comparison Matrices of Semantic RESTful APIs Technologies 9

Fig. 3. Data-interchange Formats Comparison Matrix

3.5 Implementation Frameworks

Implementation frameworks are software libraries that guide developers through
the implementation of Web APIs. We limit the comparison to frameworks that
claim to support HATEOAS. We identified six frameworks that do so. Frame-
works to build Semantic Web Services are excluded because their triple-centric
approach differs too much from REST.

Among the selected papers, in [14] authors propose Hypermedia Web API
Support, a Java framework based on JAX-RS 2.0 that offers annotations to se-
mantically describe REST APIs. The end result is the description of the whole
API in a JSON-LD document enriched with the Hydra vocabulary. Unfortu-
nately, the framework is not available in Maven Central. In [9] Parastatidis et al.
present Restfulie, a framework that uses resources, state transitions and content-
negotiation as its core building blocks. We found 4 other frameworks that support
HATEOAS features. They are all classified in Fig. 4 according to 23 criteria.

10 A. Cheron et al.

Fig. 4. Implementation Frameworks Comparison Matrix

Synthesis Despite the fact that only one framework enforces the Atomic Re-
sources constraint, all frameworks allow to reach the highest level of maturity
on the design dimension easily. This is because supporting the Atomic Resources
constraint only requires developers to use the data model of the resource as the
input of write operations and as the output of read operations.
We notice that only API Platform and Restfulie offer a mechanism to model
relations between resources from which links are generated, instead of adding
them programmatically in the response, thus increasing maintainability.
Otherwise, most frameworks do not ease the semantic and domain description
of APIs. To us, this is the biggest challenge framework designers should tackle.
Last, as for IDLs, most frameworks creators do not provide mechanisms to de-
scribe resources as state machines, thus not taking advantage of its benefits.

4 Matrices usage example

In this section, we present the service of an insurance company that manages
insurance contracts to illustrate how the presented comparison matrices can be

Comparison Matrices of Semantic RESTful APIs Technologies 11

used in a real world scenario. This example is a light version of projects we have
carried out at FABERNOVEL for large French insurance companies.

4.1 Domain description

To manage insurance contracts, the service holds five kinds of resources: (i) third-
parties, (ii) contracts, (iii) warranties, (iv) cases and (v) services. Third-parties,
for example customers or contractors, enter into contracts with the company.
These contracts include warranties from the closed list that the company offers.
For example a Person A has the following warranties: (i) damage coverage with
a deductible of $500 and a maximum repair amount of $30.000 and (ii) premium
vehicle loan in the event of immobilization of the damaged vehicle. A contract
can have several cases. When an customer of the insurance has a claim the
company creates a case that holds its details and the services provided to the
insured. For example, Person A has a car accident, he opens the insurance’s web
application and reports a claim, which leads to the company opening a case. His
car has been destroyed and he is expected to attend a diner. Thus, on the app,
he asks for the loan of a car that he will immediately recover.

4.2 Technological constraints

The service has to communicate with both internal and external components.
Internal components are front-end applications, such as mobile or web appli-
cations, and other kernel services, such as payments. External components are
contractors APIs, for example taxi or mechanics companies.

In the insurance domain, there is a huge amount of business rules that deter-
mine (i) the warranties an insured can include in a contract and (ii) the available
services for a case, based on the specificity of the given case and the warranties
of the contract. Writing and maintaining these rules both on the server and its
clients is very costly and error prone. Thus, we decided to keep these business
rules on the server-side only. This constraint leads to the use of HATEOAS.

The project constitutes the core of the companys business, it should then be
built with state-of-the-art technologies such as Linked Data. This enables the
automatic creation of mash-ups and the use of a HyperGraphQL8 middleware
to easily query the whole IS [20]. Moreover, considering that the contractors
providing services are very diverse and numerous, the interactions with their
APIs should leverage the automatic discovery and composition offered by the
use of RDF semantics.

There is also a high probability that new client systems will be built in the
future, the API must document its resources, resource attributes, operations,
URI templates, HTTP verbs, hypermedia controls and errors in a machine-
interpretable way. Moreover, because the service applies the CQRS pattern9 we
needed the IDL to enable associating an operation to its own input and output
data model.

8 https://www.hypergraphql.org/
9 https://martinfowler.com/bliki/CQRS.html

12 A. Cheron et al.

Last, to minimize the disruption for software developers, we have chosen to
keep the interchange formats as close as possible to what developers already
know. It has therefore to be entity-centric, based on JSON and its structure had
to be as close as possible to a JSON document without meta-data.

4.3 Selection of the technologies

From these constraints, we selected the set of criteria and features that the tech-
nologies should provide. These criteria are checked in the last column of Fig 2, 3,
and 4. We then count the number of criteria that were provided by each existing
technology. Results are presented in Fig 5, 6 and 7. For each matrix, the three
technologies matching the highest amount of selected criteria are highlighted in
green. It is important to note that the technologies do not have to match every
criteria to be selected. Most of the time, missing features can be implemented
afterwards, or proposed to the maintainers of the technologies.

Fig. 5. Results for interface description languages

Fig. 6. Results for data interchange formats

Fig. 7. Results for implementation frameworks

Interface Description Languages Hydra, OpenAPI and RADL are the technolo-
gies matching the highest number of selected criteria. However, none matches all
criteria. Hydra lacks the ability to describe non-functional properties and media-
types, which can be done with other RDF vocabularies. RADL lacks the ability
to semantically describe resources models, operations, errors and non-functional

Comparison Matrices of Semantic RESTful APIs Technologies 13

properties, which can also be done with other vocabularies. On the other hand,
OpenAPI does not support the usage of RDF vocabulary. In this project, we
have chosen to setup both Hydra and OpenAPI. OpenAPI because it has most
features and it is a must-have today because of its tooling and popularity. Hy-
dra because it can be easily completed with other vocabularies and used with
JSON-LD.

Interchange Formats Mason, JSON-LD + Hydra are the two technologies match-
ing the highest number of selected criteria. JSON-LD + Hydra + SHACL is
ignored as it does not match more selected criteria than without SHACL. While
JSON-LD + Hydra lacks the ability to describe non-functional properties, Mason
does not allow to use RDF vocabularies. Being incompatible with RDF requires
a lot more effort to compensate than finding another vocabulary. This explains
why JSON-LD + Hydra was preferred over Mason in this context.

Implementation frameworks API Platform, Spring HATEOAS and Hypermedia
Web API Support [14] are the three technologies matching the highest number
of criteria. The latter is immediately removed from the candidates because no
public library is available. In this example, API Platform should be preferred over
Spring HATEOAS because it matches five more criteria than Spring. However,
developers of the companies we worked with know Java and not PHP. Moreover
the Spring framework is very popular with them, which compensates the need
to develop some features by hand. This is why we decided to go with Spring.

Easing the selection of the technologies We have developed an open-source web
recommender system10 in which the user selects the type of technology, the re-
quired criteria and finally score each criterion to indicate its importance. In
return, the web application presents the list of technologies that meet the re-
quired criteria ordered by their respective score. By offering a two-step wizard,
we reduce the process of identifying relevant technologies to a few minutes.

5 Discussion

This section provides our perspective on why no standard solution exists to meet
all our criteria, and highlights the possibility of new research initiatives.

First, there is no de-facto neither IETF or W3C standard Interchange Format
for building Semantic REST APIs. The technology the more likely to become a
standard is JSON-LD, for which a W3C Working Group is active. In addition,
none of the existing interchange formats support all the criteria described above,
making it likely that new formats will emerge. For this reason, frameworks sup-
porting Semantic REST APIs will rely on formats that are likely to evolve, which
will require additional effort and costs. This reduces the likelihood of framework
editors to invest time in developing such features.

To us, the second and also the most important reason is that the well-known
and widely used tools do not rely on Semantic REST APIs to provide additional

10 https://antoinecheron.github.io/morice/

14 A. Cheron et al.

and useful features. Among the possible functionalities, we envision various tools
to automate API testing, REST client generation, API gateways, middleware
and smarter desktop REST clients. We believe that this limits the adoption of
Semantic REST APIs because the cost of building these APIs is not perceived
as offering a sufficient short-term return on investment.

6 Related Work

In [21], and [15], authors justify the need to provide a semantic description of
REST APIs to avoid that programmers who develop client applications have to
understand in depth several APIs from several providers. Based on this motiva-
tion, they survey academic approaches to add semantic to such APIs description
and technique to automatically compose restful services.

In [17] authors present a framework for REST-service integration based on
Linked Data models. First, API providers semantically describe their REST
services. Second, API consumers express data queries with SPARQL. Then, they
use a middleware developed by the authors that automatically compose API calls
to respond to data queries with a RDF graph. At the first step, authors needed
to find and select a RDF-compatible Interface Description Language, which is
precisely the kind of use-case our approach addresses. Because they could not
find an existing one fitting their needs, they designed a new one by leveraging
existing technologies such as MSM [12], Hydra, RAML and OpenApi.

In [20], Tuchinda et al. describe a programming-by-demonstration approach
to build mashups by example. Instead of requiring a user to select and cus-
tomize a set of widgets, the user simply demonstrates the integration task by
example. Their approach addresses the problems of extracting data from web
sources, cleaning and modeling the extracted data, and integrating the data
across sources. It illustrates the benefits of getting meta-data on top of services
to improve the definition of mashups and decrease the coupling between informa-
tion system building blocks and the complexity of developing mature Semantic
REST APIs. In [5], Duke et al. propose an approach to reduce the complexity for
describing, finding, composing and invoking semantic rest services. They mainly
provide an approach where they show how they can combine services when they
get semantic information.

Other research efforts were done to lower the entry barrier for developing
mature Semantic REST APIs. Among them is the semi-automatic annotation
of web services as done by Patil et al. in [10]. Their contribution could help
significantly increase the number of semantically described services, in case their
work is open-sourced and updated to support nowadays popular technologies.

7 Findings Summary

In this paper, we have presented three comparison matrices that assist architects
in choosing Semantic REST APIs enabling technologies that meet their needs.
Through a real example, we have illustrated how the use of these matrices simpli-
fies the choice of these technologies. As stated in the paper, technologies should

Comparison Matrices of Semantic RESTful APIs Technologies 15

be chosen not only according to the number of criteria they meet, but also ac-
cording to the specific needs of the project. To facilitate this selection, we have
developed an assistant available online.

We also pointed out some interesting features missing in current technolo-
gies. The description of constraints and conditions indicating the availability
of state transitions is ignored by IDLs, vocabularies, interchange formats and
frameworks. On the other hand, resource modeling as FSM is not available in
most frameworks. More importantly, well-known tools do not take advantage of
the power of Semantic REST APIs to provide additional and useful features.

Based on these findings, we identify areas for improvement in the tools around
Semantic REST APIs that we believe can increase its adoption. By leveraging
the semantic description and advertising of state transitions and non-functional
properties, automated testing tools can become smarter, REST client libraries
can lower the coupling with the server and automate tasks such as login, and
middleware can automatically create responses from the composition of several
APIs.

References

1. Alarcon, R.e.a.: Rest web service description for graph-based service discovery. In:
International Conference on Web Engineering. pp. 461–478. Springer (2015)

2. Benslimane, D., Dustdar, S., Sheth, A.: Services mashups: The new generation of
web applications. IEEE Internet Computing 12(5) (2008)

3. Berners-Lee, T.: The semantic web. Scientific American (2001)
4. Berners-Lee, T.: Linked data principles (07 2006), [Online]. Available:

https://www.w3.org/DesignIssues/LinkedData.html. [Accessed: 15- Jan- 2019].
5. Duke, A.e.a.: Telecommunication mashups using restful services. In: Towards a

Service-Based Internet. pp. 124–135. Springer, Berlin, Heidelberg (2010)
6. Fowler, M.: Richardson maturity model, [Online]. [Accessed: 15- Jan- 2019].

https://martinfowler.com/articles/richardsonMaturityModel.html.
7. Haupt, F., Karastoyanova, D., Leymann, F., Schroth, B.: A model-driven approach

for rest compliant service. In: Proceedings of the IEEE International Conference
on Web Services (ICWS 2014). pp. 129 – 136. IEEE (2014)

8. Mitra, R.: Rapido: a sketching tool for web api designers. World Wide Web Con-
ference (2015)

9. Parastatidis, S., Webber, J., Silveira, G., Robinson, I.S.: The role of hyperme-
dia in distributed system development. In: Proceedings of the First International
Workshop on RESTful Design. pp. 16–22. ACM (2010)

10. Patil, A.A., Oundhakar, S.A., Sheth, A.P., Verma, K.: Meteor-s web service anno-
tation framework. In: Proceedings of the 13th international conference on World
Wide Web. pp. 553–562. ACM (2004)

11. Paulk, M.C.e.a.: Capability maturity model, version 1.1. IEEE software 10(4),
18–27 (1993)

12. Pedrinaci, C., Domingue, J., et al.: Toward the next wave of services: Linked ser-
vices for the web of data. J. ucs 16(13), 1694–1719 (2010)

13. Rodŕıguez, C., et al.: Rest apis: A large-scale analysis of compliance with principles
and best practices. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.) Web
Engineering. pp. 21–39. Springer International Publishing, Cham (2016)

16 A. Cheron et al.

14. Salvadori, I.e.a.: A framework for semantic description of restful web apis. In: Web
Services (ICWS), 2014 IEEE International Conference on. IEEE (2014)

15. Salvadori, I., Siqueira, F.: A maturity model for semantic restful web apis. In: 2015
IEEE International Conference on Web Services. pp. 703–710 (June 2015)

16. Schreier, S.: Modeling restful applications. In: Proceedings of the Second Interna-
tional Workshop on RESTful Design. pp. 15–21. WS-REST ’11, ACM, New York,
NY, USA (2011). https://doi.org/10.1145/1967428.1967434

17. Serrano, D., Stroulia, E., Lau, D., Ng, T.: Linked rest apis: A middleware for
semantic rest api integration. In: Web Services (ICWS), 2017 IEEE International
Conference on. pp. 138–145. IEEE (2017)

18. Soha (02 2010), [Online]. https://tinyurl.com/ya43vefk. [Accessed: 16- Jan- 2019].
19. T.Fielding, R.: Architectural Styles and the Design of Network-based Software

Architectures. Ph.D. thesis, University of California, Irvine (2000)
20. Tuchinda, R., Knoblock, C.A., Szekely, P.: Building mashups by

demonstration. ACM Trans. Web 5(3), 16:1–16:45 (Jul 2011).
https://doi.org/10.1145/1993053.1993058

21. Verborgh, R.e.a.: Survey of semantic description of REST APIs. In: REST: Ad-
vanced Research Topics and Practical Applications, pp. 69–89. Springer (2014)

22. Zuzak, I.e.a.: Formal modeling of restful systems using finite-state machines. In:
Web Engineering. pp. 346–360. Springer, Berlin, Heidelberg (2011)

